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ABSTRACT

The complexity of spatial mechanisms in themselves and the
absence of an attractive analytical tocol for their study has left
this field of engineering analysis largely unexplored. 1In recent
years several analytic methods have emerged. One of the most attrac-
tive of these is the tensor method. Literature surveys reveal that
the tensor method is largely unexploited in the U.S.A., with regard
to spatial mechanisms as well as simpler kinematic problems.

The purpose of this work is to develop tensor mathematics for
application to the kinematic analysis of spatial mechanisms. Methods
are developed for position solutions and the determination of veloc-
ities and accelerations of points of interest. Included are tensor
methods for obtaining angular velocities and accelerations as well
as the formulae for treating moving coordinate frames. Iterative
procedures are discussed for cases where a closed form solution is
not possible. Sufficient applications are included to exemplify
the methods developed including some which are numerically solved
by computer.

It is concluded that the methods developed represent a cogent

and tractable method of analysis of kinematic problems.
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INTRODUCTION

A. Historical Background

A study of the history of man from any academic point of view
invariably marks the debut of man as a tool maker as the onset of
important changes in the evolutionary order. From these earliest
times man has recognized the efficacy of tools and their import upon
his existence. The later development of what we have come to call
machines began with the fashioning of tools. They were developed to
ease the burden of mans struggle with the environment, to save him
time, and to provide his livelihood. These are precisely the reasons,
that today man is yet building newer, more advanced, and more sophis-
ticated machines and the study of things mechanical has come to hold
a prominent position in the ranking of scientific pursuits.

It was not until relatively recent times that detailed scien-
tific analysis became necessary for the designing and building of
machines. Indeed most of the basic machines and mechanisms in use
today were first conceived of and utilized without the use of even
the most basic mathematics. Machines were fashioned in an intuitive
and empirical way to fill a need. They were revised and tested until
they satisfactorily performed the function for which they were in-
tended. Man has always had this power of intuitive reasoning, it
seems, and for thousands of years this method of design and inven-
tion was adeguate. Even today this method of design is sometimes
the most practical although more scientific methods have been devel-

oped.



It is this guality more than any other, the propensity for em-
pirical but sophisticated mechanical inventiveness, that is respon-
sible for the slow growth of mechanism analysis as a scientific dis-
cipline. While other sciences flourished, the study of machines
lanquished simply because its development was not needed. It is
believed that the first published recognition of this wvoid in the

scientific disciplines was made by Ampére in 1834. [1]

"There exist certain considerations which, if sufficiently
developed, would constitute a complete science, but which
have hitherto been neglected, or have formed only the sub-
ject of memoires and special essays. This science ought
to include all that can be said with respect to motion in
its different kinds, independently of the forces by which
it is produced. ... It should treat, in the first place
of spaces passed over, and of times employed in different
motions, and of the determination of velocities according
to the different relationg which may exist between those
spaces and times".

Among the many who have contributed to the field since that time
are such notables as Franz Reuleaux (1829-1905) and Johann Bernoulli.
Leonhard Euler (1707-1783) is generally credited with the division of
the broad conception of machine analysis into the mechanical view,
mechanics, and the geometrical view, kinematics. [2]

Although the science of kinematics had its beginnings over a
hundred years ago, it is yet somewhat of a random art. The notion
that the concept of kinematics is as old as the mechanisms it seeks
to analyze is a widespread one. The fact is that kinematic analysis
is relatively new as a scientific discipline. Many methods of anal-
ysis and systems of notations have been developed for the purpose of
kinematic analysis. Perhaps the best known of these are vector anal-

ysis, graphics, and complex numbers. Vector analysis seems particu-



larly applicable in that almost all kinematic quantities are either
vectors or magnitudes of vectors. However, vector notation can be-
come cumbersome and difficult to work with for complex mechanisms.
Graphic methods eliminate much computation and are suited for wvisual
comprehension of a problem but are difficult to apply to three-dimen-
sional cases. Complex mathematics can be used successfully for two-
dimensional problems and has been extended to three-dimensions {31}
but seems best suited for the two-dimensional case.

Until recently, the analysis of three-dimensional mechanisms has
not occupied a prominent place in the work of kinematicians., Their
reluctance to study these mechanisms was perhaps due to the apparent-
ly formidable and tedious task of mathematically formulating problems
and obtaining solutions with existing methods of analysis. The task
of modern kinematics was well stated by Uicker [2].

"The problem is not to search for new principles, which
would revolutionize the field of design: it is to try to

find a better, a more extensive, a more universal method
of analyzing mechanisms which have been known for ages."”

B. Review of Current Literature

In an effort toward that goal, a universal method of analysis,
recent publications have applied various tools to kinematic studies
of mechanisms. Most notably in the field of three-dimensional mech-
anisms in an attempt to simplify the computational process and make
the undertaking of work in this area more attractive.

Matrix methods utilizing an iterative method based on 4x4
matrixes have been developed by Hartenberg, Denavit, and Uicker [4,5,
6,7]1. The method provides solutions to a large category of mechanisms

but allows little interpretation of the matrix equations and is more



powerful than necessary for simpler linkages.

Vector analysis has been extended to three-dimensional mecha-
nisms by Chace [8,9] and represents a comprehensive exploitation of
the inherent applicability of the vector method to kinematic analysis.
Among others who have used the vector approach are Beyer and Harris-
berger [10,11]. Yang and Freudenstein have applied dual quaternious
{121 and kinematicians in the USSR, for example, Mangeron and Dregan
[13], and Kalitsin applied tensor analysis. There are many others
who have contributed to the study of three-dimensional mechanisms
besides those mentioned here. The authors and methods mentioned are
indicative of the many avenues of approach to the problem of three-
dimensional mechanisms and the lack of emergence of a single most

advantageous method.

C. Purpose of the Research

The authors interest in spatial mechanisms was stimulated by
exposure to the problems of teaching vector kinematics and the early
work in tensor kinematics by Professor C.Y. Ho [l4]1. Preliminary
investigations into current literature pointed out the diversity of
analytical methods being employed and the lack of acceptance of a
universal language for kinematic analysis. In particular, the absence
of the application of tensor mathematics in the U.S.A. indicated a
void that would merit investigation.

Tensor calculus first came into prominence as a device well
suited for dealing with the general theory of relativity. It origi-
nated as a consequence of the fact that physical laws must be inde-

pendent of any particular coordinate system used in describing them



mathematically [15]. The advantages of tensor mathematics are well
recognized with regard to advanced theories but little interest has
been displayed in its application to more elementary subjects.

It is perhaps the formidable character of most of the formulae
of general relativity that is the source of the awe that many hold
for tensor analysis, and their reluctance to study it. What is not
realized is that this formidable character is removed when the form-
‘ulae of tensors are referred to cartesian axes while the simplicity
and conciseness of the tensor notation is retained.

Previous publications by the author and Professor C.Y. Ho have
shown that tensor notation provides a convenient and compact means
for expressing relationships in three-dimensional ‘(spatial) mecha-
nisms. Some tensor operations that have no counterpart in vector
algebra are powerful aids to obtaining problem solutions. The tensor
analysis contains the inherent naturalness of vector analysis but in
a more tractable form for complex mechanisms. One of the newest and
most important tools for use in kinematic analysis is the digital
computer. A useful kinematic method of analysis must be compatible
with the language of computer analysis. Vector egquations do not
directly lend themselves to computer programming whereas tensor equa-
tions are written in algorithm form and are readily translated into
Fortran language.

The purpose of the research then was to investigate the develop-
ment of tensor mathematics for clear application to kinematic analysis

of spatial mechanisms.



D. Kinematic Definitions

The terms used in reference to things mechanical like mechan-
ical things themselves are ones which are more or less intuitively
understood. Terms like machine, mechanism and kinematics were used
in the introduction without definition but without loss of under-
standing. However, from an analytical point of view, it is necessary
to more rigorously define some of these terms in order to form a
common basis from which to proceed.

The term kinematics is broadly used as a title to a division
of the general applied science of the theory of machines. This divi-
sion is the study of geometry in motion. More specifically, it is
the study of position, geometry, displacement, rotation, speed, ve-
locity, and acceleration [16]. The concept of force and motion re-
sulting from the action of forces is not considered in kinematics.

A mechanism is a set of machine elements (links, gears, joints,
pulleys, etc.) constructed so as to produce a desired output motion
when it is driven by a particular input motion. That is, it trans-
forms one kind of motion into another. One element of a mechanism
is considered to be the base, or ground link, and all motions are
viewed with respect to this link as a reference. Within the scope
of this work, the definition of a mechanism can be further gualified
in that the concepts of elasticity, bending, manufacturing tolerance,
etc. are neglected. For purposes of analytical studies, a mechanism
possesses perfect geometry and perfect rigidity. A useful definition
of a mechanism then is: a set of kinematic links connected by kine-
matic pairs (joints) forming a closed kinematic chain, the whole hav-

ing one degree of freedom when one link is viewed as the ground frame.



