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Forest stand biomass serves as an effective indicator for monitoring REDD (reducing emissions from
deforestation and forest degradation). Optical remote sensing data have been widely used to derive forest
biophysical parameters inspite of their poor sensitivity towards the forest properties. Microwave remote
sensing provides a better alternative owing to its inherent ability to penetrate the forest vegetation.
This study aims at developing optimal regression models for retrieving forest above-ground bole biomass
(AGBB) utilising optical data from Landsat TM and microwave data from L-band of ALOS PALSAR
data over Indian subcontinental tropical deciduous mixed forests located in Munger (Bihar, India). Spa-
tial biomass models were developed. The results using Landsat TM showed poor correlation (R2 =0.295
and RMSE=35 t/ha) when compared to HH polarized L-band SAR (R2 =0.868 and RMSE=16.06 t/ha).
However, the prediction model performed even better when both the optical and SAR were used simulta-
neously (R2 =0.892 and RMSE=14.08 t/ha). The addition of TM metrics has positively contributed in
improving PALSAR estimates of forest biomass. Hence, the study recommends the combined use of both
optical and SAR sensors for better assessment of stand biomass with significant contribution towards
operational forestry.

1. Introduction

Land and forest cover dynamics are important para-
meters in current strategies and policies for forest
management and vegetationmonitoring (Sinha et al.
2015a). Proper enumeration of biomass and carbon
is a preliminary requirement for monitoring redu-
cing emissions from deforestation and forest degra-
dation (REDD) (Gibbs et al. 2007; Sharma et al.

2013; Sinha and Sharma 2013). The largest pool
of carbon is stored as aboveground living biomass
of trees that suffers deforestation and degradation
(Kumar et al. 2011). There is a need to measure
the forest biophysical and structural properties
that characterizes the forest vegetation and influ-
ences the biomass/carbon stock (Mbaabu et al.
2014). Accurate reliable estimation of global forest
cover with biomass/carbon sequestered in earth’s
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forests is mandatory for understanding the global
carbon budget (DeFries et al. 2007).
There are numerous methods for the assessment

of tropical forest biomass or carbon stock docu-
mented in literatures (Gibbs et al. 2007; Goetz
et al. 2009), of which forest inventorization based
on field measurements via destructive sampling is
the most accurate and reliable (Goetz et al. 2009).
Also, the use of allometric equations to extrapolate
plot values to forest stands (Lu 2006) is widely rec-
ommended. On the contrary, this method is costly,
arduous, time extensive, non-spatial, and difficult to
be applied to a large extent in remote inaccessible
areas, specifically over tropical forests (Englhart
et al. 2011, 2012). Goetz et al. (2009) suggested the
biome approach as an indirect method to enumer-
ate biomass that requires inputs of land cover map
and forest type specific biomass values.
Satellite plays a vital role for global forest bio-

mass/carbon stock assessments (Gibbs et al. 2007).
Lu (2006) emphasized on the use of satellites formea-
suring and monitoring biomass. The limitations
of the in-situ study are overcome by using remote
sensing satellites with further added advantages
like wide range of spatial, spectral and temporal
resolutions of the satellite data. Remote sensing
technology when supplemented with in-situ mea-
surements provides precise and easy assessment of
biomass or carbon stock (Rosenqvist et al. 2003).
Optical sensors using spectral-based approaches
are frequently used for biomass assessment (Lu
2005, 2006; Singh et al. 2006; Kale et al. 2009;
Kumar et al. 2013; Sharma et al. 2013), though
facing several drawbacks like occurrence of clouds
and early saturation of the spectral bands that
hampers the biomass estimation process (Gibbs
et al. 2007). Kale et al. (2009) used multi-sensor
multi-temporal optical data for carbon sequestra-
tion study. However, the inability of the electro-
magnetic waves operating in the optical region
to penetrate the canopy makes the approach
ineffective for estimating the bole biomass which
contributes maximum towards the overall above-
ground biomass. This drawback is surmounted by
Synthetic Aperture Radar (SAR) that not only
has the intrinsic capability to penetrate the canopy
but also the clouds; hence is weather-independent.
Along with this, SAR interactions are sensitive to
wave polarization, target dielectric constant, sur-
face roughness, wave incident angles, etc. (Sinha
et al. 2015b). Biomass estimation using SAR also
depends on these parameters. These potentialities
are exploited for retrieval of tropical forest biomass
(Kuplich et al. 2005; Gama et al. 2010; Alappat
et al. 2011; Englhart et al. 2011, 2012; Sharma et al.
2014; Sinha et al. 2015c). Longer SAR wavelengths
(L- and P-band) with cross-polarizations (HV and
VH) are more sensitive to biomass than short

