
Developing Virtual Organizations Using MDD

Jorge Agüero, Miguel Rebollo, Carlos Carrascosa, Vicente Julián

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera S/N 46022 Valencia (Spain)
{jaguero, mrebollo, carrasco, vinglada}@dsic.upv.es

Abstract. Virtual Organizations are novel mechanisms where agents
can demonstrate their social skills, due to the fact that they can work
in a cooperative and collaborative way. Furthermore, organizations are
frameworks where agents can achieve different types of agreements. But
the development of organizations in MAS (Multi-Agent Systems) re-
quires extensive experience in different methodologies and platforms.
MDD (Model Driven Development) is a technique for generating ap-
plication code developed from basic models and meta-models using a
variety of automatic transformations. This paper presents a meta-model
of Virtual Organization (of agents) using concepts and components at a
suitable level of abstraction so that it can be implemented on different
systems following a MDD approach. Based on this idea, a service-oriented
organizations meta-model that is platform independent is presented. As
an example, two model transformations that allow the unified model of
the virtual organization to be translated into two different platforms are
shown, facilitating the development process of agent-based software from
the point of view of the user.

1 Introduction

Advances in new technologies based mainly on the Internet and the Web, such
as electronic commerce, mobile/ubiquitous computing, social networks, etc.,
demonstrate the need to develop distributed applications with some intelligent
capabilities. Multi-Agent Systems (MAS) are a powerful technology with very
significant applications in distributed systems and artificial intelligence[18]. Sup-
porting all of these developments requires the creation of platforms of highly
heterogeneous agents, where agents work together through different interactions
to support complex tasks, in a collaborative and dynamic way. Bearing this in
mind, it is suitable for agents to display characteristics such as sociability, au-
tonomy, self-organization, etc. Therefore, it is necessary to create open systems
composed of a group of cooperative and heterogeneous agents, which work with
local or individual goals and that must fulfill global goals. That is, a set of agents
can reach agreements to achieve the group goals. The concepts of organization al-
low individual and group entities to be modelled in a very abstract way[3]. The

130



organization describes the main aspects of a society based on different view-
points, such as: structure, functionality, norms, interactions, and environment.
This type of organization is called Virtual Organization[13].

However, to implement an Agents Virtual Organization requires vast experi-
ence in one or more design platforms. A major challenge when designing MAS
is to provide efficient tools that can be used by any user (non-expert users). The
MDD approach can facilitate and simplify the design process and the quality of
agent-based software[19], since it allows the reuse of software and transformation
between models. MDD basically proposes the automatic generation of code from
the models using the transformations. In other words, using models that have
components that are platform independent, and by means of the transforma-
tions, those models are translated into components (or code) that depend on the
execution platform, which integrates specific details about the system. Recently
some proposals to implement these ideas (MDD techniques) have been proposed
in MAS[16, 14, 17, 2], but none of these proposals focus on organization design.

Our purpose is to use the MDD approach for the design of organizations,
taking the core and fundamental concepts, to specify an organization meta-
model that is platform independent, and then use the translation mechanism to
convert the unified meta-model into platform specific models for the execution
of the agents. This paper presents a Virtual Organization meta-model, focused
mainly on the integration of service-oriented technology and MAS, which allows
support (from a very high level of abstraction) to be given to dynamic and open
agent societies. Two transformation models for moving the unified model of the
Virtual Organization to two different platforms are also proposed, allowing the
feasibility of the proposal to be verified. These target platforms are: THOMAS1

[7] and E-Institutions2[12].
This paper is structured as follows. A brief summary of relevant works and

their problems are discussed in Section 2. Section 3 presents MDD concepts and
how to apply these concepts to the MAS paradigm. Section 4 explains how to
design a virtual organization from the MDD viewpoint. Finally, the conclusions
of this work are presented in Section 5.

2 Related Work

This section presents some related contributions with respect to organization
modeling in agent-based systems, and discusses some problems. Furthermore,
this section explains how, using the MDD approach, these problems can be
addressed.