This definition of a mechanism clearly includes a broad cate-
gory of devices but these can be further classified into two divi-
sions, planar and spatial mechanisms. Planar mechanisms are charac-
terized by motion in a single plane. All the variables and parame-
ters necessary to mathematically describe the mechanism may be mea-
sured in a single projection, the plane of the motion. An exception
to this is the method of defining angular velocities and accelera-
tions in vector mathematics. These quantities are characteristically
described as a vector having direction perpendicular to the plane of
motion. A piston and crank device is an example of a planar mecha-
nism.

The second basic category of mechanisms are those whose motions
cannot be described in a single projection. These have three-dimen-
sional motion and hence are called spatial mechanisms. The complex-
ity of their motion has always made them difficult to analyze with
existing methods. Graphical methods, at best, demand a high degree
of skill in visualizing proper projections and some of the more recent
mathematical methods can become guite involved in specialized mathe~
matics and cumbersome notational difficulties. It is hoped that the
compactness and brevity of the tensor method may alleviate some of
these problems and make the study of spatial mechanisms more attrac-
tive.

There were two terms in the definition of a mechanism that re-
guire further definition. These were kinematic link and kinematic
pair. Figure 1 is a pictorial representation of a spatial mechanism
and its component parts, kinematic links and kinematic pairs. Kine-

matic links are the machine members comprising a mechanism whose func-






FIGURE 1

PICTORIAL REPRESENTATION OF A SPATIAL MECHANISM
AND 1TS COMPONENT PARTS, KINEMATIC LINKS AND

KINEMATIC PAIRS.,
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tion it is to hold specific spatial relationships among the kinematic
pairs. They are considered to be perfectly rigid and their shape is
incidental to the study of the mechanism itself. In order to perform
its function, a link must make contact with the elements of at least
two joints although this does not preclude the possibility of contact
with more than two joints. Hence, links are accordingly described

as binary, ternary, quaternary, etc. Within the scope of this work,
binary links will be exclusively used. A kinematic 1link, then, may
be said to be; a rigid body containing elements of at least two kine-
matic pairs whose function is to maintain a specific spatial relation-
ship between those respective pairs for the purpose of transmitting
and transforming motion.

In order to perform their purpose, kinematic links must be con-
nected by movable joints. These are traditionally called kinematic
pairs. The purpose of a kinematic pair is to restrict the relative
motion between connected links to a certain predetermined kind. A
kinematic pair definition, then is; a movable joint whose function
and purpose is to provide a connection between kinematic links which
limits the relative motion between those links to a certain type. A
common hinge joint, for example, limits link motion to a revolution
about a common axis.

Kinematic pairs exist in diverse shapes and forms. Their
physical appearance is often little clue as to their function. They
can be further classified iﬁto three categories given the names lower
pairs, higher pairs, and wrapping connectors. The latter are systems
of belts and pulleys and are not of much interest in current think-

ing on spatial mechanisms. Lower pairs are the most common and most
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interesting. These are six in number and were identified by Reu-
leaux [2]. They are shown pictorially in Figure 2.

A revolute pair (R pair) permits rotation about one axis. This
pair is often called a hinge joint. To describe the relative motion
between links connected by a revolute joint only one variable is
needed, the angle of rotation. Hence, the revolute joint has one
degree of freedom. These variables which describe relative motion
permitted by the various pairs are called pair variables. It is
customary to label each type of lower pair by a symbolic letter.
These vary among authors on the subject and the ones to be used here
are shown in Table I along with the degrees of freedom and pair var-
iables for the lower pairs.

A prismatic pair (P pair) permits translation along a straight
line. One pair variable is needed and the P pair then has one degree
of freedom. A screw pair (H pair) permits helical motion involving
both rotation and translation. Because the translation is related
to the rotation by the pitch of the screw, the screw pair has only
one degree of freedom and only one pair variable is necessary, either
describing the translation or rotation but not both. A cylindrical
pair (C pair) permits rotation about and translation along one axis.
It, therefore, has two degrees of freedom and two pair variables are
required. A spherical pair (S pair) permits three independent rota-
tions about a point, has three degrees of freedom and three pair vari-
ables. This pair is often referred to as a ball joint and sometimes
a globular joint. A planar pair (F pair) permits motion in a plane.
There are two translational degrees of freedom and one rotational

requiring three pair variables for specification. 1In usage, the most
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FIGURE 2

PICTORIAL REPRESENTATION OF THE LOWER PAIRS
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Figure 2
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TABLE I

Classification and Nomenclature of the Lower Pairs

Pair Name Symbol Degrees of Freedom Pair variables
Revolute R 1 e
Prismatic P 1 x

Helical (screw) H 1 x or ©
Cylindrical o) 2 x, ©
Spherical s 3 ¢, 6,¢

Planar F 3 X, v, ¢
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common of these six lower pairs are the revolute, cylindrical, and
spherical pairs. The prismatic and helical pairs are seen occasion-
ally but the planar pair is rare.

In addition to their easily recognized pair variables, the
lower pairs have other characteristics in common. In each case one
element of a lower pailr surrounds the other and is said to be self-
connecting or have form closure and the connections between elements
of lower pairs are surfaces (area contact) [16].

Connections between links which are not surfaces but lines or
points are named higher pairs by Reuleaux [16]. Meshed gear teeth
and ball and race contact are examples of higher pairs. Although
potentially there are an infinite number of higher pairs, their
appearance in the literature as related to spatial mechanisms is rare.
The lower pairs only will be considered in this work.

Having formed working definitions of a mechanism and its com-
ponent parts, the next step is to consider how the various elements
may be combined to form mechanisms that are useful. That is, what
are the possibilities for connecting binary links and lower pairs in
a closed kinematic chain such that the result will satisfy the defi-
nition of a mechanism? To be useful, such a device must have one
resultant degree of freedom. One input motion should be sufficient
to determine the output motion.

Clearly, if one begins to arbitrarily connect various combina-
tions of links and pairs to form closed chains, there will result a
very large number of devices indeed. However, obviously not all will
have the desired one degree of freedom. Some will have multiple

degrees and some will be locked, not move at all.
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Using what is known as the Gruebler or Kutzbach mobility cri-
terion or Gruebler-Kutzbach criterion, depending upon the form in
which it is written [11], Harrisberger has examined a large number of
possibilities for spatial mechanisms. The mobility criterion deter-
mines the number of degrees of freedom of a mechanism by assuming
six rigid body degrees of freedom for each link in the mechanism
except the ground link which has none, and then subtracting the con-
straints imposed by the pairs. Harrisberger found 417 different kinds
of spatial mechanisms having one degree of freedom [17]. Many of
these were too mechanically complex to be of practical use. Of the
many types investigated, Harrisberger found the four-link mechanisms
to be of special appeal. He found 138 kinds of four-link mechanisms
nine of which he deemed to be the most practical due to their desir-
able input-output motions. Five of these will be analyzed here as
examples of the method to be developed. These five mechanisms are
shown pictorially in Figure 3. It is customary to label a spatial
mechanism by writing the symbols for its joints in successive order
as they occur beginning at the input link. Thus,‘a mechanism with
a revolute input connected to a spherical pair, another spherical
pair and a revolute output would be labeled a RSSR mechanism.

It is a well known and curious fact that there exist several
working mechanisms which do not satisfy the mobility criteria.

Among the better known of these are the Bennett four-link RRRR
mechanism and the Bricard six-~link RRRRRR mechanism. These are
shown in Figure 4. Another useful mechanism which does not satisfy
the mobility criterion is the RSSR mechanism shown in Figure 5.

To gain further insight into this anomaly, it is helpful to
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FIGURE 3

PICTORIAL REPRESENTATION OF FOUR-BAR

SPATIAL MECHANISMS
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FIGURE U

PICTORIAL REPRESENTATION OF THE BENNETT FOUR-BAR AND

THE BRICARD SIX-BAR SPATIAL MECHANISMS



BRICARD SIX-BAR
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FIGURE 5

RSSR MECHANISM = NOTE THE PASSIVE DEGREE OF

FREEDOM IN THE CONNECTING LINK



RSSR MECHANISM



25

mathematically demonstrate the mobility criteria. A collection of

n links in space would have 6n degrees of freedom. If one link is
fixed as the ground link, 6(n—-1) degrees of freedom remain. Joining
these links with kinematic pairs would impose additional constraints.
These constraints are found by considering the number of degrees of
freedom a pair would have if it were a rigid body in space, 6, and
subtracting the number of degrees of freedom, it possesses due to
its own peculiar motion when viewed as a joint. The relation may

be written:

f = 6(n-1) -
i

ci (I-1)
1

LI e -1

where f is the resultant number of degrees of freedom, n is the
number of links, m is the number of pairs, and Ci is the number of
constraints imposed by the ith pair. For example, an R pair has one
degree of freedom so that Ci for an R pair is 5.

