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Summary

Important clinical information of the human heart can be observed from electrocar-

diogram (ECG) signals. Since ECG signals are usually recorded in a long period

of time for clinical diagnosis, huge amount of data is produced everyday for storage

and transmission, thus to accurately and efficiently compress ECG data is of vital

importance.

The algorithms developed so far fall into three groups: direct data compression

methods, transformation methods and parametric methods. These methods have

become essential in a large variety of applications, from remote clinical diagnosis

to ambulatory recording. The purpose of our research is to develop encoding and

decoding schemes for ECG data compression and reconstruction.

Firstly, although much work has been devoted to the development of ECG

data compression algorithms, the existing ones do not fully take advantage of the

interbeat correlation of the ECG signal. In our study, the correlation between suc-

cessive beats is utilized to detect and eliminate redundancies in the original signal.

Moreover, pattern matching and residual coding are used in order to achieve a high

compression ratio. Recommendation for future work is to improve the present al-

gorithm by replacing the one-stage pattern matching unit with a two-stage one.

Besides single-channel signals, multi-channel ECG data and more efficient compres-

sion schemes can also be investigated in the future.

Secondly, by modelling the ECG signal as the sum of a bandlimited signal and
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nonuniform linear spline, we have sampled and decompressed the ECG as a signal

with finite rate of innovation. The peak area of ECG signal is approximated as a

nonuniform linear spline, and the remaining part of the signal is approximated as

a bandlimited signal. The ECG signal is then sampled at the rate of innovation

and the results show that the morphological information of the ECG signal is well

preserved in the reconstruction. Optimal modelling of an ECG as a signal with

finite rate of innovation can be investigated in the future to yield more efficient

compression and accurate reconstruction.
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Chapter 1

Introduction

1.1 Motivation

The electrocardiogram (ECG) is the electrical manifestation of the contractile activ-

ity of the heart and can be recorded fairly easily by placing noninvasive electrodes on

the limbs and chest. Each heartbeat produces a sequence of electrical waves. Since

the ECG signal records the electrical potential at the electrode (or the potential dif-

ference between two electrodes) induced by the presence of time-varying electrical

activity in cardiac muscle, by examining the shape of the ECG waveforms, a physi-

cian can obtain considerable insight about whether the contractions of the heart are

occurring normally or abnormally. The signal can be measured as a multi-channel

signal, or as a single-channel signal, depending on the application. In the application

of standard clinical ECG, 12 different ECG leads (channels) are recorded from the

body surface of a resting patient. In the application of arrhythmia analysis, one or

two ECG leads are recorded to look for life-threatening disturbances in the rhythm

of the heartbeat.
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Since many aspects of the physical condition of the human heart are reflected in

the waveforms of ECG, it is important to record the patient’s ECG for a long period

of time for clinical diagnosis. Normally, a 24 hour or even longer duration record-

ing is desirable for doctors to detect the human body’s abnormalities or disorders,

which can always be required in clinical applications such as telemedicine. This pro-

duces a large volume of ECG data everyday for storage and transmission. Storage

requirement or transmission bandwidth for ECG signal can range from 26 MB/day

(with one lead and a resolution of 12 bits sampled at 200 Hz) to 138 MB/day (with

two leads and a resolution of 16 bits sampled at 400 Hz). The continuing prolif-

eration of computerized ECG processing systems along with the increased feature

performance requirements and demand for lower cost medical care have mandated

reliable, accurate and more efficient ECG data compression techniques.

The need for ECG data compression exists in many transmitting and storage

applications. The practical importance and effect of ECG data compression has

become evident in many aspects of computerized electrocardiography including:

1. Increased storage capacity of ECG signal as databases for subsequent compar-

ison or evaluation;

2. Feasibility of real-time ECG transmission for remote clinical diagnosis;

3. Improved functionality of ambulatory ECG monitors and recorders.
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1.2 Objectives

Conceptually, data compression is the process of detecting and eliminating redun-

dancies in a given data set. The main goal of any compression technique is to achieve

maximum data volume reduction while preserving the significant signal morphology

features upon reconstruction. Compression techniques can be divided into two cat-

egories: lossless compression and lossy compression. In most ECG applications, the

lossless methods do not provide sufficient compression, and distortions are to be

expected in practical ECG compression systems.

Data compression algorithms must also represent the data with acceptable fi-

delity. In ECG and other biomedical data compression, the clinical acceptability of

the reconstructed signal has to be determined through visual inspection from med-

ical experts. However, clinically acceptable quality is neither guaranteed by a low

nonzero residual nor ruled out by a high numerical residual.

The aim of our study is to develop systems which allow distortion for ECG

compression and reconstruction with the following features:

1. Detection and elimination of redundancies in the ECG data;

2. Efficient compression of the ECG data after removing the redundancies;

3. Reconstruction of the original signal with a low distortion;

4. Diagnostic information is well preserved in the reconstructed signal.
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1.3 Major Contributions of the Thesis

The fundamentals of data compression and conventional methods of ECG compres-

sion have been reviewed in the first part of the thesis. The conventional methods

have been classified into three categories, which are discussed in detail. Then two

methods have been proposed for ECG compression, both of which have yielded good

compression ratio with low distortion.

Firstly, a novel coding scheme for ECG data compression is proposed in this

thesis. Following beat delineation, the periods of the beats are normalized by multi-

rate processing. Amplitude normalization is performed afterwards, and the discrete

wavelet transform is applied to each normalized beat. Due to the period and ampli-

tude normalization, the wavelet transform coefficients bear a high correlation across

beats. To increase the compression ratio, a pattern matching unit is utilized, and the

residual sequence obtained is further encoded. The difference between the actual

period and the standard period, and the amplitude scale factor are also retained

for each beat. At the decoder, the inverse wavelet transform is computed from the

reconstructed wavelet transform coefficients. The original amplitude and period of

each beat are then recovered. The simulation results show that our compression al-

gorithm achieves a significant improvement in the performance of compression ratio

and error measurement.

Secondly, by modelling the ECG signal as the sum of bandlimited and nonuni-

form linear spline which contains a finite rate of innovation (FRI), sampling theory

is applied to achieve effective compression and reconstruction of the ECG signal.
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The simulation results show that the performance of the compression of ECG as

a signal with FRI is quite satisfactory in preserving the diagnostic information as

compared to the classical sampling scheme which uses the sinc interpolation in the

reconstruction.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows: A review of the conventional ECG

data compression techniques is given in Chapter 2; a detailed discussion of a novel

wavelet-based pattern matching method for ECG data compression is given in Chap-

ter 3; compression of ECG as signals with finite rate of innovation is presented in

Chapter 4; finally, conclusions along with recommendations for future research are

given in Chapter 5.
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Chapter 2

Conventional Methods for ECG
Data Compression

2.1 Data Compression

Digital coding is the process, or sequence of processes, that leads to digital repre-

sentations (sequences of binary digits) of the source signal (mostly analog sources).

The benefits of digital representation are well known: low sensitivity to transmission

noise, effective storage, ability to multiplex, error-protection and more.

One of the main goals in digital coding of waveforms is reduction of the bit

rate, which is required to transmit a certain amount of information. The process

of bit rate reduction is performed by the removal of the signal’s redundancy, and

sometimes causes loss of information. A basic problem in waveform coding is to

achieve the minimum possible distortion for a given encoding rate or, equivalently,

to achieve a given acceptable level of distortion with the least possible encoding

rate. The first stage of the analog signal coding process is sampling and quanti-

zation. The sampling is performed mostly according to the Nyquist criterion after
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low-pass filtering the signal with an anti-aliasing filter. After sampling, the sig-

nal is time-discrete and amplitude-continuous. In order to represent the sampled

signal digitally, one has to perform quantization — mapping the sampled signal’s

amplitudes from the continuous plane to the discrete plane. The quantization in

this stage is usually fine quantization (many quantization levels) so one can treat

the sampled signal as “almost” amplitude-continuous. At the second stage of the

coding process, the redundancy of the signal is removed using appropriate coding

techniques, such as Pulse Code Modulation(PCM), Differential Pulse Code Modula-

tion(DPCM), Adaptive Differential Pulse Code Modulation(ADPCM), orthogonal

transforms, entropy encoding, etc.

Typically, computerized medical signal processing systems acquires a large

amount of data that is difficult to store and transmit [6]. It is very desirable to

find a method of reducing the quantity of data without loss of important informa-

tion. All data compression algorithms seek to minimize data storage by eliminating

redundancy where possible. The compression ratio is defined as the ratio of the

number of bits of the original signal to the number of bits stored in the compressed

signal. A high compression ratio is desired, typically, but using this alone to compare

data compression algorithms is not acceptable. Generally the bandwidth, sampling

frequency, and precision of the original data affect the compression ratio [7]. A data

compression algorithm must also represent the data with acceptable fidelity. In

biomedical data compression, the clinical acceptability of the reconstructed signal

has to be determined through visual inspection from a medical expert. The residual

between the reconstructed signal and the original signal may also be measured by a
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numerical measure. A lossless data compression algorithm produces zero residual,

and the reconstructed signal exactly replicates the original signal. However, clini-

cally acceptable quality is neither guaranteed by a low nonzero residual nor ruled

out by a high numerical residual [8].

The criterion for testing performance of compression algorithms includes three

components: compression ratio, reconstruction error and computational complex-

ity. The compression ratio and the reconstruction error are usually dependent on

each other and are used to create the rate-distortion function of the algorithm.

The computational complexity component is part of the practical implementation

consideration but it is not part of any theoretical measure.

2.2 ECG Data Compression

The electrocardiogram (ECG) is a graphic record of the changes in magnitude and

direction of the electrical activity, or, more specifically, the electric current, that

is generated by the depolarization and repolarization of the atria and ventricles.

