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ABSTRACT 

The complexity of spatial mechanisms in themselves and the 

absence of an attractive analytical tool for their study has left 

this field of engineering analysis largely unexplored. In recent 

years several analytic methods have emerged. One of the most attrac­

tive of these is the tensor method. Literature surveys reveal that 

the tensor method is largely unexploited in the U.S.A., with regard 

to spatial mechanisms as well as simpler kinematic problems. 

The purpose of this work is to develop tensor mathematics for 

application to the kinematic analysis of spatial mechanisms. Methods 

are developed for position solutions and the determination of veloc­

ities and accelerations of points of interest. Included are tensor 

methods for obtaining angular velocities and accelerations as well 

as the formulae for treating moving coordinate frames. Iterative 

procedures are discussed for cases where a closed form solution is 

not possible. Sufficient applications are included to exemplify 

the methods developed including some which are numerically solved 

by computer. 

It is concluded that the methods developed represent a cogent 

and tractable method of analysis of kinematic problems. 
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INTRODUCTION 

A. Historical Background 

1 

A study of the history of man from any academic point of view 

invariably marks the debut of man as a tool maker as the onset of 

important changes in the evolutionary order. From these earliest 

times man has recognized the efficacy of tools and their import upon 

his existence. The later development of what we have come to call 

machines began with the fashioning of tools. They were developed to 

ease the burden of mans struggle with the environment, to save him 

time, and to provide his livelihood. These are precisely the reasons, 

that today man is yet building newer, more advanced, and more sophis­

ticated machines and the study of things mechanical has come to hold 

a prominent position in the ranking of scientific pursuits. 

It was not until relatively recent times that detailed scien­

tific analysis became necessary for the designing and building of 

machines. Indeed most of the basic machines and mechanisms in use 

today were first conceived of and utilized without the use of even 

the most basic mathematics. Machines were fashioned in an intuitive 

and empirical way to fill a need. They were revised and tested until 

they satisfactorily performed the function for which they were in­

tended. Man has always had this power of intuitive reasoning, it 

seems, and for thousands of years this method of design and inven­

tion was adequate. Even today this method of design is sometimes 

the most practical although more scientific methods have been devel­

oped. 
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It is this quality more than any other, the propensity for em-

pirical but sophisticated mechanical inventiveness, that is respon-

sible for the slow growth of mechanism analysis as a scientific dis-

cipline. While other sciences flourished, the study of machines 

languished simply because its development was not needed. It is 

believed that the first published recognition of this void in the 

scientific disciplines was made by Ampere in 1834. [1] 

"There exist certain considerations which, if sufficiently 

developed, would constitute a complete science, but which 
have hitherto been neglected, or have formed only the sub­
ject of memoires and special essays. This science ought 
to include all that can be said with respect to motion in 
its different kinds, independently of the forces by which 

it is produced. It should treat, in the first place 

of spaces passed over, and of times employed in different 
motions, and of the determination of velocities according 
to the different relations which may exist between those 

spaces and times". 

Among the many who have contributed to the field since that time 

are such notables as Franz Reuleaux (1829-1905) and Johann Bernoulli. 

Leonhard Euler (1707-1783) is generally credited with the division of 

the broad conception of machine analysis into the mechanical view, 

mechanics, and the geometrical view, kinematics. [2] 

Although the science of kinematics had its beginnings over a 

hundred years ago, it is yet somewhat of a random art. The notion 

that the concept of kinematics is as old as the mechanisms it seeks 

to analyze is a widespread one. The fact is that kinematic analysis 

is relatively new as a scientific discipline. Many methods of anal-

ysis and systems of notations have been developed for the purpose of 

kinematic analysis. Perhaps the best known of these are vector anal-

ysis, graphics, and complex numbers. Vector analysis seems particu-
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larly applicable in that almost all kinematic quantities are either 

vectors or magnitudes of vectors. However, vector notation can be-

come cumbersome and difficult to work with for complex mechanisms. 

Graphic methods eliminate much computation and are suited for visual 

comprehension of a problem but are difficult to apply to three-dimen-

sional cases. Complex mathematics can be used successfully for two-

dimensional problems and has been extended to three-dimensions [3] 

but seems best suited for the two-dimensional case. 

Until recently, the analysis of three-dimensional mechanisms has 

not occupied a prominent place in the work of kinematicians. Their 

reluctance to study these mechanisms was perhaps due to the apparent-

ly formidable and tedious task of mathematically formulating problems 

and obtaining solutions with existing methods of analysis. The task 

of modern kinematics was well stated by Dicker [2]. 

"The problem is not to search for new principles, which 

would revolutionize the field of design: it is to try to 

find a better, a more extensive, a more universal method 

of analyzing mechanisms which have been known for ages." 

B. Review of Current Literature 

In an effort toward that goal, a universal method of analysis, 

recent publications have applied various tools to kinematic studies 

of mechanisms. Most notably in the field of three-dimensional mech-

anisms in an attempt to simplify the computational process and make 

the undertaking of work in this area more attractive. 

Matrix methods utilizing an iterative method based on 4x4 

matrixes have been developed by Hartenberg, Denavit, and Dicker [4,5, 

6,7]. The method provides solutions to a large category of mechanisms 

but allows little interpretation of the matrix equations and is more 
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powerful than necessary for simpler linkages. 

Vector analysis has been extended to three-dimensional mecha­

nisms by Chace [8,9] and represents a comprehensive exploitation of 

the inherent applicability of the vector method to kinematic analysis. 

Among others who have used the vector approach are Beyer and Harris­

berger [10,11]. Yang and Freudenstein have applied dual quaternious 

[12] and kinematicians in the USSR, for example, Mangeron and Dregan 

[13], and Kalitsin applied tensor analysis. There are many others 

who have contributed to the study of three-dimensional mechanisms 

besides those mentioned here. The authors and methods mentioned are 

indicative of the many avenues of approach to the problem of three­

dimensional mechanisms and the lack of emergence of a single most 

advantageous method. 

C. Purpose of the Research 

The authors interest in spatial mechanisms was stimulated by 

exposure to the problems of teaching vector kinematics and the early 

work in tensor kinematics by Professor C.Y. Ho [14]. Preliminary 

investigations into current literature pointed out the diversity of 

analytical methods being employed and the lack of acceptance of a 

universal language for kinematic analysis. In particular, the absence 

of the application of tensor mathematics in the U.S.A. indicated a 

void that would merit investigation. 

Tensor calculus first came into prominence as a device well 

suited for dealing with the general theory of relativity. It origi­

nated as a consequence of the fact that physical laws must be inde­

pendent of any particular coordinate system used in describing them 
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mathematically [15]. The advantages of tensor mathematics are well 

recognized with regard to advanced theories but little interest has 

been displayed in its application to more elementary subjects. 

It is perhaps the formidable character of most of the formulae 

of general relativity that is the source of the awe that many hold 

for tensor analysis, and their reluctance to study it. What is not 

realized is that this formidable character is removed when the form­

ulae of tensors are referred to cartesian axes while the simplicity 

and conciseness of the tensor notation is retained. 

Previous publications by the author and Professor C.Y. Ho have 

shown that tensor notation provides a convenient and compact means 

for expressing relationships in three-dimensional ·{spatial) mecha­

nisms. Some tensor operations that have no counterpart in vector 

algebra are powerful aids to obtaining problem solutions. The tensor 

analysis contains the inherent naturalness of vector analysis but in 

a more tractable form for complex mechanisms. One of the newest and 

most important tools for use in kinematic analysis is the digital 

computer. A useful kinematic method of analysis must be compatible 

with the language of computer analysis. Vector equations do not 

directly lend themselves to computer programming whereas tensor equa­

tions are written in algorithm form and are readily translated into 

Fortran language. 

The purpose of the research then was to investigate the develop­

ment of tensor mathematics for clear application to kinematic analysis 

of spatial mechanisms. 
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D. Kinematic Definitions 

The terms used in reference to things mechanical like mechan­

ical things themselves are ones which are more or less intuitively 

understood. Terms like machine, mechanism and kinematics were used 

in the introduction without definition but without loss of under­

standing. However, from an analytical point of view, it is necessary 

to more rigorously define some of these terms in order to form a 

common basis from which to proceed. 

The term kinematics is broadly used as a title to a division 

of the general applied science of the theory of machines. This divi­

sion is the study of geometry in motion. More specifically, it is 

the study of position, geometry, displacement, rotation, speed, ve­

locity, and acceleration [16]. The concept of force and motion re­

sulting from the action of forces is not considered in kinematics. 

A mechanism is a set of machine elements (links, gears, joints, 

pulleys, etc.) constructed so as to produce a desired output motion 

when it is driven by a particular input motion. That is, it trans­

forms one kind of motion into another. One element of a mechanism 

is considered to be the base, or ground link, and all motions are 

viewed with respect to this link as a reference. Within the scope 

of this work, the definition of a mechanism can be further qualified 

in that the concepts of elasticity, bending, manufacturing tolerance, 

etc. are neglected. For purposes of analytical studies, a mechanism 

possesses perfect geometry and perfect rigidity. A useful definition 

of a mechanism then is: a set of kinematic links connected by kine­

matic pairs (joints) forming a closed kinematic chain, the whole hav­

ing one degree of freedom when one link is viewed as the ground frame. 
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This definition of a mechanism clearly includes a broad cate­

gory of devices but these can be further classified into two divi­

sions, planar and spatial mechanisms. Planar mechanisms are charac­

terized by motion in a single plane. All the variables and parame­

ters necessary to mathematically describe the mechanism may be mea­

sured in a single projection, the plane of the motion. An exception 

to this is the method of defining angular velocities and accelera­

tions in vector mathematics. These quantities are characteristically 

described as a vector having direction perpendicular to the plane of 

motion. A piston and crank device is an example of a planar mecha­

nism. 

The second basic category of mechanisms are those whose motions 

cannot be described in a single projection. These have three-dimen­

sional motion and hence are called spatial mechanisms. The complex­

ity of their motion has always made them difficult to analyze with 

existing methods. Graphical methods, at best, demand a high degree 

of skill in visualizing proper projections and some of the more recent 

mathematical methods can become quite involved in specialized mathe­

matics and cumbersome notational difficulties. It is hoped that the 

compactness and brevity of the tensor method may alleviate some of 

these problems and make the study of spatial mechanisms more attrac­

tive. 

There were two terms in the definition of a mechanism that re­

quire further definition. These were kinematic link and kinematic 

pair. Figure 1 is a pictorial representation of a spatial mechanism 

and its component parts, kinematic links and kinematic pairs. Kine­

matic links are the machine members comprising a mechanism whose func-
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FIGURE 1 

PICTORIAL REPRESENTATION OF A SPATIAL MECHANISM 

AND ITS COMPONENT PARTS, KINET'AATIC LINKS AND 

KINEMATIC PAIRS. 
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Figure l 
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tion it is to hold specific spatial relationships among the kinematic 

pairs. They are considered to be perfectly rigid and their shape is 

incidental to the study of the mechanism itself. In order to perform 

its function, a link must make contact with the elements of at least 

two joints although this does not preclude the possibility of contact 

with more than two joints. Hence, links are accordingly described 

as binary, ternary, quaternary, etc. Within the scope of this work, 

binary links will be exclusively used. A kinematic link, then, may 

be said to be; a rigid body containing elements of at least two kine­

matic pairs whose function is to maintain a specific spatial relation­

ship between those respective pairs for the purpose of transmitting 

and transforming motion. 

In order to perform their purpose, kinematic links must be con­

nected by movable joints. These are traditionally called kinematic 

pairs. The purpose of a kinematic pair is to restrict the relative 

motion between connected links to a certain predetermined kind. A 

kinematic pair definition, then is; a movable joint whose function 

and purpose is to provide a connection between kinematic links which 

limits the relative motion between those links to a certain type. A 

common hinge joint, for example, limits link motion to a revolution 

about a common axis. 

Kinematic pairs exist in diverse shapes and forms. Their 

physical appearance is often little clue as to their function. They 

can be further classified into three categories given the names lower 

pairs, higher pairs, and wrapping connectors. The latter are systems 

of belts and pulleys and are not of much interest in current think­

ing on spatial mechanisms. Lower pairs are the most common and most 



interesting. These are six in number and were identified by Reu­

leaux [2]. They are shown pictorially in Figure 2. 

11 

A revolute pair (R pair) permits rotation about one axis. This 

pair is often called a hinge joint. To describe the relative motion 

between links connected by a revolute joint only one variable is 

needed, the angle of rotation. Hence, the revolute joint has one 

degree of freedom. These variables which describe relative motion 

permitted by the various pairs are called pair variables. It is 

customary to label each type of lower pair by a symbolic letter. 

These vary among authors on the subject and the ones to be used here 

are shown in Table I along with the degrees of freedom and pair var­

iables for the lower pairs. 

A prismatic pair (P pair) permits translation along a straight 

line. One pair variable is needed and the P pair then has one degree 

of freedom. A screw pair (H pair) permits helical motion involving 

both rotation and translation. Because the translation is related 

to the rotation by the pitch of the screw, the screw pair has only 

one degree of freedom and only one pair variable is necessary, either 

describing the translation or rotation but not both. A cylindrical 

pair (C pair) permits rotation about and translation along one axis. 

It, therefore, has two degrees of freedom and two pair variables are 

required. A spherical pair (S pair) permits three independent rota­

tions about a point, has three degrees of freedom and three pair vari­

ables. This pair is often referred to as a ball joint and sometimes 

a globular joint. A planar pair (F pair) permits motion in a plane. 

There are two translational degrees of freedom and one rotational 

requiring three pair variables for specification. In usage, the most 
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FIGURE 2 

PICTORIAL REPRESENTATION OF THE LOWER PAIRS 
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Figure 2 
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TABLE I 

Classification and Nomenclature of the Lower Pairs 

Pair Name Symbol Degrees of Freedom Pair Variables 

Revolute R 1 e 

Prismatic p 1 X 

Helical(screw) H 1 X or e 

Cylindrical c 2 x, e 

Spherical s 3 <f>, e, 1)i 

Planar F 3 x, y, <I> 
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common of these six lower pairs are the revolute, cylindrical, and 

spherical pairs. The prismatic and helical pairs are seen occasion­

ally but the planar pair is rare. 

In addition to their easily recognized pair variables, the 

lower pairs have other characteristics in common. In each case one 

element of a lower pair surrounds the other and is said to be self­

connecting or have form closure and the connections between elements 

of lower pairs are surfaces (area contact) [16]. 

Connections between links which are not surfaces but lines or 

points are named higher pairs by Reuleaux [16] . Meshed gear teeth 

and ball and race contact are examples of higher pairs. Although 

potentially there are an infinite number of higher pairs, their 

appearance in the literature as related to spatial mechanisms is rare. 

The lower pairs only will be considered in this work. 

Having formed working definitions of a mechanism and its com­

ponent parts, the next step is to consider how the various elements 

may be combined to form mechanisms that are useful. That is, what 

are the possibilities for connecting binary links and lower pairs in 

a closed kinematic chain such that the result will satisfy the defi­

nition of a mechanism? To be useful, such a device must have one 

resultant degree of freedom. One input motion should be sufficient 

to determine the output motion. 

