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Development and Analysis of a Neural Network 
Approach to Pisarenko’s Harmonic Retrieval Method 

George Mathew and V. U. Reddy 

Abstruct-Pisarenko’s harmonic retrieval (PHR) method is per- 
haps the first eigenstructure based spectral estimation technique. 
The basic step in this method is the computation of eigenvector 
corresponding to the minimum eigenvalue of the autocorrelation 
matrix of the underlying data. In this paper, we recast a known 
constrained minimization formulation for obtaining this eigenvec- 
tor into the neural network (NN) framework. Using the penalty 
function approach, we develop an appropriate energy function 
for the NN. This NN is of feedback type with the neurons having 
sigmoidal activation function. Analysis of the proposed approach 
shows that the required eigenvector is a minimizer (with a given 
norm) of this energy function. Further, all its minimizers are 
global minimizers. Bounds on the integration time step that is 
required to numerically solve the system of nonlinear differential 
equations, which define the network dynamics, have been derived. 
Results of computer simulations are presented to support our 
analysis. 

I. INTRODUCTION 

STIMATION of the frequencies of sinusoids corrupted E with white noise arises in many applications. The var- 
ious spectral estimation techniques which can be applied to 
solve this problem can be classified into two categories; 
eigenstructure based methods (which depend on the eigen- 
structure of the covariance matrix of the underlying data) 
and noneigenstructure based methods. Pisarenko’s harmonic 
retrieval (PHR) method and Maximum entropy method are ex- 
amples, respectively, of these two classes. The eigenstructure 
based methods are preferred to the other, since they yield high 
resolution and asymptotically exact results. In this paper, we 
concentrate on the PHR method and solve the basic step in this 
method, i.e., estimation of the eigenvector corresponding to the 
minimum eigenvalue of the covariance matrix, by exploiting 
the optimization property of feedback type neural networks [ 11. 

Let 
P 

y(n)  = a2 cos (win, + e ; )  + w(11) (1.1) 
i=l 

where a;,  wi and 0, denote the amplitude, frequency (nor- 
malized) and initial phase (uniform in [0, 2nl) of the ith 
sinusoid and { ~ ( n ) }  are zero mean, i i d  random variables 
with variance 02.  Let R denote the covariance matrix of 
size N x N .  ( N  2 2P + 1) of y(n) .  Then, the eigenvector 
corresponding to the minimum eigenvalue, Amin,  (hereafter 
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referred to as the minimum eigenvector) of R is the solution 
of the following constrained minimization problem [ 21 

rriin wTRw subjectto wTw = 1 (1.2) 
W 

where w = [wll  w2,.  . . , , w ~ ] ~  is an N-dimensional weight 
vector. Then, the polynomial formed using the elements of 
this eigenvector will have 2P of its N - 1 roots located at 
exp(f jw,) ,  i = 1, . . . P. These 2P roots of interest will be 
unaffected by the noise power and the remaining N - 1 - 2P 
roots are arbitrary [3]. 

Thus, the central problem in the PHR method is the compu- 
tation of a minimum eigenvector. Different techniques have 
been proposed for efficient and adaptive estimation of the 
minimum eigenvector [2], [4], [6]. While Thompson [2] sug- 
gested a constrained gradient search procedure, Reddy et 
al. [4] restated this constrained minimization problem as an 
uncontrained minimization problem and developed a Newton 
type recursive algorithm for seeking the minimum eigenvector. 
Larimore [5] studied the convergence behavior of Thomp- 
son’s [2] adaptive algorithm. Using rotational search method, 
Fuhrmann and Liu [6] proposed two adaptive algorithms for 
the adaptive PHR method. 

Many neural network (NN) based algorithms have been 
reported [SI-[ 121 for eigenvector estimation. All these al- 
gorithms are developed for feedforward NN structure. They 
estimate the principal eigenvectors of the covariance matrix 
of the sequence of input vectors. Oja [8] proposed a Hebbian 
type leaming rule for a single neuron model and showed its 
convergence to the first principal eigenvector. The problem 
of leaming in a two (or more) layered NN by minimizing a 
quadratic error function was considered by Baldi and Homik 
[9]. They proved that the error function has a unique minimum 
corresponding to the projection onto the subspace generated by 
the principal eigenvectors and all other stationary points are 
saddle points. Sanger [IO] proposed the generalized Hebbian 
algorithm for a single layer NN and showed its convergence 
to the principal eigenvectors. Kung and Diamantaras [ 1 I]  
proposed an approach for the recursive computation of princi- 
pal eigenvectors. Their technique combines the Hebbian and 
orthogonal leaming rules. Kung [ 121 extended this approach 
to the case of constrained principal component analysis. 