wavelengths (X- and C-band) with HH or VV
co-polarizations (Dobson et al. 1992; Hamdan et al.
2011; Wollersheim et al. 2011; Sharma et al. 2014;
Sinha et al. 2015b).
The saturation level improves while using SAR,

though the problem remains. A way to reduce the
problem of saturation is to use integrated multi-
source remote sensing data. Data from more than
one sensor reduce the uncertainty related to a sin-
gle sensor (Sarker 2010). Several studies have used
multiple remote sensing data to accurately esti-
mate the forest biophysical parameters. For exam-
ple, Mbaabu et al. (2014) used optical GeoEye-1
and LiDAR; Alappat et al. (2011) used SAR C- and
L-bands and Englhart et al. (2011) used SAR X-
and L-bands; while Sarker (2010) used both multi-
sensor optical (SPOT-5 and AVNIR-2) and SAR
(PALSAR and Radarsat-2) data. Hyde et al. (2006,
2007) used multi-sensor synergy of optical, SAR,
InSAR and LiDAR for assessment of AGB.
Optical data are useful in foliar biomass esti-

mations while SAR backscattering is sensitive to
woody biomass (Dobson et al. 1992; Sarker 2010).
Hence, the current study targets in the integrated
use of optical Landsat TM and SAR L-band ALOS
PALSAR data to develop regression models to
predict AGB with the integration of field data
over deciduous tropical mixed forests located in
Munger, India. The method applied can serve as a
potential benchmark for calculating biomass in the
complex set-up of the tropical forest system where
field experiments are difficult to carry out.

2. Material and methods

2.1 Study area

The tropical mixed deciduous forests found over
the Munger region of Bihar, India is taken as the
study area (figure 1). The area lies within the geo-
graphic extent of 25◦19′30′′–24◦56′50′′N latitude
and 86◦33′33′′–86◦11′51′′E longitude, covering an
area of approx 672.5 km2. With more than 89% of
the area under forests, mainly open and degraded,
the floral diversity comprises of Shorea robusta,
Acacia catechu,Madhuca longifolia,Dendrocalamus
strictus, Diospyros melanoxylon and Terminalia
tomentosa as the dominant floral species (Sinha et al.
2013). The forests suffer from limited anthropoge-
nic activities like settlements, mining activities,
agricultural development and plantations. These
virgin forests serve as ideal set-up for carrying out
the experiment with limited ground data. Two
remote sensing data are used; out of which one is
optical satellite sensor of Landsat TM and the
other is L-band SAR sensor of Fine Beam Dual
(FBD) HH/HV polarized ALOS PALSAR. The
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Figure 1. Location map of the study area.

Table 1. Satellite data specifications.

Remote sensing data type Optical SAR

Satellite Landsat 5 ALOS

Sensor TM PALSAR

Launching country USA (NASA) Japan (JAXA)

(Organization)

Date of launch 1st March, 1984 24th January, 2006

Spatial resolution 30 m (thermal 120 m) 25 m

Swath width 185 km 70 km (34.3◦ incident angle)

Wavelengths B1: 0.45–0.52 µm L-band; 15–30 cm

B2: 0.52–0.60 µm Fine Beam Dual (HH/HV)

B3: 0.63–0.69 µm

B4: 0.76–0.90 µm

B5: 1.55–1.75 µm

B6: 10.4–12.5 µm

B7: 2.08–2.35 µm

Year of data acquisition 2010 2010

Source of data acquisition USGS (http://glovis.usgs.gov/), USA JAXA, Japan

specifications of the data are documented in
table 1. Figure 2 describes the approach by which
these data are used singly and in combination to
develop multiple linear regression (MLR) model to
predict AGB, with inputs of the primary data as
generated from the field.