Clearly, if one begins to arbitrarily connect various combina­

tions of links and pairs to form closed chains, there will result a 

very large number of devices indeed. However, obviously not all will 

have the desired one degree of freedom. Some will have multiple 

degrees and some will be locked, not move at all. 
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Using what is known as the Gruebler or Kutzbach mobility cri­

terion or Gruebler-Kutzbach criterion, depending upon the form in 

which it is written [11], Harrisberger has examined a large number of 

possibilities for spatial mechanisms. The mobility criterion deter­

mines the number of degrees of freedom of a mechanism by assuming 

six rigid body degrees of freedom for each link in the mechanism 

except the ground link which has none, and then subtracting the con­

straints imposed by the pairs. Harrisberger found 417 different kinds 

of spatial mechanisms having one degree of freedom [17]. Many of 

these were too mechanically complex to be of practical use. Of the 

many types investigated, Harrisberger found the four-link mechanisms 

to be of special appeal. He found 138 kinds of four-link mechanisms 

nine of which he deemed to be the most practical due to their desir­

able input-output motions. Five of these will be analyzed here as 

examples of the method to be developed. These five mechanisms are 

shown pictorially in Figure 3. It is customary to label a spatial 

mechanism by writing the symbols for its joints in successive order 

as they occur beginning at the input link. Thus, a mechanism with 

a revolute input connected to a spherical pair, another spherical 

pair and a revolute output would be labeled a RSSR mechanism. 

It is a well known and curious fact that there exist several 

working mechanisms which do not satisfy the mobility criteria. 

Among the better known of these are the Bennett four-link RRRR 

mechanism and the Bricard six-link RRRRRR mechanism. These are 

shown in Figure 4. Another useful mechanism which does not satisfy 

the mobility criterion is the RSSR mechanism shown in Figure 5. 

To gain further insight into this anomaly, it is helpful to 
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FIGURE 3 

PICTORIAL REPRESENTATION OF FOUR-BAR 

SPATIAL MECHANISMS 
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Figure 3 Cont. 

HCCC 

RSCR 
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Figure 3 Cont. 

RSCP 
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FIGURE 4 

PICTORIAL REPRESENTATION OF THE BENNETT FOUR-BAR AND 

THE BRICARD SIX-BAR SPATIAL MECHANISMS 
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Figure 4 

BENNETT FOUR-BAR 

0 

BRICARD SIX-BAR 
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FIGURE 5 

RSSR MECHANISM - NOTE THE PASSIVE DEGREE OF 

FREEDOM IN THE CONNECTING LINK 
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Figure 5 

RSSR MECHANISM 
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mathematically demonstrate the mobility criteria. A collection of 

n links in space would have 6n degrees of freedom. If one link is 

fixed as the ground link, 6(n-l) degrees of freedom remain. Joining 

these links with kinematic pairs would impose additional constraints. 

These constraints are found by considering the number of degrees of 

freedom a pair would have if it were a rigid body in space, 6, and 

subtracting the number of degrees of freedom, it possesses due to 

its own peculiar motion when viewed as a joint. The relation may 

be written: 

m 

f; 6(n-l) - ~ c. 
i;l J.. 

(I-1) 

where f is the resultant number of degrees of freedom, n is the 

number of links, m is the number of pairs, and c. is the number of 
J.. 

constraints imposed by the ith pair. For example, an R pair has one 

degree of freedom so that C. for an R pair is 5. 
J.. 

Application of the criterion to a mechanism which results in 

an f of 0 or a negative number would seem to indicate that the mech-

anism was over constrained and would not move at all. However, ap-

plying the criterion to the Bennett mechanism results in f = -2 and 

to the Bricard, f = 0. An f of greater than one would seem to indi-

cate that the mechanism was under constrained and more than one in-

put motion would be necessary to effect a single output motion. 

However, the RSSR mechanism of Figure 5 yields f ~ 2. It may be sur-

mised that these anomalous mechanisms possess redundant constraints 

and passive degrees of freedom. Referring to Figure 5, a passive 

degree of freedom may be observed in the link connecting the two 

spherical pairs in that the link may rotate about its longitudinal 

axis without affecting the motion of the mechanism. 
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II 

TENSOR MATHEMATICS FOR KINEMATICS 

A. Definitions and Terminology 

The use of cartesian axes results in two great simplifications 

in the powerful but formidable tensor calculus. The distinction be­

tween covariant and contravariant vectors disappears and the terms 

arising from the curvature of surfaces of reference are no longer 

present. Absolute differentiation of cartesian tensors is equivalent 

to ordinary differentiation. Some tensor properties that have no 

counterpart in vector mathematics are powerful aids to problem solv­

ing. Ordinarily the use of subscripts and superscripts in tensor no­

tation is to distinguish the covariant and contravariant qualities of 

tensors. Since that distinction is no longer necessary, when tensors 

are referred to cartesian axes, we are free to retain the subscripts 

for indication of tensor character and utilize superscripts for label­

ing purposes. 

It is difficult to succinctly define what tensors are, as they 

are rigorously defined only by their properties. A loose definition 

might be that a tensor is an abstraction that contains an ordered set 

of elements or components, the properties of which, taken together 

are independent of the coordinate frame used to describe them. It is 

this quality that makes tensors an ideal instrument for the study of 

physical laws and when the simplifications for cartesian axes are 

introduced, they become an exceptionally useful tool for the study 

of spatial relationships. One great advantage to the use of the ten­

sor method to be presented is that it is not a new notation but a con­

cise way of writing the ordinary vector notation with the additional 
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benefits of the brevity of tensor operations. 

1. Cartesian Tensors 

A point in three-dimensional space located with respect to a 

cartesian coordinate frame (X1 , X2 , X3 ) by a set of three coordinates 

may be also located with respect to another cartesian coordinate 

frame ex;, x;, x;> having the same origin by another set of three 

coordinates. The coordinates of the point p in the unprimed system 

may be called (p , p , p ), and the coordinates of pin the primed 
1 2 3 

system (p'? p', p'). The coordinates of pin the prime frame may be 
1 2 3 

written in terms of the coordinates in the unprimed frame by the re-

lations 

A p +A p +A p 
11 1 12 2 13 3 

A p +A p +A p 
21 1 22 2 23 3 

(II-1). 

A p +A p +A p 
31 1 32 2 33 3 

The quantities (A , A , 
11 12 

, A ) are the cosines of the angles 
33 

between the various axes; for example, A is the cosine of the angle 
11 

between X' and X , A is the cosine of the angle between X' and X , 
1 1 23 2 3 

and so on. Also, the coordinates of p in the unprimed frame may be 

expressed in terms of those in the primed frame by the relations 

=A p"" + 
11 1 

= A p"" + 
12 1 
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~ A p~ + A p~ + A p~ 
13 1 23 3 33 3 

(II-2) • 

The writing of equations (II-1) and (II-2) can be considerably 

shortened by a change in notation. We introduce the range and sum-

mation conventions. 

a. Range Convention 

For the coordinates of the point p we write p. and p~ where the 
l. l. 

index i is understood to take, in turn, each value in the range of 

that index. In three-dimensional space the range is 3 so that an 

unrepeated index will always be 1, 2, 3. Thus, the term p. represents 
l. 

the three coordinates (p , p , p) and p: represents (p~, p~, p~). 
1 2 3 l. 1 2 3 

Equations (II-1) and (II-2) may then be written 

p
1
. ~ A .p~ + A .p~ + A 31 .p 3~ ll. 1 2J. 2 

Each of these equations can be expressed as a summation. 

p~ := 
l. 

p. = 
l. 

3 

~A .. p. 
j==1 l.] J 

3 

~A .. p~ 
j==1 Jl. J 

b. Summation Convention 

(II-3) 

(II-4). 

(II-5) 

(II-6). 

If we adopt the convention that when an index is repeated in a 

term, as is j in equation (II-5) and (II-6), that a summation over 

the range of that index is implied, we may write 
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.. 
A .. p. pi = 
~J J 

{II-7) 

and pi = A .. p~ 
J~ J 

(II-8) • 

Thus, equations (II-7) and (II-8) each represent three equations and 

are completely equivalent to equations (II-1) and (II-2) but the 

twelve terms in each are now compactly expressed in the tensor no-

tation. The range and summation convention will be implicitly pre-

sent in the notation used henceforth. 

Sets of three quantities such asp. and p: which satisfy equa-
~ ~ 

tions (II-7) and (II-8) are called tensors of the first order, or 

vectors. The individual p , p , p are called the components of the 
1 2 3 

tensors. It can be seen that a first order cartesian tensor is 

equivalent to a cartesian vector. 

There are, of course, tensors of other orders than one. A 

tensor of order zero is a scalar and has the same value for all sets 

of axes. A tensor of second order can be constructed by the product 

of two vectors. 

or 

and from equation (II-7) 

or 

r.s. = t .. 
l. J ~J 

(A. s ) 
Jm m 

t~. = A.kA. rks 
~J ~ Jm m 

then from aquation (II-9) 

(II-9) 

(II-10), 

(II-10), 



t~. 
1] 

A .. A. tk 
1J JID m 
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(II-11). 

The tensor t:. is of second order, formed by the product of two 
1J 

first order tensors, and transforms according to the rule (II-11). 

In general, a set of nine quantities w . . referred to a coordinate 
1] 

system and transforming to another system by the rule (II-11) is a 

second order tensor.* There are many quantities that satisfy these 

conditions besides the product of two vectors. Tensors of higher 

order can be constructed and defined. In general, a tensor of order 

n has n indices, t. 'k 
1) . . • n, 

and transforms according to the rule 

t"". 'k 
~J • • • n = A . A . bAk. • • • A t b 

1a J ~ ne a ... e 

c. symmetric and Skew-Symmetric Tensors 

A tensor t .. is said to be symmetric in the indices 
1] 

interchange of these indices 

t .. = t .. 
1] J~ 

A tensor 8 .. is said to be skew-symmetric in the indices 
~J 

8 =-8 
ij ji 

If 8ij is a skew-symmetric tensor then 

8 = 0, 8 = 0, 8 = 0 
11 22 33 

(II-12). 

ij if upon 

(II-13). 

ij if 

(II-14). 

(II-15). 

*Much of the development in this section is adapted from references 

[15, lQ, and 19]. The reader is referred to these for more detailed 

study. 
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Clearly, the product of a symmetric tensor and a skew-symmetric ten-

sor is zero 

t .. s .. - 0 
l.J l.J 

The product of first order tensors 

r.r. = p .. 
]. J l.J 

is a symmetric second order tensor, for 

r.r. 
]. J 

r.r. 
J ]. 

(II-16). 

(II-17) 

(II-18). 

Equation (II-17) is called the symmetric product, has no counterpart 

in vector mathematics, and is of great importance in tensor kinema-

tics. 

d. The Kronecker Delta 

Consideration of the gradient operator in tensor form leads to 

some important relations. The gradient operator is written d 

where X. are the cartesian axis considered as vectors. 
]. 

gradient of a scalar results in a vector for 

a¢;ax~ = <axk;ax~> 
]. ]. 

The 

ax. 
]. 

(II-19). 

which is a transformation according to the vector rule, hence the 

gradient of a scalar is a vector. In tensor mathematics, the grad-

ient of a vector has meaning and is a second order tensor. There 

is no counterpart in vector mathematics. 



then 

= <oX ;axk--> <or~;ax >= Akm<a;ax >A . . r. 
m ~ m m ~J J 

A, __ A . . car. ;ax ) 
.lULl ~J J m 

32 

(II-20) , 

(II-21) • 

Equation (II-21) satisfies the transformation rule for second order 

tensors, hence the gradient of a vector is a second order tensor. 

Since the axes Xi may be considered as vectors, then dXi/oXk 

is a tensor of the second order. But clearly 

where Oki is the Kronecker delta, and 

0 if i ~ j 

(II-23). 

1 if i = j 

Hence, the Kronecker delta is a tensor of second order. Therefore, 

it transforms according to 

o ~ . = A. kA . ok 
~J ~ Jn n 

(II-24). 

setting k = n we have 

o~. = A.kA.k (II-25), 
~) ~ J 

which confirms the orthogonality of the coordinate axis. It can be 

shown that 

: 0 .. 
~J 

(II-26). 
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Clearly, the Kronecker delta is a symmetric tensor. It can be shown 

that it is also isotropic. That is, its components retain the same 

values in any coordinate system. 

e. The Permutational Tensor 

The permutational tensor, E. 'k' is defined by the conditions on 
~J 

its components 

0 if any two indices have the same value 

1 if the values of the indices ijk represent 

an even permutation of the sequences 1,2,3. 

-1 if the values of ijk represent an odd per-

mutation of the sequence 1,2,3. 

A permutation of the sequence 1,2, .•. , n is even if an even number 

of interchanges of adjacent integers is required to attain the per-

mutation. Similarly, a permutation is odd if an odd number of inter-

changes is required. Thus, 

E = E = E = 1, and £ € = E -1. 
123 312 231 132 321 213 

It can be shown that the permutation tensor is a third order, com-

pletely skew-symmetric, isotropic tensor. 

An important relation between o .. and £. 'k is given by 
~J ~J 

E. 'k s . = o. ok -o. okm 
~J mpJ ~m p ~P 

(II-27). 
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f. The Duality Property 

It can be shown that for any vector there is associated a skew-

symmetric tensor of second order. The converse is also true. Mul-

tiply the vector r by £ .. k. This is a tensor of fourth order. We 
n ~J 

can form a second order tensor by contracting, let n = k. 

w .. 
~J 

(II-28) 

Now form the vector uk by multiplying the second order tensor wmn 

by £. 'k and contracting twice. 
~J 

(II-29) • 

If w .. is a symmetric tensor, the left side of equation (II-29) is 
~J 

zero. If w .. is skew-symmetric the left side is non-zero and expan­
~J 

sion of equation (II-29) leads to the conclusion that the components 

of uk are numerically twice those of w . .. Therefore, we may write 
~] 

the relations 

and W •• 
~] 

~£. 'kw .. 
~] ~J 

(II-30) I 

(II-31) I 

where wk is the vector uniquely associated with the skew-symmetric 

second order tensor w . .. The consequences of the duality property 
~] 

of vectors with skew-symmetric, second order, tensors in three-dimen-

sional space will have important applications in the development of 

angular velocity relations. 
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2. Tensor-Vector Correspondence 

The various formulae of vector analyses are easily reconstructed 

using the tensor notation. The following is a condensed but fairly 

complete account of the vector analysis by the tensor method. The 

method clarifys some of the ambiguities of the vector relations. 

For example, the emergence of vector and scalar products. 

a. Vector 

As previously defined, a vector in tensor notation is written 

as a letter with a single subscript. 

b. Multiplication of a vector t by a scalar ¢. 

+ 
¢t = ¢t. 

1 

+ + 
c. Addition and subtraction of vectors t and 8 

+ + 

t. + 8, 
1 1 

t - 8 = t. - 8. 
1 1 

d. Scalar product of vectors t and ; 

' .. 
e. 

+ 
• 8 t.8. 

1 1 

vector product of vectors t and ; 

(II-32) 

(II-33) 

(II-34) 

(II-35) 

(II-36) 



+ + 
t X S = E .• kt . Sk 

~J J 
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(II-37) 

Note that the ordering of the indices in equation (II-37) must be 

preserved in order to conform to the right hand rule (sign conven-

tion) when forming cross products. 

