
Developing web-based curricula using java physlets

Wolfgang Christian and Aaron Titus

Citation: Computers in Physics 12, 227 (1998); doi: 10.1063/1.168666

View online: https://doi.org/10.1063/1.168666

View Table of Contents: https://aip.scitation.org/toc/cip/12/3

Published by the American Institute of Physics

ARTICLES YOU MAY BE INTERESTED IN

The Physlet Approach to Simulation Design
The Physics Teacher 53, 419 (2015); https://doi.org/10.1119/1.4931011

Container-free numerical algorithms in C++
Computers in Physics 12, 258 (1998); https://doi.org/10.1063/1.168674

Numerical-analysis and plotting software
Computers in Physics 12, 269 (1998); https://doi.org/10.1063/1.168660

Comment: Making the switch from physics to software: A first-order phase transition
Computers in Physics 12, 213 (1998); https://doi.org/10.1063/1.168669

Using the Internet to Collaborate
Computers in Physics 12, 211 (1998); https://doi.org/10.1063/1.4822625

General solution scheme for second-order differential equations: application to quantum transport
Computers in Physics 12, 248 (1998); https://doi.org/10.1063/1.168679

https://images.scitation.org/redirect.spark?MID=176720&plid=1062768&setID=406888&channelID=0&CID=349855&banID=519809386&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=888d4aa6867f3c265f0990999bc41f1db4e2fa5f&location=
https://aip.scitation.org/author/Christian%2C+Wolfgang
https://aip.scitation.org/author/Titus%2C+Aaron
/loi/cip
https://doi.org/10.1063/1.168666
https://aip.scitation.org/toc/cip/12/3
https://aip.scitation.org/publisher/
https://aip.scitation.org/doi/10.1119/1.4931011
https://doi.org/10.1119/1.4931011
https://aip.scitation.org/doi/10.1063/1.168674
https://doi.org/10.1063/1.168674
https://aip.scitation.org/doi/10.1063/1.168660
https://doi.org/10.1063/1.168660
https://aip.scitation.org/doi/10.1063/1.168669
https://doi.org/10.1063/1.168669
https://aip.scitation.org/doi/10.1063/1.4822625
https://doi.org/10.1063/1.4822625
https://aip.scitation.org/doi/10.1063/1.168679
https://doi.org/10.1063/1.168679

WEB MECHANICS

DEVELOPING WEB-BASED CURRICULA
USING JAVA PHYSLETS

Wolfgang Christian and
Aaron Titus

Department Editors:

Kevin Zollman
kzollman@phys. ksu. edu

Dean Zollman
dzollman@phys. ksu. edu

HyperText Transfer Protocol (HTTP) on the World Wide
Web makes it possible to distribute interactive multime­

dia-enhanced documents in a platform-independent fashion.
HyperText Markup Language (HTML) documents are for­
mulated and transmitted as text documents and can therefore
be prepared with any text editor. An HTML text file provides
instructions to the browser for locating and displaying multi­
media text, graphics, video, and sound files. The recent intro- ·
duction of the Java programming language by Sun
Microsystems now makes it possible to add platform-inde­
pendent programs to this multimedia stew. 1 Java accom­
plishes this trick by specifying a relatively simple virtual
machine, the Java Virtual Machine (NM), which can be
implemented on any computer architecture including Unix,
Mac, and Windows.2

Although the JVM does not provide as rich a set of tools
as native operating systems, it provides a graphical user
interface (GUI) with buttons, a drawing canvas, and other
graphical elements. There is virtue in this simplicity. Small
platform-independent programs, or "applets," are ideally
suited to instructional purposes such as homework prob­
lems. These applets can be embedded directly into HTML
documents and can interact with the user by means of a
scripting language such as JavaScript. This article demon-

Wolfgang Christian is CIP' s department editor for Book Reviews and professor of
physics at Davidson College, Davidson, NC 28036. E-mail: wochristian@
davidson.edu

Aaron Titus is a graduate research assistant in the Department of Physics at North
Carolina State University, Raleigh, NC 27695. E-mail: titus@unity.ncsu.edu

© 1998 AMERICAN INSTITUTE OF PHYSICS S0894-1866(98)01403-5

strates the use of Java applets in conjunction with JavaScript
functions to deliver a wide variety of Web-based, interactive
physics lessons. Interested readers should consult recent
Web Mechanics columns and the many excellent references
and tutorials available on the Web for a more complete
discussion ofHMTL and other Web-based interactive tech­
nologies.3