MAS development needs methodologies that allow the design of agent-based
software to be optimized. The first methodologies that emerged can be classified
as agent-oriented, without describing the organization explicitly. These systems
are generally closed and external agents are prohibited. But in recent times, new
organizational-oriented methodologies have emerged, which allow (partially) the

1 http://users.dsic.upv.es/grupos/ia/sma/tools/Thomas
2 http://e-institutions.iiia.csic.es

131



design of open MAS, leading to the development heterogeneous systems. These
organizational-oriented methodologies allow external agents to access the system
functionality, but the agents are obliged to adhere to the social norms of the
system. Among the most important methodologies which allow the design of
virtual organizations are: PASSI[9], MOISE[15], OperA[11] and GORMAS[4].

Now, with respect to the application of MDD for MAS, all of the above com-
mented methodologies allow (to a major or minor extent) the design of agent
organizations using their own set of specifications. But, in general, these pro-
posals only use specific aspects of the platforms, which are in the majority of
cases very different. This situation can create an added complexity for devel-
opers which try to employ these approaches. Moreover, some of them do not
have an implementation phase, only defining high-level models, and difficulting
enormously the developer work when tries to obtain executable code. But with
the appearance of the MDD, it is possible to take advantage the flexibility pro-
vided by this approach to solve “some” of the problems found in the design of
organizations in MAS.

The purpose of MDD is to create models legible by computers that can be un-
derstood by automatic tools to generate templates, proof models and even code,
integrating them in multiple platforms[19]. From the viewpoint of the develop-
ment of agent oriented systems, application development consists of obtaining
the agent code that can be executed in different platforms. That is, to concen-
trate on the development of the application from a unified agent model and
apply different transformations to get implementations for different platforms.
Currently, the most common methodologies for MAS have an identified set of
models that specify their characteristics. These models can be adjusted as MDD
models that specify the concepts of the MAS as roles, behaviors, tasks, interac-
tions or protocols. The models can be used to model a MAS without focusing on
platform-specific details and requirements. After this, it is possible to transform
any agent model into agent implementations for different platforms.

Only a few agent development methodologies have integrated the MDD tech-
niques in the MAS design. The most relevant are MetaDIMA[16], TROPOS[6],
PIM4AGENT[17], INGENIAS[14], AML [8] and AUML [5]. All of this work is for
the application of MDD to the agent modeling process, but the biggest problem
found, is that they do not consider the development of virtual organizations.

Therefore, our purpose is to apply the MDD approach to organizational-
oriented methodologies. In other words, the contribution of this paper is to take
as a starting point previous works of organization design in MAS, to develop
a Unified Model of Virtual Organization which allows flexible implementation
(including deployment) on different agent platforms with support for organiza-
tions.

3 Modeling Virtual Organizations with MDD

This section presents how to use the MDD approach to model organizations. In
order to do this, the core concepts of MDD are presented first. Then, the meta-

132



models for the organization and the process of creating Virtual Organization
using the MDD approach is explained.

3.1 MDD: Core Concepts

The MDD approach uses and creates different models at different abstraction
levels, combining them when the application has to be implemented [19]. At
high abstraction levels, the models are known as meta-models and they define
the structure, semantics and constraints for a family of models (they are the
model of a model). Models can be classified into three groups depending on
their abstraction level: Computation Independent Model (CIM), which details
the general concepts independently whether they are going to be implemented
by a machine or not; Platform Independent Model (PIM), which represents the
system functionalities without considering the final implementation platform;
and the Platform Specific Model (PSM), obtained by combining the PIM with
specific details about the selected platform.

A fundamental aspect of the MDD is the definition of sets of transformation
rules between models, which allows the models to be automatically converted.
Transformations are relational entities that describe how to map the rules con-
cerning how the concepts of one model are transformed into the concepts of
another model. These transformations can be applied at different abstraction
levels. Horizontal transformations are applied over models that belong to the
same level: PIM-to-PIM or PSM-to-PSM. Vertical transformations turn a gen-
eral model into a more specific one (PIM-to-PSM) [19]. In general, all transfor-
mations are known as model-to-model transformations. Additionally, executable
code can be automatically generated from a PSM. These transformations are
known as model-to-code or model-to-text.