+ + 
f. Second order tensor product of two vectors t and s 

(II-38) 

This product becomes a second order tensor; vector notation fails to 

define this quantity. 

g. Triple scalar Eroduct 

+ + + 
p • (q x r) = E .. - v.q .rk 

~Jk'- ~ J 

h. TriEle vector Eroduct 

+ + + 
p X (q X !') = E. ,_'O,Ekl qlr 

~Jk'- J m m 

~ (Or
1

0. - 0. 0.
1

>p.q
1
r 

~ Jm ~m J J m 

= P r q. - plqlr. m m ~ ~ 

(II-39) 

(II-40) 

The correspondence between vector and tensor notations are summar-

ized in Table II. 
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TABLE II 

Common Formulae of Vector Analysis in Tensor Notation 

o;eeration 

Denotation 

Addition and 

Subtraction 

Multiplication 

by a Scalar 

Scalar Product 

Vector Product 

Tensor Product 

Triple Scalar 

Product 

Triple Vector 

Product 

Vector 

t 

-+ 
p 

-+ 
q 

-+ 
1' 

¢ 

i 

= 

= 

= 

= 

= 

-+ 
t 

-+ 
t 

-+ 
p 

-+ 
p 

-+ 
p 

-+ 
p 

Notation 

-+ 
+ s 

-+ 
- s 

-+ 
s 

-+ 
X S 

-+ 
m 

(t 

-+ 
x m 

X (t 

-+ 
X S) 

-+ 
X S} 

Tensor Notation 

t. 
~ 

pi = t. + 
~ 

q. = t. -
~ ~ 

1'i == <Pt. 
~ 

¢ = t. s. 
~ ~ 

m. 
~ 

s. 
~ 

s. 
l. 

n .. = t.s. 
l.J ~ J 

¢ = p.m. 
l. l. 

= p.E .. kt.sk 
l. l.J J 

l. = E .. kp .mk 
l. ~J J 

= p.t.s. - p .t.s. 
J l. J J J l. 



A. Problem Formulation 

III 

POSITION ANALYSIS 
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The most difficult problem in the study of spatial mechanisms 

is the position solution. Position solutions invariably result in 

non-linear transcendental equations. Velocity and acceleration prob­

lems are characteristically linear and present no difficulties beyond 

their often cumbersome length. The use of the computer alleviates 

this difficulty to a great degree as lengthy equations can be defined 

in pieces using implicit notation and later pieced together explicit­

ly by the computer. 

Sets of simultaneous, non-linear, transcendental equations re­

sulting from position analysis yield readily to simpler iterative 

techniques on the computer. Much work has been done resolving such 

equations into polynomials for which solution techniques are well 

known [9] • This approach leads to a polynomial in one unknown but 

one of higher degree than the number of unknowns in the problem. 

Some complex problems do not allow the reduction of equations to a 

single polynomial but rather simultaneous polynomials wit9 additional 

computational difficulties. The present approach is to simultaneous­

ly solve the system of non-linear equations by well known iterative 

techniques for a particular set of system parameters. This results 

in one set of solutions for a particular case of interest. The 

particulars of this statement will become clear in the example solu­

tions given. 
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l. Notation and Terminology 

The notation problem that arises when physical problems require 

the concept of three-dimensional space is at best difficult. Various 

schemes have been devised which have particular advantages and dis-

advantages. It is felt that the flexibility of the tensor notation 

provides a solution which alleviates many of the difficulties. 

It will be found convenient to express vectors as a product of 

magnitude and a unit vector defining the direction of the vector. 

For example, 

R. = Rr. (III-1) 
1 1 

where R is the magnitude of the vector R. and r. is a unit vector 
1 1 

describing the direction of the R. vector in a particular coordinate 
1 

frame. The three axes of a coordinate frame are labeled X , X , X . 
1 2 3 

In general, when a vector is not implied, we may speak of a frame as 

simply the X. frame. The notation X. (no superscript) is reserved 
1 1 

for the ground frame, the frame used as a reference for all other 

considerations. If another frame is required, different from the 

ground frame, a superscript is used to distinguish it from the ground 

frame. For example, 

(III-2) 

identifies a frame, called the r frame, which has in general a dif-

ferent orientation than the ground frame. When it becomes necessary 

to treat an axis of a coordinate frame as a vector, it is understood 

to be a-unit vector and a subscript must be added to indicate the 

vector character. 
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(~)i (III-3) 

Superscripts are also used with vectors to indicate in which 

coordinate frame the components are expressed. The equation 

(III-4) I 

indicates the r vector expressed in the t frame. That is, the compo­

t 
nents of r. are perpendicular projections on the axes of the t frame. 

~ 

The absence of a superscript on a vector indicates that that vector 

is expressed in the ground frame. The components of the (~)i vector 

in equation (III-3), as given are the components of the~ axis treat-

ed as a unit vector and expressed in the ground frame. The expression 

(~)~ is the same vector but expressed in the r frame and has compo-

nents in that frame. 

1,0,0 (III-5). 

When more than a single coordinate frame transformation is in-

volved in a problem, the transformation coefficients must be labeled. 

Superscripts are again used. The transformation 

t 
r. 
~ 

tx 
A . . r. 
~J J 

(III-6) I 

indicates that the vector r. (expressed in the ground frame) has been 
J 

transformed to the t frame by the transformation relation for vectors. 

The coefficients A~~ are the transformation coefficients between the 
~J 

x frame and the t frame. The resultant vector r~ is expressed in 
~ 

the t frame. Note that the ordering of indices in equation (III-6) 
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is established by convention and must be preserved. The inverse 

transformation is 

r. 
1 

tx t 
A . . r. 

)1 J 
(III-7) • 

Spherical polar coordinates are used throughout to define the 

cartesian components of vectors. Two angles and a magnitude are re-

quired to define a vector with respect to a particular coordinate 

frame. The symbols ¢ and 8 will be used for the polar and azimuthal 

angles throughout. Figure 6 shows the conventional polar coordinate 

used. Superscripts are again used to define which vector these angles 

describe and which coordinate frame they are measured in. That is, 

,.f.,rt ert 
~ and are the polar and azimuthal angles of the r vector and 

are measured from the Xt 
3 

It is important to 

and Xt axes respectively. 
1 

t 
note that r. and r. are the 

1 1 
same vector in 

space (a fact denoted by the letter r) but are expressed in different 

coordinate frames, the X. and X~ frames respectively. In vector anal-
1 1 

ysis this is accomplished by writing each component as a product of 

its coordinate magnitude and a unit vector along its axis. In tensor 

notation a single superscript serves the same purpose. Equation 

(III-7) does not imply a relation between two vectors, but a relation 

between the components of the same vector as they appear in two 

different coordinate frames. 

The nomenclature is summarized in Table III. Many mechanism 

problems allow expression and solution of all vectors in a single 

frame, the ground frame with perhaps one coordinate transformation. 

For these cases, the notation is more detailed than necessary but 

allows for expansion to more complex cases. 
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FIGURE 6 

NQ\'lENCLATURE FOR POLAR COORDINATE VECTOR REPRESENTATION 

COORD I NATES OF THE VECTOR ARE Sl-iOt-IN IN THE Xi FRAME AS 1> i · TI-lE SAME 

VECTOR IS St-KJt.IN IN TI-lE X~ FRAME AS 1> ~ • 

IF TI-lE TRANSFORMATION IS DEFINED, TI-lE RELATION BElWEEN C~PONENTS OF 

P. AND P~ MAY BE EXPRESSED AS 
l. l. 

OR 

tx t 
1'. = A .. P. 

l. Jl. J 

t tx 
1'. = A. ·.1'. 

l. l.J J 



Figure 6 

. ~r er . ~r . er ~r r. = s1n~ cos , s1n~ s1n , cos~ 
1 

t . ~rt ert . ~rt . ert ~rt 
ri = s1n~ cos , s1n~ s1n , cos~ 
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TABLE III 

Summary of Tensor Nomenclature 

1. Unit vector 

2. Magnitude 

3. Vector 

R 

R. 
1 

4. Vector expressed Rr~ 
in other than 1 

ground frame 

5. Transformation 

Coefficients 

6. Coordinate 

Frame 

r. 
1 

Rr. 
1 

Unit vectors are indicated by 

lower case letters with a sub­

script. Absence of a superscript 

indicates the vector is expressed 

in the ground frame. A vector of 

unit magnitude r.r. = l 
1 1 

Magnitudes are indicated by upper 

case letters. A scalar quantity -

no super or subscripts. Magni­

tude of a vector is always posi­

tive; if a solution for a magni­

tude yields a negative number, the 

associated unit vector is reversed. 

Vectors are written as a product 

of magnitude and a unit vector 

defining its direction. 

This is the same vector as Rr. 
but is now expressed in the t

1 

frame. May be obtained by trans­

formation or empirically written. 

A set of nine quantities (direc­

tion cosines) relating the two 

coordinate frames indicated by 

the superscripts. 

Three mutually perpendicular axes 

having a common origin. Right 

handed coordinate frames are used 

exclusively. Superscripts dis­

tinguish frames other than the 

ground frame. 



7. Coordinate frame 

axis 

8. Spherical 

Coordinates 

9. Components in 

Spherical 

Coordinates 

TABLE III (cont.) 

ur>. 
2 ]_ 

. ¢r er r Sl.n cos 
1 

r . ¢r . er s1.n s1.n 
2 

r 
r = cos¢ 

3 

t . rt rt 
r Sl.n¢ cos8 

1 

t . ¢rt . ert r sJ.n Sl.n 
2 

t rt 
r cos¢ 

3 
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Parenthesis are used when 
it is necessary to treat an 

axis as a unit vector. As 

written this vector has com­
ponents 0, 1, 0. 

The same vector but now ex­

pressed in the ground frame. 

Polar and azimuthal angles 

used to define orientation 

of a vector in a frame and 

a magnitude to define its 

length. As shown, these 

angles describe the r. vee-- ]_ 

tor and are measured from 
the ground frame axes. 

Describe the r. vector but 

are measured f~om the axes 

of the t frame. 

Perpendicular projections 

of the vector r. on the axes 

of the ground f~ame. 

Perpendicular projections 

of the vector r. on the 

axes of the t f~ame. 
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2. The Tetrahedron Problem 

The position of a spatial mechanism is given by a vector loop 

equation. 

Cc. + Rr. + Ss. + Tt. + ... + Nn. 
~ ~ ~ ~ ~ 

0 (III-8) 

that is, its position at any instant of time can be represented by 

equation (III-8) where the C,R,S,T, ••• , N are the lengths of the 

various links and the c., r., s., etc. are unit vectors defining the 
~ ~ ~ 

orientation of the links. The vector tetrahedron problem is formed 

when all vectors except three are completely known and are summed 

into a single constant vector Cc.. Equation (III-8) then becomes 
~ 

Cc. + Rr. + Ss. + Tt. = 0 (III-9). 
~ ~ ~ ~ 

Figure 7 is a pictorial representation of a vector loop defining the 

position of a space mechanism. In three-dimensional space, equation 

(III-9) represents three equations and can be solved for three scalar 

unknowns. 

These unknowns may be randomly distributed throughout the three 

vectors Rr., Ss., and Tt .. Thus, the possible unknowns are any three 
~ ~ ~ 

of the nine quantities R, ~r, 0r, S, ~s, 0s, T, ~t, 0t. Examination 

of the possibilities shows that there are just nine combinations of 

unknowns that result in different solutions. Chace [9] has classi-

fied the nine cases and solved them by vector methods. He classified 

them by the distribution of the unknowns, whether they occurred in 

one, two or three vectors. His solutions were accomplished by reduc-

tion to a polynomial in cases where explicit solutions were not pos-
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FIGURE 7 

A RSSP SPATIAL tvECHANISM AND 11-IE VECTOR LOOP 

EQUIVALENT DEFINING THE POSITION OF THE MECHANISM 
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sible by vector algebra. Classification of the nine tetrahedron 

problems is shown in Table IV after the system used by Chace. The 

four solutions of case 3 have been presented by tensor methods by 

Ho [14]. The complete set of all nine solutions will be presented 

here to provide insight into the tensor method and to accomplish the 

completion of the vector tetrahedron solution in tensor form. 

Case 1. unknown .=:.=.;;;;......:;;;..;.__-= R er :!:r , , ~ 

known Cc, 
1 

The unknowns occur in a single vector Rr.. The other vectors are 
1 

therefore known and are summed into the single known vector Cc .. 
1 

Equation (III-9) becomes 

Cc. + Rr. == o (III-10) • 
1 1 

The solution is trivial Rr. = -Cc. 
1 1 

(III-11). 

Cases 2a-2b. 

The unknowns are contained in the vectors Rr. and Ss .. The vector 
1 1 

Tti is known and is summed into the Cci vector. Equation (III-9) for 

cases 2a-2b becomes 

Cc. + Rr. + Ss . 0 
1 1 l. 

r 
case 2a. _.:,u:::n:::k;:;:n:.::.:o::.wn=_.=.R:...:':.__e;;__.:..' __.;;;._S 

known Cc., s., ¢r 
l. l. 

vector loop equation Cc. + Rr. + Ss. = 0 
l. l. l. 

(III-12) 

(III-13) 



Case 

Number 

1 

2a 

2b 

2c 

2d 

3a 

3b 

3c 

3d 

TABLE IV 

Classification of the Solutions to the Vector 

Tetrahedron Equation (after Chace) 

Unknown 

r 
R ,e ,S 

R, S, T 

Known 

Cc 
i 

r 
Cc.,s.,<f> 

l. l. 

r s 
Cc. ,¢ ,S ,¢ 

l. 

Cc. ,s. ,R 
l. l. 

s 
Cc. ,R, S ,¢ 

l. 

Cc. ,P. ,si,t. 
l. l. l. 

t 
Cc.,:r>.,s.,t,¢ 

l. l. l. 

s t 
Cc. ,P. ,¢ ,T,¢ 

l. l. 

r s t 
Cc. ,R,<f> ,S,¢ ,T,<f> 

l. 

Possible 

Solutions 
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1 (trivial) 

2 

4 

2 

2 

1 

2 

4 

8 
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Solution: Multiply through equation (III-13) by the vector product 

£ . . kc.sk 
~) J 

C£ .. kc.c.sk + R£ .. kP.c.sk + 8£ .. ks.c.sk 
~J ~ J ~) ~ J ~) ~ J 

0 (III-14) 

Recall that the second order products cicj and sisk form symmetric 

tensors and that £. "k is a completely skew-symmetric tensor. Hence, 
~) 

the products in the first and third terms of equation (III-14) are 

identically zero. 

R£ .. kP.C.Sk 
~J ~ J 

Assuming R ~ 0 we have 

£ . . kP.C.Sk 
~) ~ J 

= 0 (III-15) 

0 (III-16). 

Equation (III-16) is a scalar equation involving one unknown, 0r, and 

is of the form 

a cos0r + b sin0r + c = 0 (III-17), 

where a, b and c are known scalar constants. 

er 
Equation (III-17) may be solved for by iteration techniques. 

There are two solutions but the choice of starting values (determined 

by a visual inspection of the values of the known parameters) is 

sufficient to insure convergence to the proper solution for the case 

of interest. 

Equation (III-17) may be simplified by transforming the problem 

to a coordinate frame which has particular characteristics. Define 

the vector 



u. 
~ 
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(III-18) 

The vector u. is known being the vector product of the two known 
~ 

vectors c. and s.. Equation (III-16) may be written 
~ ~ 

U.Y'. = 0 
~ ~ 

Define a coordinate frame, r,, such that 
~ 

(~)i = Eijk(X3)j(~)k 

IEijk(X3)j(~)kl 

(III-19). 

(III-20), 

(III-21). 

(III-22). 

Equations (III-20,21,22) form the transformation coefficients, A::. 
~J 

The transformation relations for the vectors Y'. and u. may be written 
~ ~ 

u. A~~u~ 
~ J~ J 

(III-23) 

rx r 
Y'. = A . . r. 
~ J~ J 

{III-24) 

substitute equations (III-22) and (III-23) into equation (III-18) 

A
rxArx r r 
.. .u.r 
J~ m~ J m 

0 

Using the orthogonality property 

r r 
oj u .r = o 

m J m 

(III-25) • 

(III-26) , 



r r 
u.r. 

J J 
0 
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(III-27). 

Since the (~)i axis is formed by the vector product of uj and (X
3
)k 

it follows that uj is perpendicular to the (~)k axis. Hence, the 

first component of u. in the X: frame is zero. 
l. l. 