2.2 Field data collection

Field inventory is made by making direct in-situ
field calculations. The primary data such as forest
types, forest density, species composition, stand
height, and girth at breast height (GBH) are
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Figure 2. Methodology flowchart.

essential to estimate AGB; these information are
collected through the random sampling during
2010–2011. Another utility of the ground truth was
to get accurate information regarding the land use
and land cover of the area. Considering the vari-
ability and inaccessibility of the study area, a total
of 34 square sample plots representing homoge-
neous vegetation units, with an area of 0.1 hectare
(Singh et al. 2006; Sinha and Sharma 2013) each
were selected from every forest type and density
classes present in the study area; hence covering
0.005% of the total forest area. Considering the
time availability and complicacy of the study, it has
been proposed that the required sample size can
vary between 0.001% and 0.005% of the total study
area (Kale et al. 2009). The 0.1 hectare sample
plots resulted in the plot dimensions almost equal
to the pixel size of the satellite data, thus the plot
size is justified vis-à-vis satellite sensor resolution
(Sinha and Sharma 2013). The sample point dis-
tribution was designed considering that they pro-
vided ample representation of the different strata
of the forest with easy approachability and feasibil-
ity of taking multi-time observations. In each plot,
GBH (Girth at Breast Height) of each adult indi-
vidual tree (>30 cm GBH) was measured at 1.37 m
from the ground level using measuring tape. GBH
was converted to DBH (Diameter at Breast Height)
by dividing the value of GBH with 3.14 (Sinha
and Sharma 2013). Using the tree DBH and height
information, the tree volumes were estimated via
volumetric equations (FSI 1996) and biomass were

calculated after multiplying each tree volume with
the respective specific gravity (FRI 1996). These
individual biomass values were added together to
calculate the individual sample plot biomass. A
sample of 30 or more statistically represents normal
distribution of any sampling (Singh et al. 2006).

2.3 Landsat TM derived metrices

Lu (2005) has used Landsat TM data to estimate
the above ground biomass in the tropical Amazo-
nian forests. In this study, the TM imagery is geo-
metrically rectified and co-registered in reference
to already registered Landsat ETM+ and IRS P6
LISS-III image of the same region, which were in-
turn co-registered with the Survey of India (SOI)
toposheet considering analogous distinct identifi-
able objects on the toposheets, ground and image
(Sinha et al. 2013, 2014). The geocoded TM
image had UTM projection, WGS-84 datum and
Zone 45 North on a 1:50,000 scale. Principal com-
ponents, texture measures and NDVI (NIR−red/
NIR+red) were calculated at the stand level for the
image. NDVI is observed to bear the strongest rela-
tionship with the biomass among all the vegetation
indices (Sarker 2010; Kumar et al. 2013; Sharma
et al. 2013). Texture measures obtained through
occurrence matrices were performed using 3× 3
window size for individual bands of Landsat
TM. Simultaneously, texture measures of prin-
cipal components using 3× 3 window size were
analyzed.
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2.4 PALSAR backscatter retrieval

The raw Single Look Complex (SLC) SAR imagery
was converted to backscatter intensity data. The
data was properly calibrated and preprocessed
prior to its use for biomass retrieval. The prepro-
cessing of the ALOS PALSAR data was performed
in a sequence of steps in SARScape software.
The conversion of slant range image to ground
range image marks the initial step which is cru-
cial for removing the slant range distortions pro-
ducing SLC data in range with equal pixel spac-
ing. Next, multi-looking of the SLC was done to
convert the data in complex format to real num-
ber format (i.e., power or intensity). This step also
reduces the speckles present in the SLC image.
Seven azimuth looks for one look in the range were
selected for multi-looking that resulted in almost
square pixels in the image. The data in complex
number format was converted to amplitude and
then to power images respectively resulting in a
floating point image representing the power of
an amplitude image with pixel values having real
values. Next, using the satellite orbital param-
eters, the image was geocoded and rectified to
remove the geometric errors, which was done with
SRTM DEM resampled by nearest neighbour-
hood method to 30 m pixel size and reprojected
to UTM-WGS84 coordinate system. Thereafter,
radiometric calibration was carried out using
equation (1) which marks the conversion of power
image to linear backscatter image and then to deci-
bel image.

σ0 = 10 ∗ a log10(DN) +A0 (1)

where σ0 = backscatter coefficient or sigma nought
values in decibles (dB), DN=power (or intensity)
image, A0 (sensor calibration factor) = –115 dB.
Speckles in the imagery were reduced after radio-

metric calibration. This can cause alterations in
the backscatter values. As the models developed
are dependent on the backscatter values, the alter-
ations in the values are not desirable. Henceforth,
mean filters with 3× 3 window size (moving win-
dow of a few pixels) was adopted for the study.
The use of SAR-specific filters with varying win-
dow size was avoided in the study as that would
surely lead to more clarity and smoothing of the
SAR image features by effectively suppressing the
speckles, but at the expense of information loss in
terms of backscatter values. Both multi-look pro-
cessing and spatial filtering reduce speckle at the
cost of resolution. Therefore, the amount of speckle
reduction desired must balance the applications
and necessary information.