In this paper, we suggest a NN approach to the PHR prob- 
lem. Note that while all the above mentioned NN algorithms 
seek principal eigenvectors, we seek the minimum eigenvector. 
Instead of feedforward networks with linear neurons, we 
use feedback network with sigmoidal neurons. Our approach 
is purely an optimization based one and the cost function 
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used is different from that of others except Chauvin [13] 
who used a similar cost function for estimating the principal 
eigenvector with a linear single neuron model. Our approach 
is quite general in that it can be applied to estimate the 
minimum eigenvector of a general symmetric matrix which 
is not indefinite. But, none of the above algorithms have this 
feature. 

This paper is organized as follows. The NN formulation 
of the PHR problem is presented in Section 11. Analysis 
of the proposed approach is presented in Section 111. This 
includes description of the landscape of the energy function 
and convergence of the network dynamics. Simulation results 
are presented in Section IV and Section V concludes the paper. 

11. NEURAL NETWORK FORMULATION OF THE PHR PROBLEM 

From the theory of feedback neural networks, we know that 
a system of N neurons connected in feedback configuration 
evolves in such a way that the stable stationary states of the 
network correspond to the minima of the energy function 
(or Lyapunov function) of the network. Hence, we need to 
construct an appropriate energy function whose minima would 
correspond to the minimum eigenvectors of R. 

The cost function used in our development is motivated as 
follows. Using the penalty function method [7], (1.2) can be 
replaced by an unconstrained problem of the form 

rnin { J(w, p )  = wTRw + pP(w)} 
W 

P(w) = (WTW - 1 ) 2  (2.1) 

where /I is a positive constant and P is a penalty function 
satisfying three conditions: (1) P is continuous, (2) P(w) 2 
OVw, and (3) P(w) = 0 if and only if wTw = 1. 

Let { p k } ,  k = 1 ,2 ,3 , .  . . , be a sequence tending to infinity 
such that for each k , p k  2 0 and pk+1 > ,i&. Further, let Wk 

be the minimizer of J(w,pk). Then, we have the following 
theorem [7]. 

Theorem: Limit point of the sequence {wk} is a solution 

That is, limit point of {wk} is a minimum eigenvector of 
R with unit norm. However, there is a special structure in 
the cost function (2.1), resulting in the fact (as proved in 
Section 111) that “a minimizer of J(w. p)  for any given p (with 
p > (A,in/2)) is a minimum eigenvector of R.” Further, a 
minimum eigenvector with any norm would suffice for the 
PHR problem. Hence, it is enough to choose a p satisfying 

Our aim is to design a neural network for which J could be 
the energy function. This network must have N neurons with 
the output of kth neuron, w k ,  representing the kth element 
of the vector w. Sigmoidal activation function is assumed for 
each neuron, i.e. 

of (1.2). 

P > (Amin/2) .  

” 

where u k ( t )  and w k ( t )  are the input and output, respectively, 
of the kth neuron at time t. For J to be the energy function, the 
network dynamics should be such that the time derivative of 

J is negative. For the cost function (2.1), the time derivative 
is given by 

where f / ( u )  is the derivative of f ( u )  with respect to U .  

Now, suppose we define the dynamics of the kth neuron as 

d U k ( t )  - dJ 
dt  d W k ( t )  

w k ( t )  = f ( u k ( t ) )  k = 1,. . . . N .  (2.4) 

Since f ( u )  is a monotonically increasing function, it can be 
easily deduced from (2.3) and (2.4) that the NN with dynamics 
given by (2.4) has stable stationary points at the local minima 
of J .  In the next section, we show that a minimizer of J 
corresponds to a minimum eigenvector of R. 

111. ANALYSIS OF THE PROPOSED APPROACH 

In this section, we analyze the proposed neural network 
approach and establish it as a minimum eigenvector estimator. 
We do this in two steps. First, we establish the correspondence 
between the minimizers of J and the minimum eigenvectors 
of R. This derivation also results in establishing guidelines 
for the selection of p. Next, we derive the bounds on the 
integration time-step (h)  which is used in solving the system 
of N differential equations (2.4) numerically. 