Application of the criterion to a mechanism which results in
an f of 0 or a negative number would seem to indicate that the mech-
anism was over constrained and would not move at all. However, ap-
plying the criterion to the Bennett mechanism results in f = -2 and
to the Bricard, £ = 0. An f of greater than one would seem to indi-
cate that the mechanism was under constrained and more than one in-
put motion would be necessary to effect a single output motion.
However, the RSSR mechanism of Fiqure 5 yields £ = 2. It may be sur-
mised that these anomalous mechanisms possess redundant constraints
and passive degrees of freedom. Referring to Figure 5, a passive
degree of freedom may be observed in the link connecting the two

spherical pairs in that the link may rotate about its longitudinal

axis without affecting the motion of the mechanism.
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I

TENSOR MATHEMATICS FOR KINEMATICS

A. Definitions and Terminology

The use of cartesian axes results in two great simplifications
in the powerful but formidable tensor calculus. The distinction be-
tween covariant and contravariant vectors disappears and the terms
arising from the curvature of surfaces of reference are no longer
present. BAbsolute differentiation of cartesian tensors is equivalent
to ordinary differentiation. Some tensor properties that have no
counterpart in vector mathematics are powerful aids to problem solv-
ing. Ordinarily the use of subscripts and superscripts in tensor no-
tation is to distinguish the covariant and contravariant qualities of
tensors. Since that distinction is no longer necessary, when tensors
are referred to cartesian axes, we are free to retain the subscripts
for indication of tensor character and utilize superscripts for label-
ing purposes.

It is difficult to succinctly define what tensors are, as they
are rigorously defined only by their properties. A loose definition
might be that a tensor is an abstraction that contains an ordered set
of elements or components, the properties of which, taken together
are independent of the coordinate frame used to describe them. It is
this quality that makes tensors an ideal instrument for the study of
physical laws and when the simplifications for cartesian axes are
introduced, they become an exceptionally useful tool for the study
of spatial relationships. One great advantage to the use of the ten-
sor method to be presented is that it is not a new notation but a con-

cise way of writing the ordinary vector notation with the additional
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benefits of the brevity of tensor operations.

l. Cartesian Tensors

A point in three-dimensional space located with respect to a
cartesian coordinate frame (X,, X,, X;) by a set of three coordinates
may be also located with respect to another cartesian coordinate
frame (X;, X;, X;) having the same origin by another set of three
coordinates. The coordinates of the point p in the unprimed system
may be called (pl, pz, pg), and the coordinates of p in the primed
system (p;, p;, p;). The coordinates of p in the prime frame may be

written in terms of the coordinates in the unprimed frame by the re-

lations

pl = Allpl + A12p2 + A13p3

‘= IT-1).
p2 A21p1 * A22p2 + A23p3 ( )
p3 = A31p1 + A32p2 + A33p3

The quantities (All, 4 , **, Aas) are the cosines of the angles

12

between the various axes; for example, A11 is the cosine of the angle

between X~ and X , 4 is the cosine of the angle between X~ and Xs'
1 1 23 2

and so on. Also, the coordinates of p in the unprimed frame may be

expressed in terms of those in the primed frame by the relations

-

pl =A11p1+ A21p2+ ASlpa
p =A p°+ A p°+ A p°

2 1271 227 2 32 3
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’ - + A - + - _ .
3 A13p1 23p3 A33p3 (II 2)

"

p

The writing of equations (II-1l) and (II-2) can be considerably
shortened by a change in notation. We introduce the range and sum-

mation conventions.

a. Range Convention

For the coordinates of the point p we write pi and p; where the
index i is understood to take, in turn, each value in the range of
that index. In three-dimensional space the range is 3 so that an
unrepeated index will always be 1, 2, 3. Thus, the term pi represents
the three coordinates (pl, p,r pa) and p; represents (p;, p;, p;).

Equations (II-1) and (II-2) may then be written

b; = Ailpl * Aizpl * Aisps (11-3)
Py = Alipl + Azipz * A3ip3 (=4).

Each of these equations can be expressed as a summation.

3
p; = .2 Aijpj (I1I-5)
j=1
3
p. = L A..p. (1I-6).
T ogey I3

b. Summation Convention

If we adopt the convention that when an index is repeated in a
term, as is j in equation (II-5) and (II-6), that a summation over

the range of that index is implied, we may write
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p; = Aijpj (11-7)
and p; = Ajipg (11-8).

Thus, equations (II-7) and (II-8) each represent three equations and
are completely equivalent to equations (II-1) and (II-2) but the
twelve terms in each are now compactly expressed in the tensor no-
tation. The range and summation convention will be implicitly pre-
sent in the notation used henceforth.

Sets of three quantities such as pi and pg which satisfy equa-
tions (II-7) and (II-8) are called tensors of the first order, or
vectors. The individual pl, pz, p3 are called the components of the
tensors. It can be seen that a first order cartesian tensor is
equivalent to a cartesian vector.

There are, of course, tensors of other orders than one. A
tensor of order zero is a scalar and has the same value for all sets
of axes. A tensor of second order can be constructed by the product

of two vectors.

risl = ti. or »r.s.= t,. (I1-9)

and from equation (II-7)

tij = (Aijrk) (Ajmsm) (I1-10),
or tij = AikAjmrksm (11-10),

then from equation (II-9)
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;j = AijAjmtkm (II-11).
The tensor tij is of second order, formed by the product of two
first order tensors, and transforms according to the rule (II-11).
In general, a set of nine quantities wij referred to a coordinate
system and transforming to another system by the rule (II-1l1l) is a
second order tensor.* There are many guantities that satisfy these
conditions besides the product of two vectors. Tensors of higher

order can be constructed and defined. 1In general, a tensor of order

n has n indices, tijk n and transforms according to the rule
o oo ’

ik ...on = Aiafifki o0t Anefab ... e (I1-12).

c. Symmetric and Skew-Symmetric Tensors

A tensor tij is said to be symmetric in the indices ij if upon

interchange of these indices
t.. = t,, (I1-13).
ij ji

A tensor 8. is said to be skew-symmetric in the indices ij if

=3, (I1-14).

If sij is a skew-symmetric tensor then

8 = 0, s = 0, 8 =0 (II-15).
11 22 33

#Much of the development in thig section is adapted from references
[15, 18, and 19]. The reader is referred to these for more detailed
study.
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Clearly, the product of a symmetric tensor and a skew-symmetric ten-—

sor is zero

t..s,, =0 (I1-16).
1] 1]
The product of first order tensors

rirj = pij (I1-17)
is a symmetric second order tensor, for

r.r, = r.r. (Ir~-18).

Equation (II-17) is called the symmetric product, has no counterpart
in vector mathematics, and is of great importance in tensor kinema~

tics.

d. The Kronecker Delta

Consideration of the gradient operator in tensor form leads to
some important relations. The gradient operator is written 9
X,
i

where Xi are the cartesian axis considered as vectors. The

gradient of a scalar results in a vector for

8¢/8Xi = (BXk/BXi) (3¢/8Xk) = Aik (3¢/8Xk) (I1-19).

which is a transformation according to the vector rule, hence the
gradient of a scalar is a vector. In tensor mathematics, the grad-
ient of a vector has meaning and is a second order tensor. There

is no counterpart in vector mathematics.
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[}

Sri/SXk (aXm/BXk)(ari/BXm)= Akm(B/BXm)Aijrj (I1-20),

then ari/BXk

it

AkmAij(arj/aXﬁ) (11-21).

Equation (II-21) satisfies the transformation rule for second order
tensors, hence the gradient of a vector is a second order tensor.
Since the axes Xi may be considered as vectors, then BXi/BXk

is a tensor of the second order. But clearly

= II-22
BXi/BXk dki (11 )
where ski is the Kronecker delta, and
0 if i # 3
= -23).
Ski (11-23)
1 if i = 3

Hence, the Kronecker delta is a tensor of second order. Therefore,

it transforms according to

(Sij = AikAjn‘Skn (11-24).

Ssetting k = n we have

-, = IT- ,
Sij AikAjk (I1-25)

which confirms the orthogonality of the coordinate axis. It can be

shown that

AikAjk = AkiAkj = aij (I11-26).
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Clearly, the Kronecker delta is a symmetric tensor. It can be shown
that it is also isotropic. That is, its components retain the same

values in any coordinate system.

e. The Permutational Tensor

The permutational tensor, Eijk' is defined by the conditions on

its components
0 if any two indices have the same value

1 if the values of the indices ijk represent

gijk = an even permutation of the sequences 1,2,3.

=1 if the values of ijk represent an odd per-

mutation of the sequence 1,2,3.

A permutation of the sequence 1,2, ..., n is even if an even number
of interchanges of adjacent integers is regquired to attain the per-
mutation. Similarly, a permutation is odd if an odd number of inter-

changes is required. Thus,

It can be shown that the permutation tensor is a third order, com-
pletely skew-symmetric, isotropic tensor.

An important relation between Gij and €45 is given by

jk

eijk Empj = Gim Skp —<Sip ka (IT-27).
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f. The Duality Property

It can be shown that for any vector there is associated a skew-
symmetric tensor of second order. The converse is also true. Mul-

tiply the vector rn by Ei.

k- This is a tensor of fourth order. WwWe

can form a second order tensor by contracting, let n = k.