This electrical activity is readily detected by electrodes attached to the skin. But

neither the electrical activity that results from the generation and transmission

of electrical impulses which are too feeble to be detected by skin electrodes nor

the mechanical contractions and relaxations of the atria and ventricles (which do

not generate electrical activity) appear in the electrocardiogram. After the electric

current generated by depolarization and repolarization of the atria and ventricles

is detected by electrodes, it is amplified, displayed on an oscilloscope, recorded on

ECG paper, or stored in memory.
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Figure 2.1 shows the typical ECG signal with three indicated parts: P wave,

QRS complex, and T wave. The P wave is the result of slow-moving depolarization

(contraction) of the atria. This is a low-amplitude wave of 0.1-0.2 mV and duration

of 60-120 ms. The wave of stimulus spreads rapidly from the apex of the heart

upwards, causing rapid depolarization (contraction) of the ventricles. This results

in the QRS complex of the ECG, a sharp biphasic or triphasic wave of about 1

mV amplitude and approximately 80-100 ms duration. Ventricular muscle cells

have a relatively long action potential duration of 300-350 ms. The plateau part of

action potential of about 100-120 ms after the QRS is known as the ST segment.

The repolarization (relaxation) of the ventricles causes the slow T wave with an

amplitude of 0.1-0.3 mV and duration of 100-120 ms. Between T and P waves,

there is a relatively long plateau part of small amplitude known as TP segment [9].

Figure 2.1: Typical ECG signal.

A large variety of techniques for ECG compression has been proposed and

published over the last thirty years. These techniques have become essential in a

large variety of applications, from diagnosis through supervision to monitoring ap-
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plications. In general, compression techniques may be divided into two categories:

lossless methods and methods that produce reconstruction errors. In most ECG

applications, the errorless methods do not provide sufficient compression, and hence

errors are to be expected in practical ECG compression systems. ECG compression

methods have been mainly classified into three major categories [4, 7] : direct data

compression, transformation methods, and parametric techniques. In the direct

methods, the samples of the signal are directly handled to provide the compression.

In the transformation methods, the original samples are subjected to a transfor-

mation and the compression is performed in the new domain. In the parametric

methods, a preprocessor is employed to extract some features that are later used

to reconstruct the signal. Most of the existing ECG data compression techniques

lie in two of the three categories: the direct data and the transformation methods.

Direct data compression techniques have shown a more efficient performance than

the transformation techniques particularly in regard to processing speed and gener-

ally to compression ratio [7]. Although parametric methods usually have a greater

computational complexity, algorithms that have recently joined this group, and are

based on a beat codebook, seem to have the best compression performances [4, 10].

2.2.1 Distortion Measure in ECG Data Compression

One of the most difficult problems in ECG compression applications and recon-

struction is defining the error criterion. The purpose of the compression system

is to remove redundancy, the irrelevant information (which does not contain diag-

nostic information — in the ECG case). Consequently the error criterion has to
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be defined such that it will measure the ability of the reconstructed signal to pre-

serve the relevant information. In most ECG compression algorithms, the Percent

Root-mean-square Difference (PRD) measure is employed:

PRD =

√
∑N

n=1(x(n) − x̃(n))2

∑N

n=1(x(n) − x̄)2
× 100 (2.2.1)

where x(n) is the original signal, x̃(n) is the reconstructed signal, x̄ is the mean of

x(n) and N is the length of the window over which the PRD is calculated. Sometimes

in the literature, another definition is used, where the denominator is
∑N

n=1 x(n)2,

as given in Eq. (2.2.2):

PRD2 =

√
∑N

n=1(x(n) − x̃(n))2

∑N

n=1(x(n)2)
× 100. (2.2.2)

This second definition depends on the DC level of the original signal. If x(n) contains

a DC level, the PRD2 will show irrelevant low results.

The two definitions as described in Eq.’s (2.2.1) and (2.2.2) are the same if the

original signal has a zero mean. Since the first one is independent of the DC level

of the original signal, it is more appropriate for use. There are some other error

measures for comparing original and reconstructed ECG signals, such as the Root

Mean Square error (RMS):

RMS =

√
∑N

n=1(x(n) − x̃(n))2

N
(2.2.3)

or the signal-to-noise ratio (SNR), which is expressed as

SNR = 10 log10

( ∑N

n=1(x(n) − x̄)2

∑N

n=1(x(n) − x̃(n))2

)

. (2.2.4)

The relation between the SNR and the PRD is:

SNR = −20 log10 PRD. (2.2.5)
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2.2.2 Compression Measure in ECG Data Compression

Many problems exist in the definition of compression measure. These problems

mostly derive from the lack of uniformity (no standardization) in the test conditions

of the various algorithms in respect of sampling frequencies and quantization levels.

The size of compression is often measured by the Compression Ratio (CR) which

is defined as the ratio between the bit rate of the original signal and the bit rate

of the reconstructed one. In order to evaluate if the diagnostic information is well

preserved in the reconstructed signal, such a criterion has been defined in the past

as “diagnostic acceptability” [11]. Today the accepted way to examine diagnostic

acceptability is to get cardiologists’ evaluations of the system’s performance. This

solution is good for getting evaluations of coders’ performances, but it can not

be used as a tool for designing ECG coders and certainly, can not be used as an

integral part of the compression algorithm. However, in order to use such a criterion

for coders design, one has to give it a mathematical model. As yet, there is no such

mathematical structure to this criterion, and all accepted error measures are still

variations of the Mean Square Error or absolute error, which are easy to compute

mathematically, but are not always diagnostically relevant.

The problem is that every algorithm is fed with an ECG signal that has a

different sampling frequency and a different number of quantization levels; thus, the

bit rate of the original signal is not standard. Some attempts were made in the past

to define standards for sampling frequency and quantization, but these standards

were not implemented and the algorithms’ developers still use rates and quantizers
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that are convenient to them. In the literature, some authors use the number of

bits transmitted per sample of the compressed signal as a measure of information

rate. This measure removes the dependency on the quantizer resolution, but the

dependence on the sampling frequency remains. Another way is using the number of

bits transmitted per second. This measure removes the dependence on the quantizer

resolution as well as the dependence on the sampling frequency.

In the following sections, we will give an overview of conventional ECG data

compression techniques.

2.3 Direct Data Compression Methods

Direct data compression methods rely on prediction or interpolation algorithms

which try to diminish redundancy in a sequence of data by looking at successive

neighboring samples. Prediction algorithms employ a priori knowledge of previous

samples, whereas interpolation algorithms use a priori knowledge of both previous

and future samples. In consideration of the algorithmic structure of present ECG

data reduction methods, direct data compression schemes can be classified into

three categories: tolerance-comparison data compression methods, data compression

by a differential pulse code modulation (DPCM) techniques, and entropy coding

techniques. In the first category, a preset error threshold is utilized to discard data

samples; the higher the preset error threshold the higher the data compression ratio

with result in a lower recovered signal fidelity. The DPCM techniques attempt to

diminish signal redundancy by using intersample correlation. The entropy coding

techniques reduce signal redundancy whenever the quantized signal amplitudes have
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a nonuniform probability distribution.

2.3.1 Tolerance-Comparison Data Compression Techniques

Most of the tolerance-comparison data compression techniques employ polynomial

predictors and interpolators. The basic idea behind polynomial prediction or in-

terpolation compressors is to eliminate samples, from a given data set, which can

be implied by examining preceding and succeeding samples. The implementation

of such compression algorithms is usually executed by setting a preset error thresh-

old centered around an actual sample point. Whenever the difference between that

sample and a succeeding future sample exceeds the preset error threshold, the data

between the two samples is approximated by a line whereby only the line param-

eters (e.g., length and amplitude) are saved. In this section, some of the known

tolerance-comparison ECG compression algorithms will be introduced.

1. The Amplitude Zone Time Epoch Coding (AZTEC) Technique

The AZTEC algorithm was originally developed by Cox et al. [12] for prepro-

cessing real-time ECG’s for rhythm analysis. It has become a popular data

reduction algorithm for ECG monitors and databases with an achieved com-

pression ratio of 10:1 (500 Hz sampled ECG with 12 bit resolution). However,

the reconstructed signal demonstrates significant discontinuities and distor-

tion (PRD of about 28%). In particular, most of the signal distortion occurs

in the reconstruction of the P and T waves due to their slowly varying slopes.

The AZTEC algorithm converts raw ECG sample points into plateaus and

slopes. The AZTEC plateaus (horizontal lines) are produced by utilizing the
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zero-order interpolation. The stored values for each plateau are the amplitude

value of the line and its length (the number of samples with which the line can

be interpolated within aperture). The production of an AZTEC slope starts

when the number of samples needed to form a plateau is less than three. The

slope is saved whenever a plateau of three samples or more can be formed.

The stored value of the slope are the duration (number of samples of the

slope) and the final elevation (amplitude of last sample point). Even though

the AZTEC provides a high data reduction ratio, the reconstructed signal has

poor fidelity mainly because of the discontinuity (step-like quantization) of the

waves. A significant improvement in the shape, while smoothing the discon-

tinuity, is achieved by using a smoothing filter, but this improvement causes

higher error. A modified AZTEC algorithm was proposed in [13], in which

the threshold is not a constant but a function of the temporary changes in the

signal properties. A data compression ratio comparable to that of the origi-

nal AZTEC algorithm was achieved and signal reconstruction was improved

(by means of PRD). In another algorithm [14], vector quantization was used

along with the m-AZTEC to produce a multi-lead ECG data compressor. This

approach yieldes a compression ratio of 8.6 : 1.