2.5 MLR spatial modelling

Backscatter coefficients generated from SAR data
derived in equation (1) and the metrics generated
from Landsat TM were equated to the field-based
plot AGB values. The values were statistically inte-
grated using Multiple Linear Regression (MLR)
analysis to find the best fit model that improved
the accuracy of the model estimates. The per-
formance of the model estimates were calculated
based on correlation coefficient (R) and coefficient
of determination (R2) values, that are derived from
correlation between estimated (field-based) and
predicted (modelled) AGB and the RMSE (root
mean square error) of the estimates. AGB maps
were generated using the models designed in GIS
framework.

2.6 Model evaluation

Uncertainty in the assessment of biomass with
geospatial approach was analyzed using a wide
range of statistical metrices, like R2, RMSE, MAD,
MBE, NDRMSE, NDMAD, NDMBE and absolute
accuracy. These metrices were used to compare and
evaluate the performance of the spatial biomass
models generated through MLR modelling.

1. Coefficient of determination (R2):

R2 =

⎡

⎣

∑
(

Yf − Yf

) (

Ym − Ym

)

√

∑
(

Yf − Yf

)2 (

Ym − Ym

)2

⎤

⎦

2

2. Root mean square error (RMSE):

RMSE =

√

√

√

√

[

∑

(Ym − Yf )
2

N

]

3. Mean absolute deviation (MAD):

MAD =

∑

|Ym − Yf |

N

4. Mean bias error (MBE):

MBE =

∑

(Ym − Yf )

N

5. Non-dimensional RMSE (NDRMSE):

NDRMSE =

∑

[(Ym − Yf )/Yf ]
2

N

6. Non-dimensional MAD (NDMAD):

NDMAD =

∑

|[(Ym − Yf )/Yf ]|

N
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7. Non-dimensional MBE (NDMBE):

NDMBE =

∑

[(Ym − Yf )/Yf ]

N

8. Average Absolute Accuracy (ζ):

ζ =

[

1−
1

N

∑ |Ym − Yf |

Yf

]

∗ 100

where Yf = value generated from field, Ym = value
generated through model, Yf = average of Yf val-
ues, Ym = average of Ym values, N = number of
study sites.

2.7 Model validation

The models (A, B and C) developed were statis-
tically validated with nine additional field AGB
data of year 2015 and the corresponding aforesaid
statistical measures were executed. However, these
conventional statistical measures are seldom opti-
mal for evaluating the agreement (or disagreement)
between the modelled and the actual field data.
Henceforth, a non-dimensional statistical measure,
namely Willmott’s index of agreement (d) was
simultaneously used. This overcomes and circum-
vents the disadvantages of the aforesaid statisti-
cal metrices and is more suitable for investigating
model validation, where comparison between the
observed and model-predicted values need to be
executed; with an assumption that the observed
data are completely error-free and hence can be
purely treated as reference for the comparison (Ji
and Gallo 2006).
Willmott’s Index of agreement (d):

d = 1−

∑

(Yf − Ym)
2

∑
(∣

∣Yf − Yf

∣

∣+
∣

∣Ym − Yf

∣

∣

)2 ,

where Yf = field generated value, Ym = model
generated value, Yf = average of Yf values.

3. Results and discussion

3.1 Descriptive statistics of sampling plots

Table 2 documents the descriptive statistics of
the AGB measured on ground for the 34 sample

Table 2. Statistical characteristics of sampling plots.

Parameter AGB (t/ha)

Maximum 172.0729

Minimum 11.3533

Mean 72.9469

Standard deviation 41.1525

Standard variance 1693.532

Number of plots 34

plots. The AGB for plots ranged from 11.35 to
172.07 t/ha with an average value of 72.94 t/ha
and standard deviation (SD) of 41.15 t/ha. The
high SD indicates that the data points are spread
out over a large range of values and the sample has
large variation of data.