3.2 Using MDD to define an Agent Virtual Organization

One fundamental challenge when defining a platform independent meta-model
in an organization is selecting which concepts or components will be included in
order to model the organization. It is almost too obvious to mention that this
is not a trivial task, since it must define the minimum components necessary
for the organization. To achieve this objective, some of the most well-known
approaches in the area of MAS organizations were studied (mentioned in Sec-
tion 2). The purpose of this analysis is to extract the common features from
the methodologies studied and adapt them to the current proposal, specifying a
platform independent meta-model of the organization. Therefore, the transfor-
mation mechanism turns the platform independent model (PIM) into platform
specific models (PSM’s). Figure 1 shows diagram that illustrates the relationship
among the meta-models.

In these methodologies, an agent organization is considered a social entity
consisting of a specific number of members which carry out different tasks or
functions, and that are structured according to communication patterns and

133



Fig. 1. Using MDD approach in Virtual Organizations

topology specific interactions, to achieve the global objective of the organiza-
tion, based on behavior rules. The main aspects or factors of an organizations
are the structure, functionality, dynamic, normative and its environment. So, to
model the characteristics of these components five key concepts are used: Orga-
nizational Unit, Service, Environment, Norm and Agent [3]. These concepts make
it possible to represent: (i) how the entities are grouped with each other, defining
the relationship between the elements and their environment; (ii) what function-
ality they offer, including services for the dynamic entry and exit of agents in the
organization, and (iii) what restrictions exist regarding the behaviors of system
entities[10].

3.3 Organization Meta-model

This section presents our proposal for modeling agent organizations, based on
five key concepts(previously mentioned): Organizational Unit, Service, Environ-
ment, Norm and Agent. The proposal is presented defining a set of meta-models,
which provide the necessary concepts and primitives to describe structure, func-
tionality, dynamism, environment and normative behaviors of the organization.
This set of meta-models will be called πVOM (Platform Independent Virtual
Organization Model) and is structured in different views or perspectives. The
motivation for this is to support the evolution of the meta-model and to allow
its possible growth in the future. The different views give complementary ap-
proaches which, when superposing themselves, generate the complete view of the
system. Below, the different views proposed are briefly detailed due to the space
limitations of the paper.

Structural view: This view includes all those elements that persist in the
organization (see Figure 2(a)). The main concept employed in this view is the
Organizational unit (OU). An OU is a group of agents who carry out specific

134



and differentiated tasks and follow a certain predefined communication and co-
operation pattern[4]. This clustering can be seen externally as a single entity
that pursues certain objectives, offers and/or requires certain services, and even
plays a specific role in order to interact with other entities. Therefore, the orga-
nizational unit has a recursive nature and will not only contain agents but also
other organizational units acting as atomic entities.

Fig. 2. Concepts used in Strutural(a), Functional(b), Environment(c) and Norma-
tive(d) viewpoints of πVOM

Functional view: This view details system functionality, based on services,
tasks and objectives. This view shows the general behavior desired by the sys-
tem. Thus, Services represent a certain functionality that an entity (Agent or
OU) provides other entities, see the meta-model in Figure 2(b). The provider
of a Service is always associated with a specific Role. Service functionality is
carried out through the execution of certain Tasks, typically executed by the
entity providing the service or delegated to other entities. The services can also
be composed of several sub-services, and it is possible to define a “workflow”
between them using (RelationType).

Environment view: This perspective details the elements (Resources) of
the system. The resources are accessed and perceived through an Environment-
Port (see the meta-model in Figure 2(c)). A Resource is an object in the envi-
ronment that will be consumed by its members. A Port represents a point of

135



interaction between the entity and other elements of the model and serves as an
interface to the real world.