2. The Turning Point Technique

The turning point (TP) data reduction algorithm [15] was developed for the

purpose of reducing the sampling frequency of an ECG signal from 200 to

100 Hz without diminishing the elevation of large amplitude QRS’s. The

algorithm processes three data points at a time: a reference point x(i) and
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two consecutive data points x(i + 1) and x(i + 2). Either x(i + 1) or x(i + 2)

is to be retained. This depends on which point preserves the slope of the

original three points. In this method, only the amplitudes are to be stored

but not their locations. The TP algorithm produces a fixed compression ratio

of 2 : 1 whereby the reconstructed signal resembles the original signal with

some distortion.

3. The Coordinate Reduction Time Encoding System (CORTES) Scheme

The CORTES algorithm [6] is a hybrid of the AZTEC and TP algorithms. In

this algorithm, the ability of the TP is exploited to track the fast changes in

the signal, and the ability of the AZTEC is exploited to compress effectively

isoelectric regions. CORTES applies the TP algorithm to the high frequency

regions (QRS complexes), whereas it applies the AZTEC algorithm to the

lower frequency regions and to the isoelectric regions of the ECG signal. For

signals sampled at 200 Hz with 12 bit resolution, the compression ratio is 5 : 1

with a PRD of 7% .

4. Fan and SAPA Techniques

Fan and Scan-Along Polygonal Approximation (SAPA) algorithms, are both

based on first-order interpolation [7]. The Fan algorithm was tested on ECG

signals in the 1960’s by Gardenhire, and further description was given in a

report [16] of the Fan Method. In this method, the compressor searches for

the most distant sample (on the time axis), such that if a line is drawn between

it and the last stored sample, the local error along the line will be lower than

a specific error tolerance. The location and the amplitude of this sample
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are stored, and this process recurs. The reconstructed signal looks like a

broken line, and its fidelity depends on the error threshold. The greater the

threshold is, the better the compression ratio, and the poorer the fidelity.

The Scan-Along Polygonal Approximation (SAPA) techniques [17] are based

on a similar idea to the Fan algorithm, and have similar performances. The

SAPA2 algorithm, one of the three SAPA algorithms, showed the best results.

For signals sampled at 250 Hz with 12 bit resolution, the compression ratio is

3 : 1 with a PRD of 4%.

5. The Slope Adaptive Interpolation Encoding Scheme (SAIES)

The SAIES algorithm [18] combines the AZTEC and Fan compression tech-

niques. It employs the AZTEC’s slope compression technique in encoding the

QRS-complex, and utilizes the Fan technique for encoding the low-frequency

waves of the ECG (the isoelectric, P, and T waves). For signals sampled at

166 Hz with 10 bit resolution, the compression ratio is 5.9 : 1 with a PRD of

16.3%.

6. The SLOPE Algorithm

The basic idea of SLOPE is repeatedly delimiting linear segments. In the

work of [19], the algorithm attempts to delimit linear segments of different

lengths and different slopes in the ECG signal. It considers some adjacent

samples as a vector, and this vector is extended if the coming samples falls

within a fan spanned by this vector and a threshold angle; otherwise, it is

delimited as a linear segment. Similar to the SAPA and Fan algorithms, the

reconstructed signal looks like a broken line. For signals sampled at 120 Hz
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Table 2.1: Performance of the Tolerance-Comparison Data Compression Techniques
for ECG signal

Method AZTEC TP CORTES SAPA SAIES SLOPE
CR 10 2 5 3 5.9 5.5

PRD(%) 28 - 7 4 16.3 -

with 8 bit resolution, the compression result is an average bit rate of 190 bps

while still maintaining clinically significant information.

Table 2.1 summarizes the performance of the Tolerance-Comparison Data Com-

pression Techniques.

2.3.2 Data Compression by Differential Pulse Code Modu-
lation (DPCM)

The Pulse Code Modulation (PCM) is the earliest, the simplest, and the most pop-

ular coder in digital coding systems of signals. A PCM coder is nothing more than

a waveform sampler followed by an amplitude quantizer. In PCM, each sample of

the waveform is encoded independently of all the others. However, most source

signals sampled at the Nyquist rate or faster exhibit significant correlation between

successive samples. In other words, the average change in amplitude between suc-

cessive samples is relatively small. Consequently, an encoding scheme that exploits

the redundancy in the samples will result in a lower bit rate for the source out-

put. A relatively simple solution is to encode the differences between successive

samples rather than the samples themselves. Since differences between samples are

expected to be smaller than the actual sampled amplitudes, fewer bits are required

to represent the differences.
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Some algorithms for ECG compression based on DPCM have been presented in

the literature. Some of them use the DPCM as minor part of the whole compression

scheme. The basic idea behind the DPCM is that the residual between the actual

sample x(n) and the estimated sample value x̂(n) defined by:

r(n) = x(n) − x̂(n). (2.3.6)

is quantized and transmitted or stored. The reconstruction error is mainly caused

by the amplitude quantization noise of the quantized residual. The performances of

DPCM coders as linear predictors for a compression system for ECG signals were

tested [20]. Some important conclusions were reached: increasing the predictor order

beyond 2 does not improve performance and the prediction coefficients are barely

changed as a function of time and, therefore, there is no use of Adaptive DPCM

(ADPCM). Huffman coding was combined with this compressor, and the reported

performances were not significantly different from the performances of other direct

compression methods. For signals sampled at 500 Hz with 8 bit resolution, the

compression ratio is about 7.8 : 1 with a PRD of 3.5%.

In [1], an attempt was made to exploit the quasi-periodic characteristic of the

ECG signal to reduce the variance of the prediction error. The algorithm processes

every cycle (beat) of the heart separately with two-stage DPCM. In the first stage,

the prediction error (residual) of the current heartbeat is calculated by DPCM with

a third order linear predictor. In the second stage, the residual of the previous beat

is subtracted from the residual of the current one, and the difference is encoded

by entropy coding. Figure 2.2 illustrates this compression scheme. A compression

ratio of 2 : 1 without any reconstruction error is achieved. Another important work
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Figure 2.2: Compression by two-step DPCM [1].

Figure 2.3: Compression by average beat subtraction [2].

is [2], in which the current heartbeat is subtracted from an average beat, the residual

is first differenced and then Huffman encoded, see Figure 2.3. Using quantization

step sizes of 35µV and a sampling frequency of 100 Hz, the compressor is reported

to produce an average data rate of 174 bps for the 24 hour MIT-BIH arrhythmia

database [21].

2.3.3 Entropy Coding

A Discrete Memoryless Source (DMS) coding system produces a symbol every τs

seconds. Each symbol is selected from a finite alphabet of symbols xi; i = 0, . . . , L,

occurring with probabilities p(xi), i = 1, 2, . . . , L. The entropy of the DMS in bits

per source symbol is

H(X) = −

L∑

i=1

p(xi) log2 p(xi) 6 log2 L (2.3.7)
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where equality holds when the symbols are equally probable. The average number

of bits per source symbol is H(X) and the source rate in bits per second is defined

as

R =
H(X)

τs

. (2.3.8)

In a coder that fits one set of N bits for every symbol (fixed-length codewords),

the number of bits required for symbol coding is

N = ⌈log2 L⌉. (2.3.9)

When the source symbols are not equally probable, a more efficient encoding

method is to use variable-length codewords. An example of such encoding is the

Morse code. In the Morse code, the letters that occur more frequently are assigned

short codewords and those that occur infrequently are assigned long codewords.

Following this general philosophy, we may use the probabilities of occurrence of the

different source letters in the selection of the codewords. The problem is to devise

a method for selecting and assigning the codewords to source letters. This type of

encoding is called entropy coding.

Entropy coding such as Huffman coding [22] has been implemented as part

of some ECG DPCM coders and other coders. In the DPCM coders, like those

discussed in Section 2.3.2, the residual was mapped into variable length codewords

instead of fixed length ones. The residual in those DPCM coders, has a non-uniform

distribution and therefore, a better compression ratio could be achieved.
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Figure 2.4: Simplied representation of an analysis by synthesis coder [3].

2.3.4 Analysis by Synthesis Coding

The principle of an analysis-by-synthesis coder [3] is illustrated in Figure 2.4. The

transmitter (encoder) incorporates a decoding structure similar to that used at the

decoder. For each quantized parameter configuration, an error criterion comparing

the original and the reconstructed signal is computed. Usually this criterion is

the mean-squared error (or a variation of it) computed as the difference between

the original and the reconstructed signals. The criterion is then used to select the

best configuration of the quantized coder parameters and the index or the indices

corresponding to this parameter configuration are transmitted to the receiver. The

receiver uses the same decoding structure to reconstruct the original signal. In the

work of [23], analysis by synthesis coding has been used in ECG signal processing.
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2.4 Transformation Methods

Transformation techniques have generally been used in vector cardiography or multi-

lead ECG compression and require preprocessing of the input signal by a linear

orthogonal transformation and encoding of the output (expansion coefficients) using

an appropriate error criterion. For signal reconstruction, an inverse transformation

is carried out and the ECG signal is recovered with some error. In principle, if the

samples’ sequence of the current ECG beat is considered as an N -dimensional vector

x, the transform of x is given by the N-dimensional vector y:

y = Ax (2.4.10)

where A is the transform matrix (N × N). The original signal x can be obtained

from the transform vector by the inverse transform:

x = A−1y, (2.4.11)

where for the class of orthogonal transforms [24], we have

A−1 = AT. (2.4.12)

Assuming A is not singular, the column vectors of A−1 can be related as the

basis vectors, and x as linear combination of the basis vectors, where the elements

of y are the combination coefficients. The compression is performed by appropriate

bit allocation to every element of y, where the goal is minimization of the general

amount of bits for a given error level. Many orthogonal transform compression

algorithms for ECG signals have been presented in the last thirty years, such as the
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Fourier Transform [25], Walsh Transform [26], Cosine Transform [Ahmed, Milne, and

Harris, 1975], and Karhunen-Loeve Transform (KLT) [27]. The typical performances

of the transform methods are compression ratio between 3 : 1 to 12 : 1, where the

KLT has the best compression ratio. The KLT is an optimal transform in the sense

that the least orthonormal functions are required to represent the signal. In the

recent years, since the Wavelet Transform (WT) was introduced [28], many ECG

compression algorithms based on the Wavelet Transform have been proposed [29,30].