3.2 Model development

Relationship between the field generated AGB with
both the corresponding SAR backscattering coeffi-
cients and TM derived metrices were examined sep-
arately. On regressing NDVI values generated from
the optical imagery to the plot AGB, a maximum
correlation (R2) of 0.26 was obtained following lin-
ear model as the best fit (table 3). Equation (2)
thus developed from the relation between plot AGB
and NDVI is used as a component in the final
synergic model for AGB assessment:

AGB = 340.13 ∗ TMNDVI − 143.09 (2)

Texture measures obtained through occurrence
matrices were performed with 3× 3 window size for
individual bands of TM datasets. The highest R2

value was obtained for the texture measure vari-
ance of TM band 4. Equation (3) thus developed
from the relation was used as a component in the
final synergic model for AGB assessment:

AGB = 81.811 ∗ e(−0.056∗TMB4variance) (3)

PCA and texture measures of PCA components
with 3× 3 window size were analyzed. Relation-
ships between the first four components of PCA
were investigated with the plot AGB. The first
few components harboured most of the informa-
tion, specifically, the first component that gave the
direction of the maximum spread of the data. The
greatest correlation of plot AGB was observed with
the first principal component (PCA1) variance in
logarithmic model. Equation (4) thus developed
from the relation was used as a component in the
final synergic model for AGB assessment:

AGB = 76.766 ∗ e(−0.003∗TMPCA1variance) (4)

Equations (2, 3 and 4) were statistically combined
in MLR to obtain the best fit integrated model

Table 3. Correlation (R2 ) between NDVI
to the plot AGB.

Relation R
2

Linear 0.2648

Logarithmic 0.2534

Exponential 0.2320

Power 0.2297
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(equation 5) of metrices derived from Landsat TM
data, thus representing the AGB prediction model
generated from optical satellite data.

AGB = 289.1105 ∗ TMNDVI

+ 54.2652 ∗ e(−0.056∗TMB4variance)

− 20.6116 ∗ e(−0.003∗TMPCA1variance)

− 136.306 (5)

SAR polarization is sensitive to the size, shape
and orientation of scattering elements and this
is responsible for depolarization or attenuation of
the backscattered signals. SAR backscatter coef-
ficient values extracted from FBD ALOS PAL-
SAR were correlated to the plot AGB and the R2

values are documented in table 4. The backscat-
ter coefficients generally range between −14 and
−1 in forested areas for HH polarization and
−25 to −7 for HV polarization (figure 3). Hence,
higher values are exhibited by HH polarization
followed by HV polarization; however, the range
of backscatter values is greater for HV polariza-
tion. The HV cross-polarized image provides bet-
ter visual discrimination of forest and non-forest
areas than the HH co-polarized image. In contrast,
HH polarization has the greatest interaction with

Table 4. Correlation coefficient (R2 ) between SAR back-
scatter coefficient and biomass.

ALOS PALSAR polarization HH HV

Correlation coefficient (R2) 0.8490 0.5645

the trunk due to its vertical structure and hence,
most sensitive towards the bole AGB. In this study,
HH polarization shows better correlation of 0.849
than HV polarization with R2=0.564. Therefore,
equation (6) was developed from the relation
between AGB and HH polarized ALOS PALSAR
data to be used as a component in the final synergic
model for AGB assessment.

AGB = 1067.3 ∗ e(0.2765∗σ
o

L HH
) (6)

Figure 3 depicts the relationship between the field
calculated AGB and the metrices derived from
optical and SAR sensors. The equations used as
inputs in the synergic model for predicting biomass
are presented in the figure.

3.3 Synergy regression modelling

It is recommended that all the points be used
for developing the prediction models to enhance
and improve the robustness of the models. Equa-
tions (2, 3, 4) (integrated as equation 5) and (6)
were statistically combined in MLR to find the best
fit model and the final prediction synergy model is
represented in equation (7).

AGB = 117.821 ∗ TMNDVI

+ 18.9965 ∗ e(−0.056∗TMB4variance)

− 37.4387 ∗ e(−0.003∗TMPCA1variance)

+ 918.6251 ∗ e(0.2765∗σ
o

L HH
)

− 47.6045 (7)

Figure 3. Relationship between the field AGB and the metrices derived from optical and SAR sensors.
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3.4 Model performance evaluation

Evaluation of the model performance signifies the
comparison among the different models developed
and their accuracy in predicting the AGB. The
parameters for determining the accuracy of the
models are already detailed before and the corre-
sponding values for the models generated are men-
tioned in table 5. Here the comparison is among
the models generated as equations (5) (Model A),
(6) (Model B) and (7) (Model C). ‘Model A’
shows weak correlation of 0.295 with high RMSE of
35 t/ha and the model accuracy is only 47.54%.
In contrary, ‘Model B’ had the highest accuracy
of 80.61%, with high correlation of 0.868 and
low RMSE of 16.06 t/ha. However, the integrated

Table 5. Model evaluation parameters for biomass prediction.