Eijk I’k = wij (IT1-28)

Now form the vector uk by multiplying the second order tensor w

by € and contracting twice.

ijk
= I-29).
€ijk Yiy T ™ (11-29)
If wij is a symmetric tensor, the left side of egquation (II-29) is
zero. If wij is skew-symmetric the left side is non-zero and expan-
sion of equation (II-29) leads to the conclusion that the components
of U, are numerically twice those of wij' Therefore, we may write

k

the relations

w, =

x (II-30),

e, ., W, .,
ijk i3

and w = (11-31),

15 = Fi19x%

where wk is the vector uniquely associated with the skew-symmetric
second order tensor wij’ The consequences of the duality property
of vectors with skew-symmetric, second order, tensors in three-dimen-

sional space will have important applications in the development of

angular velocity relations.
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2. Tensor-Vector Correspondence

The various formulae of vector analyses are easily reconstructed
using the tensor notation. The following is a condensed but fairly
complete account of the vector analysis by the tensor method. The
method clarifys some of the ambiguities of the vector relations,

For example, the emergence of vector and scalar products.

a. Vector
As previously defined, a vector in tensor notation is written

as a letter with a single subscript.

=1t (II-32)

b. Multiplication of a vector ; by a scalar ¢.

>

ot = qmi (II-33)

> >
c. Addition and subtraction of vectors £ and s

T+ = t., + 8 (11-34)

WY

=t, -8 (11-35)

> >
4. Scalar product of vectors £ and s

T .5 =t¢t.s, (1I-36)
1 1

e. Vector product of vectors % and &
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4 € t
8= &3k%5%

+
t % (rI-37)

Note that the ordering of the indices in equation (II-37) must be
preserved in order to conform to the right hand rule (sign conven-
tion) when forming cross products.

-> >
f. Second order tensor product of two vectors ¢ and s

t.s, =p.. (II-38)
i3 ij

This product becomes a second order tensor; vector notation fails to

define this quantity.

g. Triple scalar product

-> —)-x+ _ 39
p (q r) = eijkpiquk {II-39)

h. Triple vector product

-> > >
p X (g xr)

il

€;3kP 55171

= &9k %kinf 5917 m

(85183m = Sin8517P591 7

=pr.d

wndi = P1917 (I1-40)

i
The correspondence between vector and tensor notations are summar-

ized in Table II.
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Common Formulae of Vector Analysis in Tensor Notation

Ogeration

Denotation
Addition and

Subtraction

Multiplication
by a Scalar

Scalar Product

Vector Product

Tensor Product

Triple Scalar
Product

Triple Vector
Product

Vector Notation

z

- > -
p=t+s8
- -+ ->
g=1t-3s8
7= ot

b=%.38

b=p .m
=p. ExD

T=pxm
SIxdxd

Tensor Notation

t,

1
pi = ti + 8,
ql = ti - 31
ri = ¢ti

¢ =7 8
m, = eijktjsk
n,., = t,s.

i3 13

¢ =pm

= Pi®ix" 5%
1. =
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IIXI

POSITION ANALYSIS

A. Problem Formulation

The most difficult problem in the study of spatial mechanisms
is the position solution. Position solutions invariably result in
non-linear transcendental equations. Velocity and acceleration prob-
lems are characteristically linear and present no difficulties beyond
their often cumbersome length. The use of the computer alleviates
this difficulty to a great degree as lengthy equations can be defined
in pieces using implicit notation and later pieced together explicit-
ly by the computer.

Sets of simultaneous, non-linear, transcendental equations re-
sulting from position analysis yield readily to simpler iterative
techniques on the computer. Much work has been done resolving such
equations into polynomials for which solution technigues are well
known [9]. This approach leads to a polynomial in one unknown but
one of higher degree than the number of unknowns in the problem.

Some complex problems do not allow the reduction of equations to a
single polynomial but rather simultaneous polynomials with additional
computational difficulties. The present approach is to simultaneous-
ly solve the system of non-linear equations by well known iterative
techniques for a particular set of system parameters. This results
in one set of solutions for a particular case of interest. The

particulars of this statement will become clear in the example solu-

tions given.
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1. Notation and Terminology

The notation problem that arises when physical problems require
the concept of three-dimensional space is at best difficult. Various
schemes have been devised which have particular advantages and dis-
advantages. It is felt that the flexibility of the tensor notation
provides a solution which alleviates many of the difficulties.

It will be found convenient to express vectors as a product of
magnitude and a unit vector defining the direction of the vector.

For example,

R, = Rr (III-1)

where R is the magnitude of the vector Ri and ri is a unit vector
describing the direction of the Ri vector in a particular coordinate
frame. The three axes of a coordinate frame are labeled X1' Xz' X3.
In general, when a vector is not implied, we may speak of a frame as
simply the Xi frame. The notation Xi (no superscript) is reserved
for the ground frame, the frame used as a reference for all other
considerations. If another frame is required, different from the
ground frame, a superscript is used to distinguish it from the ground

frame. For example,

Xt = x5, Xi, XJ; (II1-2)

1 1

jdentifies a frame, called the r frame, which has in general a dif-
ferent orientation than the ground frame. When it becomes necesgsary
to treat an axis of a coordinate frame as a vector, it is understood
%o be a.unit vector and a subscript must be added to indicate the

vector character.
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XD, = (X)) ., X, ) (111-3)
1 11 b 1 3

Superscripts are also used with vectors to indicate in which

coordinate frame the components are expressed. The equation

r? = r?, r:, r§ (111-4),
indicates the r vector expressed in the t frame. That is, the compo-
nents of r: are perpendicular projections on the axes of the t frame.
The absence of a superscript on a vector indicates that that vector
is expressed in the ground frame. The components of the (Xf)i vector
in equation (III-3), as given are the components of the Xf axis treat-
ed as a unit vector and expressed in the ground frame. The expression
(Xf)i is the same vector but expressed in the r frame and has compo-

nents in that frame.

(XJ;)JI-: = ltopo (III-S).

When more than a single coordinate frame transformation is in-
volved in a problem, the transformation coefficients must be labeled.

Superscripts are again used. The transformation

r, = A r, (I11-6),

indicates that the vector rj (expressed in the ground frame) has been
transformed to the t frame by the transformation relation for vectors.
The coefficients A:; are the transformation coefficients between the
x frame and the t frame. The resultant vector rz is expressed in

the t frame. Note that the o:dering of indices in equation (III-6)
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is established by convention and must be preserved. The inverse
transformation is

- Atxpt

r, I (III-7).
1 J1 3

Spherical polar coordinates are used throughout to define the
cartesian components of wvectors. Two angles and a magnitude are re-
guired to define a vector with respect to a particular coordinate
frame. The symbols ¢ and 8 will be used for the polar and azimuthal
angles throughout., Figure 6 shows the conventional polar coordinate
used. Superscripts are again used to define which vector these angles
describe and which coordinate frame they are measured in. That is,
¢rt and Grt are the polar and azimuthal angles of the r vector and
are measured from the X: and X? axes respectively.

It is important to note that ri and r; are the same vector in
space {a fact denoted by the letter r) but are expressed in different
coordinate frames, the Xi and XE frames respectively. 1In vector anal-
ysis this is accomplished by writing each component as a product of
its coordinate magnitude and a unit vector along its axis. In tensor
notation a single superscript serves the same purpose. Egquation
(III-7) does not imply a relation between two vectors, but a relation
between the components of the same vector as they appear in two
different coordinate frames.

The nomenclature is summarized in Table III. Many mechanism
problems allow expression and solution of all vectors in a single
frame, the ground frame with perhaps one coordinate transformation.

For these cases, the notation is more detailed than necessary but

allows for expansion to more complex cases.
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FIGURE b

NOMENCLATURE FOR POLAR COORDINATE VECTOR REPRESENTATION
COORDINATES OF THE VECTOR ARE SHOWN IN THE X; FRAME AS r.. THE SAME

VECTOR IS SHOWN IN THE X; FRAME AS ;-

IF THE TRANSFORMATION IS DEFINED, THE RELATION BETWEEN COMPONENTS OF
. AND r; MAY BE EXPRESSED AS

r, = A%t

1 B E
OR

t X

r, A O
1 i3 37



Figure 6

Xy

A

X

. T r I AP - r
ri = sind~ cosf , sind~ sinb, cos¢

Xs' Xa
¢rt
rt
i , ___XE
Xz
rt

. . . t
rz = 51n¢rt cosert, 31n¢rt sin6* ", coscbrt
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2.

TABLE III

44

Summary of Tensor Nomenclature

Unit vector ri

Magnitude R

Vector R, =
: i

Vector expressed RpF
in other than 1
ground frame

. rx
Transformation Aij
Coefficients ’
Coordinate Xi
Frame

Unit vectors are indicated by
lower case letters with a sub-
script. Absence of a superscript
indicates the vector is expressed
in the ground frame. A vector of
unit magnitude Piri = 1

Magnitudes are indicated by upper
case letters. A scalar gquantity -
no super or subscripts. Magni-
tude of a vector is always posi-
tive; if a solution for a magni-
tude yields a negative number, the
associated unit vector is reversed.