The problem in hand is an unconstrained nonlinear op- 
timization problem. In the following analysis, we assume 
that p is fixed at some appropriately chosen positive value. 
The gradient vector g(w) and Hessian matrix H(w) of J ,  
respectively, are given by 

g(w) = 2Rw + ~ / L W ( W ’ W  - I )  (3.1) 
(3.2) H(w) = 2R + ~ P W W ‘  + 4 p ( ~ ’ ~  - 1 ) 1 ~ .  

Since R is symmetric, we can express it as 

N 

R = A,e,er (3.3) 
?=I  

where A 1  2 A2 2 . . . / \ 2 p  > A 2 p + l  = &p+2 = . . .  = Ax = 
c2 > 0 are the eigenvalues of R in the decreasing order and 
e, is the orthonormalized eigenvector of R corresponding to 
A,. The last N - 2P eigenvalues and eigenvectors ( A t .  e,  , j  = 
2P + 1, . . . . N )  are referred to as the minimum eigenvalues 
and minimum eigenvectors, respectively, of R. Substituting 
(3.3) into (3.2), we get 

1Y 

H(w) = 2 [A, - 2p(1 - w’w)] e,eT + 8pwwT. (3.4) 
2 = 1  

A .  Correspondence Between the Minimizers of J 
and the Minimum Eigenvectors of R 

Because of the use of sigmoidal nonlinearity, the state 
space of the NN (i.e., the space in which w lies) is the 
N-dimensional unit open hypercube which we denote by s. 
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Theorem 1: w is a stationary point (SP) of J if and only 
if w  is an eigenvector of R corresponding to the eigenvalue 
A, with IIwl/2 = p = dx. 

This result immediately follows from (3.1). 
Theorem 2: w  is a global minimizer of J if and only if w  is 

a minimum eigenvector of R corresponding to the eigenvalue 
Amin, with IIw112 = P J1 - ( x m i n / ( 2 / ~ ) ) .  

Proof: 
I f  part: From the hypothesis, we have 

R w  = Aminw and Amin = 2p(1 - p2).  (3.5) 

Hence, from Theorem 1, w  is a SP of J .  To prove that w  is a 
global minimizer of J ,  we have to show that J(x) - J ( w )  2 
0 vx E s. 

Let x = w + p,  where, p  E S. Then, evaluating J at x 
and simplifying, we get 

J(x) - J(w) = 2 p T R w  + p T R p  + p[2pTw + pTpI2 

+ 2/1(p2 - 1) . [2pTw + pTp] .  (3.6) 

Note that p T R p  2 XminpTp for any p. Substituting this and 
(3.5) into (3.6), we get 

J(x) - J ( w )  2 p[2pTw + pTp12 2 0 vx E s (3.7) 

which implies that w  is a global minimizer of J .  

orem l), we get 
Only ifpart: From the hypothesis (and using The- 

RW = X,w with A, = 2 4 1  - p2) 
forsonie m E { I , . . . , N }  . (3.8) 

Substituting (3.8) in (3.4) and expressing w  = @e,, we obtain 

~ ( w )  = h,e,eT 

where h, = 2(A, - A,) + 8pLp26,, is the ith eigenvalue of 
H ( w )  with e,  as the corresponding eigenvector, and S,, is 
the Kronecker delta function. Since w  is a global minimizer, 
H ( w )  should be at least positive semidefinite. Hence, we get 

(3.9) 

N 

2 = 1  

2(A, - A V L )  + 8pLp26,, 2 0 vz = 1, ’ ’ .  . N .  

As A, 2 AmlnVz,  (3.9) can be true only if A, = Amin. This 
implies that In E ( 2 P  + 1, . . . , N }  and thus w  is a minimum 
eigenvector with p2 = (1 - Am,n/2p). 

We state four corollaries below to bring out the significant 
features of Theorem 2. 

Corollary 1: The value of p should be such that p > 

Corollary 2: For a given 1, every local minimizer of J is 
also a global minimizer. 

This result follows from Theorem 2 by recognizing that 
H ( w )  is at least positive semidefinite when w  is a local 
minimizer of J .  

Corollary 3: The minimizer of J is unique (except for the 
sign) only when N = 2 P  + 1. 