A compression ratio from 13.5 : 1 to 31.5 : 1 with the corresponding PRDs between

1.9% and 13% is achieved.

2.5 Parametric Methods

Although many of the reported ECG compression algorithms fall into the above

two categories, more and more ECG compression algorithms based on parametric

techniques have been proposed in recent years. Some of these algorithms are hybrids

of direct and parametric techniques or transformation and parametric techniques.

The compression algorithms based on parametric techniques require a preprocessing

stage, which is sometimes heavy in the sense of calculation, but this is not a problem

for computers today.

1. Beat Codebook

In the recent years, many ECG compression algorithms based on a Beat Code-

book have been presented. This group of algorithms is very efficient in ECG

compression because it exploits the quasi-periodic nature of ECG signals. In
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Figure 2.5: ECG compression based on long term prediction [4].

this method, the redundancy, which exists in the form of correlation between

beats (complexes) [31, 32], is reduced by matching a beat from a beat code-

book to the currently processing beat. All algorithms belonging to this group

have a QRS detector stage to locate and segment every beat. In the work

of [33], average-beat templates are subtracted from the ECG signal. The resid-

ual (which has reduced variance) is quantized adaptively, first differenced, and

Huffman encoded. The coded residual signal is stored along with the beat type

(two bits) and the beat arrival time, as illustrated in Figure 2.5. This com-

pression algorithm was tested with the MIT-BIH database, and the achieved

bit rate was 193.3 bps, with PRD between 4.33% and 19.3%, depending on the

tested signal. Nave et al. [4] used a Long-Term Prediction (LTP) model, where

the prediction of the nth sample is made using samples of past beats. The

LTP residual signal was quantized and further compressed using the Huffman

coding. The compression ratio depends on the number of the residual quan-

tizer levels, which is determined prior to compression execution. For each cycle

(beat) a number of parameters are to be stored (transmitted): the index of
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the chosen beat codeword, the quantized LTP coefficients, the beat locations

vector, the quantizer range, and the coded residual (optionally). The algo-

rithm was tested on a local ECG database, which has a sampling frequency of

250 Hz and quantization of 10 bits/sample. Bit rates between 71 bps and 650

bps with PRDs between 10% and 1% were achieved.

2. Artificial Neural Network (ANN)

Some ECG compression algorithms based on Artificial Neural Network have

been presented since 1989. Iwata et al. [34] used dual three-layered neural

networks which are composed of 70 units of input layer, a few units in the

hidden layer, and 70 units in the output layer. One network is used for data

compression and another is used for learning with current signals. The com-

pressed signal contains the interconnecting weights of the network and the

activation levels of hidden units for every consecutive heart beat. The ECG

signal is reconstructed at the activation levels of the output units. Another

work [5] was based on a similar idea, and used three layers: input, hidden,

and output layer. The hidden layer had a reduced number of nodes to produce

compression (see Figure 2.6). The compression ratio is controlled by the ra-

tio of hidden-layer neurons to input- and output-layer neurons. Fewer hidden

neurons produce higher compression ratios and poorer reconstruction errors.

Bit rates between 304 bps and 64 bps with PRDs between 4.6% and 6.1% were

achieved when using mean waveform and DC removal in the algorithm.

3. Peak Picking

The peak-picking compression techniques are generally based on the sampling
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Figure 2.6: ECG compression by ANN [5].

of a continuous signal at peaks (maxima and minima) and other significant

points of the signal [7]. The basic operation involves the extraction of signal

parameters that convey most of the signal information. These parameters

include the amplitude and location of the maxima and the minima points,

slope changes, zero-crossing intervals, and points of inflection in the signal.

These parameters are substituted in place of the original signal. The signal is

reconstructed by polynomial fitting techniques such as parabolic functions.

4. Beat Codebook

In the recent years, many ECG compression algorithms based on a Beat Code-

book have been presented. This group of algorithms is found to be very ef-

ficient in ECG compression because it exploits the quasi-periodic nature of

ECG signals. In this method, the redundancy, which exists in the form of

correlation between beats (complexes), is reduced by matching a beat from a

beat codebook to the currently processed beat. All algorithms belong to this

group have a QRS detector stage to locate and segment every beat.
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Table 2.2: Comparison of performance of some existing ECG data compression
techniques

Category Method CR PRD (%)
Direct AZTEC 10 28
Data CORTES 5 7

Compression SAPA 3 4
Methods SAIES 5.9 16.3

DPCM 7.8 3.5
Transformation Methods WT 13.5–31.5 1.9–13

Parametric Beat Codebook 3.8–35.2 1–10
Methods ANN 8.2–39 4.6–6.1

To summarize, Table 2.2 shows the compression ration (CR) and percentage

root-mean-square distortion (PRD) performance of different conventional methods

for ECG data compression. From this table, it is easy to see that, the transformation

methods and parametric methods performs better than direct compression methods

in yielding high compression ratio with low distortion. Since in ECG compression

and reconstruction, the most important factor is to preserve the diagnostic informa-

tion, in our methods, we will also evaluate if the morphology of the signal can be

preserved or not.
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Chapter 3

A Novel Wavelet-based Pattern
Matching Method

In this chapter, firstly, we will give an introduction to the wavelet transform; then we

will discuss the compression and reconstruction scheme step by step; finally, we will

give the experimental results of this wavelet-based pattern matching (WBPM) algo-

rithm. In our study, we take advantage of the interbeat correlation across heartbeats

to achieve efficient ECG data compression.

3.1 Wavelet Transform

The main idea behind wavelet analysis is to decompose a signal f into a basis of

functions Ψi:

f =
∑

i

aiΨi. (3.1.1)

To have an efficient representation of the signal f using only a few coefficients

ai, it is very important to use a suitable family of functions Ψi. The functions Ψi

should match the features of the data we want to represent.
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Real-world signals usually have the following feature: limited in both time

domain (time-limited) and frequency domain (band-limited). Time-limited signals

can be represented efficiently using a basis of block functions (Dirac delta functions

for infinitesimal small blocks), but block signals are not limited in frequency. Band-

limited signals can be represented efficiently using a Fourier basis, but sines and

cosines are not limited in time domain.

What we need is a trade off between the pure time-limited and band-limited

basis functions, a compromise that combines the best of both worlds: wavelets (small

waves).

Historically, the concept of “ondelettes”or “wavelets” started to appear more

frequently only in the early 1980’s. This new concept can be viewed as a synthesis

of various ideas originating from different disciplines including mathematics, physics

and engineering. In 1982, Jean Morlet, a French geophysical engineer, discovered

the idea of the wavelet transform, providing a new mathematical tool for seismic

wave analysis. In Morlet’s analysis, signals consist of different features in time and

frequency, but their high-frequency components would have shorter time duration

than their low-frequency components. In order to achieve good time resolution for

the high-frequency transients and good frequency resolution for the low-frequency

components, Morlet first introduced the idea of wavelets as a family of functions

constructed from translation and dilations of a single function called the “mother

wavelet” Ψ(t). They are defined by

Ψa,b(t) =
1

√

|a|
Ψ

(
t − b

a

)

, a, b ∈ R, a 6= 0, (3.1.2)
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where a is called a scaling parameter which measures the degree of compression

or scale, and b a translation parameter which determines the time location of the

wavelet. If |a| < 1, the wavelet given in Eq. (3.1.2) is the compressed version (smaller

support in time-domain) of the mother wavelet and corresponds mainly to higher

frequencies. On the other hand, when |a| > 1, Ψa,b(t) has a larger time-width than

Ψ(t) and corresponds to lower frequencies. Thus, wavelets have time-width adapted

to their frequencies. This is the main reason for the success of the Morlet wavelets

in signal processing and time-frequency signal analysis. It may be noted that the

resolution of wavelets at different scales varies in the time and frequency domains

as governed by the Heisenberg uncertainty principle. At large scale, the solution is

coarse in the time domain and fine in the frequency domain. As the scale a decreases,

the resolution in the time domain becomes finer while that in the frequency domain

becomes coarser.

The calculation of discrete wavelet transform and its inverse is fast and stable.

Furthermore, one of the main features of wavelets is their good decorrelation:

• Wavelets are localized in both the space/time and scale/frequency domains.

Hence they can easily detect local features in a signal.

• Wavelets are based on a multi-resolution analysis. A wavelet decomposition

allows to analyze a signal at different resolution levels (scales).

• Wavelets are smooth, which can be characterized by their number of vanishing

moments. A function defined on the interval [a, b] has n vanishing moments if

∫ b

a

f(x)xidx = 0, ∀i = 0, 1, · · · , n − 1. (3.1.3)
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The higher the number of vanishing moments, the better smooth signals can

be approximated by a wavelet basis.

In the past few years, researchers in applied mathematics and signal process-

ing have developed powerful wavelet methods for the multiscale representation and

analysis of signals. These new tools differ from the traditional Fourier techniques

by the way in which they localize the information in the time-frequency plane; in

particular, they are capable of trading one type of resolution for the other, which

makes them especially suitable for the analysis of nonstationary signals. One privi-

leged area of applications where these properties have been found to be relevant is

biomedical engineering. The main difficulty in dealing with biomedical objects is

the extreme variability of the signals and the necessity to operate on a case by case

basis. Often one does not know a priori what is the pertinent information and/or at

which scale it is located. For example, it is frequently the deviation of some signal

feature from the normal that is the most relevant information for diagnosis. As a

result, the problems tend to be less well defined than those in engineering and the

emphasis is more on designing robust methods that work in most circumstances,

rather than procedures that are optimal under very specific assumptions. Another

important aspect of biomedical signals is that the information of interest is often a

combination of features that are well localized temporarily or spatially and others

are more diffuse. This requires the use of analysis methods sufficiently versatile to

handle events that can be at opposite extremes in terms of their time-frequency

localization. In essence, the wavelet transform (WT) performs a correlation analy-

sis, which is the basis for the matched filter, and can be utilized for QRS complex
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Figure 3.1: Block schematic of the encoder.

detection in ECG signals. Moreover, data compression can be achieved by quantiza-

tion in wavelet domain, or by simply discarding certain insignificant coefficients. In

our study, we take advantage of these characteristics of wavelets to achieve efficient

ECG data compression.