Normative view: This model assumes that the organization is managed
according to norms. Norms are used as mechanisms to limit the autonomy of
agents in large systems and solve complex problems of coordination. This view
specifies the set of rules and actions defined to control the behavior of mem-
bers of the organization, specifically the roles of the organization (see Figure
2(d)). These rules correspond to obligations, permissions and prohibitions; also
as sanctions and rewards to carry out on its members.

Agent view: A Agent is the basic entity of MAS which is within the orga-
nization and uses a series of interrelated components, shown in Figure 3. Our
Agent has a set of basic components: Capabilities represent the know-how of
the Agent and follow a pattern of event-condition-action. The Behaviours im-
plement the roles that the agent can play. The Task is the component where the
code base of the agent actions is written. For a more detailed explanation of the
components of the agent meta-model, please refer to Aguero at el[1].

Fig. 3. Concepts used in Agent viewpoint of πVOM

4 Developing an organization with a MDD approach

Once the set of models that characterize our proposed model of Virtual Orga-
nization platform-independent has been presented, the process for transforming
the Virtual Organization into different platforms must be defined. The design
process begins by selecting how abstract concepts (which are part of the unified

136



organization model) are mapped to the target platforms. For this paper, we focus
on the study of transformations on two platforms that support agents organi-
zations: THOMAS[7] and E-Institutions[12]. The transformation defines a set
of mapping rules. The first mapping rules define which concepts of the source
meta-model (πVOM) are transformed to which concepts of the target meta-
model, a model-to-model transformation (PIM-to-PSM). This is illustrated by
dotted lines in Figure 4. The second transformation translate the models into the
code templates of the organization, which can be optionally combined with code
written manually by the user. This is a model-to-text transformation (PSM-to-
code).

Fig. 4. Tranformation from πVOM to differents platforms

4.1 Development Process Using the THOMAS Platform

The πVOM meta-model is very similar to the model of the organization pro-
grammed in THOMAS, since both works are based (partially) on the methodol-
ogy and artifacts proposed by GORMAS. For this reason, the automatic trans-
formations are relatively easy to describe. Almost all of the abstract concepts
of πVOM are represented in THOMAS, so the model-to-model transformation
rules are expressed almost as a one-to-one relationship. It is convenient to no-
tice that some concepts in THOMAS have a more detailed feature than πVOM,
because THOMAS is a platform-specific model. The transformation rules that
must perform the translation between different models are shown in Table 1
(from rule 1 to rule 8).

4.2 Development Process Using the E-Institutions Platform

E-institutions provide a set of tools that are widely used in the area of agents to
model organizations, which are defined as a Multi-Agent Systems and can be ef-
fectively designed and implemented as electronic institutions composed of a vast
amount of heterogeneous (human and software) agents playing different roles and
interacting by means of speech acts[12]. They take inspiration from traditional
human institutions, and offer a general agent-mediated computational model

137



Rule Concept Transformation

THOMAS

1 Organizational Unit πVOM.OU ⇒ THOMAS.OU

2 Agent πVOM.Agent ⇒ THOMAS.Agent

3 Role πVOM.Role ⇒ THOMAS.Role

4 Service πVOM.Service ⇒ THOMAS.Service

5 Norm πVOM.Norm ⇒ THOMAS.Norm

6 RelationType πVOM.RelationType ⇒ THOMAS.Process

7 Resource πVOM.Resource ⇒ THOMAS.Resource

8 Goal πVOM.Goal ⇒ THOMAS.Goal

E-INSTITUTIONS

9 Organizational Unit
∪

πVOM.OU ⇒
∪

EI.Scene

10 Agent πVOM.Agent ⇒ EI.Agent

11 Role πVOM.Role ⇒ EI.Role

12 Service ∀ πVOM.Service ∈ OU ⇒
∪

EI.State ∈ Scene

13 RelationType πVOM.RelationType ⇒ EI.Transition OR EI.Illocutions

14 Norm πVOM.Norm ⇒ EI.Norm

15 Goal πVOM.Goal ⇒ EI.Norm

16 Resource πVOM.Resource ⇒ EI.World

Table 1. Rules from πVOM to THOMAS and E-Institutions

that serves to realize an agent-mediated electronic institutions. In Figure 5, the
main meta-model components of E-Institutions are presented. Transformation
rules for E-Institutions are shown in Table 1 (from rule 9 to rule 16). Due to
the space limitations of this paper, each transformation rule cannot be detailed.
Instead, in order to illustrate its use to the reader, an application scenario of
core rules is described in the next section.