Java technology
Preparing Java code to run inside a browser is a mul­

tistep process. After writing the code, the programmer com­
piles it into an intermediate state called a class file. These
class files contain the "byte code" for the JVM. Finally, the
main class file is embedded into an HTML document using
the <APPLET> tag. This embedding is no different from
adding a graphic to an HTML page with an tag. Class
files are downloaded into the browser along with other
objects such as sound files or GIF images that are referenced
within the containing HTML document. It is up to the
browser to lay out the page on the monitor and translate the
machine-independent class files into native binary code. It
is also the browser's job to provide access to the computer's
operating system. Some browsers interpret and execute the
Java class files one instruction at a time. The slowness of
this process makes Java unsuitable for computationally in­
tensive tasks. Fortunately, browser vendors are now devel­
oping compilers that translate the entire class file into native
machine code after downloading. These Just-In-Time (JIT)
compilers have the potential to make Java almost as fast as
C++ code. The current versions ofNetscape Navigator and
Microsoft Internet Explorer include such compilers.

It is not necessary to become a Java programmer in
order to use Java applets in HTML documents. Many Java
applets expose their most useful functions and procedures
to the outside world- in this case the browser-by declaring
them "public," thereby allowing HTML authors to use ap­
plets in multiple contexts. The challenge is to find applets
that present interesting and pedagogically valuable physics
examples.4 "Physlets" is our name for small, scriptable
applets that contain meaningful physics content. In this
paper we discuss the design, construction, use, and effec­
tiveness of Physlets.

Embedding
The insertion of tags into the text document specifies

the type and location of multimedia content. For example,
the tag can be used to insert a 300- by 250-pixel

COMPUTERS IN PHYSICS, VOL. 12, NO.3, MAY/JUN 1998 227

WM

image of an apparatus into a document using the following

syntax:

<IMG SRC="http://physics.davidson.edu/images/apparatus.gif'

WIDTH="300"HEIGHT ="250">

Good WYSIWYG HTML editors are akin to the best word

processors in hiding such details from the author. The author

simply performs routine

editing tasks (highlight­

ing, cutting, and pasting)

in order to insert images

Physlets are

ideal for correct­

ing students'

misconceptions,

since the applets

can be scripted

to demonstrate

nonphysical

behavior.

or apply formatting and

font styles. The result is a

finished document that

can be published on the

Web. Unfortunately, high­

level integration of ad­

vanced interactive Web­

based technologies such

as JavaScript and Java is

still sketchy in most

authoring packages. A

passing acquaintance

with HTML syntax is

usually required to de­

velop interactive curricu­

lar material.

The embedding of

applets into Web pages is

similar to the embedding

of images. The author

specifies the name of the

applet and its screen size using the <APPLET > tag. For

example, the Doppler Physlet shown in Fig. I can be em­

bedded within a Web page using the following code:

<APPLET CODE="Doppler.class" WIDTH=320 HEIGHT =370>

<IAPPLET>

The applet is 'displayed by the browser, and the user interacts

with the applet by means of its intrinsic controls.
5
The Doppler

applet, for example, has a slider to set the velocity and a radio

button that enables relativistic effects. In addition, the mouse

can be used to make measurements on the wavefronts. The

input burden is on the user. The HTML author assumes the

user is knowledgeable in the operation of the applet.

A moderately complex applet may be prone to user

error and frustration if too many parameters are presented

on screen. Most HTML authors prefer to add parameter

(<PARAM>) fields to the <APPLET> tag in order to set the

default behavior of the applet. Each applet can have a unique

set of parameter fields, which the author of the applet should

document. Any applet can be embedded on a Web page

multiple times with different parameters assigned in order

to present different physics problems. The QTime Physlet

shown in Fig. 2 has parameter fields for setting the real and

imaginary parts of the wavefunction as well as the potential.

These fields can be used to set up problems such as particle

in a box, simple harmonic oscillator, or barrier penetration.