The encoding procedures will be discussed step by step in the following sections.

The block schematic for the encoder of the novel wavelet-based pattern matching

(WBPM) method is shown in Figure 3.1.
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Figure 3.2: Typical waveform of ECG.

3.2 Beat Normalization

The waveform of a typical ECG, as shown in Figure 3.2 (record 101 from the MIT-

BIH Arrhythmia Database [21]), demonstrates that an ECG signal is intrinsically

composed of a sequence of beats with similar pattern. In order to explore the corre-

lation between consecutive beats, first we have to normalize the signal to eliminate

heart rate variability.

3.2.1 Period Normalization

For delineating cycles, we define a cycle as the signal from one R-peak to the next.

We use the technique reported in [35] for QRS detection. Multirate techniques [36] is

utilized for normalizing the period of each isolated beat. This involves sampling rate

changing by different fractional factors for different cycles and converts the beats of

different periods into beats of a constant period, thus eliminating the effect of heart

rate variability. The fixed length of the cycles is selected based on the maximum

possible period of any cardiac cycle and sampling frequency. The modified sampling
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rate must still satisfy the Nyquist criterion. We have selected a length such that

the new sampling rate is always higher than the original one, ensuring that there

will be no distortion of the signal. The standard period (SP) is estimated from

some initial cycles of the data being coded, and this value is initially sent to the

decoder. During encoding, the difference between the actual period of a cycle and

the standard period is transmitted.

To perform period normalization, we first interpolate the variable period beat

vectors by a factor L, which is the fixed period planned for. Then the signal is

downsampled by the appropriate factor for each cycle, so that the length of all

cycles become uniform. In our case, only the interpolation filter and downsampling

are required. Since ECG signal has been interpolated by a sufficiently high value,

no error occurs in downsampling. The details of implementation are given below.

If x(n) is the input to an interpolation filter with an upsampling factor L and

an impulse response h(n), then the output y(n) is given by

y(n) =
∞∑

k=∞

x(k)h(n − kL). (3.2.4)

The upsampler simply inserts L − 1 zeros between successive samples. The

filter h(n), which operates at a rate L times higher than that of the input signal,

replaces the inserted zeros with interpolated values. Polyphase implementation of

this filter [36] ensures efficient interpolation. The output y(n) of a decimation filter,

with an impulse response h(n) and a downsampling factor M , where M < L, is

given by

y(n) =
∞∑

k=∞

x(k)h(nM − k) (3.2.5)
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Figure 3.3: Period normalization.

where h(n) is a lowpass filter used to remove the aliasing caused by the downsam-

pling of the signal. In case the signal does not contain frequencies above π/M ,

there is no need for the decimation filter; downsampling alone will do. The change

of sampling rate thus achieved is a reversible process, provided Nyquist condition

is satisfied; if the resampled beat is brought back to the original sampling rate by

multirate processing, there will be no distortion. The output of our system is given

by

yi(n) =

Pi−1∑

k=0

xi(k)h(nMi − kL) (3.2.6)

where xi(n), yi(n) are the nth samples of the ith input beat and period normalized

beat, respectively, h(n) is the impulse response of the filter, Pi is the total number

of samples in ith original beat, and L, Mi are, respectively, the upsampling and

downsampling factors for the ith beat vector. The block schematic for this operation

is shown in Figure 3.3. The interpolation is efficiently accomplished in multiple

stages.

3.2.2 Amplitude Normalization

Amplitude normalization brings about further similarity between the beat patterns.

Each sample of a beat is divided by the magnitude of the largest sample of the beat,

the largest magnitude is defined as the amplitude scale factor (ASF). This makes the

magnitude the largest sample(s) of each beat equal to unity. Thus, the variations
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between the magnitudes of different cycles are minimized. Figure 3.4 shows that the

period and the amplitude normalization do not introduce any distortion in the signal

and also demonstrates its efficacy in enhancing the interbeat correlation. For each

cycle being coded, the amplitude scale factor (ASF) is transmitted to the decoder.

3.3 Wavelet-based Pattern Matching of Normal-

ized Beats

3.3.1 Wavelet Transform of Normalized Beats

In wavelet analysis, a mother wavelet function Ψ(x) and a linear combination of its

dilated and/or shifted versions are used to represent a given signal

f(x) =
∑

j∈Z

∑

k∈Z

wj,kΨj,k(x) (3.3.7)

where f(x) is the signal to be analyzed, Ψj,k(x) is the dilated and shifted version of

the mother wavelet Ψ(x), j and k determine the dilation and shift factor respectively,

wj,k are the wavelet coefficients, and

Ψj,k(x) = Ψ(2jx − k). (3.3.8)

It is desired that the wavelet basis functions be orthonormal in order to simplify

the computation of the coefficients [29]. From Eq. (3.3.7) and the orthonormality

of basis functions, we get the wavelet coefficients wj,k as

wj,k = 〈f(x), Ψj,k(x)〉 =

∫
∞

−∞

f(x)Ψj,k(x)dx. (3.3.9)

From Eq.’s (3.3.7) and (3.3.8) we get

f(x) =
∑

j∈Z

∑

k∈Z

wj,kΨ(2jx − k). (3.3.10)
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Figure 3.4: Signal normalization and reconstruction: (a) original signal; (b) normal-
ized signal; and (c) reconstructed signal. The vertical axis represents the amplitude
and the horizontal axis represents the sample index.
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While setting up a discrete wavelet transform algorithm, it is convenient to

limit the range of the independent variable x to one unit interval so that f(x) is

defined only for x ∈ [0, 1]. Here, x is a nondimensional variable; so if the independent

variable is the time t, and we are interested in a signal over duration T , then x = t/T .

Of the many available orthogonal basis functions Ψj,k(x) ∈ L2(R), we have used

Daubechies-4 (D4) functions for representing each normalized beat. The D4 wavelet

Ψ0,0(x) occupies three unit intervals x ∈ [0, 3]. The expansion of f(x) in x ∈ [0, 1]

can be written as

f(x) = w01φ(x) + w11Ψ(x) + [w21 w22]

[
Ψ(2x)

Ψ(2x − 1)

]

+ [w31 w32 w33 w34]







Ψ(4x)
Ψ(4x − 1)
Ψ(4x − 2)
Ψ(4x − 3)







+ · · · (3.3.11)

where φ(x) = 1, x ∈ [0, 1] and wjk refers to the wavelet coefficient at scale j and

location k. Let us form a vector X by stacking the wavelet coefficients at scale 0,1,2,

. . ., 7 as defined below

X = [w01 w11 w21 w22 w31 w32 w33 w34 · · · ]. (3.3.12)

Then from Eq.’s (3.3.11) and (3.3.12) we get

f(x) = X(0)φ(x) + X(1)Ψ(x) + [X(2) X(3)]

[
Ψ(2x)

Ψ(2x − 1)

]

+[X(4) X(5) X(6) X(7)]







Ψ(4x)
Ψ(4x − 1)
Ψ(4x − 2)
Ψ(4x − 3)







+ · · · + X(2j + k)Ψ(2jx − k) (3.3.13)

where X(n) is the nth element of the vector X.
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Because of the high suitability of time-localized basis functions for representing

the locally nonstationary ECG cycle, not all the wavelet coefficients are significant

in the reconstruction of any beat. By choosing a fixed set of significant coefficients

to be transmitted from each beat, important rhythm and morphological information

can still be retained. Normalized beats enable us to achieve this end.

3.3.2 Pattern Matching of DWT Coefficients

Since there is a definite correlation between the corresponding wavelet coefficients

of different normalized beats, the current one can be approximated by certain past

coefficients, and only the residual needs to be transmitted. In our study, we perform

pattern matching of wavelet coefficients across beats. The variance of the residuals

obtained is less than that of the original coefficients. Thus, we are able to allocate

less bits to each residual than the number of bits required for each wavelet coefficient

set.

After performing the wavelet transform on each normalized beat, a pattern

matching process is then performed. In this stage, a coefficient set template pattern

library of size Np = 1, which contains only one pre-selected set of wavelet coeffi-

cients, is designed. The coefficient set template pattern is a pattern appropriately

selected from the wavelet coefficients of the data file to be coded and needs to be

distortionlessly transmitted to the decoder initially so that the coefficient set tem-

plate pattern library in the decoder has the same coefficient set as in the encoder. A

simple template replenishing scheme for synchronously updating the libraries in the

encoder and the decoder is adopted. Whenever the wavelet coefficient set of input
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beat varies drastically and becomes very dissimilar from the one in the library dur-

ing the encoding session, the library must be updated by replacing it with the input

coefficient set. The new coefficient set template pattern must also be distortionlessly

transmitted to the decoder to synchronize the library.

The mechanism behind the pattern matching and the template replenishing is

briefly described as follows. Since the coefficient set template pattern library has

only one standard coefficient set, no bit transmission is necessary. The residual

coefficient set is thus obtained, which is the difference between the input coefficient

set and the coefficient set in the library. If the residual is greater than the preset

threshold, then the simple replenishing scheme is performed to update the coefficient

set pattern library. The residual is then fed into a residual coding unit for further

compression.