Fig. 5. Core concepts used in E-Institutions

4.3 Usage Scenario

To illustrate the use of the rules, a case scenario for making flight and hotel
arrangements is utilized. This is a well known example that has been modeled

138



by means of electronic institutions in previous works (Dignum [11]; Argente et al
[3]). The Travel Agency example is an application that facilitates the intercon-
nection between clients (individuals, companies, travel agencies) and providers
(hotel chains, airlines); delimiting services that each one can request or offer.
The system controls which services must be provided by each entity. Provider
entities are responsible for the internal functionality of these services. However,
the system imposes some restrictions on service profiles, service requesting or-
ders and service results. In this system, agents can search for and make hotel
and flight reservations, and pay in advance for bookings. This case study is mod-
eled as an organization (TravelAgency) inside which there are two organizational
units (HotelUnit and FlightUnit) which represent a group of agents. Each unit is
dedicated to hotels or flights, respectively. Three kind of roles can interact in the
Travel Agency example: customer, provider and payee roles. The Customer role
requests system services. More specifically, it can request hotel or flight search
services, booking services for hotel rooms or flight seats, and payment services.
The Provider role is in charge of performing the service. Finally, the Payee role
gives the advanced payment service. Figure 6 shows the TravelAgency structure,
with its units, roles and relationships between them.

Fig. 6. Travel Agency in πVOM

The process begins by modeling the Travel Agency (structural and functional
models, see Figure 6(a)(b)), and applying the rules mentioned previously, in
order to obtain the organizations on THOMAS and E-Institutions. In the case
of THOMAS the models are very similar and their transformation in almost
direct (see in Figure 7(a)). But, getting the organization in E-Institutions and
creating the core templates of PerformativeStructure seen in figure 7(b), requires
the application of the rule 9 and rule 13.

Rule 9 allows all of the Scenes in the E-Institutions that correspond to the
OU of πVOM (3 in total) to be obtained. Additionally the Scenes for entrance
and exit are needed (root and output). After the application of Rule 13, as the
Services are composed in the order given by the RelationType, we can specify the
type of Transitions between the different Scenes in the E-Institutions, which in

139



this case correspond to Transitions of type OR. As previously mentioned, this
mapping generates the basic template of the PerformativeStructure of the E-
Institutions (Figure 7(b)). With the application of the remaining rules, a more
detailed description of the PerformativeStructure is obtained, but due to the
limitations of space in this paper, they are not explained.

Fig. 7. Travel Agency in THOMAS and E-Institutions

5 Conclusions

This work presents a meta-model of Virtual Organization (called πVOM) which
allows organizations in MAS to be modeled using abstract components which are
independent of the implementation platform following a MDD approach. This
meta-model is divided into five views that focus on the most important aspects
of the Virtual Organizations and these views can easily be extended if required
to a specific domain.

From unified meta-model, creating code templates for specific platforms of
organizations is possible. This was discussed and exemplified using transfor-
mations on the THOMAS and E-Institutions platforms. These transformations
show that the meta-model can be considered platform independent. As future
work, we will propose additional transformations in order to obtain the agent
instances (to generate the agent code) in the proposal and other frameworks. We
will propose the introduction of specific components/views (additional) to reach
agreements. We propose that the Virtual Organization provides the framework
and components required to model agreements, or in other words, use the MDD
approach to drive design-oriented agreements.

Acknowledgment: This work was partially supported by TIN2006-14630-
C03-01 and PROMETEO/2008/051 projects of the Spanish government and
CONSOLIDER-INGENIO 2010 under grant CSD2007-00022.