Vectors are written as a product
of magnitude and a unit vector
defining its direction.

This is the same vector as Fr,
but is now expressed in the tt
frame. May be obtained by trans-
formation or empirically written.

A set of nine guantities (direc-
tion cosines) relating the two
coordinate frames indicated by
the superscripts.

Three mutually perpendicular axes
having a common origin. Right
handed coordinate frames are used
exclusively. Superscripts dis-
tinguish frames other than the
ground frame.



TABLE III {cont.)

7. Coordinate frame (Xg)?
axis *

273
8. Spherical R, ¢%, oF
Coordinates
rt rt
R, ¢, 8
. . LT r
9. Components in r = sind cosb
Spherical ! r .
Coordinates r2 = sin¢ sinb
r = cos¢r
3
t . t t
rl = 51n<br cos6®
t . ,rt . rt
r2 = sin¢” “sinB
t rt
rs = cos¢

45

Parenthesis are used when

it is necessary to treat an
axis as a unit vector. As
written this vector has com-
ponents 0, 1, O.

The same vector but now ex-
pressed in the ground frame.

Polar and azimuthal angles
used to define orientation
of a vector in a frame and
a magnitude to define its
length. As shown, these
angles describe the »r, vec-
tor and are measured ~from
the ground frame axes.

Describe the r, vector but
i

are measured from the axes

of the t frame.

Perpendicular projections
of the vector ri on the axes
of the ground frame.

Perpendicular projections
of the vector ri on the
axes of the t frame.
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2. The Tetrahedron Problem

The position of a spatial mechanism is given by a vector loop

equation.

Ce, +Rr, +Ss, +Tt, + «o. +Nn. =0 (ITI-8)
1 1 1 1 1

that is, its position at any instant of time can be represented by
equation (III-8) where the C,R,S,T, ..., N are the lengths of the
various links and the ci, ri, si, etc. are unit vectors defining the
orientation of the links. The vector tetrahedron problem is formed
when all vectors except three are completely known and are summed

into a single constant vector Cci. Equation (III-8) then becomes

Ce, + R, + Ss, + T, = 0 (I11-9).
1 1 1 1

Figure 7 is a pictorial representation of a wvector loop defining the
position of a space mechanism. In three-dimensional space, eguation
(ITI~-9) represents three equations and can be solved for three scalar
unknowns.

These unknowns may be randomly distributed throughout the three
vectors Rri, Ssi, and Tti. Thus, the possible unknowns are any three

t t . .
r, S, ¢s' e%, T, ¢, ©°. Examination

of the nine guantities R, ¢r, O]
of the possibilities shows that there are just nine combinations of
unknowns that result in different solutions. Chace [9] has classi-
fied the nine cases and solved them by vector methods. He classified
them by the distribution of the unknowns, whether they occurred in

one, two or three vectors. His solutions were accomplished by reduc-

tion to a polynomial in cases where explicit solutions were not pos-
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FIGURE 7

A RSSP SPATIAL MECHANISM AND THE VECTOR LOOP

EQUIVALENT DEFINING THE POSITION OF THE MECHANISM



Figure 7

RSSP MECHANISM

VECTOR LOOP EQUIVALENT

Ce, + Rr, + Ss, + Tt, = 0
1 1 1 1
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sible by vector algebra. Classification of the nine tetrahedron
problems is shown in Table IV after the system used by Chace. The
four solutions of case 3 have been presented by tensor methods by

Ho [14]1. The complete set of all nine solutions will be presented
here to provide insight into the tensor method and to accomplish the

completion of the vector tetrahedron solution in tensor form.

Case 1. unknown R, er, Qr

known Cci

The unknowns occur in a single vector Rri. The other vectors are
therefore known and are summed into the single known vector Cbi.

Equation (III-2) becomes

Ce, + Rr, = 0 (IT1I-10).
i i
The solution is trivial Bri = —Cci (Irz-11).

Cases 2a-2b.

The unknowns are contained in the vectors Rri and Ssi. The wvector

Tt. is known and is summed into the Cci vector. Equation (III-9) for
i

cases 2a-2b becomes

Ce, + Rr, + Ss, = 0 (III-12)
i i i
r
Case 2a. unknown R, 67, S
r
known Ce,, 8., ¢
i i

Vector loop equation Cbi + Rri + Ssi =0 (III-13)



Case

Number

2a

2b

2c

24

3a

3b

3c

34

Tetrahedron Equation (after Chace)

Unknown

R,08%,0%

TABLE IV

Classification of the Solutions to the Vector

Known

Ce
N
X
Cci,si,¢
r s
Cci,d> 1S9
ce.,s,,R
i1
s
CcirRr Sl¢

ce,,r,,s8,,t,
[ RS A |

t
Cci,r*i,si rtrcb
s t
Cci,ri,CP ITI¢

Cci,R,¢rrSl¢srTl¢t

Possible

Solutions

50

1 (trivial)



51

Solution: Multiply through eguation (III-13) by the vector product

€, . .
1]kcjsk

Ce, .

c.c.8s. + Re,, r.c.s 8. =0 (III-14)
ijki

5k 13K71%4%% ¥ %19x81%55%x

Recall that the second order products cie. and sis form symmetric

k

tensors and that €i.

K is a completely skew-symmetric tensor. Hence,

the products in the first and third terms of equation (III-14) are

identically zero.

= ITI-1
Reijkricjsk 0 { 5)

Assuming R # 0 we have

=0 III-16).
Eijkricjsk ( )

. . . r
Equation (III-16) is a scalar equation involving one unknown, 0", and

is of the form
r P o
a cos® + b sin® + ¢ =0 (IxI-17),

where a, b and ¢ are known scalar constants.

Equation (III-17) may be solved for e by iteration techniques.
There are two solutions but the choice of starting values (determined
by a visual inspection of the values of the known parameters) is
sufficient to insure convergence to the proper solution for the case
of interest.

Equation (III-17) may be simplified by transforming the problem
to a coordinate frame which has particular characteristics. Define

the vector



52

ui = eijkcjsk (I11I-18)

The vector ui is known being the vector product of the two known

vectors ci and s, - Equation (III-16) may be written
u,r, =0 (IT1-19).

Define a coordinate frame, Xi, such that

(Xf)i = eijk“j(Xa)k (ITI-20),

%1313 %o x|

(Xz)i = Eijk(X3)j(Xf)k (III-21).
N S NC N

Xy, = &Ky, (111-22).

rx

Equations (I1I-20,21,22) form the transformation coefficients, Aij'

The transformation relations for the vectors ri and ui may be written

rx r

u, = AS5E (TII-23)
i %317

r = AT (IT1-24)
i 3173

Substitute equations (III-22) and (III-23) into egquation (III-18)

A§§A;:u§r; =0 (III~25).

Using the orthogonality property

r.r
Gjmujrm 0 (ITI-26),
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i
I
o

U (ITI-27).

Since the (X'f)i axis is formed by the vector product of uj and (X3)k
it follows that uj is perpendicular to the (Xf)k axis. Hence, the

first component of ui in the Xi frame is zero.

u, = 0 (II1I-28)

b oy
WErt + Wt =0 (ITI-29)
2 2 3 3

r
Now the components of ri are

ri = sincbrr coserr, sind)rr sinerr, cosd)rr (I11-30),

rr

but the (XJ;)i = (Xs)i’ therefore ¢r = ¢ .
then, ri = sincbr cos@rr, sin¢r sinerr, cos¢r (III-31).

Expand equation (III-29) in terms of the unknown err'

ut sind)r sin6™T + uj r§ =0 (I1I-32).
2
rr
then, solving for 6
. -YU, Pr
sin®™F = 3 3 (I1I-33).
r ., ,r
u  sing

2

The vector ri as defined by equation (III-30) is now known. The
vector ri may be obtained from equation (III-24).

Explicit expressions for the remaining unknowns R and S can now
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" be obtained. Multiply equation (III-13) by eijks'
3

+ = -
Cgijkcisj Reijkpisj 0 (ITI-34).
Solving for R,
-Ce,..c.,s8,
R = ]""%i3k%%4] (III-35).
€,.,.7.8,
| TikTi%y

Expand equation (IXI-13) in the first component

Ccl + er + Ssl =0 (ITI-36).

Solving for S

s =7, - Bry)y (I11-37).
| °1 |
Case 2b. Unknown: R, er, 9°
known: Cci, 0%, ¢°, 5
Vector loop equation: Cci + Rri + Ssi =0 (ITI-38)

Solution: Multiply through equation (III-38) by eijkrj to eliminate

the unknown R

Ce.. c.r, + 5

15%%i7y eijksirj = 0 (III-39)

Expand equation (III-39) in the first and second indices,
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eijl(ccirj + Ssirj) = 0 (I11~-40).