3.4 Residual Coding

Besides the codes for the standard coefficient set template patterns, an efficient

coding method must be used to encode the residual coefficient set. In order to

achieve higher compression ratio, a quantization process can be used to quantize the

residual before encoding. In this section, a variable-length entropy coding method

is introduced to encode the residual coefficient set.

The coding method employs a variable-length entropy coding (VLC) which is

a combination of Huffman coding and run-length coding. In the transmitter, the

variable-length encoder accepts data from the quantizer (Q). The quantization table
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used in the quantizer is generated by using a simple uniform quantization which is

specified by a quality factor, QF ; that is,

Q[n] = QF, n = 1, 2, . . . , Ts (3.4.14)

where Ts is the number of coefficients in each coefficient set. Assume the unquantized

residual coefficient sets Wr = {wr(n), n = 1, 2, . . . , Ts}, where wr(n) denotes the

nth component of the unquantized data. Thus the nth component of the quantized

residual is

xq(n) =
xr(n)

Q[n]
, n = 1, 2, . . . , Ts. (3.4.15)

The quantized data is first encoded with a run-length coding. It is converted

into a sequence of runs between nonzero components and the magnitude of those

nonzero components. Then, each event, consisting of a nonzero component and

the corresponding run length of zeros, is further encoded with a specified Huffman

code. In the receiver, the variable-length decoder accepts the bit stream from the

transmission buffer and performs the inverse operations. Following the decoding

process, the dequantization is performed to reconstruct the residual coefficient set.

3.5 Beat Reconstruction

The block schematic of the decoder is shown in Figure 3.5. The received encoded

residual is first decoded by dequantization. Then the coefficients are reconstructed

as the sum of the residual and the coefficient set template. Note that, the inverse

DWT of these coefficients is computed to obtain the reconstructed normalized beats.

The normalized beats are then multiplied by the corresponding amplitude scale
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Figure 3.5: Block schematic of the decoder.

factors. The actual period of each beat is obtained from the period difference and the

Standard Period. The original period beat is then recovered by multirate techniques

as described in Section 3.4, from which follows the reconstructed ECG signal.

3.6 Experimental Results and Discussions

3.6.1 Experimental Results

The proposed method was tested on ECG data from MIT/BIH Arrhythmia Database

[21], which was sampled at 360 Hz with 12 bit resolution. The performance of the

method is evaluated using the measures discussed below. The compression (CR)

has been computed as follows:

CR =
K

∑NT

i=1 Ti

NT (NRb + αa + αp) + KNMTs + bsp + bh + bt

(3.6.16)

where K is the number of bits per sample in the original signal, Ti is the period

of the ith beat, NT is the total number of beats, NR is the number of coefficients

whose residuals are transmitted for each cycle, b, αa, and αp are the number of bits

used for transmitting each residual, amplitude scale factor, and period difference,
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Table 3.1: Compression ratio and PRD of three experimental records

Record 101 106 116
CR 22.7 28.5 24.6

PRD(%) 3.35 7.21 6.34

Table 3.2: Comparison of CR and PRD performance of our method (WBPM) with
other techniques

Method WBPM Time series analysis Linear prediction WHOSC
CR 22.7–28.5 15.9 15–22 15.8-22.2

PRD(%) 3.35–7.21 4 9–13 1.73–1.75

respectively, bsp is the number of bits used for transmitting standard period, NM is

the number of templates that have been used, Ts is the standard period, bh and bt

are the number of bits for the samples preceding the first beat and those following

the last beat.

The error measurement used here is the PRD as defined in Eq. (2.2.1). Fig-

ures 3.6 and 3.7 give the original, reconstructed, and the error waveforms, respec-

tively, for two of the experimental signals. Table 3.1 gives the performance figures

for three different experimental signals. It can be seen that the compression ratio

(CR) achieved varies from 22.7 to 28.5. The method proposed is elegant and does

not require a priori knowledge of the ECG waveform.

By observing the waveforms of the reconstructed signal, we can see that the

morphology of all the components are well preserved . According to the results listed

in Table 3.2, our method (WBPM) gains improvement on the coding performance

in terms of CR versus PRD measure over some recent methods including time series
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Figure 3.6: Results on record 101 from the MIT-BIH Arrythmia Database: (a)
original ECG; (b) reconstructed signal; and (c) reconstruction error. The vertical
axis represents the amplitude and the horizontal axis represents the sample index.
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Figure 3.7: Results on record 116 from the MIT-BIH Arrythmia Database: (a)
original ECG; (b) reconstructed signal; and (c) reconstruction error. The vertical
axis represents the amplitude and the horizontal axis represents the sample index.
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analysis [37], linear prediction [29] and WHOSC [38] for ECG data compression.

We conclude that the achievement of the significant improvement on the coding

performance is mainly due to the employment of the interbeat correlation, pattern

matching and efficient residual coding in our method.

3.6.2 Discussions

Following beat delineation, the periods of the beats are normalized by multirate

processing in order to minimize the effect of heart rate variability. Amplitude nor-

malization is performed afterwards in order to bring further similarity between beats,

and discrete wavelet transform is applied to each normalized beat. Due to the pe-

riod and amplitude normalization, the wavelet transform coefficients bear a high

correlation across beats. To increase the compression ratio, a pattern matching unit

is utilized, and the residual sequence obtained is further encoded. The difference

between the actual period and the standard period, and the amplitude scale factor

are also retained for each beat and transmitted to the decoder. At the decoder, the

inverse wavelet transform is computed from the reconstructed wavelet transform co-

efficients. The original amplitude and period of each beat are then recovered, which

follows the original signal. This method has taken the advantage of correlation

across and within beats of ECG signal for efficient compression. The simulation re-

sults show that our compression algorithm achieves a significant improvement in the

performance of compression ratio and error measurement. Moreover, the morpho-

logical information is well preserved in the reconstructed signal, that is, the results

are acceptable, which is of vital importance in telemedicine. The performance of the
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algorithm can be improved by increasing the levels of pattern matching and utilizing

more efficient residual coding, which is a recommendation for future work.
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Chapter 4

Compression of ECG as a Signal
with Finite Rate of Innovation

In this chapter, a new method of sampling and reconstruction of ECG data is pro-

posed. The ECG signal is first modelled as the sum of bandlimited signal and

nonuniform spline of degree one which contains a finite rate of innovation. A re-

view of sampling signals with finite rate of innovation is given afterwards. Then

the signal is sampled at the finite rate in order to achieve compression of the ECG

signal. The original signal can be reconstructed given certain number of Fourier

series coefficients. By comparing the simulation results with the ones achieved by

classic sinc interpolation, it is shown that the performance of the proposed one is

much better than the latter.

Figure 4.1 gives the block diagram of the processing procedures.

Figure 4.1: Block diagram of the algorithm.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



50

4.1 Modelling of ECG as the Sum of Bandlimited

and Nonuniform Spline of Degree One

From an engineering point of view, an ECG signal is quasi-periodic, and a P-QRS-T

cycle consists one period of the signal. In order to preserve the diagnostic informa-

tion in ECG signal, the QRS complex has to be well preserved in the modelled signal.

From the analysis of the QRS complex, it is easy to see that it can be modelled as

nonuniform linear spline. By subtracting the QRS complex from the original signal,

the remaining part can be modelled as a bandlimited signal.

Firstly, for delineating cycles, we define a cycle as the signal from one R-peak

to the next. We use the technique reported in [35] for QRS detection. Once we

get the R-peaks of the ECG signal, a P-QRS-T cycle can be extracted from the

original signal. From the analysis of the morphology of the QRS complex, it can

be approximated as a nonuniform linear spline. From the transition points we get

from the QRS detection, linear interpolation is performed to get the linear approx-

imation. The number of pieces is determined by the number of transition points.

By subtracting the QRS complex from the original signal, the remaining part of

the signal is analyzed. It is shown that the remaining part can be modelled as a

bandlimited signal. The bandwidth of the bandlimited approximation is determined

by observing the distribution of the Fourier Spectrum. Thus, the sum of the nonuni-

form linear spline and bandlimited signal is an approximation of the original ECG

signal. Figures 4.2, 4.3 and 4.4 show examples of approximating ECG signal as

bandlimited plus nonuniform linear spline. We can easily see that the shape of the
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Figure 4.2: Modelling of ECG103 as bandlimited plus nonuniform linear spline. (a)
the original ECG signal; (b) the nonuniform spline approximation of the peak; (c)
the bandlimited approximation of the remaining part of the signal; (d) the sum of
the nonuniform linear spline and bandlimited signal. The vertical axis represents
the amplitude and the horizontal axis represents the sample index.
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Figure 4.3: Modelling of ECG115 as bandlimited plus nonuniform linear spline. (a)
the original ECG signal; (b) the nonuniform spline approximation of the peak; (c)
the bandlimited approximation of the remaining part of the signal; (d) the sum of
the nonuniform linear spline and bandlimited signal. The vertical axis represents
the amplitude and the horizontal axis represents the sample index.
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Figure 4.4: Modelling of ECG116 as bandlimited plus nonuniform linear spline. (a)
the original ECG signal; (b) the nonuniform spline approximation of the peak; (c)
the bandlimited approximation of the remaining part of the signal; (d) the sum of
the nonuniform linear spline and bandlimited signal. The vertical axis represents
the amplitude and the horizontal axis represents the sample index.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



54

original signal is well preserved in the approximated one.

4.2 Review on Sampling Signals with Finite Rate

of Innovation

Consider classes of signals which have a finite number of degrees of freedom per unit

of time, and call this number the rate of innovation. Examples of signals with a

finite rate of innovation include streams of Dirac pulses, non-uniform splines and

piecewise polynomials.