228 COMPUTERS IN PHYSICS, VOL. 12, NO.3 , MAY/JUN 1998

For example, in order to embed QTime within a Web page

so that it shows the evolution in time of a Gaussian wave

packet within a square well, we use the following HTML

code:

<APPLET CODE="Olime.class" WIDTH=320 height=370>

<PARAM NAME="potential" VALUE="20*(step(1 +X)-step(x-

1))">

<PARAM NAME="real" VALUE="cos(2*pi*x)*exp(-(x+4)*

(X+4))">

<PARAM NAME="imaginary" VALUE="sin(2*pi*x)*exp(-(X+4)*

(X+4))">

<PARAM NAME="FPS" VALUE=10>

<PARAM NAME="dt'' VALUE=0.02>

<PARAM NAME="numPts" VALUE=512>

<PARAM NAME="minX" VALUE=-1 0>

<PARAM NAME="maxX" VALUE=10>

<PARAM NAME="showControls" VALUE=true>

<PARAM NAME="helpFile" VALUE="SquareWeiiHelp.html">

<PARAM NAME="caption" VALUE="Square Well">

<IAPPLET>

The frames-per-second (FPS) parameter may need to be

adjusted to produce smooth animation on less powerful

computers. Because Java programmers usually provide de­

fault values for parameters, it is often not necessary for the

user to assign each and every parameter. Although parame­

ter fields spare the user from having to worry about the

~Applet Viewer: doppler.Ooppler.class IIII!I~Ei

Applet

Time: 77.1

Source x: 3.8

(i' Classical (' Relativistic

S lspeed ~J

Figure 1. Doppler Physlet displays a slider for setting the source's velocity,

which is 0.58 units to the right in this example. The mouse can be used to

make measurements on the resulting wavefronts.

---==-----===.-;:::==- --arcane details of applets, running an
applet is hardly foolproof. The tabbed
panel in the QTime interface still al­
lows a user to change the three function
strings. This may be desirable for ad­
vanced students, but it is unlikely that
a sophomore modern-physics student
needs to know the details of writing the
real and imaginary parts of a Gaussian
wavefunction in atomic units with the
appropriate momentum boost needed
to produce a reasonable group velocity.
The showControls parameter is de­
signed to simplify the user interface ·
and to hide these details. Setting this
parameter to "false" hides the buttons
at the bottom of the applet and the
tabbed panel. Starting and stopping
the animation or changing the wave­
function must now be done using a
scripting language, as explained in
the following section.

Wavefunction QM

QTime

Help

30~-- ~ -----·------------=-~=--- ------ ~

20

10-

Scripting
Scripting makes it possible to

Time: 1.3

- '- I
-5

--' I
0

X

I
5

Reset

_ ,_ I
10 change the behavior of an embedded

applet after it has been downloaded
into a browser, in ways that are just not
possible using parameter tags. The user
can still interact with the applet but the
interaction is controlled by the author,
who adds HTML buttons and anchors
to produce the desired behavior, using
a language such as JavaScript or Visual
Basic for Applications. 5 For example,

Figure 2. By changing the parameter fields in the embedding script, an HTML author can make the
Qtime Physlet represent a particle in a box, a simple harmonic oscillator, or penetration at a barrier.
Shown here is a Gaussian wave packet striking a barrier.

the Animator Physlet is designed to move a geometric shape
inside an applet's bounding box along a predefined path,
[x(t), y(t)]. Creating a 1 0-pixel-diameter circle that follows
a parabolic trajectory requires the following script:

document.animator.addCircle(1 0, "-1 0+6*t", "-5+8*t-4.9t*t")

The usual "dot" notation of object-oriented program­
ming can be used to invoke any of the applet's public
methods. Methods are procedures or functions on steroids.
Unlike traditional subroutines, methods are attached to an
object and have access to an object's data structures. In the
example code, document refers to the HTML page that
contains the applet, animator is the name given to the applet
when it is embedded, and addCircle is the name of the
method being invoked.

Although animation can certainly be accomplished us­
ing more sophisticated programs such as Interactive Physics
or possibly even QuickTime movies, Java applets written
along the lines ofPhyslets offer certain advantages. A typi­
cal Physlet is less than 100 kbytes long and downloads on
an average campus network in a few seconds. Applets down­
load once per session, even ifthey are embedded on multiple
pages. A few lines of script can change the behavior of a
Physlet for use in another problem.

Physlets are ideal for correcting students' misconcep­
tions, since the applets can be scripted to demonstrate non­
physical behavior. Standard HTML form fields allow
students to change variables and to observe how an applet's
behavior changes. It is far more difficult to provide this type
of interaction in any type of digital video.

The simplest way to execute a script is to assign it to
one of the predefined events of a standard HTML form
element. For example, the following code will create two
buttons on the HTML page. The first button stops execution
of the Physlet animation, whereas the second resets the
simulation time to zero.