€..2(Cc.r. + Sg.r.) =0
i j i3

ij

Equations (III-40) are of the form

a sin®® + b sind” + ¢ = 0 (III-41).
a cosb® + b cosd®F +da =0

where a = Srs (II1-42)
b = —(Cc3 + 833)
c = (e r,
4= Cclr3

Equations (III-41) may be solved for the unknowns er, and es. The
vectors Pi and si are then known. The remaining unknown, R, may be

obtained by expansion of equation (III-38).

Cc1 + er + Ss1 = 0 (I1I1~-42)
-(Ss, + Cc
r= |2 V) (II1-43)
| 1 l
Case 2c. Unknown : Gr, @r, S

known: Cec., R, s,
i i

Vector loop equation: Cci + Rri + Ssi =0 (III~44)

In this case the vector ri is completely unknown. Isolate this vec-

tor on the left side of equation (III-44).
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Rr, = -Cci-Ssi (ITI~45)

Take the scalar product of each side of equation (III-45) by itself.

2 2 2
R =85 +(C + ZSCsici (T1I1~46)

Equation (III-46) is quadratic in S with known coefficients.

Therefore,

2 2 2 2 1/2
5= -Cs,e. + [C (s,c,) - (¢ -R)] (ITI-47).
11— i1

The unknown vector Pi may be obtained from equation (III-44).

Ss. + Ce,
— 1 1

r, = (ITII-48).
* R
Case 2d. Unknown: Grir¢r, 6
s
known: ¢, Cci, R, S
Vector loop equation: Cci + Rri + Ssi =0 (I11-49)
Expand equation (ITII-49) in the third index
003 + Rra + Ss3 =0 (I1II-50).

Equation (III-50) contains only one unknown, contained in the term

r
3

= 70ty = 585 _ ogeF (ITI-51).
3 R

Isolate the vector Rri in the manner of case 2c.
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Rri = —Ssi—Cci (I1I~52)

Take the scalar product of each side of equation (III-52) with itself.

2 2 2
kR =5 +C + ZSCsici (III-53)
then
2 2 2
s,e. =R -5 -C (ITI-54)
t 25C

Expanding and rearranging equation (III-54), we have
s s s s 2 2 2
¢ sind” cosb” + ¢ sind” sinf R -5 -C - s c (ITI-55).
! 2 25C 3

Equation (III-55) may be simplifjed in the manner of case 2a. Define

the auxiliary coordinate frame Xi in the following manner

(X?)i = €1jk j(X ) (II1-56)
1€55x%5 Eak]
S

x3), = i Fs) g )y (I111-57)

leijkc: Fali

S
(X)), = (X3); (111I-58)

Equations (I1I-56,57,58) form the transformation coefficient Ai?.

The vectors si and ci may be written

s, = AS%eS (III-59),

= ASXCS

%; = %31%;

(I11-60).
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Equation (III-54) may be written

s,c, =K (ITI-61),

where K is the known expression on the right side of equation (III-

54). Substitute equations (III-59 and 60) into equation (III-61).

SXS)S%LS o g (ITI-62),
3i"3 mim
or s?c? = K (ITII-63).

Expand equation (III-63)
%% + 8%¢% + s%:° =k (III-64)
11 2 2 3 3

Since the X° axis is formed by the vector product of ey and (Xa)i'
1
and (X ), = (Xs)_, it follows that the ci vector and the X? axis are
3° 1 3 1
perpendicular. Therefore, the first component of the e, vector is

zero in the Xi frame.
¢ =0 (II1I~-65)
Equation (III-64) becomes

sscs + sscs =K (I11I-66).
2 2 3 3

Expand equation (III-66) in terms of the unknowns
e sincbSs cosb®® + sfcj = K (I11-67).
2

ss s
Since X° is defined to be equal to X3 we have that ¢ = ¢~ . There-
3

. . nSS
fore, the only unknown in equation (III-67) is 6 .
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cos6®S = K - S§C§ (I11-68).
e sind)Ss

2

s . .
The vector si is now known. Equation (IITI-59) may be used to obtain
the vector 8. The remaining unknown, Gr, may be obtained from the

expansion of equation (III~49)

r = -(Ce, + 58;) (111-69),
R

then r
cosf” = -(Ce, + Ssl) (ITI-70).

R sind®

Cases 3a-3d These cases are categorized in that the unknowns are

distributed through all three vectors Rri, Ssi, and Tti.

Case 3a. Unknown: R, S, T

known: Ce,, ., 8., t,
i i i i

Vector loop equation: Cci + Rri + Ssi + Tti =0 (ITI-71)

Multiply equation (III-71) in turn by the vector products eijksjtk'

€...r.8. . There results
€ 9x%3% 7 f13x75%

2 o TCi3k%i% 5% (111-72)
| €i3x71%5%|
Ce.. e.r.t
|77 1367473 k| (ITI-73)

l eijksirjtkl
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. [Cai‘kcir'skl

(ITI-74)
t.r,
I €i9x%1" 5%k |
t
Case 3b. Unknown: R, S, O
known: Ce,, ., 8 ¢t
- il il il
Vector loop equation: Cci + Rri + Ssi + Tti =0 (ITI-75)

The unknowns F and S may be eliminated by multiplying equation (III-

75) by the vector product Eijkrjsk' There results

+ Teijktirjsk =0 (I1II-76).

e.r,

Ce;5x%17 5%k
t .

Equation (III-76) contains only one unknown § in the form of 51n6t

and cosGt. This equation may be simplified by a coordinate trans-

formation. Define the known wvector Wi.

= . (I1I-77).
Wi eijkrjsk
Equation (III-76) may then be written
CW.e. + TW.,t., = 0O (I1I-78).
ii i'i
Now define the XE coordinate frame such that
t
(X7, = & o M. (X3 (I11~-79)
| F13x"5 ¥ )k|
t t
= X X (II1I-80)
0 =g %s) Er)y

‘eijk()(a)j (X}'—)k‘
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ao), = ), (I11-81)

Egquations (III-79, 80, 8l1) form the transformation coefficients A;?.

The vectors Wi and ti may be written

tx, .t

W, = AW, (TII-82)
1 i j

t, = A?‘tf‘ (III-83)
i ji j

Substitute equations (III-82) and (III-83) into the second term of

equation (III-78)

CW.e, + AP Pt 2 o (ITI-84),
3imi" g m

or CW.c. + THEtS = 0 (III-85).
i’i mm
Since the X? axis is defined by the vector product of the vectors Wj

and (Xa)k it follows that Wﬁ is perpendicular to Xﬁ and hence the

. . t
first component of W§ is zero in the X1 frame,

Wt =0 (I1I-86).

Expand equation (III-85) in terms of the unknowns.
. t t,.t
CW.e, + TW sing™™ sind™ + W t) = 0 (ITI-87)
i 2

. . . tt
Since ¢tt = ¢t the only unknown in equation (III-87) is 8 .

= ~(CW.c, + TWats)

TW sin¢

sinf (III-88)

LS L
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The vector t: is now known and ti may be obtained from equation (III-
83). Obtain the remaining unknowns R and S in the following manner.

Multiply equation (III-75) by Eijksjtk and solve for R.

€5 3x%:55%| (III-89).

eijkrisjtkl

Rk =

"—C
|

Expand equation (III-75) and solve for S

S = l-(C’c1 + Rr, + Ttl)l (IT1-90) .
| ! I
s At
Case 3c. Unknown: R, 67,0
known : Ce,, 5, T, r,, ¢s’ ¢t
i i
ion: = -91
Vector loop equation: Cci + Rri + Ssi + Tti 0 (ITT )

Expanding equation (III-91) in the third component results in

B = I—(833 + Tt3 + Cb31 (111-92)

| s |

Expand equation (III-91)

. .t t
Ce + Rr + Ssin¢s cos8® + T sing cosb = 0 (II1-93),
1 1

I
o

S R, =
Ce + Rr + Ssin¢® sin8® + T sind sind (ITI-94).
2

2

s t
Equations (III-93, 94) contain the unknowns 6 and 6 and may be

solved by iteration.
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Case 3d. Unknown: er, 95, St
known: Cci’ Rr Sl TI ¢rr ¢S' ¢t
Vector loop equation: Cci + Rri + Ssi + Tti =0 (II1-95)

The distribution of the unknowns in this problem is such that a
solution cannot be obtained directly from equation (III-95). The
expansion of the loop equation in the third index contains only a
relation among the known parameters leaving the problem of two equa-
tions with three unknowns. However, a conceptual change in the form-
ulation of the problem alleviates the difficulty. If we regard the
problem as one with the azimuthal angles of three vectors unknown
while the polar angles are known and allow that the direction (axis)
from which these polar angles are measured may be different but

known we can formulate the problem in the fellowing manner.

tt
Unknown: err’ Sss' e
rr ss tt
known: Cci, R, 8, T, ¢, ¢, ¢
1 . + = -
Vector loop equation: Cci + Rri + Ssi Tti 0 (III-96)