0 

Expand equation (III-27) 

Now the components of r: are 
l. 

but the (~)i 

then, 
r 

r. 
l. 

. ~r err . ~r . err ~r 
sJ.n~ cos , sJ.n~ sJ.n , cos~ 

rr 
Expand equation (III-29) in terms of the unknown e , 

r . ~r . err ur r u sJ.n~ sJ.n + r 
2 3 3 

. for err then, solvJ.ng 

r 
rr -u3 r3 

sine = 

ur sin<Pr 
2 

0 

(III-28) 

(III-29) 

(III-30) I 

(III-31) . 

(III-32). 

(III-33). 

r 
The vector r. as defined by equation (III-30) is now known. The 

l. 

vector r. may be obtained from equation (III-24). 
l. 

Explicit expressions for the remaining unknowns R and S can now 



be obtained. Multiply equation (III-13) by Eijk8j 

Cs .. kc.8. + R£. 'k1".8. = 0 
1] 1 J 1] 1 J 

Solving for R, 

R 1

-Cs .. kc. 8 . I 
1] 1 J 

I 
E . . k1".8 .

1 1] 1 J 

Expand equation (III-13) in the first component 

Cc + Rr + S8 0 
1 1 1 

Solving for S 

S =·1- (Cc 1 - Rr 1) I 
I 81 I 

Case 2b. Unknown: R, er, es 

known: Cc . , ¢ r, ¢ s , S 
1 

Vector loop equation: Cc. + Rr. + Ss. 
1 1 1 

0 
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(III-34). 

(III-35). 

(III-36). 

(III-37). 

(III-38) 

Solution: Multiply through equation (III-38) by E, .kr. to eliminate 
1] J 

the unknown R 

C£ . . kc. r . + S£ .. k8 . r . 
1] 1 J 1] 1 J 

0 (III-39) 

Expand equation (III-39) in the first and second indices, 
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E .. 1 (Cc.r. + Ss.r.) 
lJ l J l J 

0 (III-40) • 

E .. 
2 

(Cc. r. + Ss. r.) :z 0 
lJ l J l J 

Equations(III-40) are of the form 

a sin8s + b sin8r + c = 0 (III-41). 

a cos8s + b cos8r + d 0 

where a = Sr
3 

(III-42) 

b - (Cc 
3 

+ Ss 
3

) 

c = Cc
2
r

3 

d Cc
1
r

3 

Equations (III-41) may be solved for the unknowns 8r, and 8s. The 

vectors r. and s. are then known. The remaining unknown, R, may be 
l l 

obtained by expansion of equation (III-38) . 

Cc + Rr + Ss = o (III-42) 
1 1 1 

R = ~-(Ssl + Ccl)l (III-43) 

I rl I 

Case 2c. 

known: Cc . , R, s . 
l l 

vector loop equation: Cc. + Rr. + Ss. = o 
l l l 

(III-44) 

In this case the vector r. is completely unknown. Isolate this vec-
1 

tor on the left side of equation (III-44). 
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Rr. = -Cc.-Ss. 
~ ~ ~ 

(III-45) 

Take the scalar product of each side of equation (III-45) by itself. 

2 

R 
2 2 

S + C + 2SCs.c. 
~ ~ 

Equation (III-46) is quadratic in S with known coefficients. 

Therefore, 

s 
2 2 

-cs.c. + [c (s.c.) 
~ ~ ~ ~ 

2 2 
- (C -R ) J 1/2 

(III-46) 

(III-47). 

The unknown vector r. may be obtained from equation (III-44). 
~ 

Case 2d. 

r. 
~ 

known: 

Ss. + Cc. 
~ ~ 

R 

Vector loop equation: Cc. + Rr. + Ss . 
~ ~ ~ 

0 

Expand equation (III-49) in the third index 

Cc + Rr + Ss = o 
3 3 3 

(III-48) • 

(III-49) 

(III-50) • 

Equation (III-50) contains only one unknown, contained in the term 

r 
3 

r 
3 

== -Cc 3 - Ss 3 = 
R 

r 
cos¢ 

Isolate the vector Rr. in the manner of case 2c. 
~ 

(III-51) • 
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Rr. = -ss.-Cc. 
~ ~ ~ 

{III-52) 

Take the scalar product of each side of equation (III-52) with itself. 

2 2 2 

R = s + c + 2SCs .c. 
~ ~ 

{III-53) 

then 

2 2 2 

s.c. = R -s -c 
~ ~ 

2SC 
{III-54) 

Expanding and rearranging equation (III-54), we have 

2 2 2 

R -S -C- s c {III-55). 

2SC 
3 3 

Equation (III-55) may be simplified in the manner of case 2a. Define 

the auxiliary coordinate frame X~ in the following manner 
~ 

{III-56) 

{III-57) 

{III-58) 

SX 
Equations (III-56,57,58) form the transformation coefficient A ..• 

~J 

The vectors s. and a. may be written 
~ ~ 

{III-59), 

(III-60). 



Equation (III-54) may be written 

B.C. = K 
1 1 
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(III-61) I 

where K is the known expression on the right side of equation (III-

54). Substitute equations (III-59 and 60) into equation (III-61). 

or 

A
SX SASX s = K .. s. .a 
J1 J m1 m 

B~C~ = K 
J J 

Expand equation (III-63) 

(III-62) I 

(III-63). 

(III-64) 

Since the Xs axis is formed by the vector product of c. and (X)., 
1 1 3 1 

and {X ) . = (Xs)., it follows that the a. vector and the Xs axis are 
3 1 3 1 1 1 

perpendicular. Therefore, the first component of the a. vector is 
1 

zero in the X~ frame. 
1 

Equation (III-64) becomes 

s s s s 
sa +sa =K 

2 2 3 3 

Expand equation (III-66) in terms of the unknowns 

s . ss ss s s K 
C s1n~ COS8 + 8 C = 

2 3 3 

(III-65) 

(III-66). 

(III-67). 

Since Xs is defined to be equal to X we have that ~ss = ~s. There-
3 3 

fore, the only unknown in equation (III-67) is 8ss. 
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(III-68). 

s 
The vectors. is now known. Equation (III-59) may be used to obtain 

1 

the vector s .. 
1 

r 
The remaining unknown, 6 , may be obtained from the 

expansion of equation (III-49) 

then 

-(Ca
1 

+ Ss
1

) 

R sincpr 

(III-69), 

(III-70). 

Cases 3a-3d These cases are categorized in that the unknowns are 

distributed through all three vectors Rr., Ss., and Tt .. 
1 1 1 

Case 3a. Unknown: R, S, T 

known: ca
1

, ri, si, ti 

Vector loop equation: Ca. + Rr. + Ss. + Tt. 
1 1 1 1 

0 (III-71) 

Multiply equation (III-71) in turn by the vector products£ .. ks.tk, 
1] J 

£ .. kr. tk, £ .. kr .sk. 
1] J 1) J 

There results 

(III-72) 

(III-73) 



T I
cc.. 'ka.r .ski 

~J ~ ] 

Case 3b. Unknown: R, S, et 

known: Ca. 1 r. 1 s . , <P t 
~ ~ ~ 

Vector loop equation: Ca. + Rr. + Ss. + Tt. = o 
~ ~ ~ ~ 
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(III-74) 

(III-75) 

The unknowns R and S may be eliminated by multiplying equation (III-

75) by the vector product c. .. kr.sk. There results 
~J J 

Cc. . . ka.r.sk + Tc. . . kt.r.sk = o 
~J ~ J ~J ~ J 

(III-76). 

Equation (III-76) contains only one unknown et in the form of sin6t 

t 
and cose . This equation may be simplified by a coordinate trans-

formation. Define the known vector W .. 
~ 

W. = c. .. kr.sk 
~ ~J J 

Equation (III-76) may then be written 

CW.a. + TW.t. = 0 
~ ~ ~ ~ 

Now define the Xt coordinate frame such that 
i 

t 
(X2) i 

(III-77). 

(III-78). 

(III-79) 

(III-80) 



61 

(III-81) 

Equations (III-79, 80, 81) form the transformation coefficients A~~-
1J 

The vectors W. and t. may be written 
1 1 

w. A~':w~ (III-82) 
1 ]1 J 

t. Atxtt (III-83) 
1 ]1 J 

Substitute equations (III-82) and (III-83) into the second term of 

equation (III-78) 

0 (III-84), 

or 0 (III-85). 

Since the x; axis is defined by the vector product of the vectors Wj 

and (X
3
)k it follows that Wj is perpendicular to X~ and hence the 

W
t t 

first component of is zero in the X~ frame, 
j ]_ 

Expand equation (III-85) in terms of the unknowns. 

,~..tt 
Since "' 

= <f>t the only unknown in equation (III-87) 

(III-86). 

(III-87) 

(III-88) 
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The vector t~ is now known and t. may be obtained from equation (III-
~ ~ 

83). Obtain the remaining unknowns RandS in the following manner. 

Multiply equation (III-75) by£ .. ks.tk and solve for R. 
~J J 

Expand equation (III-75) and solve for S 

s 1

-(Cc 1 + Rr 1 + Tt
1

) I 

I sl I 

R' e s,et Case 3c. Unknown: 

known: Cc . , S , T, r . , <P s , <P t 
~ ~ 

Vector loop equation: Cc. + ~. + Ss. + Tt. 
~ ~ ~ ~ 

0 

(III-89). 

(III-90). 

(III-91) 

Expanding equation (III-91) in the third component results in 

R 
~-(Ss 3 + Tt 3 + Cc 3 l 
I r3 I 

Expand equation (III-91) 

Cc + Rr + Ssin<Ps coses 
1 1 

. ,+,s . es 
Cc + Rr + Ss~n'+' s~n 

2 2 

. ,+,t 
8

t 
+ T s~n'+' cos 

T 
. ,+,t . 

8
t 

+ s~n'+' s~n 

0 

0 

(III-92) 

(III-93), 

(III-94). 

s t 
Equations (III-93, 94) contain the unknowns 8 and 6 and may be 

solved by iteration. 
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known: 

Vector loop equation: Cc. + Rr. + Ss. + Tt. 
~ ~ ~ ~ 

0 (III-95) 

The distribution of the unknowns in this problem is such that a 

solution cannot be obtained directly from equation (III-95). The 

expansion of the loop equation in the third index contains only a 

relation among the known parameters leaving the problem of two equa-

tions with three unknowns. However, a conceptual change in the form-

ulation of the problem alleviates the difficulty. If we regard the 

problem as one with the azimuthal angles of three vectors unknown 

while the polar angles are known and allow that the direction (axis) 

from which these polar angles are measured may be different but 

known we can formulate the problem in the fol'lowing manner. 

e rr, ess, ett Unknown: 

Vector loop equation: Cc. + Rr. + Ss. + Tt. 
~ ~ ~ ~ 

0 (III-96) 

Restated the problem is mathematically the same but now we are allow-

ing the vectors r., s., t. to be measured in a coordinate frame other 
~ ~ ~ 

than X., and whose third axis is known in the X. frame. Thus, three 
~ ~ 

auxiliary coordinate frames may be defined using the known axis vec-

t .• .r) .. ,s) (Xt
3

) ~ in the vector product manner of previous 
ors u 3 i' u 3 i' ~ 

rx Asx A~~ are known. 
cases. Therefore, the Aij' ij' ~J 
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Restate equation (III-96) replacing ri' si, and ti with A~~r~, 

A
SX r 

,S 1 

m1 m 
and Atxtt respectively. 

mi m 

lt' 1 · ( 97) b Arx Asx Atx Mu 1p y equat1on III- y 3i 1 3i, 3i and recall that 

A .A . = o
3
m 31 ID1 

0 

0 

Expanding and rearranging equations (III-981 99 1 100) 

+ SArx sin~ss(A . cosess + A
21

. sin8ss) 
3i 't' 11 

mArx. . ~tt(Atx ett Atx . ett) 0 + ~~ s1n't' . cos + . s1n = 
31 11 21 

CA~~ + 
s 

Ss
3 

+ 
.RA.sxArx r 

3i 3ir 3 + TAsxAtxtt 
3i 3i 3 

RASX . <Prr(Arx rr Arx sin8rr) 
+ s1n 1i case + 2i 3i 

TA~~ tt(A;~ 
tt 

+ sin cos + 
Atx 

2i 
. tt) s1n 0 

tx Ttt .RA.txArx r + SAt~As~ 8 s c.'A .... + + . .r 3 3 
~3ivi 3 31 31 3 1 1 3 

tx rr rx err Arx . 8rr) 
RA sin~ (A . cos + . s1n 

+ 3i 't' 11 21 

(III-97) 

(III-98) 

(III-99) 

(III-100) 

(III-101) I 

(III-102) I 
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S 'JI tx . ,~,ss Asx ess ASX ss 
+ .l"i 3 i s~n't' ( Ii cos + 

2
i sine ) 0 (III-103). 

Equations (III-101, 102, 103) are of the form 

ss . ss tt tt 
a cos8 + b s~n8 + c cos8 + sine = e (III-104), 

" a cos8rr + b" sin8rr + c" cos8tt + d" sin8tt = " e {III-105), 

The invariants a,b,c,d,e and their primed and double-primed counter-

parts may be determined from equations (III-101, 102, 103). Equa­

tions (III-104, 105, 106) may be solved for 8ss, ett, 8rr, by numer-

ical analysis. 
r s t 

The vectors r., s., t. are then known and the vec-
1 1 1 

tors r., s., t. may be obtained from the transformation relations. 
1 1 1 

As has been demonstrated the solution of difficult vector equa-

tions often require simultaneous solution of sets of non-linear 

transcendental equations. Appendix A is a description of Newton or 

Newton-Raphson iterative procedures that have been successfully 

employed in the solving of such equations. The simplicity and 

adaptability of this procedure was the original stimulus for the 

present approach of solving the simultaneous set of equations as 

opposed to reducing them to a polynomial and applying iterative 

techniques for polynomials. 

B. Application to Mechanism Solutions 

The vector tetrahedron problems are somewhat abstract in nature 

as they can be formulated without the concept of a mechanism. Now 

from a different view-point the methods developed in the solution 
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of the tetrahedron cases will be applied to the solution of partie-

ular mechanisms. That is, a mechanism is conceived of, its link 

and joint geometry selected, the problem of knowns and unknowns 

defined and a solution then sought. The following are ten examples 

of the application of tensor methods to the solution of spatial 

mechanisms. The symmetry and constraints present in such problems 

will be seen to have three effects. The constraints present due 

to the pairs selected allows coordinate frames to be defined to 

advantage, thereby eliminating some terms in the solution equations. 

Constraints are often present in the form of scalar products which 

tends to increase the number of simultaneous equations which must 

be solved numerically. The independent constraints allow a solu-

tion to be obtained for more than three unknowns. 

Case 1: RSSP Mechanism 

Referring to Figure 8, an RSSP mechanism is constructed as 

shown. The problem is defined as follows. 

Input: r. 
l. 

Known: R, S, C, c., 
l. 

t. 

Unknown: T, s. 
l. 

Vector loop equation: 

l. 

Cc. + Rr. + Ss. + Tt. = 0 
l. l. l. l. 

Since the vectors Cc. and Rr. are completely known, let 
l. ~ 

K. = Cc. + Rr. 
l. ~ ~ 

(III-107) 

(III-108) I 
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FIGURE 8 

CASE 1 RSSP MECHANISM 

INPUT: 

I<N<Jr.IN: 

UNKNOWN: 

P. 
l. 

R, S, C, e,, t. 
l. l. 

T, s. 
J.. 