140



References

1. J. Agüero, M. Rebollo, C. Carrascosa, and V. Julián. Does android dream with
intelligent agents? In Int. Symposium on Distributed Computing and Artificial
Intelligence 2008(DCAI2008), ISBN: 978-3-540-85862-1, pages 194–204, 2008.

2. J. Agüero, M. Rebollo, C. Carrascosa, and V. Julián. Agent design using Model
Driven Development In 7th Int. Conference on Practical Applications of Agents and
Multi-Agent Systems(PAAMS2009), ISBN 978-3-642-00486-5, pages 60–69, 2009.

3. E. Argente, V. Julian, and V. Botti. Mas modelling based on organizations. In 9th
Int. Workshop on Agent Oriented Software Engineering, pages 1–12, 2008.

4. E. Argente Villaplana. Gormas: Gúıas para el desarrollo de sistemas multiagente
abiertos basados en organizaciones. PhD thesis, UPV, Spain, 2008.

5. B. Bauer. Uml class diagrams revisited in the context of agent-based systems.
Proceedings Agent-Oriented Software Engineering, pages 101–118, 2002.

6. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos. Tropos:
An agent-oriented software development methodology. Autonomous Agents and
Multi-Agent Systems, 8(3):203–236, 2004.

7. C. Carrascosa, A. Giret, V. Julian, M. Rebollo, E. Argente, and V. Botti. Service
oriented multi-agent systems: An open architecture. In Autonomous Agents and
Multiagent Systems (AAMAS), pages 1–2, 2009.

8. R. Cervenka and I. Trencansky. The Agent Modeling Language – AML. Whitestein
Series in Software Agent Technologies and Autonomic Computing, 2007.

9. M. Cossentino and C. Potts. Passi: A process for specifying and implementing
multi-agent systems using uml. Technical report, University of Palermo, 2001.

10. N. Craido, E. Argente, V. Julián, and V. Botti. Designing virtual organizations.
In 7th Int. Conference on Practical Applications of Agents and Multi-Agent Sys-
tems(PAAMS2009), ISBN 978-3-642-00486-5, pages 440–449, 2009.

11. V. Dignum. A model for organizational interaction: based on agents, founded in
logic. Phd dissertation, Utrecht University, 2003.

12. M. Esteva, J. A. Rodŕıguez-Aguilar, C. Sierra, and J. L. Arcos. On the formal
specifications of electronic institutions. Lecture Notes in Computer Science, pages
126–147, 2001.

13. J. Ferber, O. Gutknecht, and F. Michel. From agents to organizations: an organi-
zational view of multi-agent systems. Lecture Notes in Computer Science, pages
214–230, 2004.

14. I. Garca-Magario, J. Gómez-Sanz, and R. Fuentes. Ingenias development assisted
with model transformation by-example: A practical case. In 7th Int. Conf. on
Practical Applications of Agents and MultiAgent Systems, pages 40–49, 2009.

15. B. Gateau, O. Boissier, D. Khadraoui, and E. Dubois. Moiseinst: An organizational
model for specifying rights and duties of autonomous agents. In Third European
Workshop on Multi-Agent Systems (EUMAS2005), pages 484–485, 2005.

16. Z. Guessoum and T. Jarraya. Meta-models & model-driven architectures. In
Contribution to the AOSE TFG AgentLink3 meeting, 2005.

17. C. Hahn, C. Madrigal-Mora, and K. Fischer. A platform-independent meta-
model for multiagent systems. In Autonomous Agents and Multi-Agent Systems,
18(3):239–266, 2009.

18. N. Jennings and M. Wooldridge. Applications of intelligent agents. In Agent
Technology: Foundations, Applications, and Markets, pages 3–28, 1998.

19. A. Kleppe, J. B. Warmer, and W. Bast. MDA Explained: The Model Driven
Architecture: Practice and Promise. Addison-Wesley Professional, 2003.

141