Restated the problem is mathematically the same but now we are allow-
ing the vectors r.. 8,1 ti to be measured in a coordinate frame other
than Xi' and whose third axis is known in the Xi frame. Thus, three
auxiliary coordinate frames may be defined using the known axis vec-
tors (Xg)i' (Xj)i’ (Xg)i in the vector product manner of previous

sX tx

. TX
cases., Therefore, the Aij’ i3’ Aij are known.
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Restate equation (III-96) replacing r,, 8., and ¢, with Ar§rr,
i i i mi m

X r t .
s.s , and 4 ?tt respectively.
mi m mi m

rxXx r SX 8

Co. + RATXpT + 545%:5 + ™t = o (III-97)
1 mil m mim mi m

sX tx

337 A

Multiply equation (III-S7) by Ag:, A 31 and recall that

=0

A,
31 mi 3m

rx,sx x,tx,t
“5%sS 4 maTEA R =
3l mim 3l mim

|
o

ca™ e . + Rrt + 54 (I11-98)
31 1 3

CA??ci + RASEATERT

sx, tx_t
AT r t =
3i mim m

+ SS§ + TAS%a

. . 0] (ITI-99)
31 mi

cate + rATRATT & 5at45%sS & et
31 1 31 m1im 31 mlm 3

i
o

(ITI~-100)

Expanding and rearranging equations (III-98, 99, 100)

+ T4 A

¥rX,sX s rx, tx, t
AT ATt
3i 31 3 31 31 3

CA??ci + Rr§ + SA

rx ., ,Ss ss . _ASS
+ SAai sing (Ali cosf + Azi sin6~ ")

t t ._tt
+ TAi? sin¢tt(A§§ cosd™F + Az? sin@"7) = 0 (r1I-101),

S

CASX + Ssa X, YXXx r TAsgAtxtt

S
+
+ RA3iA3ir3 .

3173173

r, rx rr rx . XYY
+ RASY sing” (A1i cosb™ + Azi sind )

t tx . tt
+ TAS% sin tt(At¥ cos €4 47 sin Yy =0 (ITI-102),
33 1i 23

tx,sx s
tx,rx r 4S% g

tx t
CAjie; + Tty + BASAGT, + 54,,4,5%,

+x rr rx Yy rx R err
i T cos®TT 4+ A, sinb®T7)
+ RA, sind " Uy, 2i
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Ss

S¥ c0s0%% 4+ 45% 5in6°%) = o (III-103).

+54 % sin¢ss(A1i ot

3i

Equations (III-101, 102, 103) are of the form

. tt . t
a cos®8°° + b sinb°° + ¢ cost + sinf v e (I11~104),

sind%F + ¢” cosB't + a” sindtt = e~ (II1-~105),

-

rr
a” cosb + b

-

. XYr - P N -
sinb + c cos8®% + g sind®® = e {111-106).

-

rr
a cosB + b

-~

The invariants a,b,c,d,e and their primed and double-primed counter-
parts may be determined from equations (III-101, 102, 103). Equa-
tions (III-104, 105, 106) may be solved for ess' ett, e”r, by numer-
ical analysis. The vectors ri, si, t: are then known and the vec-
tors ri, si, ti may be obtained from the transformation relations.
As has been demonstrated the solution of difficult vector equa-
tions often require simultaneous solution of sets of non-linear
transcendental equations. Appendix A is a description of Newton or
Newton-Raphson iterative procedures that have been successfully
employed in the solving of such equations. The simplicity and
adaptability of this procedure was the original stimulus for the
present approach of solving the simultaneous set of equations as

opposed to reducing them to a polynomial and applying iterative

technigues for polynomials.

B. Application to Mechanism Solutions
The vector tetrahedron problems are somewhat abstract in nature
as they can be formulated without the concept of a mechanism. Now

from a different view-point the methods developed in the solution
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of the tetrahedron cases will be applied to the solution of partic-
ular mechanisms. That is, a mechanism is conceived of, its link
and joint geometry selected, the problem of knowns and unknowns
defined and a solution then sought. The following are ten examples
of the applicaticn of tensor methods to the solution of spatial

mechanisms. The symmetry and constraints present in such problems

will be seen to have three effects. The constraints present due

to the pairs selected allows coordinate frames to be defined to
advantage, thereby eliminating some terms in the solution equations.
Constraints are often present in the form of scalar products which
tends to increase the number of simultaneous equations which must
be solved numerically. The independent constraints allow a solu-

tion to be obtained for more than three unknowns.

Case 1l: RSSP Mechanism

Referring to Figure 8, an RSSP mechanism is constructed as

shown. The problem is defined as follows.
Input: r
Known: R, 5, C, Cy ti

Unknown: T, si

Vector loop equation: Cbi + Bri + Ssi + Tti =0 (I1TI~-107)

Since the vectors Cci and Rri are completely known, let

K, = Ce, + Rr, (Irr-io08),
i i i
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FIGURE 8
CASE 1  RSSP MECHANISM

INPUT: r

UNKNOWN: T, s

Ce, + Rr, + Ss, + Tt, =0
1 i 1 1



Figure 8

RSSP

MECHANISM

68
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then K. + 8. +Tt. =0 (I1x-109),
31 1 RN

The problem as now stated is analogous to Case 2¢ of the tetrahedron
problems. However, the choice of the ground frame leads to a simp-
ler solution than was obtained in Case 2¢. Choose the ground frame

as shown in Figure 8 so that tl = tz = 0, t3= -1. Multiply equation

(ITI-109) by €i. tj eliminating the unknown T.

jk

e...(K.t., + Ss,t.) =0 (ITI-110).
ik i3] i3
Expand equation (III-110)
K + 58 =20 (I11-111),
1 1
K + 858 =20 (I1I-112).
2 2
then
. .S s
s = -K = sind” cos® (I1T-113),
1 1
S
8, ==K = sin¢® sin®® (ITI-114).
—_2
S

If desired, the polar and azimuthal angles, ¢s
obtainable from equations (III-113 and 114).

T is obtained from the expansion of equation (III~109)

T = le + 833|

and 6° are directly

The remaining unknown

(IT1I-115).
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Case 2: RSCC Mechanism

Referring to Figure 9, a RSCC mechanism is constructed and the

problem is defined as follows:

Input: ri

Known : R, C, ci, ti

Unknown: S, Si’ T

Constraint: 8 ti =P where P is a known scalar constant

Vector loop equation: Cci + Rri + Ssi + Tti =0 (ITI-116)

Sum the known vectors into a single vector

K., = Ce, + Rr, (I11-117).
i i i
then K, +8s, +Tt, =0 (II1-118)
i i i
Choose the ground frame so that tl = tz = 0, t3 = -1 then expanding

. S
the constraint equation yields a solution for ¢

s = -P = cos¢® (TII-119).

Multiply equation (III-117) by Sijktjsk to eliminate the unknowns

S and T.
_ (III-120)
Eijk(Kithk) o

Expanding, we have
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FIGURE O

CASE 2 RSCC MECHANISM

INPUT: r,
KNOWN: R, Cyoey, ty
UNKNOWN: S, s;s T

CONSTRAINT: s,t. =P

i1

Ce; + Rry + Ss, + Tt =0



Figure 9

RSCC MECHANISM
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Ks -Ks =0 (IT1-121)

or K sind® - K cosd® = 0 (II1-122)

The form of equation (III-122) allows a direct solution for 6°.
The vector s; is now known; the remaining unknowns are S and T.

Multiply equation (III-118) by €ijktj

€... (K. t. + 5s.2.) =0 (IT11-123).
ijk i3 ij

Expanding (III-123) we have

K +8 =0 (ITI-124)
1 1

K +8s =20 (ITI-125)
2 2

Either equation (III-123 or 124) yields a solution for S
S =-K =-K, (III-126).
s s
1

The remaining unknown 7 may be obtained by expanding equation (III-

118)

7= |k + 55 | (II1-127)
3 3

Case 3: RSCP Mechanism

Referring to Figure 10,an RSCP mechanism is constructed and

the problem defined as follows:

Input: . ri

Known: C, R, Sy ey s di
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FIGURE 10

CASE 3 RSCP MECHANISM

INPUT: r,

1

KNOWN : Cr Ry Sy epy £y dy

UNKNOWN : T, D, s,

CONSTRAINT: s t; = P

Ce., + Rpr, + Ss, +Tt, +Dd. =0
i i i i i



Figure 10

Ss

T,
i

75

Dd i

Ce,
1

RSCP MECHANISM
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Unknown: T, D, si

Constraint: siti = P where P is a known scalar constant

Vector loop equation: Cci + Rri + Ssi + Tti + Ddi =0 (111-128)

Sum the known vectors into a single vector,

let K, = Ce. + Rr, (11T~-129),
i i i
then K. +Ss, +Tt, +Dd, =0 (I1I-130).
i i i i
Choose the ground frame so that dl = d2 =0,d = -1. Multiply
3

equation (III-130) by gijktjdk to eliminate the unknowns T and D.

13k(K t d + Ss t d y = (IIT-131),

or €.. (K.t. + Ss.t.) = 0 (ITI-132).
133 1 J i3

Expanding equation (III-131) we have
(ITI-133).