Ce. + Rri + Ss. + Tt. = o 
l. l. l. 
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then K. + Ss. + Tt. 
~ ~ ~ 

0 (III-109), 

The problem as now stated is analogous to Case 2c of the tetrahedron 

problems. However, the choice of the ground frame leads to a simp-

ler solution than was obtained in Case 2c. Choose the ground frame 

as shown in Figure 8 so that t = t = 0, t = -1. Multiply equation 
1 2 3 

(III-109) by E . . kt. eliminating the unknown T. 
~J J 

E. 'k (K. t. + Ss. t.) 0 
~J ~ J l. J 

Expand equation (III-110) 

K + Ss 0 
1 1 

K + Ss = 0 
2 2 

then 

s -K . <Ps 
s~n coses 

1 
__ 1 

s 

s 
=-K . <Ps sines 2 s~n 
__ 2 

s 

(III-llO). 

(III-111), 

(III-ll2). 

(III-113), 

(III-114) . 

If desired, the polar and azimuthal angles, ¢8 
and es are directly 

obtainable from equations (III-113 and 114). The remaining unknown 

T is obtained from the expansion of equation (III-109) 

(III-115) . 
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Case 2: RSCC Mechanism 

Referring to Figure 9, a RSCC mechanism is constructed and the 

problem is defined as follows: 

Input: r. 
l 

Known: R, C, e., t. 
l l 

Unknown: S, 8., 
l 

T 

Constraint: 8. t. p where P is a known scalar constant 
l l 

Vector loop equation: Ce. + Rr. + 88. + Tt. = 0 
l l l l 

(III-116) 

Sum the known vectors into a single vector 

K. Ce. + Rr. (III-117). 
l l l 

then K. + 88. + Tt. = 0 
l l l 

(III-118) 

Choose the ground frame so that t = t = 0, t -1 then expanding 
1 2 3 

s 
the constraint equation yields a solution for ¢ 

8 = -P = cos</>s 
3 

(III-119). 

Multiply equation (III-117) by£ .. kt.sk to eliminate the unknowns 
l.] J 

S and T. 

£ . . k(K.t.8k) = 0 
l.J l. J 

(III-120) 

Expanding, we have 
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FIGURE 9 

CASE 2 RSCC MEeHAN ISM 

INPUT: 

UNI<NOtt-IN : 

CONSTRAINT: 

r. 
~ 

R, C, a., 
~ 

S, s., 
~ 

T 

s.t. = P 
~ ~ 

t. 
~ 

Ca. + Rr. + Ss. + Tt. = o 
~ ~ ~ ~ 
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K s - K s 0 (III-121) 
1 2 2 1 

or K sin8s - K cos8s ; 0 
1 2 

(III-122) 

The form of equation (III-122) allows a direct solution for 8s. 

The vectors. is now known; the remaining unknowns areS and T. 
]. 

Multiply equation (III-118) by£ . . kt. 
J.] J 

£ • • k (K. t . + Ss . t . ) = o 
1J ]. J ]. J 

(III-123). 

Expanding (III-123) we have 

K + Ss = 0 (III-124) 
1 1 

K + Ss = 0 (III-125) 
2 2 

Either equation (III-123 or 124) yields a solution for S 

(III-126). 

The remaining unknown T may be obtained by expanding equation (III-

118) 

T = !K + Ss I 
3 3 

(III-127) 

Case 3: RSCP Mechanism 

Referring to Figure lO,an RSCP mechanism is constructed and 

the problem defined as follows: 

Input: 

Known: 

r. 
]. 

C, R, S, a., t., d. 
l. l. ]. 
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FIGURE 10 

CASE 3 RSCP MECHANISM 

INPLJT: 

KNCMN: 

UNKNOIIN: 

1'. 
~ 

C, R, S, a., t., d. 

T, D, B. 
~ 

~ ~ ~ 

CONSTRAINT: s 1 t 1 = P 

Ca. + Rri + Ss. + Tt. + Dd. = 0 
~ ~ ~ ~ 



Figure 10 

Cc. 
~ 

RSCP MEGHANI SM 

X 
1 
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Unknown: T, D, s. 
~ 

76 

Constraint: s.t. = P 
~ ~ 

where P is a known scalar constant 

Vector loop equation: Ca. + Rr. + Ss. + Tt. + Dd. = 0 
~ ~ ~ ~ ~ 

(III-128) 

Sum the known vectors into a single vector, 

let K. = Ca. + Rr. 
~ ~ ~ 

(III-129) I 

then K. + Ss. + Tt. + Dd. = 0 
~ ~ ~ ~ 

(III-130) • 

Choose the ground frame so that d 
1 

d = 0, d = -1. Multiply 
2 3 

equation (III-130) by£ . . kt.dk to eliminate the unknowns T and D. 
~) J 

£ . . k<K.t.dk + Ss.t.dk> = o 
~J ~ J ~ J 

(III-131) I 

or £ . • (K. t . + Ss . t . ) 
~J 3 ~ J ~ J 

0 (III-132). 

Expanding equation (III-131) we have 

(III-133). 

(K t - K t) + St sin~s coses - St sin~s sines = 0 
1 2 2 1 2 l 

Expand the constraint equation 

t 
1 

. ..~.s es t 
s~n'+' cos + 

2 

s 
cos~ = 0 (III-134). 

Equations (III-132 and 133) may be solved numerically for es and ~s. 

The vectors. is then known. Multiply equation (III-130) by 
~ 

then 

c- (K s + Tt . s . ) = 0 
c... • • • ' J 
~) 3 ~ J ... 

T= 1
£ .. 9 K.s ·1 
~J .. ~ ] 

1
£ .. ., t.s ·1 
~)" ~ J 

(III-135) I 

(III-136). 



77 

The remaining unknown D is obtained from the expansion of equation 

(III-130). 

D IK + Ss 
3 3 

+ Tt I 
3 

(III-137). 

Case 4: HCCC Mechanism 

Referring to Figure 11, an HCCC mechanism is constructed and 

the problem defined as follows: 

Input: 

Known: 

s. 
l. 

C, c., r., d., h (pitch of screw) 
l. l. l. 

Unknown: R, S, T, D, t. 
l. 

Constraint: t. d. = Q 
l. l. 

siti = P where Q and P are known scalar 

constants 

Vector loop equation: Cc. + Rr. + Ss. + Tt. + Dd. = 0 
l. l. l. l. l. 

(III-138) 

The unknown R can be expressed as a function of the screw pitch and 

err 
the azimuthal angle 

Let Cc . + J?r> . 
l. l. 

K., then 
l. 

K. + Ss. + Tt. + Dd
1
. = 0 

l. l. l. 

Choose the ground frame so that d = d = 0, d -1. 
1 2 3 

Expanding the constraint tidi = Q we have 

(III-139). 

(III-140). 
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FIGURE Jl 

CASE 4 HCCC MECHANISM 

INPUT: 

I<N<Jr'IN: 

UNI<f'D.IN: 

C 1 a. 1 1'. 1 d. 1 h (pitch of screw) 
~· ~ ~ 

R1 81 T1 D1 t. 
~ 

CONSTRAINTS: tidi = Q , siti = P 

Ca. + ~. + Ss. + Tt. + Dd = 0 
~ ~ ~ ~ i 





t 
3 

t 
== -Q :::: cos¢ 

80 

(III-141) 

Equation (III-140) may be solved for <Pt. Expanding the constraint 

8,t. == P we have 
~ ~ 

8 sin<Pt coset + 8 sin</lt sin8t + 8 t = o 
1 2 3 3 

(III-142) 

Equation (III-142) may be solved for 8t and the vector t. is known. 
~ 

Multiply equation (III-140) by£. 'kt.dk 
~J J 

£, .k(K.t.dk + S8.t,dk) = o 
~J ~ J ~ J 

or £ . . (K. t . + S8 . t . ) == 0 
~J 3 ~ J ~ J 

(III-143), 

(III-144). 

Equation (III-144) may be solved for S, Multiplying equation (III-

140) by£. 'k8,dk yields 
~J J 

£ . . (K. 8 , + Tt . 8 . ) = 0 
~J 3 ]. J ~ J 

(III-145), 

which may be solved for T. The remaining unknown D may be obtained 

from the expansion of equation (III-140) 

D = IK + S8 + Tt I 
3 3 3 

(III-146) . 

Case 5: PCSC Mechanism 

Referring to Figurel2, a PCSC Mechanism is constructed and the 

problem defined as follows: 

Input: R 

Known: 
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FIGURE J2 

CASE 5 PCSC MECHANISM 

INPUT: R 

KNOWN: 

UNKNOiiN: 

CONSTRAINT: 

C, T, a., r., 
l. l. 

S, D, -t. 
l. 

-tidi = Q 

Ca. + Rri + Ss. + T-t. + Dd. = 0 
l. . l. l. l. 



Figure 12 

Cc. 
l. 

X 
1 

PCSC MECHANISM 

Tt. 
l. 

Dd. 
l. 
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Unknown: S , D, t . 
1 

Constraint: t .d. = Q where Q is a known scalar constant 
1 1 

Vector loop equation: Ca . + Rr. + Ss. + Tt. + Dd. = o 
J. 1 1 1 1 

Let K. 
1 

Ca . + Rr. , then 
1 1 

K. + Ss. + Tt. + Dd . = 0 
J. 1 1 J. 

Choose the ground frame so that d = d 

From the constraint we have 

t 
t = -Q = cos¢ 

3 

1 2 
0, d 

3 

Multiply equation (III-148) by£ . . ks.dk and expand 
1) ) 

- 1. 
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(III-147) 

(III-148) . 

(III-149) 

0 (III-150) 

Equation (III-149) may be solved for 6t. Multiply equation (III-148) 

by £ . . kd.tk to isolate the unknown S . 
1) ) 

0 (III-151) 

Solve equation (III-151) for S. The unknown D may be obtained from 

the loop expansion (III- 148) . 

D = IK + Ss + Tt I 
3 3 3 

(III-152) 

Case 6: RCSC Mechanism 

Referring to Figure 13, a RCSC mechanism is constructed and the 
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FIGURE J3 

CASE 6 RCSC MECHANISM 

INPliT: 

~= 

UNKNCJt.IN: 

CONSTRAINT: 

1", 
~ 

C, R, T, c., d. 

S, D, t. 
~ 

s.t. = P 
~ ~ 

~ ~ 

Cc. + Rr. + Ss. + Tt. + Dd = o 
~ ~ ~ ~ i 



Figure 13 

Co. 
l. 

Tt. 
l. 

RCSC MECHANISM 

X 
2 
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problem is defined as follows: 

Input: r. 
~ 

Known: C, R, T, e., d. 

Unknown: S, D, t. 
~ 

~ ~ 

86 

Constraint: s.t. 
~ ~ 

p where P is a known scalar constant 

Vector loop equation: Ca. + Rr. + Ss. + Tt. + Dd. = 0 
~ ~ ~ ~ ~ 

(III-153) 

Let K. = Ca. + Rr., then 
~ ~ ~ 

K. + Ss. + Tt. + Dd. 0 
~ ~ ~ ~ 

(III-154) 

Choose the ground frame so that d = d = 0, d = -1. Multiply 
1 2 3 

equation (III-154) by E . . ks.dk to eliminate the unknowns Sand D. 
~) J 

E. . 
3 

(K. s . + Tt . s . ) = 0 
~) ~ J ~ J 

(III-155) 

Expanding equation (III-155) 

(K s -K s ) +T sin¢t (s coset -s sin8t) 
1 2 2 1 2 1 

0 (III-156), 

and from the constraint 

(III-157). 

t 
Equations (III-156 and 157) may be simultaneously solved for 8 and 

Multiply equation (III-153) by E . . kt.dk yields 
~) J 
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£ .. 
3 

(K. t. + Ss. t.) = 0 (III-158) • 
~J 1 J 1 J 

Equation (III-158) may be solved for S. The remaining unknown D 

may be obtained from the expansion of equation (III-153) 

D IK + Ss + Tt I 
3 3 3 

(III-159). 

Case 7: RSCR Mechanism 

Referring to Figure 14, an RSCR mechanism is constructed and 

the problem defined as follows: 

Input: 

Known: 

r. 
~ 

R, S, D1 C1 (J, I 

~ 

T ed
1 8

t 
Unknown: 1 8.1 

1 

Constraints: s.t. 
1 ~ 

Q 1 t,d, P 1 where Q and P are known scalar 
1 ~ 

constants 

Vector loop equation: K. + Ss. + Tt. + Dd. = 0 
1 1 ~ 1 

(III-160) 

where K. = Ca. + Rr.. Eliminate the unknown T by multiplying equa-
l 1 1 

tion (III-160) by £, 'kt. 
~J J 

£ . . k(K.t. + Ss.t. + Dd.t.) 
1] 1 J 1 J 1 J 

Expand equation (III-161) 

0 

(K + Ss + Dd ) t - (K + Ss + Dd ) t = 0 
2 2 2 3 3 3 3 2 

(III-161). 

(III-162), 
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FIGURE 14 

CASE 7 RSCR MECHANISM 

INPliT: 

KNOIIN: 

UNKNOtiN: 

CONSTRAINT: 

2", 
~ 

d t T,s.,e,e 
~ 

s.t. = Q , 
~ ~ 

Ca. + Bri + Ss. + Tt + Dd = 0 
~ ~ i i 





(K + 88 + Dd ) t - (K + 88 + Dd ) t = 0 
3 3 3 1 1 1 1 3 

(III-163). 

Expand the constraint equations 

8 t + 8 t + 8 t = Q 
1 1 2 2 3 3 

(III-164), 

t d + t d + t d p (III-165). 
1 1 2 2 3 3 

Equations (III-162, 163, 164, 165) contain the four unknowns 8s, ¢s, 

d t 
8 , 8 and may be solved numerically. The remaining unknown T is 

obtained by expanding equation (III-160). 

T (III-166). 

Case 8: RCCC Mechanism 

90 

Referring to Figure 15 an RCCC mechanism is constructed and the 

problem defined as follows: 

Input: 

Known: 

1'. 
~ 

R, C, a., d. 
~ ~ 

Unknown : S, T, D, t . 
~ 

Constraint: 8.t. = P 
~ ~ 

Vector loop equation: 

where K. = Rr. + Ss . • 
~ ~ ~ 

d.t. = Q where P and Q are known scalar 
~ ~ 

constants 

K. + Ss. + Tt. + Dd. = 0 
~ ~ ~ ~ 

(III-167) 
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FIGURE 15 

CASE 8 RCCC MECHANISM 

INPUT: 

KNOtJN: 

UNKN<JfJN: 

CONSTRAINTS: 

R, C, a., d. 
1 1 

S, T, D, t. 
1 

s.t. = P ~ d.t. = Q 
1 1 1 1 

Ca. + Rr. + Ssi + Tt. + Dd. = 0 
1 1 1 1 
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Choose the ground frame so that d = d = 0, d = -1. Then from the 

constraint d.t. 
~ ~ 

t 
3 

-Q 

Q, we have 

t 
cos<!> 

1 2 3 

From the constraint 8.t. = P, we have 
~ ~ 

8 
1 

. ,~,t 8t 
s~n't' cos + 8 

2 

. ,~,t . 8t t 
s~n't' s~n + 8 

3 3 

(III-168) 

p (III-169) 

t 
Equation (III-169) may be solved for 8 • The remaining unknowns 

are S, T and D. The problem is then analogous to Case 3a of the 

tetrahedron solutions and may be solved in the same manner. 

case 9: PCCC Mechanism 

Referring to Figure 16, a PCCC linkage is constructed and the 

problem defined as follows: 

Input: R 

Known: c, T, a., 
~ 

ri' 

Unknown: S, D, E, t. ,8 
~ 

Constraints: 8.t. = M 
~ ~ 

vector loop equation: 

where K. =Ca.+ Rr .. 
~ ~ ~ 

8i' ei, 

d 

t.d. 
~ ~ 

<l>d 

N 8.d. = P where M, N, Pare 
~ ~ 

known scalar constants 

K. + 38. + Tt. + Dd. + Ee. = 0 (III-170), 
~ ~ ~ ~ ~ 

Choose the ground frame so that e e = 0, 
1 2 

e = -1. Expand the three constraint equations 
3 
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FIGURE 16 

CASE9 PCCC t-£CHANISM 

INPliT: 

~= 

UN~: 

R 

C, T, ai, Pi' si, ei, ~d 

s, n, E, t. , ad 
l. 