A B C (optical

AGB Model (optical) (SAR) + SAR)

R
2 0.295 0.868 0.892

RMSE (t/ha) 35.002 16.063 14.081

NDRMSE 0.598 0.073 0.104

MAD 28.058 12.449 11.279

NDMAD 0.525 0.194 0.213

MBE 0.000 −1.109 0.000

NDMBE 0.272 0.032 0.074

Av. abs. accuracy 47.537 80.605 78.725

optical-SAR model (‘Model C’) showed the best
results, with highest correlation of 0.892 and least
RMSE of 14.08 t/ha. Also, the table indicated low
MAD and MBE values for ‘Model C’. With a sig-
nificantly high model accuracy of 78.73%, ‘Model
C’ is considered the best model out of the three
for predicting AGB (see table 5 and figure 4).
Figure 4 represents the relationship between the
field-estimated AGB (observed) and modelled (pre-
dicted) AGB. Simultaneously, figure 5 illustrates
the comparison of the model evaluation statisti-
cal metrices among all the three models, which
summarizes the fact that ‘Model C’, i.e., optical

Figure 5. Statistical comparisons of AGB models.

Figure 4. Relationship between the field-estimated and modelled (predicted) biomass.
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and SAR integrated approach provides the best
technique for enumeration and assessment of AGB.
The models (A, B and C) were further validated
with additional nine AGB sample plots and the
results are presented in table 6. The table reveals
the better acceptability of ‘Model C’ for AGB
assessment in comparison to ‘Models A and B’. The

Table 6. Model validation: Comparison between AGB
models.

A B C (optical

AGB Model (optical) (SAR) + SAR)

R
2 0.574 0.713 0.769

RMSE (t/ha) 26.736 22.340 17.151

NDRMSE 0.932 0.216 0.065

MAD 23.227 19.669 14.350

NDMAD 0.637 0.382 0.214

MBE 14.652 −12.281 −3.906

NDMBE 0.559 −0.085 −0.039

Av. abs. accuracy 36.305 61.768 78.555

Willmott’s index (d) 0.722 0.883 0.931

value of ‘d’ is more nearing to ‘1’ in case of ‘Model
C’ than the other two models (A and B) which
means that the modelled values fit the observed
values better, and hence, shows greater agreement.
The R2, RSME and model accuracy values show
similar inferences. Thus, it can be concluded that
Model C is the most accurate model and hence
acceptable for AGB assessment. Figure 6 portrays
the biomass map derived from ‘Model C’ which
clearly shows that the less vegetative parts sur-
rounding the boundary of the study area, water
bodies and the built-up regions (in the periphery
and at the central parts) are represented by low
biomass class (i.e., <25 t/ha). Maximum portion
of the forested region is covered under the range
of 25–75 t/ha of biomass. Most of the high den-
sity vegetation seems to have biomass ranging from
75–125 t/ha, usually present in the interior parts
of the study area. It can be also observed that the
early saturation of biomass with the use of optical
data alone can be counteracted with the integrated
use of both optical and SAR data due to the better

Figure 6. Biomass map of the study area.
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relationship of the biomass to the L-band SAR
backscatter (figures 3, 4 and 5; table 5). Hence, the
integrated optical-SAR model provided the most
accurate result for predicting biomass (or AGB).

4. Conclusions

The concept of REDD is gaining momentum
among all the forest management practices that
affect the carbon/biomass stock of forests. This
is specifically important for tropical forest as the
assessment is complex in such heterogeneous for-
est landscapes. The relationship between L-band
ALOS PALSAR backscatter coefficient and forest
biomass has been established in the present study.
In a comparison between the optical and SAR data,
the SAR data is observed to produce much bet-
ter and accurate estimates of the forest biomass.
The synergic use of optical and SAR satellite
remote sensing data has been successfully illus-
trated in this study. The integrated use of multi-
sensor data thus showcases an easy and effective
way to improve the accuracy of biomass estimates;
even if with limited field data.
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