<FORM NAME="Control">
<INPUT TYPE ="button" VALUE ="Stop"
onclick="document.Animator.stop()">
<INPUT TYPE ="button" VALUE ="Reset"
onclick="document.Animator.reset(O.O)">
<!FORM>

Although this example could be expanded to invoke multiple
JavaScript statements within a button's onclick method, more
elaborate scripting is best accomplished with JavaScript func­
tions. The following JavaScript function initializes the Ani-

COMPUTERS IN PHYSICS, VOL. 12, NO. 3, MAY /JUN 1998 229

WM

mator applet for one of our interactive homework problems:

function prob1 (){

document.Animator.deleteAII();

document.Animator.reset(O.O);

document.Animator.setShapeRGB(255,0,0);

document.Animator.addCircle(20, "0", "20-1 O*t*t") ;

document.Animator.setCaption("Constant Acceleration");

document.Animator.setTimelntervai(0,2);

document.Animator. forward();

This script first clears the Animator Physlet of all geometric

objects and sets time to zero. A red circle is then created, which

moves along they axis with constant acceleration. Scripts can

also be written to create moving rectangles, polygons, arrows,

and text, thereby allowing us to create a wide variety of

physics problems with just one Physlet. More important,

providing students with a visual rather than a textual repre­

sentation of the information necessary to do a problem affects

their problem-solving strategies and opens up the possibility

By requiring

students to approach

problems qualitatively,

multimedia-focused problems

have a beneficial influence

on students' problem­

solving and conceptual­

reasoning skills.

of asking questions that are different from traditional textbook

problems. Questions such as "What is the acceleration of the

red ball?", "Are the laws of classical dynamics observed in

the collision between the red and the blue balls?", and "Which

planet in the animation does not obey Kepler's laws?" pose

problems in which students must observe a motion and make

appropriate measurements to arrive at a solution.

Although JavaScript functions are part of an HTML

page, a browser does not display them. They can most easily

be invoked from within the containing page by using a

variant of the familiar anchor tag:

Problem 1 <fa>

The phrase "Problem I" will be highlighted in blue on the

HTML page, but clicking on this anchor will execute the

230 COMPUTERS IN PHYSICS, VOL. 12, NO. 3, MAY /JUN 1998

function rather than providing the usual navigation to another

page.

Java code
Java is similar to C in some respects, but in philosophy

it is much closer to Object Pascal. The following code shows

a simple applet that can be embedded and scripted from

within an HTML page to display a text message. The

paint(Graphics g) method displays a string near the center

of the applet. It is invoked whenever the browser determines

that the applet's representation on the screen needs to be

refreshed. The applet also implements two methods to set

and retrieve the displayed message string.

import java.applet.*;

import java.awt. *;

public class Hello extends Applet

{

private String message ="Hello World";

public void in it(){

this.setBackground(Color. white) ;

}

public void setMessage(String m){

message=m;

}

repaint();

}

public String getMessage(){

return message;

}

public void paint(Graphics g){ II paint the string

Rectangle r=this.bounds();

g.drawString(message, r.width/2, r.heighV2);

}

The visibility of variables and methods is controlled

through the public and private keywords. For example, the

variable message is declared private and is not accessible

from JavaScript or from other Java classes. Access to this

variable is controlled by the accessor methods getMes­

sage() and setMessage(String m). These methods can be

invoked from JavaScript without any additional Java code

using standard JavaScript syntax:

document.hello.setMessage("Another Message")

Notice that the setMessage code forces the applet to repaint

the screen when the message is changed. The use of methods

to access private variables hides the details of the implemen­

tation from the JavaScript programmer and is a standard

technique of object-oriented programming.

This applet follows the Java Beans specification for the

naming of the two accessor methods, even though meeting

this specification is not required to create a working applet.

The Beans specification does not add any new Java syntax,

nor are Beans derived from any Java superclass. Java Beans

are standard Java classes that conform to strict naming

conventions so that the classes can communicate with other

Beans using visual programming and authoring tools. Add­

ing the words set and get to the variable named message

allows the authoring package to display a dialog box that

provides quick access to an applet's
public methods. The Bean is presented
at a very high level of abstraction to the
author. A physics instructor will be able
to click, drag, and draw a Bean-based
Physlet onto a page and obtain a dialog
box that displays a documented table of
parameters and public methods. In the
near future, it will be possible to draw
a button and a QMTime Physlet onto
an HTML page, drag a connection be­

tween these two objects, and connect
the button's onclick() method to the
Physlet's start() method. The authoring
package will create the required Java­
Script code the same way it creates the
 tag when an image is dragged
into a document.