CONSTRAINTS: s. t. = M , 
l. l. 

, s.d. :::<: P 
l. 1 

Cai + Rr. + Ss1 + Tt. + Dd + Ee. = o 
1 1 i l. 



Figure 16 

Cc. 
~ 

PCCC MECHANISM 

95 
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s t + s t + s t = M 
1 1 

(III-171) 
2 2 3 3 

t d + t d + t d = N (III-172) 
1 1 2 2 3 3 

s d + s d + s d p (III-173) 
1 1 2 2 3 3 

Equation (III-173) may be solved for 8d. Equations (III-171 and 

172) may then be solved for 8t, ¢t. The remaining unknowns then 

areS, D, E and the problem is now analogous to Case 3a of the tet-

rahedron solutions and may be solved in the same manner. 

Case 10: PCCR Mechanism 

Referring to Figure 17, a PCCR mechanism is constructed and the 

problem defined as follows: 

Input: R 

Known: C, D, e., r., s., ¢d 
~ ~ ~ 

Unknown: s, T, t. I ed 
~ 

Constraint: s.t. = P 
~ ~ 

d.t. = Q where P and Q are known scalar 
~ ~ 

constants. 

Vector loop equation: K. + Ss. + Tt. + Dd. = 0 
~ ~ ~ ~ 

(III-174) I 

where K. = Ce. + Rr .• Multiply equation (III-174) by E .. ks.tk to 
~ ~ ~ ~J J 

eliminate S and T 

E .. k(K.s.tk + Dd.s.tk) 
~J ~ J ~ J 

0 (III-175). 
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FIGURE 17 

CASE 10 PCCR MECHANISM 

INPUT: 

KNOt-IN: 

UNKNOA'N: 

CONSTRAINTS: 

R 

d 
C, D, o., r., si, cp 

~ ~ 

S, T, t., ed 
~ 

s.t. = P , d.t. = Q 
l. l. l. l. 

Co. + Rri + Ss. + Tt + Dd = 0 
l. ~ i i 



Figure 17 

PCCR MECHANISM 

Tt. 
1. 

X 
2 
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Dd. 
1. 
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Expand the constraint equations 

s t + s t + s t = p 
1 1 2 2 3 3 

(III-176) I 

dt +dt +dt =Q 
1 1 2 2 3 3 

(III-177). 

Equations (III-175, 176, and 177) contain the unknowns 8t, ~t, and 

d . 
8 and may be numer~cally solved. Multiplying equation (III-174) by 

€ . . kt.dk and € . . ks.dk yields the unknowns SandT respectively. 
~J J ~J J 

~ Canard Deployment Mechanism 

While the foregoing ten cases are interesting and provide in-

sight into the method of tensor analysis it is much more interest-

ing to apply the method to a problem of practical nature from an 

engineering point of view. The following problem represents the 

application of tensor kinematics to an existing engineering problem 

of current interest. 

Modern interest in the short-field manuverability and low level 

mission roles of supersonic military aircraft has led to much inves-

tigation of variable geometry configurations. One result has been 

the development of the retractable Canard surface system. This con-

figuration produces a nose-up moment at low speeds and significantly 

improves the aircrafts takeoff and landing performance and its sub-

sonic manuverability. Design considerations include the ability to 

retract and deploy the surfaces through a single drive, thus elimi-

nating the possibility of asymmetrical deployment. 

Figure 18 is a pictorial representation of the use of spatial 

mechanisms to provide the required deployment system. Two four-bar 

1.93967 
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FIGURE 18 

CANARD DEPLOYMENT MECHANISM 

1. El.ECTRI C MJTOR 

2 I WORM AND GEAR 

3 I AC"fU6. TI NG BELLCRANK 

4. ACTING ROD 

5. CANARD SURFACE SPAR MEMBER 

1WO FOUR-BAR B~ETT t<£CHANISMS DRIVEN BY A SINGLE JACK SCREW. lliE 

ARRANGEMENT A~ 11-fE USE OF ALL REVOLUTE JOINTS AND PREVENTS ASYM­

METRICAL DEPLOYMENT I 
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mechanisms with revolute joints are shown connected in parallel and 

each driving one of the canard surfaces. The parallel arrangement 

allows the use of a single jack screw to drive both canard surfaces. 

The four-bar linkages may be recognized as the Bennett RRRR mechanism 

mentioned in section I-D and shown in Figure 4. It will be recalled 

that the mobility criterion when applied to the Bennett mechanism 

yielded -2 for the number of degrees of freedom, yet it is known 

that the Bennett mechanism exists as a single degree of freedom link-

age. This leads to the supposition that the Bennett linkage posses-

ses three redundant constraints. 

The peculiar geometric qualities that allow the Bennett mech-

anism to exist are well known; namely, that opposite links must have 

the same lengths and the same degree of skew or twist. These con-

straints are most often demonstrated in an after-the-fact fashion 

through the use of descriptive geometry. The present approach is 

to assume only the existence of a four-bar RRRR mechanism and estab-

lish the geometric criteria for its existence through the use of 

tensor analysis. 

a. Existence Criteria for the Bennett Mechanism 

Figure 19 is a vector loop representation of a Bennett mecha-

nism where C, R, S, Tare the link lengths and u., V., W., p
1
• are 

1 1 1 

the directions of the axes of revolution of the R joints. To math-

ematically describe the RRRR mechanism, nine separate constraint 

equations must be written. Closure must exist hence the vector loop 

equation 
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FIGURE 19 

VECTOR REPRESENTATION OF A FOUR-BAR RRRR MECHANISM 

THE REVOLUTE AXES OF THE JOINTS ARE LABELED Uu . , Vv . , Wlv. AND Pp . , 
1 1 1 1 

THE SKEW ANGLES 8 , a, S, Y REPRESENT THE lWI ST IN THE C, R, S, T 

LINKS RESPECTIVELY. 
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Ca. + Rr. + S8. + Tt. = 0 
~ ~ ~ ~ 

(III-178) • 

The condition that the axes of revolution of each joint must remain 

mutually perpendicular to the links which it joins leads to the con-

straint equations 

e:. 'kr .ak = Uu. 
~] J ~ 

(III-179), 

e:. 'k8 .rk vv. 
~] J ~ 

(III-180), 

e:. 'kt .8k = Ww. 
~] J ~ 

(III-181), 

e:. 'ka.tk = Ppi 
~] J 

(III-182). 

Definition of the skew or twist in each link leads to the equations 

e:. 'kv .uk 
~] J 

e:. 'kw .vk 
l.J J 

e: · 'kp .wk l.J J 

r. 
~ 

sin(V,U) = r. sina. 
l. 

8. sin(W,V) = 8. sinS 
~ l. 

t. sin(P,W) = t. sinY 
l. l. 

(III-183), 

(III-184) , 

(III-185), 

(III-186). 

The angles 8, a., 8, y are the skew or twist angles of the C,R,S,T 

links respectively. 

Multiply equation (III-178) by e: .. ka.rk, e:. 'ka.8k' e: . . ka.tk, 
~J J ~J J ~J J 

e:. 'kr.8k' e: .. kr.tk, e:. 'k8.tk to form six equations involving the 
~J J ~J J ~] J 

possible permutations of vector products. There results 
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E .. k(Ss.c.rk + Tt.c.rk) = 0 
1] 1 J 1 J 

(III-187), 

E .. k(RP.c.sk + Tt.c.sk) = 0 
1] 1 J 1 J 

(III-188), 

E . . k(Rr.c.tk + Ss.c.tk) 0 
1] 1 J 1 ) 

(III-189), 

E .. k(Cc.r.sk + Tt.r.sk) 0 
1] 1 ) 1 J 

(III-190), 

E .. k(Cc.r.tk + Ss.r.tk) = 0 
1) 1 ) 1 ) 

(III-191), 

E . . k(Cc.s.tk + Rr.s.tk) = 0 
1] 1 J 1 ) 

(III-192). 

After some manipulation the various terms in equations (III-187 

through 192) may be recognized in the constraint equations (III-179 

through 186). Substitute equations (III-179 through 182) into equa-

tions (III-183 through 186). These eight equations are reduced to 

Ekmnrkcmtn = PU sino (III-193) 

Ekmnskrmcn = UV sina (III-194) 

Ekmntksmrn = WV sinS (III-195) 

Ekmncktmsn = PW siny (III-196) 

Substitute equations (III-193 through 196) into equations (III-187 

through 192). We have 

SVsina - TPsino = 0 (III-197) 
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RUV sin a - TPW sin'(= 0 (III-198) 

RU sino + SW siny = 0 (III-199) 

CU sinO'. + TW sinS= 0 (III-200) 

-CPU sino + SWV sinS = o (III-201) 

CP sin'Y + RV sinS = 0 (III-202) 

The six equations (III-197 through 202) may be used to algebraically 

eliminate the magnitudes of the revolute axes P, V, W, U. Equations 

(III-197 through 202) can be arranged so that these unknowns occur 

only in the ratios P/V and W/U, therefore, two equations are required 

to eliminate the four parameters P, V, W, U. Of the remaining four 

equations one is an identity and the remaining three are triply re­

dundant, all being the same equation. 

CS sina siny = RT sino sinS (III-203). 

Equation (III-203) represents a single constraint equation that an 

RRRR mechanism as defined must satisfy in order to exist. Of the 

nine original constraint equations, we have one remaining which is 

triply redundant indicating that the RRRR mechanism possesses three 

redundant constraints. It may be concluded that any set of parame­

ters that will satisfy equation (III-203) will result in a workable 

RRRR mechanism. One such set is 

R=T B 

sinO'.= siny 

sinS= sino 

(III-204), 

(III-205). 
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Then equation (III-203) may be written 

A B 
sin a= sin B 

(III-206) 

The conditions (III-204, 205) indicate that opposite links are equal 

and have the same skew angle and must satisfy equation (III-206}. 

b. Position Solution 

Having established the geometric constraint criteria for the 

Bennett mechanism, the position solution of the canard deployment 

mechanism may proceed. Figure 20 depicts one half of the mechanism 

in its physical configuration as well as the vector loop which rep-

resents the mathematical counterpart. Physically, links Rr. and Ss. 
~ ~ 

are offset from the vector loop. This is possible if they are con-

structed so as to retain the spatial relationship among the joints 

and links as determined by the constraint equation (III-205}. That 

is, it is not necessary for the actual links to follow the path of 

the vector loop provided the direction of the revolute joint axes 

as shown in Figure 20 are preserved. 

Referring to Figure 20, the ground frame is placed at the bell 

crank pivot with the X axis colinear with the c. vector and the X 
2 ~ 3 

axis along the revolute axis of the bell crank. The driving screw 

link Ee., link Ff., and the input link to the spatial mechanism Br. 
~ ~ 1 

are all coplanar. The vector r. may be determined as a function of 
1 

the length of link E. The spatial mechanism problem may then be 

defined as 

Input: r. 
1 
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FIGURE 20 

CANARD DEPLOYMENT MECHANISM 

11-fE PHYSICAL CONFIGURATION OF 11-fE MECHANISM AND 11-fE VECTOR 

LOOP COUNTERPART. LINKS Br i AND As i ARE OFFSET FRa'il 11-fE 

VECTOR PAll-fS BUT 11-fE REVOLUTE AXIS RELATIONSHIPS ARE ~IN­

TAINED. 

11-fE DESIGN DIHEDRAL ANGLE DETERMINES 11-fE SKEW IN 11-fE Aoi 

GROUND LINK. 





Known: 

Unknown: 

A, B, c. 
~ 

t. 
~ 

Constraint: AsinS = Bsina 

111 

Vector loop equation: Ac. + Br. +As. + Bt. 
~ ~ ~ ~ 

0 (III-207) 

An important design parameter is the dihedral angle of the canard 

surface. Flight characteristics would determine the best dihedral 

angle which in turn determines the skew angle of the ground link Ac .• 
~ 

The length of the links A and B are specified from considerations of 

available space, clearances, etc. and are considered as variable 

parameters. The skew angle S of the links Br. and Bt. is then deter-
~ ~ 

mined from the constraint equation. 

We are interested in the position of the spar vector w. as a 
~ 

function of E, the length of the jack screw link. It is advantageous 

t 
to define an auxiliary frame X. as shown in Figure 21. 

~ 

The Xt axis 
3 

is aligned along the revolute axis of the joint at the intersection 

of the c. and t. vectors. This can be accomplished by a single rota-
~ ~ 

tion about the X axis through the angle a, the skew angle of the 
2 

Ac. link. TheW. and t. vectors then remain in the Xt, Xt plane; 
~ ~ ~ 2 1 

and the tt vector is a function of the single unknown ett. 
i 

t tt 
t. = cose , 
~ 

. ett o 
s~n , 

The transformation coefficients are seen to be 

cosa 0 sina 

0 1 0 

sina 0 cosa 

(III-208) 

(III-209) 
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FIGURE 21 

DEFINITION OF THE AUXILIARY FRAME X~ 
~ 

THE X~ FRAME IS DEFINED BY THE ROTATION ABOUT THE X
2 

AXIS THROUGH 
. t 
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Let K. 
~ 

Aa. + BP. then the loop equation becomes 
~ ~ 

K. +As. + Bt. 0 
~ ~ ~ 

114 

(III-210). 

Multiply equation (III-210) by Acx 
mi' 

transforming to the xt frame 
i 

Expand equation (III-211) 

t . st st tt 
K + A s~n¢ cos8 + B cos8 

1 

Kt A . ~st i 8st B . 8tt + s~n~ s n + s~n 
2 

t st 
K +A cos¢ 0 

3 

Equation (III-214) yields a solution for ¢st 

st 
cos¢ = 

(III-211). 

0 (III-212), 

0 (III-213), 

(III-214). 

st 
Equations (III-212 and 213) may be solved iteratively for 8 and 

e tt. 8
tt 

Having a solution for enables the w. vector to be written 
~ 

as a function of ett 

w. 
~ 

wt . wt = cose , s~ne , 0 (III-215), 

wt tt 
where e = e + ~ ~ a constant and may be considered a parameter. 

wt 
For any value of E, through its range, the value of e may be ob-

tained. Figure 22 is a plot of 8wt for values of E from the initial 

configuration (canard surface fully deployed) to the final configu-
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FIGURE 22 

PLOT OF POSITION AZIMUTHAL ANGLE ewt VERSUS 

THE LENGTH OF THE JACK SCREW E • 
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Figure 22 
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ration (fully stowed). The parameters chosen for the problem are 

as follows: 

A = 4 units 

B 3 units 

a = 60° 

D 2 units 

8d= 330° 

E (initial value) 

F = 2 units 

ec = 270° 

DV3 

starting values used ett ~ 300°, est~ 105° 
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The problem was programmed for digital computation and the solutions 

obtained. The procedure used was to solve the two equations (III-

212 and 213) via the Newton method for systems of nonlinear equa­

tions for the initial configuration using the estimated starting 

values shown. Values were calculated to four-place accuracy. The 

link E was then incremented and a new solution sought using the last 

solutions for starting values. At no step in the process was more 

than four iterations required to provide the accuracy specified. 