Even though these signals are not bandlimited, it has been shown that they

can be sampled uniformly at (or above) the rate of innovation using an appropriate

kernel, and then be perfectly reconstructed. Sampling theorems have been proved

for classes of signals and kernels that generalize the classic “bandlimited and sinc

kernel” case in [39–43]. The key in all constructions is to identify the innovative part

of a signal (e.g. time instants and weights of Diracs) using an annihilating or locator

filter, a device well known in spectral analysis and error correction coding [39].

In particular, we will give a review on how to sample and reconstruct periodic

streams of Dirac pulses and nonuniform splines in the following subsections.

4.2.1 Signals with Finite Rate of Innovation

The classic sampling theorem relies on the fact that the signal is bandlimited, but

what if the signal is not bandlimited? How can the signal be sampled and re-

constructed? One way is to make it bandlimited, in other words, take a lowpass
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approximation of the signal and then apply the classic sampling and reconstruction

scheme, but the result is far from satisfactory [41].

For bandlimited signals, they are completely determined by sampling the signal

at a rate of 1 sample every T seconds, that is, the signal has 1/T degrees of freedom

per unit of time. So it is interesting to see if we can sample and reconstruct non-

bandlimited signals that are characterized as having finite degrees of freedom per

unit of time. These signals are defined as signals with a finite rate of innovation.

Formally, the rate of innovation ρ is the average number of degrees of freedom per

unit of time, or, with Cx(ta, tb) giving the number of degrees of freedom of x(t) over

the interval [a, b],

ρ = lim
τ→∞

1

τ
Cx

(

−
τ

2
,
τ

2

)

(4.2.1)

Examples are stream of Diracs, nonuniform splines and piecewise polynomials.

In the following subsections, we consider τ−periodic stream of Diracs and

nonuniform splines. The natural representation of such periodic signals is given

by Fourier series

x(t) =
∑

m∈Z

X[m] ei 2πmt

τ . (4.2.2)

Such signals can be recovered uniquely from a certain number of contiguous

Fourier coefficients, and these coefficients can be obtained from the samples of the

original signals.
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4.2.2 Periodic Stream of Diracs

Consider a stream of K Diracs periodized with period τ , x(t) =
∑

n∈Z

cn δ(t−tn) where

tn+K = tn + τ and cn+K = cn,∀n ∈ Z. This signal has 2K degrees of freedom per

period (K from the locations and K from the weights), thus the rate of innovation

is

ρ =
2K

τ
. (4.2.3)

The periodic stream of Diracs can be rewritten as

x(t) =
K−1∑

k=0

ck

∑

n∈Z

δ(t − tk − nτ)

=
K−1∑

k=0

ck

1

τ

∑

m∈Z

ei
2πm(t−tk)

τ from Poisson’s summation formula

=
∑

m∈Z

1

τ

( K−1∑

k=0

ck e−i
2πmtk

τ

)

︸ ︷︷ ︸

X[m]

ei 2πmt

τ . (4.2.4)

The Fourier series coefficients X[m] are thus given by

X[m] =
1

τ

K−1∑

k=0

ck e−i
2πmtk

τ , m ∈ Z (4.2.5)

that is, the linear combination of K complex exponentials.

Theorem 4.1. [39] Consider x(t), a periodic stream of Diracs of period τ with K

Diracs of weight {ck}
K−1
k=0 and at location {tk}

K−1
k=0 as in Eq. (4.2.4). Take as sampling

kernel hB(t) = B sinc(Bt) where B is chosen such that it is greater or equal to the

rate of innovation ρ given by (4.2.3), and sample (hB ∗x)(t) at N uniform locations

t = nT, n = 0, . . . , N − 1, where N ≥ 2M + 1 and M = ⌊Bτ
2
⌋. Then the samples

yn =< hB(t − nT ), x(t) >, n = 0, . . . , N − 1 (4.2.6)
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are a sufficient characterization of x(t).

Algorithm 4.1. The algorithm of sampling and reconstruction of stream of Diracs

is described as follows:

1. Calculate the sample values.

yn =< hB(t − nT ), x(t) >, n = 0, . . . , N − 1, we take T as a divisor of τ

here, then N = τ/T . Let B = ρ, we have M = K.

2. Finding X[m], |m| ≤ K from yn, n = 0, . . . , N − 1.

Using Eq. (4.2.2) in (4.2.6) we have

yn =
∑

m

X[m] < hB(t − nT ), ei 2πmt

τ > (4.2.7)

=
∑

m

X[m] HB

(2πm

τ

)
ei 2πmnT

τ (4.2.8)

=
K∑

m=−K

X[m] ei 2πmnT

τ (4.2.9)

where HB(ω) = Rect( ω
2πB

) is the Fourier transform of hB(t). The 2K + 1

contiguous coefficients can be obtained by solving this system of equations.

Note that N = τ/T , yn corresponds to the IDFT of X[m].

3. Finding the coefficients of the filter A[m] that annihilates X[m],m ∈ [−K,K].

Given X[m],m = −K, . . . , K, solve Eq. (4.2.10) for A[m],m = 1, . . . , K,

A[m] ∗ X[m] = 0. (4.2.10)

This is a classic Yule-Walker system [44], which in our case has a unique

solution when there are K distinct Diracs in x(t) because there is a unique

annihilating filter.
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4. Finding K locations.

Given the coefficients 1, A[1], . . . , A[K], we factor its z− transform into its

roots

A(z) =
K−1∏

k=0

(1 − uk z−1) (4.2.11)

where uk = e−i
2πtk

τ , which leads to the K locations {tk}
K−1
k=0 .

5. Finding the weights ck.

Given the locations {tk}
K−1
k=0 , we can write K values of X[k] as linear combi-

nations of exponentials. In general, using uk = e−i
2πtk

τ , since tk’s are distinct,

we have a Vandermonde system, which will always lead to a solution of ck’s.

4.2.3 Periodic Nonuniform Splines

In this section we consider periodic nonuniform splines of period τ . A signal x(t) is

a periodic nonuniform spline of degree R with knots at {tk}
K−1
k=0 ∈ [0, τ ] if and only

if its (R + 1)th derivative is a periodic stream of K weighted Diracs x(R+1)(t) =

∑

n∈Z

cn δ(t − tn) where tn+K = tn + τ and cn+K = cn,∀n ∈ Z. Thus the rate of

innovation is

ρ =
2K

τ
. (4.2.12)

Using Eq. (4.2.4) we can state that the Fourier series coefficients of x(R+1)(t)

are X(R+1)[m] = 1
τ

K−1∑

k=0

ck e−i2πmtk . Differentiating Eq. (4.2.2) R+1 times shows that

these coefficients are

X(R+1)[m] = (i2πm/τ)R+1 X[m], m ∈ Z. (4.2.13)
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Theorem 4.2. [39] Consider a periodic nonuniform spline x(t) with period τ ,

containing K pieces of maximum degree R. Take a sinc sampling kernel hB(t) such

that B is greater or equal to the rate of innovation ρ given by (4.2.12), and sample

(hB ∗ x)(t) at N uniform locations t = nT, n = 0, . . . , N − 1, where N ≥ 2M + 1

and M = ⌊Bτ
2
⌋. Then x(t) is uniquely represented by the samples

yn =< hB(t − nT ), x(t) >, n = 0, . . . , N − 1. (4.2.14)

Algorithm 4.2. The algorithm of sampling and reconstruction of periodic nonuni-

form splines is described as follows:

1. Calculate the sample values.

yn =< hB(t − nT ), x(t) >, n = 0, . . . , N − 1, we take T as a divisor of τ

here, then N = τ/T . Let B = ρ, we have M = K.

2. Find X[m], for m ∈ [−K,K], that is 2K contiguous spectral values of x(t)

from the sample values. See Step 2 in Algorithm 4.1.

3. Find 2K contiguous spectral values of the stream of Diracs.

X(R+1)[m] = (i2πm/τ)R+1 X[m], m ∈ [−K,K]. See Steps 3 and 4 in Algo-

rithm 4.1.

4. Determine the locations and weights of the Diracs x(R+1)(t) using annihilating

filter method.

5. Get the original splines by integrating R + 1 times the stream of Dirac pulse.

The block diagram of the process is shown in Figure 4.5.
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Figure 4.5: The block diagram of sampling procedures of nonuniform splines.

4.3 Compression and Reconstruction of ECG Sig-

nal

In this stage, the sampling theorem for signals with finite rate of innovation will be

applied to compress and reconstruct the ECG signal. According to the method in

Section 4.2, given the number of pieces in nonuniform linear spline and the band-

width of the bandlimited signal, the sum of these two signals can be perfectly re-

constructed.

We approximate the QRS complex as a nonuniform linear spline with K pieces,

and the rest of the signal is approximated as a bandlimited signal with bandwidth

of L, where the period of the original signal is τ . Then the modelled signal x is

defined by

x(t) = xBL(t) + xNS(t), (4.3.15)
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with corresponding CTFS coefficients defined by

X[m] =

{
XBL[m] + XNS[m] if m ∈ [−L,L]

XNS[m] if m /∈ [−L,L].

Consider the nonuniform spline of degree one with K pieces, it can be recovered

from 2K contiguous frequency values XNS[m]. Therefore it is sufficient to take 2K

CTFS coefficients outside of the band [−L,L], for instance in [L+1, L+2K]. From

these 2K contiguous values, we can get the reconstruction of the nonuniform spline.

Then the CTFS of the bandlimited signal are obtained by subtracting XNS[m] from

X[m] for m ∈ [−L,L]. It follows that we can sample the signal using a sinc kernel

bandlimited to 2K + L. The sum of the bandlimited signal and nonuniform linear

spline can be reconstructed perfectly.