( L ” 2 ) .  

Corollary 4: The eigenvectors of R associated with the first 
2P eigenvalues correspond to saddle points of J .  

This follows from the fact that H(w) is indefinite at the 
stationary point w  if it is an eigenvector corresponding to a 
non-minimum eigenvalue. 

Discussion: When N > 2 P  + 1, minimizers of J can 
be expressed in terms of the N - 2 P  orthonormal mini- 
mum eigenvectors as w  = CE2,+, aiei,  ai E R. Hence, 
w T w  = p2 = Ep!2p+l a:. This implies that all vectors 
that lie on the boundary of a hypersphere of radius p in the 
space of minimum eigenvectors of R are minimizers of J .  
This suggests (in view of Theorem 2 and Corollary 2) that 
minimizers of J form a continuum on this hypersphere. 

An important point to be noted from Theorem 2 is that the 
norm of the solution is predetermined by the values of p and 
Amin. The higher the value of p, the closer will be this norm 
to unity. Further, it is required to know the value of Amin 

for choosing p. Since, Amin will not be known a priori, we 
suggest the following practical lower bound 

Trace (R) 
(3.10) ’> 2N ’ 

We may add here that the proposed approach can be extended 
to the case of a general symmetric matrix (which is not 
indefinite). 

B .  Bounds on the Integration Time-Step 

dynamics is given by (cf. (2.4)) 
The system of differential equations which defines the NN 

duo = - 2Rw( t )  - 4pw( t ) [wT( t )w( t )  - 11 (3.11) 

7 U k ( t )  = f ( U k ( t ) )  (3.12) 

where u ( t )  = [ul( t ) ,  . . . , u ~ ( t ) ] ~ .  The minimizer of J corre- 
sponds to the solution of this system. To solve this numerically, 
we need to choose an appropriate integration time-step, say 
h, which guarantees convergence of the technique to the 
correct solution. We now present an approximate convergence 
analysis to obtain the bounds for h,, assuming a simple time- 
discretization numerical technique. 

For sufficiently small h, we have the following approxima- 
tion 

dt 
IC = 1, .  . . , N 

W t )  u ( n +  1) - U(.) 

T I t = n h  M h 

where n is the discrete time index. Then, (3.11) can be 
rewritten as 

U(. + 1) M U(.) - 2hB(n)w(n)  (3.13) 

where B ( n )  = R + 2 p d ( n ) I ~ ,  d(n)  = w T ( n ) w ( n )  - 1. Since 
the surface of J does not have local minima (cf. Corollary 2), 
the discrete-time gradient descent implemented by (3.13) and 
(3.12) with step size h will reach a global minimizer of J 
provided h is sufficiently small. We can therefore assume that 
w ( n )  is very close to the desired solution, say w*, for n > K ,  
where K is a large enough positive integer, and that the norm 
of ~ ( n )  remains approximately constant at @* = (Iw*112. 
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TABLE I 
ESTIMATES OF FREQUENCIES, j AND Xlllll,  FOR DIFFERENT VALUES OF / I >  -Y AND P 

True Frequencies Estimated Frequencm 

It N p f l  f 2  f 3  f l  f 2  f 3  3 h l l ' l  

1 5 1 0.20 0.2000 
40 5 1 0.20 0.2003 
1 5 2 0.20 0.24 0.2003 0.2402 

40 5 2 0.20 0.24 0.2002 0.2402 
1 7 1 0.20 0.2000 

40 7 1 0.20 0.2000 
1 7 2 0.20 0.24 0.2001 0.2401 

40 7 2 0.20 0.24 0.2000 0.2400 
1 9 1 0.20 0.2000 

40 9 1 0.20 0.2000 
1 9 2 0.20 0.24 0.2000 0.2400 

40 9 2 0.20 0.24 0.2000 0.2400 
I 9 3 0.20 0.24 0.28 0.2001 0.2404 

40 9 3 0.20 0.24 0.28 0.2001 0.2403 

True value of 3: 0.707106 for I (  = 1 and 0.993730 for p = 40. 

Thus, d(n)  M d = p*2 - 1 for n > K .  Hence, we get from 
(3.13) 

u(n + 1 )  M u(n) - 2 h B w ( n )  V n  > K (3.14) 

where B = R + 2 p d 1 , ~ .  
Now, writing the Taylor's series expansion for f(u) (cf. 