Animation Help II

Time: 1.28

-
• • -• Java has two important limitations

as described in Paul Dubois 's recent
Scientific Programming article in
CIP.6 The first limitation is speed. Al­
though JIT compilers promise consid­
erable speed improvements, it is likely
that the added overhead incurred by
array checking, garbage collection, and
lack of pointer arithmetic will never
allow Java to match the speed of well­
written Fortran or C code. Sun's recent

announcement that the company will
differentiate its JIT compilers based
upon speed is not a good sign. Only the
slow Sun JIT compiler will be free.
However, the calculations necessary

Forward I Pause I Reverse I <<Step I Step>> I Reset I
Figure 3. Animator Physlet displays a sun and four orbiting planets, one of which is a pseudo-planet.
Through observation and measurement, students discover that the ratio of the square of the orbital
period to the cube of the orbital radius is constant in authentic planets.

for most pedagogical applications do not require massive
computation. Current Java technology is fast enough to
solve and animate the time-dependent Schrodinger equation
without flicker using a 120-MHz Pentium processor. But
programmers who wish to implement three-dimensional
molecular-dynamics simulations in Java wiii be disap­
pointed.

Java's second limitation is paradoxically its platform
independence. In order to maintain both security and plat­
form independence, Applets written in "pure Java" have
restricted access to the local operating system. Pure Java
applets cannot access Microsoft's ActiveX, Apple's Quick­
Time, or the local hard disk. Another problem is that the
current Abstract Windows Toolkit (AWT) has a limited set
of interface components. Modern GUI components such as
a tree view or a tabbed panel are simply missing from the

AWT. The tabbed panel used in Physlets was constructed
from primitive AWT components. Its class file downloads
with the applet. Although this approach is feasible, it leads
to code bloat and other programming inefficiencies. Both
Microsoft and Sun provide extensions to Java to address.
these problems. Unfortunately, the two companies' solu­
tions are not likely to be compatible. Since platform and
vendor independence are important for pedagogical appli­
cations, we have attempted to find virtue in simplicity.

Physlets are designed for scripting and therefore provide
only a minimal interface. Buttons, sliders, and a drawing
panel are usually sufficient. Sophisticated interface compo­
nents are avoided.

The good news about Java is that the core language is
well defined and unlikely to change. All major vendors and
browser suppliers support the core language. Although
speed, access to the local operating system, and user inter­
face remain issues, other language features such as mul­
tithreading and network connectivity are built in and a
pleasure to use. In short, Java technology is an excellent
choice for the development of Web-based curricular material.

Pedagogy
Physlets have been used to create multimedia-focused

problems that are fundamentally different from traditional

textbook physics problems. In multimedia-focused prob­
lems, the information necessary to solve a problem is em­
bedded in the animation rather than given in the text of the
question. Students are then required to observe a motion,
apply appropriate physics concepts, and make measure­
ments before solving the problem mathematically. Such an
approach is remarkably different from the typical strategies
of beginning students, who attempt to analyze a problem
mathematically before describing it qualitatively. Charac-

COMPUTERS IN PHYSICS, VOL. 12, NO.3, MAY/JUN 1998 231

WM

terized by a lack of conceptual thought during the problem­

solving process, this approach is often referred to by teach­

ers as "plug-and-chug." By requiring students to approach

problems qualitatively, multimedia-focused problems have

a beneficial influence on students' problem-solving and

conceptual-reasoning skills.

Consider the Animator Physlet, for example (Fig. 3).

Students are asked to find the "planet" that does not obey

Kepler's laws. How do students solve this problem? They

must must observe the planets' motion and recognize that

the ratios of the square of the orbital period to the cube of

the orbital radius must be compared. Numerous parameters

must be observed and measured, and it is unlikely that the

students' first measurements will yield anything unex­

pected. However, it turns out that even though the outer orbit

appears to be nonphysical (because the planet moves very

slowly), the orbit obeys Kepler's laws. The genuinely non­

physical innermost planet moves at too slow a rate, even though

the orbit appears to be normal. The visual representation of

seemingly abstract formulas can be surprising to students.

In a traditional problem,7 students are given an orbital

parameter for a satellite along with another satellite for

comparison; this way of setting the problem suggests a path

to the solution. In comparison, the multimedia-focused

problem requires observation and conceptual reasoning be­

fore quantitative analysis. Furthermore, the idea . that the

outer planets move slowly in comparison to the inner planets

is reinforced by visual observation.