Algorithm 4.3. The algorithm of sampling and reconstruction of ECG signal is

described as follows:

1. Calculate the sample values.

yn =< hB(t − nT ), x(t) >, n = 0, . . . , N − 1, we take T as a divisor of τ

here, then N = τ/T . Let B = ρ = (2K + L)/τ , where τ is the period of the

signal.

2. Find 2K + L contiguous spectral values of x(t) from the sample values.

3. Find 2K contiguous values of XNS[m] by taking 2K CTFS coefficients of X[m]

outside the band of [−L,L], for instance in [L + 1, L + 2K]. See step 2 in

Algorithm 4.1.
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4. Find 2K contiguous spectral values of the stream of Diracs.

X
(R+1)
NS [m] = (i2πm/τ)R+1 XNS[m], m ∈ [L + 1, L + 2K].

5. Determine the locations and weights of the Diracs x(R+1)(t) using annihilating

filter method. See steps 3 and 4 in Algorithm 4.1.

6. Get the original spline xNS(t) by integrating R + 1 times the Diracs, thus we

have XNS[m], m ∈ Z.

7. Find the bandlimited signal xBL(t). Once we get XNS[m], we have XBL[m] =

X[m] − XNS[m], where m ∈ [−L, L], xBL(t) is thus recovered.

8. The original signal is the sum of the bandlimited signal and nonuniform linear

spline.

The block diagram of the process is shown in Figure 4.6.

4.4 Experimental Results and Discussions

4.4.1 Experimental Results

The proposed method was tested on ECG data from MIT/BIH Arrhythmia Database

[21]. Figures 4.7, 4.8 and 4.9 give the original, reconstructed signal using sampling

signal with FRI and sinc kernel, respectively. It is shown that sampling the ECG

signal at its finite rate of innovation performs better in preserving the morpholog-

ical and diagnostic information in ECG signal. Table 4.1 gives the reconstruction

performance measurements for four different experimental signals. We get smaller

reconstruction error by comparing our method with the classic sampling using sinc
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Figure 4.6: The block diagram of sampling procedures of bandlimited signal plus
nonuniform splines.

interpolation. In both methods, 2K + L spectral values are used for reconstruction,

the Compression Ratio (CR) is defined as the ratio of the number of samples in the

original ECG signal and 2K + L, the comparison is based on the same compres-

sion ratio. Table 4.2 gives the compression ratio for some of the signals from the

database, the ratios are quite satisfactory.

Table 4.1: Comparison of reconstruction error of sampling with FRI and sinc kernel

Record 103 115 116 123
FRI 8.4% 7.7% 3.4% 2.8%
sinc 11.7% 12.7% 3.5% 5.9%
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Figure 4.7: Results on record 103 from the MIT-BIH Arrythmia Database: (a)
reconstruction of ECG using sampling signal with finite rate of innovation, with
reconstruction error of 19%; (b) reconstruction of ECG using sampling with sinc
kernel, with reconstruction error of 17%. The vertical axis represents the amplitude
and the horizontal axis represents the sample index.
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Figure 4.8: Results on record 116 from the MIT-BIH Arrythmia Database: (a)
reconstruction of ECG using sampling signal with finite rate of innovation, with
reconstruction error of 7%; (b) reconstruction of ECG using sampling with sinc
kernel, with reconstruction error of 6%. The vertical axis represents the amplitude
and the horizontal axis represents the sample index.
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Figure 4.9: Results on record 123 from the MIT-BIH Arrythmia Database: (a)
reconstruction of ECG using sampling signal with finite rate of innovation, with
reconstruction error of 5%; (b) reconstruction of ECG using sampling with sinc
kernel, with reconstruction error of 11%. The vertical axis represents the amplitude
and the horizontal axis represents the sample index.
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Table 4.2: Compression ratio performance on signals form MIT-BIH Arrythmia
Database

Record 103 115 116 123
K 8 8 8 8
L 6 4 4 9

CR 14.0 17.3 12.5 19.1

4.4.2 Discussions

A novel algorithm for ECG data sampling and reconstruction has been proposed in

this chapter. Firstly, we model ECG signal as the sum of bandlimited signal and

nonuniform spline of degree one. Given the 2K +L coefficients of X[m], the nonuni-

form spline is recovered from 2K of contiguous Fourier series coefficients outside the

band of m ∈ [−L,L]. Once we get the nonuniform spline from these contiguous co-

efficients, the Fourier series coefficients of the bandlimited signal, XBL, is obtained

by subtracting XNS from X[m] inside the band of m ∈ [−L,L]. Generally speaking,

the original signal can be reconstructed given certain number of Fourier series coef-

ficients. By comparing the simulation results with the ones achieved by classic sinc

interpolation, it is shown that the performance of the proposed one is much better

than the latter, especially in preserving the morphological information of the signal,

which is an important factor in biomedical signal processing. The performance of

this algorithm can be improved by decreasing K and L in modelling of ECG signal.

Finding an optimal method of modelling ECG signal with minimum parameters K

and L is a recommendation for future work.
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Chapter 5

Conclusions and
Recommendations for Future
Research

5.1 Conclusions

The objective of our study is to develop effective compression schemes for ECG data

transmission and storage. Review on data compression and conventional methods

for ECG compression are given in the first part of this thesis and two methods for

high fidelity coding of ECG have been proposed.

Handling R-R beats eliminates the ambiguity that normally arises in deciding

the endpoints of a cycle whenever PQRST beats are used. The normalization pre-

processing converts the ECG data into a near-cyclostationary sequence. A Wavelet

transform is then performed on the normalized beats and the wavelet coefficients

of consecutive beats show high correlation. Accordingly, we focus our attention on

the design of a pattern matching unit for efficient compression. An efficient residual

coding is then performed to achieve further compression. The wavelet-based pat-
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tern matching method performs well with normal data and achieves a significantly

high CR performance with low distortion. As compared with other methods, our

technique is very efficient. The advantage of this technique is that it can be applied

to other semi-periodic biomedical signals. Moreover, this technique can be utilized

for off-line applications such as patient databases and medical education systems.

As for the method of compressing ECG as signals with finite rate of innovation,

we have taken the advantage of morphology of ECG signal, which can be modelled

as a bandlimited signal plus nonuniform spline of degree one. By applying the

sampling methods for signals with finite rate of innovation, ECG signal is sampled

at its finite rate of innovation and the original signal can be reconstructed given

certain number of Fourier series coefficients. Thus, compression of ECG is achieved.

Judging from the experimental results, diagnostic information is well preserved in

the reconstructed signals.

5.2 Recommendations for Future Research

The potential topics in the future are described as follows:

A one-stage pattern matching is performed in the first method. In order to

obtain a residual coefficient set with an even smaller variance, a two-stage pattern

matching unit can be utilized. For residual coding process, other methods, such

as vector quantization, should be implemented in order to achieve possibly more

efficient coding.

Since PRD is only an average measure, it alone cannot adequately quantify the
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diagnostic acceptability of the reconstructed signal. The QRS complex of the ECG

carries significant morphological information, and the error in this region must not

be excessive. New distortion measures which can show the diagnostic acceptability

of the reconstructed signal should be developed in the future.

The methods proposed are designed just for single-channel ECG, while in prac-

tical application, multi-channel ECG is widely used. Methods for single-channel

data compression will be generalized for efficient compression of multi-channel ECG

data.

Optimal modelling of the ECG as a signal with finite rate of innovation can be

investigated to yield more efficient compression and accurate reconstruction.

Moreover, regarding the proposed method of compressing ECG as a signal with

finite rate of innovation, if relocation of functionalities can be done between encoder

and decoder, for instance, reconstruction of the non-uniform spline is done in the

encoder, only segment end points need to be transmitted along with the spectral

values used for reconstruction of bandlimited signal, higher compression might be

achieved while achieving similar performance of the proposed one. This can be a

potential method for further investigation.

Since many biomedical signals are periodic in an engineering point of view,

which is similar to ECG, general algorithms will be developed for these kind of

signals. Since these signals convey significant information of the human body, such

algorithms will contribute to the advancement of telemedicine.
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Appendix A

The MIT-BIH Arrhythmia
Database

The database used in this work is a collection of files from the MIT-BIH Arrhythmia

Database CD-ROM (third edition) [Moody, 1997].

The source of the ECGs included in the MIT-BIH Arrhythmia Database is a

set of over 4000 long-term Holter recordings that were obtained by the Beth Israel

Hospital Arrhythmia Laboratory between 1975 and 1979. Approximately 60% of

these recordings were obtained from inpatients. The database contains 23 records

(numbered from 100 to 124 inclusive with some numbers missing) chosen at random

from this set, and 25 records (numbered from 200 to 234 inclusive, again with some

numbers missing) selected from the same set to include a variety of rare but clinically

important phenomena that would not be well-represented by a small random sample

of Holter recordings.

The first group is intended to serve as a representative sample of the variety

of waveforms and artifact that an arrhythmia detector might encounter in routine
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clinical use. A table of random numbers was used to select tapes, and then to select

half-hour segments of them. Segments selected in this way were excluded only

if neither of the two ECG signals was of adequate quality for analysis by human

experts.

Records in the second group were chosen to include complex ventricular, junc-

tional, and supraventricular arrhythmias and conduction abnormalities. Several of

these records were selected because features of the rhythm, QRS morphology varia-

tion, or signal quality may be expected to present significant difficulty to arrhythmia

detectors; these records have gained considerable notoriety among database users.

The subjects were 25 men aged 32 to 89 years, and 22 women aged 23 to 89 years.

Records 201 and 202 came from the same male subject.

Each record in this directory is slightly over 30 minutes in length. Each signal

file contains two channels of ECG signals sampled at 360 Hz. Each sample is repre-

sented by 12-bit two’s complement amplitude. To each signal file a header file and

a reference annotation file are attached. The header files include information about

the leads used, the patient’s age, sex, and medications. The reference annotation

files include beat, rhythm, and signal quality annotations.
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