(2.2)) evaluated at U = 0, and truncating the series at fourth 
order term, we obtain 

U U 3  
1u = f ( u )  M - - -. 

2 24 
(3.15) 

Substituting (3.15) in (3.14), we get 

(3.16) 

where C = I N  - hB and u(n) is a vector with kth element 
given by i&(n) = U;(.). Iterating (3.16) from K to n and 
using (3.3), we obtain 

U(.) M 

h 
12 

U(. + 1 )  M C U ( ~ )  + - BU(n) 

N 

(1 - h ( ~ j  + 2 j L d ) } n - K e , e , T u ( ~ )  
,=1 

n-1-K N . 

. (A, + 2 p d ) e , e F u ( n  - 1 - 2 ) .  (3.17) 

Examining each term in (3.17) and using Theorem 2 ,  we 
conclude that for convergence h should satisfy 

11 - h( A, + 2pd)l = 1 V J  = 2 P  + 1, . . . , N (3.18) 
I l -h(A,+2pd)l  < 1  V j = 1  :... 2 P  (3.19) 

which on simplification result in 

A,,, = - 2pd = 2b( 1 - /3*2) (3.20) 
2 

0 < h <  V j  = 1.. . . , 2 P .  (3.21) 
A, - Amin 

0.707356 
0.993730 
0.707 106 
0.993730 
0.707355 
0.993730 
0.707 100 
0.993730 
0.707356 
0.993730 
0.706865 
0.993730 

0.2801 0.707106 
0.2801 0.993730 

1 .oo 
1 .00 
I .oo 
I .OO 
1 .oo 
1 .00 
1 .oo 
1 .oo 
1 .OO 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 

Since the bounds on h must be satisfied for all eigenvalues, A1 
to Azp ,  we replace A, in (3.21) with the maximum eigenvalue 
A,,,(= A I ) ,  thus obtaining 

O < h <  (3.22) 

Observe that this result is same as that reported in [ 5 ] .  It 
may be easily verified that even if we include the higher order 
terms in (3.13, the bounds on h would remain the same as 
(3.22). Thus, no simplifying assumption needs to be made on 
the sigmoidal nonlinearity. Since the eigenvalues of R are not 
known a priori, we suggest the following practical bounds for 
h 

2 
Amax - Amin 

c) 

O < h <  
L. 

Tract: (R) (3.23) 

IV. SIMULATION RESULTS 

For the data described by (1. l), the asymptotic autocorrela- 
tion matrix R is given by 

where k = Iz - j l :  i , j  = 1: . . . , N .  The system of differential 
equations was solved numerically, with the integration time- 
step h chosen according to (3.23). The iterations were stopped 
when the norm of the difference between the consecutive 
solution vectors was less than a predetermined threshold, &i.e., 
Ilw(n + 1) - w(n)112 < 6). Then, frequencies of the sinusoids 
were computed from the roots of the polynomial (formed using 
the estimated minimum eigenvector) which were closest to the 
unit circle. If W denotes the estimated minimum eigenvector, 
then the minimum eigenvalue was estimated as 

WTRW A .  -- 
W T W  nun - 

and ~~W~~~ was taken as the estimate of p. 
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In the simulations, we chose o2 = 1 (giving Amin = 1) 
and 6 = lop6. For a fixed ,h, the estimated values of the 
frequencies of the sinusoids, Amin and j3, for different values 
of N ,  P and 11 are given in the table. We note the following 
from the results. 

When ,u is large, f i  is closer to unity as predicted by the cost 
function (2.1) and Theorem 2 .  The estimated value of Amin is 
same as the true value and the norm of the solution vector, ,h’, 
is very close to the theoretical value given by (3.20). 

We also verified the existence of multiple solutions for the 
case N > 2P + 1 by using different initial conditions (w(0)). 
For ,u 5 (Ami,,/2), behavior of the system was erroneous. 

V. CONCLUSIONS 

The problem of estimating the frequencies of real sinusoids 
corrupted with white noise using the Pisarenko’s harmonic 
retrieval method has been recast into the neural network frame- 
work. An analysis investigating the nature of the minimizers 
of the energy function and the convergence of the numerical 
technique, used for solving the network dynamics, is presented. 
Results of the analysis are supported by simulations. Though 
we considered the symptomatic case in the paper, the approach 
can be easily extended to the finite data case. 
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