Students often feel that multimedia-focused problems

are more like real-world problems than those presented in

traditional textbooks. After first encountering multimedia­

focused problems, many students comment that they are

"like virtual laboratories." As in actual experiments, stu­

dents must determine what is required to solve a problem

before attempting a solution. Likewise, the answer depends

both on the method of solution and the experimental

error. Instructors can use Physlets to ask questions that

are similar to what they would ask of students in actual

laboratory situations.
As another · example, consider constant acceleration.

Students have a great deal of difficulty in distinguishing the

direction of motion from the direction of acceleration (or

force) . In one script, we have created an animation show­

ing a ball that moves upward with a constant downward

acceleration. A second script displays a ball that moves

downward with a constant downward acceleration. We ask

the students to determine the acceleration of these objects.

Simply watching the motion of the ball and the time ought

to allow students to give an order-of-magnitude estimate of

the answer.
Students must not only consider how to solve a prob­

lem, but also how to solve it with the least amount of

experimental uncertainty. In our experience, students who

are well versed in problem solving sometimes have little

understanding of experimental error. When the constant-ac­

celeration Physlet was delivered on a homework assignment

atNorth Carolina State University (NCSU), one insightful

student remarked that the calculated acceleration was dif­

ferent depending on which equation of motion she used. The

232 COMPUTERS IN PHYSICS, VOL. 12, NO. 3, MAY /JUN 1998

difference was the result of experimental error, since the

error in the measurement of the time at which the object

stopped was greater than the error in 'the measurement of

the position at which the object stopped. The Physlet prob­

lem led the student to a greater understanding of experimen­

tal error. Unfortunately, some students believe that exercises

requiring observation, qualitative reasoning, and measure­

ment should not be part of the lecture course, but should

be left for the laboratory. Physlet problems are not, at

present, given on course tests or on the Medical Colleges

Admission Test.

In introductory courses at Davidson College and

NCSU, we are investigating the impact of multimedia-fo­

cused problems using Physlets on students' problem-solv­

ing skills and understanding of physics concepts. Students

have greater difficulty in solving these problems than tradi­

tional problems in which the necessary information is

given in the text of the question. It is likely that students

are more comfortable with a "plug-and-chug" approach

than with qualitative reasoning. However, incorporating

multimedia-focused problems using Physlets into daily in­

struction can help to improve students ' impressions of these

problems and to aid them in acquiring the necessary prob­

lem-solving skills. Increased attention to qualitative reason­

ing may also have an impact on students' understanding of

physics concepts.

Our goal as curriculum designers and teachers is not to

impress, but to meet the needs of learners. Through the

development of multimedia-focused problems using Phys­

lets, we believe that we have found a powerful tool for

challenging students' understanding of physics and chang­

ing their approach to problem solving.

References
1. See Jon Meyer and Troy Downing, Java Virtual Machine (O'Reilly &

Associates, Sebastopol, CA, 1997).

2. JavaScript reference can be found on the Web at http: //devel­

oper.netscape.com/techljavascript/index.htrnl. See also the Netscape

JavaScript Guide at http://developer.netscape.com/library/documentation/

communicator/j sguide4/ index_dvn.htm.

3. Davidson College Physlets can be found at http://Webphysics.david­

son.edu. Many other physics applets are listed on the Gamelan Web site,

http://www.developer.com. Be sure to ask the applet author's permission

to use his/her work if you are unsure about copyright. It is also a nice

gesture to send a thank-you to authors of public-domain applets to let

them know that their work is appreciated.

4. The class files for the Doppler Physlet must be placed in the same

directory as the HTML file in which the applet is embedded for this

example to load properly. Use the optional CODEBASE parameter to

specify a different directory from the one containing the referring

document. For example, adding CODEBASE="http://myserver.col­

lege.edu/Java" specifies that the Java class files needed to run Doppler

are located on another server in a subdirectory named Java. Relative

directory addressing may also be used with the usual dot-dot notation

representing a directory above the current directory.

5. See David Flanagan,JavaScript: The Definitive Guide, 2nded. (O'Reilly

& Associates, Sebastopol, CA, 1997).

6. Paul F. Dubois, "Is Java for Scientific Programming?", Comput. Phys.

11, 611 - 617 (1997).

7. See, for example, Douglas Giancoli, Physics, 5th ed. (Prentice-Hall,

Upper Saddle River, NJ, 1998), p. 142.