Less than 25 seconds of computer time were required to effect the 

entire solution. 
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IV 

VELOCITY AND ACCELERATION ANALYSIS OF SPATIAL MECHANISMS 

As has been demonstrated, position solutions are non-linear 

and usually somewhat difficult to obtain. Motion solutions, on the 

other hand, are always linear. Differentiation of a position solu­

tion will never introduce unknown vectors and the motion quantity 

unknowns that are introduced are of the same or lower order and occur 

in additive terms, not in products with each other. Thus, the prob­

lem of obtaining solutions for motion quantities is minimal and may 

be accomplished by linear algebra. The difficulty lies instead in 

obtaining the motion equations from the position solution. 

A direct approach for obtaining motion equations is differen­

tiation of the position equations. This approach is relatively 

tractable and straight forward when all quantities to be differenti­

ated are known with respect to the ground frame but becomes increas­

ingly difficult when one or more moving reference frames are included 

in a problem. The combination of the tensor methods and the Newton 

iterative process allows a large class of spatial problems to be 

solved in the ground frame making the method of direct differentia­

tion a most useful tool. 

Relative velocities between various points of a mechanism may 

be obtained via the same procedures as well as relative angular 

velocities between links. 

A. Method of Direct Differentiation 

If a position solution for a particular point in space can be 

obtained, the velocity and acceleration of that point may always be 
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obtained by direct differentiation of the position vector. The dif-

ficulty presented by this course depends upon how the position solu-

tion was obtained and its form. If a position solution can be ob-

tained solely in the ground frame coordinates the differentiation is 

particularly straight forward and for kinematic purposes, it is often 

fruitful to attempt the attainment of a solution in the ground frame. 

However, for purposes of dynamic analyses and rigid body mechanics, 

it is necessary to allow for the expression of vectors in auxiliary 

or body frames whose coordinate axes are functions of time when mo-

tion is considered. For this reason, the method of direct differen-

tiation will be developed in a general manner with the inclusion of 

a moving coordinate frame. It will be seen that reduction of the 

formulae thus developed to simpler cases is easily accomplished. 

1. General Velocity and Acceleration Equations for Spatial Motion 

Figure 23 depicts a moving point in space following a path S. 

At the time of interest the point is at point P as shown and the po-

sition of point P may be defined by the vector Ss., written with 
~ 

respect to the inertial frame or ground frame X., or by the vector 
~ 

Rr: written with respect to the X: frame. The fact that the X: 
~ ~ l. 

frame is allowed to move with respect to the X. frame is of conse­
l. 

quence only if one is concerned with the relativity of writing quan-

tities as measured in one frame and relating them to the the same 

quantities as measured in another frame. That is, to an observer in 

the X: 
.1 

frame, and unaware of the existence of the X. frame, the sole 
.1 

definition of the point P at the time of interest is the vector 
r 

RT' •• 
l. 
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'FIGURE 23 

11-IE CASE OF GENERAL SPATIAL f'IOTION 

A fv()VING POINT IN SPACE FOL.l<MI1'13 A PAll-1 s, AT THE TIME OF INTEREST 

lHE POINT IS AT POINT P AND lHE POSITION OF POINT P MAY BE REFERENCED 

TO EITHER OF lHE TWO COORDINATE FRAMES. THE Xi FRPME IS REGARDED AS 

lHE GROUND FRAME AND THE ~ FRAME IS FREE TO f'IOVE RELATIVE TO lHE Xi 

FRAME. 
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The same may be said for an equivalent observer in the X. frame and 
~ 

the vector Ss.. Now suppose an observer in the X. frame who is aware 
~ 1 

of the X: frame and may write the position relation 
~ 

Ss. 
~ 

Qq. + Rr. 
~ ~ 

(IV-1) . 

Differentiating equation (IV-1) with respect to time, we may obtain 

a relation between the velocity of point P as observed in the ground 

frame and that observed in the X: frame if the term Rr. is replaced 
~ ~ 

with the transformation relation A~~Rr~. 
J~ J 

It will facilitate the notation to write vectors in unfactored 

form as R. 
~ 

Rr .. Differentiating equation (IV-1) we have 
1 

s. = Q. + R. 
1 ~ 1 

Employing the transformation relation we may write 

0 

R. 
1 

(IV-2). 

(IV-3). 

rx~ 
Examining the terms in equation (IV-3): the term A .. ft. represents 

J~ J 

differentiation in the X: frame holding the A~~ constant and hence 
~ ]1 

is the velocity of the point P relative 

A~~~ represents differentiation of the 
J1 J 

to the x: frame. The term 
1 

A~~ holding the vector R~ 
]1 J 

constant and is the contribution to the absolute velocity due to the 

rotation of the x: frame relative to the X. frame. 
1 1 

To further examine the character of this last term, suppose 

that the R~ vector is fixed in the 
J 

becomes 

frame. Then equation (IV-3) 



. 
R. A~~R~ 

l. Jl. J 

Substituting the transformation relation R~ 
J 

(IV-4) we have 

. 
R. = 

l. 

The product A~~A~x may be denoted by w:x, then 
Jl. )m 1.m 

• = wrxR 
Ri im m 

Multiply equation (IV-6) by R. 
l. 

R.R. = w:xR R. 
1. 1. 1.m m 1. 

. 

(IV-4). 

Ar.xR . 1.nto equation 
Jm m 

(IV-5) 

(IV-6) 

(IV-7) 
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Now R.R. represents the scalar product of the position vector with 
l. l. 

the velocity vector of a point which is in circular motion with 

respect to the origin. Hence these vectors must be perpendicular 

and their scalar product is zero, therefore 

(IV-8) 

Since R R. is a symmetric tensor of second order, it follows from 
m l. 

equation {IV-8) that w:x is a skew-symmetric tensor of second order. 
l.m 

Recalling the duality property discussed in section II, it will be 

remembered that {in three-dimensional space) there may be associated 

with any skew-symmetric second order tensor, a vector. The relations 

were 

(IV-9) , 



w. = ~E. 'kwk. 
1. l.J J 

explicitly w 
1 

w , w 
32 2 

and from equation (IV-5) 

w 
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(IV-10) , 

w = w 
1 3 3 21 

(IV-11). 

It may be concluded that w:x represents the angular velocity tensor 
l.m 

containing the rotation relations between the X: and X. frames and 
1. 1. 

that 

rx 
w. 

1. 

rx 
= ~e: .. kwk · 

l.J J 
(IV-12) 

is the angular velocity vector of the x: frame with respect to the 
l. 

X. frame. Equation (IV-6) may be written 
1. 

. 
R. = 

1. 

rx 
E •• W. R 

l.Jm J m 
(IV-13), 

which states that the velocity of the point P in the X. frame due 
1. 

to the rotation of the x: frame is equal to the vector product of 
1. 

the angular velocity vector of the x: frame and the position vector 
1. 

of the point P, a result familiar from vector kinematics. Equation 

(IV-3) may be stated as 

(IV-14), 

and equation (IV-2) as 

S• = Q• + ArxR•r + wrxR 
i i ji j im m 

(IV-15). 
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Equation (IV-15) may be regarded as the velocity equation for the 

case of general spatial motion. It is easily reduced for applica-

tion to simpler cases. 

The acceleration equation for the case of general spatial motion 

may be obtained by again differentiating equation (IV-2) • 

s. = (IV-16) 
J.. 

To obtain the term R. differentiate equation (IV-14) term by term 
J.. 

.. 
R. 

rx r •rx•r rx• •rx 
= A .. R. + A .. Rj + w. R + w. R 

J.. Jl.. J Jl.. J..m m J..m m 

• 
Substituting equation (IV-14) for R we have 

m 

Now from equation (IV-11) we have 

rxArx w. . 
J..m Jm 

•rx 
Aki

0
jk 

•rx 
A .. 

Jl.. 

Then equation (IV-18) may be written 

R. 
J.. 

Equation (IV-16) then becomes 

•rx 
+ W. R 

J..m m 

•· ·· rx""r rx rx!X rx rxR 
S = Q . + A .. R . + 2W. A . ft. + w. w_ 

i J.. Jl.. J J..m Jm J J..m mn n 

(IV-17). 

(IV-19). 

(IV-20). 

(IV-21) . 

Equation (IV-21) is the acceleration equation for the case of gener­

al spatial motion. Examination of the terms in equation (IV-21) 

leads to the identifications 
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.. 
Ar.x.Rr. 1 . acce erat~on of the point of interest relative to 
J~ J 

the X: frame, 
~ 

2 
rx

11
rX!X 

w . .H.. ft. 
~m Jm J 

coriolis acceleration, 

(wr. xwrxR + w·r. xR ) . f 1 . centr~ uga accelerat~on. 
~m mn n ~m m 

a. Moving Frames 

When a moving frame is defined as in the development of the 

previous section the general velocity and acceleration equations 

may be applied as given. Modifications follow for less general 

cases. Referring again to Figure 23, the following special cases 

may be considered: 

X~ frame not rotating relative to the X. frame (w7x O) 
~ ~ ~m 

. 
s. 
~ 

r 
R. vector not rotating relative to 

J 

(IV-22) 

• s. 
~ 

r. 
~ 

•r 
frame (r. = 

J 

(IV-22). 

0), from equation 

(IV-23) • 

Rr vector rotating relative to X: frame but with constant magnitude 
j ~ . 

(R = 0), from equation (IV-22) 

. . 
s. = Q. 
~ ~ 

(IV-24). 

The above special cases are easily applied to the general acceler-

ation equation (IV-21) 
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b. Ground Frame Differentiation 

When a problem (position solution) is obtained entirely in terms 

of ground frame variables equation (IV-2) and (IV-16) may be employed 

as they are. Differentiation of the velocity equation for example 

takes the form 

. . . . . . 
Ss. + Ss. 

J_ J_ 
= Qq; +Qq. + Rr. + Rr. 

... J_ J_ J_ 
(IV-25). 

c. Differentiation of Unit Vectors 

Differentiation of a unit vector referenced to the ground frame 

follows directly and has the form 

•r r r •r r r 
r. = (¢ cos¢ cos8 - 8 sin¢ sin8 ), 

J_ 

•r r r •r r r 
<¢ cos¢ sine + e sin¢ cose ), 

•r r 
(-¢ sin¢ ) (IV-26). 

Differentiation of a unit vector referenced to a rotating frame 

follows from equation (IV-14) and has the form 

r. 
J_ 

rx•r rx 
A . . r. + w. r 

Jl. J 1m m 
(IV-27) 

where 

•r •rr rr rr •rr . ~rr . err 
r. = (¢ cos¢ cose - 8 SJ.n~ SJ.n ), 

J 

•rr rr rr •rr . ~rr err 
<¢ cos¢ sin8 + e sJ.n~ cos ), 

{IV-28). 
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If the r~ unit vector is fixed in the X: frame the term r~ is zero 
J ~ J 

and 

r. 
~ 

rx 
w. r 
~m m 

2. Relative and Angular Velocities and Accelerations 

(IV-29) 

The relative velocity and acceleration of any point in a mecha-

nism with respect to another point may be obtained by writing the 

position vector from one point to the other and differentiating. 

When a closed form solution is not available for the vectors involved 

the relative velocity and acceleration expressions may be obtained 

and solved at the points of the cycle of operation for which the 

position solutions were numerically obtained. 

It often occurs that the angular velocity and acceleration of a 

particular link or links of a mechanism is of interest. The angular 

velocities and accelerations of interest may be relative to ground 

or relative to another point in the mechanism. Both of these quan-

tities for any link may be easily obtained once the position solution 

is available. Recall the angular velocity relation previously de-

vel oped 

rx 
W. 
~ 

= A~~A~x 
J~ Jm 

Differentiating equation (IV-30) 

•rx 
w. 
~m 

rx rx •rx•rx 
= A .. A. +A . . Aj 

J~ Jm Jl. m 

(IV-30). 

(IV-31). 

From equations (IV-30) and (IV-31) the angular velocity and acceler­

ation of any link vector in the mechanism loop relative to ground 
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may be obtained. 

If the appropriate A .. for the vector of interest have not been 
~J 

developed in the course of the position solution they may be con-

structed using the link vector itself in the vector product manner 

developed in the discussion of the tetrahedron problem. If the 

position solution has been accomplished, it is always possible to 

construct the A .. for that link and hence the angular velocity and 
~J 

acceleration for any link relative to ground may be constructed. 

It can be shown that there exists a first order motion analogue 

of the zeroth order condition, sum of position vectors equal zero. 

This condition is the sum of relative angular velocities of link 

vectors around the mechanism loop is zero. That is 

rc sr ts ,.,c.n 
W. + W. + W. + ••• + ~ 
~ ~ ~ ~ 

0 (IV-32). 

Equation (IV-32) follows from the conditions 

rc 
W. = 

rx 
W. (IV-33), 

~ ~ 

rc 
W. + 

sr 
W, = wsx (IV-34), 

~ ~ 

rc sr wts tx 
W. +W, + = (J.)i 
~ ~ ~ 

(IV-35) • 

Equation (IV-30) and equations (IV-33, 34, 35) may be used to obtain 

explicit expressions for any of the relative angular velocities. 

Similar conditions may be derived for angular accelerations by dif-

ferentiating equations (IV-32 through 35) and employing equation 

(IV-31). 
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B. General Solution Procedure 

Assume that the position problem has been solved either in 

closed form or for discrete steps of the input variables. Write 

the position vector for each point of interest and differentiate. 

Define the problem as to input velocities and identify the unknowns. 

In general, the unknowns will be terms such asS and;, which are 
~ 

•s •s 
functions of the unknown vector variables 8 and ¢ . These may be 

obtained as functions of the input velocity terms by differentiating 

the position solution expressions for 8s and¢s. The problem of ob-

taining explicit expressions for the velocity vectors of interest is 

a linear algebraic one and may proceed without difficulty. Acceler-

ation solutions may be obtained by once again differentiating the 

required expressions and assigning input accelerations. Angular 

quantities of interest may be obtained as outlined in section IV-A-2. 

Where a position solution has been obtained at discrete points 

of the mechanism cycle, the instantaneous velocity and acceleration 

solutions may be obtained as outlined above at the same point of 

cycle. 

c. Application to Velocity and Acceleration Solutions 

1. RSSP Mechanism 

Figure 24 depicts a RSSP mechanism which was analyzed as Case 1 

of section III-B. The unknowns in the problem were T and s .. The 
~ 

solutions obtained were 

s 
1 

(IV-36), 
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FIGlRE 24 

RSSP MECHANISM IN lliE CONFIGURATION USED FOR lliE VELOCITY AND 

ACCELERATION ANALYSIS OF lliE POINT P. 





8 = 
2 

T = lx + Ss I 
3 3 

133 

(IV-37) I 

(IV-38). 

The r. vector is defined to be at 90° to its revolute axis so that 
l. 

the vector r: may be expressed as a function of the single azimuthal 
l. 

rr 
angle e 

r rr rr 
r. = cosS , sinS , 0 

l. 
(IV-39) I 

where err is then the input variable. Since the ground frame and 

the r, frame as shown in Figure 24 are fixed relative to each other 
l. 

the 
rx 

A . . are constant. 
l.J 

They may be obtained through the use of vee-

tor products. The <r>. 
3 l. 

vector is known in the ground frame and may 

be described as 

<r>. 
3 l. 

sin~ cosS, sin~ sinS, cos~ 

where ~ and e are known. Define then 

sinS, -cos S, 0 

= £ijk(~)j(~)k =cos~ cosS, cos~ sine,- sin~ 

£ijk(~)j(~)k 

rx 
The A·. are thus defined and the vector r. may be written 

l.J l. 

rx r 
= Aj .r. 

l. J 

(IV-40) I 

(IV-41), 

(IV-42). 

(IV-43), 



where 

Y' 
1 

Y' 
2 

Y' 
3 

A coserr + A sin8rr 
11 21 

A coserr + A sin8rr 
12 22 

A sinerr 
23 
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(IV-44), 

(IV-45), 

(IV-46). 

The input link is now expressed in the ground frame as a function of 

the single variable err which is the input parameter. The direction 

of the (~). axis is specified by equation (IV-41) and err is mea-
l ~ 

sured from this axis. 

It is desired to find the velocity and acceleration of point P 

as shown in Figure 24. The position vector of this point may be 

written as 

P. = Co. + Rr. + Ss . 
~ ~ ~ ~ 

(IV-47), 

or as P. = -Tt. (IV-48). 
~ ~ 

Differentiation of either equation will result in the velocity of the 

point P relative to ground. Differentiating equation {IV-47) we have 

. 
P. 
~ 

{IV-49) • 

The terms r. may be obtained from equations {IV-44, 45, 46) as 
~ 

err and e•rr. 
functions of the input parameters The terms s i are 

obtained as follows. From equation {IV-36 and 37) 

s 
1 

= 
-x 
s 

1 (IV-SO), 
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. 
• -K 
82 = _...2... 

s 
(IV-51) • 

Now K. = Cc. + Rr. then 
J.. J.. J.. 

. . 
K. Rr. 

J.. J.. 
(IV-52). 

Also 
s 

8 = cos¢ , and 
3 

• •s 
sin<l>s 8 -cp 

3 
(IV-53). 

Squaring and adding equations (IV-36 and 37) results in 

(IV-54). 

•s 
Differentiating equation (IV-54) results in an expression for cp in 

terms of known parameters. Expanding equation {IV-42) and employing 

equations (IV-50, 51 and 52) we have for the components of the veloc-

ity of point P 

• p = 0 (IV-55) 
1 

• p 0 (IV-56) 
2 

. . 
- s~s • cpS p = Rr s:t.n (IV-57). 

3 3 

The acceleration of point P may be obtained by differentiating equa-

tion (IV-57) 

p = Rr 
•s 

2 
s ~s ~s 

- 8[ (<j> ) cos<!> + 'I' sin'!' 1 (IV-58). 
3 3 



136 

The terms r
3 

anq ¢s may be obtained by differentiating equations 

(IV-46 and 54) respectively. In this simple case, the velocity and 

acceleration of interest were found in closed form due to the fact 

that the position solution was effected in closed form. 

2. RCCC Mechanism 

Next consider the RCCC mechanism of case 8, section III-B-1. 

As defined the unknowns were S, T, D, t .. The position solution 
1 

resulted in a single transcendental equation in the unknown 9t. In 

order to effect a numerical solution, the parameters considered to 

be known must be assigned values. Referring to Figure 25 and case 8 

of section III-B-1 the following values were assigned 

c = 4 

R = 1 

C. 0, -cos45°, sin 45° 
1 

The axis of the r vector, labeled ~ is selected to be in the X , X 
i 1 2 

plane and at the 30° orientation shown so that the input variable 

may be measured directly as ¢r. The r. vector is defined to be at 
1 

goo to the ~ axis, therefore, the azimuthal angle er is a known con-

stant. The bend in the driving link is such that r., s. and 
1 1 

are 

coplanar. The angle between the R and S links is assigned the value 

120°. Therefore, s. may be written as a function of ri. The constant 
1 

parameters, P and Q, are defined to be 

P = cos goo 

Q = cos 60° 
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FIG~E 25 

RCCC M:CHANISM IN 11-fE CONFIGURATION USED FOR TI-lE VEL.OCilY AND ACCEL­

ERATION ANALYSIS OF 11-fE POINTS A AND B. 
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The known parameters are now suitably defined. The unknowns may be 

obtained from the position solution as follows: 

t 
3 

s 
1 

-Q = cos¢t 

. "'t 6 t s1n't' cos + s 
2 

. "'t . et t s1n't' sJ.n + s 
3 3 

(IV-59) 

p (IV-60) 

Equation (IV-60) may be solved for the unknown 8t by the Newton iter-

ative technique as outlined in appendix r. The remaining unknowns 

are from the position solution 

s = Klt2 - K2tl 
(IV-61) 

slt2 - s2tl 

T = kls2 - k2sl 
(IV-62) 

tls2 - t2sl 

D K + Ss + Tt 
3 3 3 

(IV-63) 

A solution by the above procedure was obtained for each discrete 

increment of the input variable <Pr in steps of 5° and through a com­

plete cycle of operation (0°~ <Pr ~ 360°). once this set of solutions 

is complete the instantaneous velocities and accelerations of the 

points of interest may be derived and numerical solutions obtained 

using the position solution at each of the points of cycle. Points 

of interest are selected as point A and B as shown in Figure 25. 

Writing the position vectors we have 

A. 
J_ 

= -Dd 
i 

(IV-64), 

(IV-65). 
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The velocities are 

. . . . 
A. Rr. + Ss. + Ss. 
~ ~ ~ ~ 

(IV-66), 

. 
B. -Dd. 
~ ~ 

(IV-67) , 

and the accelerations 

. 
A. Rr. + Ss. + Ss. + 2Ss. 
~ ~ ~ J. J. 

(IV-68), 

B. = -Dd. 
~ J. 

(IV-69). 

The various derivatives in the above expressions are readily obtained 

by direct differentiation from expressions already established. 

These velocities and accelerations were programmed and solutions 

•r 
obtained at the 5° steps using the input data ¢ = 1 radian I sec 

r 
and ¢ 0. The components of the velocity and acceleration as well 

as the magnitudes are shown in Figures 26, 27 and 28. 

3. Canard Mechanism 

Returning to the canard deployment mechanisms of section III-B-2 

it is now possible to examine some velocity and acceleration charac-

teristics of the mechanism configuration as defined in the position 

solution. Of primary interest is the angular velocity and acceler-

ation of the spar vector~ .• 
~ 

Referring to Figure 21, it can be seen that the angular velocity 

of the spar vector may be measured in the X~ frame directly as 
~ 

Recall that the t~ and~~ vectors are both in the X~, X= plane 

•wt e . 

and 
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FIGURE 26 

VELOCITY OF POINT - A 

THE MAGNITUDE (A) AND 1HE THREE Ca-1PONENTS OF THE VELOCITY OF PO I NT A 

VERSUS THE INPUT PARAMETER ¢ r FOR A C<l-1PLETE CYCLE OF OPERATION OF 

THE RCCC MECHANISM. 
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Figure 26 
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FIGURE 2J 

.. 
THE MAGNITIJDE (A) AND THREE C~PONENTS OF THE ACCELERATION OF POINT A 

VERSUS THE INPUT PARAMETER <f>r FOR A CavlPLETE CYCLE OF OPERATION OF 

THE RCCC MECHANISM. 
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Figure 27 
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FIGURE 28 

THE VELOCITY AND ACCELERATION OF POINT B VERSUS THE INPUT PARAMETER 

¢r FOR A COMPLETE CYCLE OF OPERATION OF THE RCCC MECHANISM. ONLY 

THE THIRD C<Jv1PONENT IS NON-ZERO DUE TO THE MECHANISM CONFIGURATION. 
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Figure 28 
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wt tt 
that 8 = 8 + ~ where ~ is a constant parameter. Therefore, 

•wt •tt •tt 
e = e and we may obtain e from the position solution by differ-

entiation. 
t 

Since the Xi frame is fixed with respect to the Xi frame 

we have from equations (III-212 and 213) 

(IV-71) 
•t •st st . st •st st st •tt tt 
K +A (cp cos¢ s1.n8 + 8 sin¢ cos8 ) + B8 cos8 = 0 

2 

•st •tt 
The unknowns in equations (IV-70 and 71) are 8 and 8 . These 

equations are linear in these unknowns and they may be algebraically 

solved. Eliminating est the expression is obtained 

. tt st tt . st 
B(sl.n8 cose - cose Sl.ne ) (IV-72) 

The various derivatives in equation (IV-72) may be obtained from the 

position solution equations as functions of the linear velocity of 

. 
the jack screw length, E. A second differentiation of equation 

.. tt • 
(IV-72) yields an expression for 8 as a function of E and E. 

The above angular velocity and acceleration terms were included 

in the general computer program for the canard solution. Input pa­

rameters were selected as E = .1 unit/sec and E = 0 which represents 

a reasonable constant linear velocity of the jack screw drive. 

Figures 29 and 30 depict the computer plots of Bwt and ewt 

versus the position of the driving link E for a complete cycle of 

the mechanism (canard fully deployed to fully stowed). 
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FIGURE 29 

•wt · 
PLOT OF ANGULAR VELOCITY 8 VERSUS THE LENGTH OF THE JACKSCREW 

LINKE. REPRESENTS THE ANGULAR VELOCITY OF THE SPAR VECTOR w~ • 
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Figure 29 

.150 

u 
~ 
U) 

.125 -..... 

~ 
>< 
8 
H .100 
u 

s 
~ 

~ .075 

§ 

~ 
+J .050 
!':!: 
•<D 

.025 
0 1 2 3 

LENGTH OF JACKSCREW E 



150 



FIGURE 30 

. ·~t . . . -

PLOT OF ANGULAR ACCELERATION e VERSUS THE LENGTH OF THE JACK-

SCREW LINK E. REPRESENTS THE ANGULAR ACCELERATION OF THE SPAR 

t 
VECTOR w. • 
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Figure 30 
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CONCLUSIONS 

The cartesian tensor analysis has been shown to be a compact 
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and tractable tool for the study of kinematic concepts and in partic­

ular the spatial kinematics. The difficulties of the position solu­

tion by other methods are largely alleviated by the brevity of the 

tensor notation and operations. 

The method of approach to a particular problem may be quickly 

arrived at with a minimum of experience in handling tensor equations. 

In addition, the tensor analysis reduced to cartesian form has the 

advantage of being not a new concept but merely a more succinct 

method of handling familiar concepts. 

Many of the familiar vector operations are introduced in the 

form of definitions with unclear origin. With the vector analysis 

in tensor form, this is not necessary as the operations arise as 

natural consequences, for example, scalar and vector products and 

the formulae for differentiation with respect to moving coordinate 

frames. Also, the algebraic character of vector equations is ex­

plicit in tensor form requiring a minimum of manipulation to arrive 

at solutions. 

The combination of the tensor method and the simple numerical 

procedures required provide a powerful tool for the solution of a 

large class of spatial mechanism problems. The tensor notation due 

to its algorithmic character is extremely conducive to ease of com­

puter programming allowing its use by engineers with lesser sophis­

ticated programming experience. 
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In todays times significant engineering effort is spent in the 

kinematic analysis of mechanisms such as gears, cams, and linkages. 

Although linkages present a more complex problem of analysis than 

other basic mechanisms, they are widely employed due to their relia­

bility, speed and force transmission properties. Industry continual­

ly seeks to devise linkages for new mechanical systems and to improve 

existing linkages. If engineers have knowledge of spatial concepts 

and the analytical tools at their disposal, they may be encouraged 

to try the use of spatial mechanisms which have few joints and few 

links in an intricate system in order to obtain an optimum design. 

In practice many spatial motions are arrived at through the over use 

of spherical joints which are much more difficult to manufacture than 

the simple revolute and cylindrical joints which might replace them 

in a properly designed spatial mechanism. 

Besides the ordinary machine design, spatial mechanisms can be 

utilized in many other areas. A recent series of moon landing space­

crafts, for example, were equipped with spatial mechanisms in their 

solar panels and landing gear actuators. Spatial mechanisms are 

extensively used in the automotive industry, particularly in suspen­

sion systems. In the future, the excursion vehicles of planetary or 

ocenographic exploration will inevitably use spatial mechanisms. 

The practitioners of medical science constantly search for a 

better understanding of human body motions. The continuing develop­

ment of spatial kinematics certainly would give an improved knowledge 

of kinesiology. 
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APPENDICES 

A. Newton - Raphson Method 

Consider the set of n equations in n unknowns 

1 

f (X 
1 

2 

f (X 
1 

~(X , 
1 

X , 
2 

X , 
2 

X , 
2 

• • • I X ) 
n 

0 

... , X ) 
n 

0 

... , X ) 
n 

0 

* 
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(A-1) 

* * Assume that the set of values X , X , ... ' X be a solution to this 
1 2 n 

system and let 

* 0 

X X + l':.X 
1 1 1 

* 0 

X =X + M 
2 2 2 

(A-2) 

* 0 
X =X + M 

n n n 

0 0 

where X , X , 
1 2 

... , 
0 

X 
n 

are known approximate solutions. 

Expand the original functions about these approximations via Taylor 

series to yield 

1 * 
f (X.) = o = 

l. 

1 0 

f (X.) 
l. 

1 1 1 

=f /}X +f /}X+ ••• +f /}X 
X 1 X 2 X n 

1 2 n 



2 * 
f (X.) = 0 

J_ 

2 0 2 2 

f (X 4 ) + f b.X + f M 
~ X 1 X 2 

1 2 

2 

+ • •• + f M x n 
n 

(A-3) 

. . . . . . . . . . . . . . . . . . . . . . . . 

~(X~) = o = ~(X~) t}: M + _,n M + • • • + _,n M 
J. J. + x 1 Tx 2 1x n 

1 2 n 
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:r: = d~(X.)/dX and the partial derivatives in equations 
J. n 

where 

n 
0 

(A-3) understood to be evaluated are at the values X .. 
J_ 

Higher order 

terms in ~X. are neglected. 
J_ 

Rearranging equations (A-3) yields 

1 0 1 1 

-f (X.) = fx M + ... + fx Mn J_ 1 
1 n 

2 0 2 2 

-f (X.) f ~X + ... + fx Mn J_ X 1 
1 n 

(A-4) 

0 

(X.) 
J_ 

_ro:n M + • • • + _ro:n M 
Tx 1 Tx n 

1 n 

Provided the determinant of the above system, equation (A-4), is 

non-zero, this system of linear equations may be solved for theM .. 

Using Cramer's rule an expression for each of the ~X. is obtained, 
J_ 

for example, M 
1 

J_ 



156 

1 0 1 1 

-f (X.) f fx J.. 
X n 

2 

2 0 2 1 

-f (X.) 
fx ... fx J.. 

M = 2 n 

1 

. . . . . . . . . . 

-rex~> ~ ... ~ J.. 
2 n 

1 2 

J (f I f I • • • I r> 

where J is the Jacobian of the system. 

Having found the 6X. equations (A-2) are used to form the improved 
J.. 

value of the root. These improved values are not exact because higher 

order terms were neglected in the expansion. However, the new values 

are improved and the process may be repeated to any desired degree 

of accuracy. The recursion formula takes the form 

ldetl 
J . 

J.. 

i+1 
where X represents the (i + 1) approximation to the nth unknown 

variable. 

While the foregoing development may seem detailed and cumbersome 

it is developed for a n by n system of equations. In practice most 

spatial mechanism problems result in a system of few equations for 

which case the Newton method is quite straightforward and tractable, 

both in terms of mechanical manipulation and computer programming. 
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B. Convergence of the Newton - Raphson Method 

A set of conditions sufficient to ensure convergence is the follow-

ing [ 20]. 

1 2 

1. f, f, ... ,~and all their derivatives through order n are 

continuous and bounded in a region R containing the solutions. 

2. The Jacobian of the system does not vanish in R. 

3. The initial starting values are chosen sufficiently close to the 

roots. 

In the experience of the author starting values are uncritical and 

may be selected by visualization of the initial configuration of a 

given mechanism. Convergence of the Newton method is quadratic and 

solutions are obtained in very little computer time. 
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