(Kt -K<t)y + St sin¢>s c059s - St sincbs sinB® = 0
1 2 2 1 2 1
Expand the constraint equation

t sindbs coses + tz sin¢s sind® + t3 cosd)s =0 (III-134).
1

. s
Equations (III-132 and 133) may be solved numerically for 6~ and ¢s.
The vector 8. is then known. Multiply equation (III-130) by

i

€ s.d. to isolate the unknown T.

ijk ik
8. +Tts.) =0 (ITI-135)
Eijj(KlsJ 1] !
then T = L_.l.ls_...__li (III-136).

|€1]3 i 3]
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The remaining unknown D is obtained from the expansion of equation
(IXI-130).

D = le + 88+ Tt3] (I1I-137).

Case 4: HCCC Mechanism

Referring to Figure 11, an HCCC mechanism is constructed and

the problem defined as follows:

Input: 38
Known: c, eir Ty di' h (pitch of screw)

Unknown: R, S, T, D, ti

Constraint: ti di = g Siti = P where § and P are known scalar
constants
Vector loop equation: Cci + Rri + Ssi + Tti + Ddi =0 (II1-138)

The unknown R can be expressed as a function of the screw pitch and
. rr
the azimuthal angle 6

R = 0%%h (ITI-139).
Let Ce, + Rr, = K., then
1 1 1

K +8Ss. +Tt, +Dd, =0 (III-140).
i i i i

Choose the ground frame so that dl = d2 =0,d = -1.

Expanding the constraint tidi = § we have
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FIGURE 11

CASE 4  HCCC MECHANISM

INPUT: 8y
KNOWN: Cre,r ry, di’ h (pitch of screw)
UNKNOWN : Ry 8, Ty Dr t,

CONSTRAINTS: 2,4, =@ , s;t, =P

. + Rr, =
Co; + Br; + Ss, + Tt, +Dd, = 0O



Figure 11

HCCC MECHANISM
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t o= -q = cos¢t (III-141)

Equation (IIT-140) may be solved for ¢t. Expanding the constraint

s8.t. = P we have
i’i

s sincbt coset + szsin(bt sin6® + sgt =0 (IT1I~142)
1 3

Equation (III~142) may be solved for Gt and the vector ti is known.

Multiply equation (III-140) by eijktjdk

= I1-143),
eijk(Kitjdk + Ssitjdk) o] (1 )

or .. (K.t, + Se.t,) =0 (III-144).
ijs i3 i3J

Equation (III-144) may be solved for S, Multiplying equation (III-

€, .
140) by €,

jksjdk yields

e.. K.s, +Tt,s,) =0 (IITI~145),
ijs 1 3 iJ

which may be solved for T. The remaining unknown D may be obtained

from the expansion of . equation (III-140)

D= |k +85s + Ttal (III-146).
3 3

Case 5: DPCSC Mechanism

Referring to Figurel2, a PCSC Mechanism is constructed and the

problem defined as follows:
Input: R

Known: C, T, ¢y Pyr 847 d,
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FIGURE 12

CASE 5 PCSC MECHANISM

INPUT: R
KNOWN : ¢, 7, ci' Ti, Si, di
UNKNOWN S, D, t

CONSTRAINT: t,d; = @

Ce, + Rr, + Ss, + Tt, + Dd, = 0O
i i i i i
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PCSC MECHANISM
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Unknown: S, D, ti
Constraint: tidi = ¢ where @ is a known scalar constant

Vector loop equation: Gci + Rri + Ssi + Tt, + Ddi =0 (II1-147)

i

Let X, = Ce, + Rr., then
x 1 1
Ki - Ssi + Tti + Ddi =0 (II1-148).

Choose the ground frame so that d1 = dz =0,d =-1.

From the constraint we have

t = —Q = cosp" (I11-149)

Multiply equation (III-148) by Eijksjdk and expand

(Ke-Ks ) +T (szsin¢tcoset -slsin¢tsin6t = 0 (III-150)

Equation (III-149) may be solved for et. Multiply equation (III-148)

by eijkdjtk to isolate the unknown S.

EiSK(Kitk + Ssitk} =0 (ITI-151)

Solve equation (III-151) for S. The unknown D may be obtained from

the loop expansion (III-148).

D = IX3 + 58+ Ttsl (III-152)

Case 6: RCSC Mechanism

Referring to Figure 13, a RCSC mechanism is constructed and the
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FIGURE 13

CASE 6  RCSC MECHANISM

INPUT: r.
KNOWN ¢, R, T, e di
UNKNOWN : S, D, ti

CONSTRAINT: s, = P

+ =
Ce, Rr, + Ss; + Tt +z)di =0



85

Figure 13

RCSC MECHANISM
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problem is defined as follows:

Input: r
Known : c, R, T, e di
Unknown: S, D, t
Constraint: sit. =P where P is a known scalar constant

Vector loop equation: Cci + Rri + Ssi + Tti + Ddi =0 (III-153)

Let K, = Ce, + Rr,, then
i i i

K. +8s, +Tt, +Dd, =0 (III-154)
i i i i
Choose the ground frame so that d1 = d2 = 0, d3 = -1. Multiply
equation (III-154) by €ijksjdk to eliminate the unknowns S and D.
.. (K.s, +Tt,s.) =0 (II1-155)
i3 1 j i3]

Expanding equation (III-155)

(K s -K s ) +T sino® (szcoset -5 sind%) = 0 (II1-156),
1 2

and from the constraint

t
sin¢t(s coset + szsinet) + sscos¢ =0 (TITI-157).
1

t
Equations (III-156 and 157) may be simultaneously solved for 6~ and

¢t. Multiply equation (III-153) by eijktjdk yields
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€ 4o (Kyty + S8,t) =0 (III-158).

Equation (III-158) may be solved for S. The remaining unknown D

may be obtained from the expansion of equation (III-153)

D = |K3 + 88+ Ttal (ITI-159).

Case 7: RSCR Mechanism

Referring to Figure 14, an RSCR mechanism is constructed and

the problem defined as follows:

Input: ri

known: R, S, D, C, ¢;, ¢, ¢°

Unknown: T, 8 ed, ot

Constraints: siti =0 , tidi = P, where § and P are known scalar
constants

Vector loop equation: Ki + Ssi + Tti + Dd’i =0 (II11-160)

where Ki = Cci + Rri. Eliminate the unknown 7 by multiplying egua-
i - £ t.
tion (III-160) by i5k%3

€... (K.t., + Ss.t, + Dd.t.) = O (I1I-161).
ijk i3 iJ i3

Expand equation (III-161)

(K +8s +Dd)t - (K +S8s_+ Dd )y t=0 (III-162),
2 2 2 3 3 3 3 2
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FIGURE 14

CASE /  RSCR MECHANISM

INPUT r,
KNOWIN & R, 5, D, Cy e, ot, o
UNKNOWN: T, s, 6%, oF

CONSTRAINT: s;t, =@ , ¢t d. =P

Ce, + Rr, + Ss, +Tt, + Dd, = O
i i i i i



Figure 14

RSCR

Ce

MECHANISM

Rri Ddi
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(K +S8 +Dd)Yt - (K +8 +Dd) t=o0 (ITI-163).
3 3 3 1 1 1 1 3

Expand the constraint equations

st +s8st +s8t Q (I1I-164),
11 2 2 3

1
g

td +td +td (III-165).
1 1 2 2 3 3

Equations (III-162, 163, 164, 165) contain the four unknowns GS, ¢s,
d . .
8-, Gt and may be solved numerically. The remaining unknown T is
obtained by expanding equation (III-160).
+ +
T = |51 ¥ 5% Ddll (III-166).

| i |

Case 8: RCCC Mechanism

Referring to Figure 15 an RCCC mechanism is constructed and the

problem defined as follows:

Input: r
Known: R, C, c., d.
i i

Unknown: S, 7, D, ti

Constraint: s.ti =P diti =  where P and {§ are known scalar
i

constants

Vector loop equation: Ki + Ssi + Tti + Ddi =0 (TII-167)

where K, = Rr, + Sg. .
i i i
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FIGURE 15

CASE 8  RCCC MECHANISM

INPUT: r,
KNOWN : R, C, e, d,
UNKNOWN : §, T, D, t,

CONSTRAINTS: &;t, =P , d;t. =Q

11

Cci+Rri+Ssi+Tti+Ddi=0



Figure 15

RCCC MECHANISM
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Choose the ground frame so that dl = d2 =0, d = -1. Then from the

constraint diti = §, we have

t = -Q = cos¢® (I11-168)
From the constraint siti = P, we have

s1 sind)t coset + 32 sincbt sinGt + sats = P (III-169)

Egquation (III-169) may be solved for Gt. The remaining unknowns
are S, T and D. The problem is then analogous to Case 3a of the

tetrahedron solutions and may be solved in the same manner.

Case 9: PCCC Mechanism

Referring to Figure 16, a PCCC linkage is constructed and the

problem defined as follows:

Input: R
a
Known: C,T,C,TIS:e-lq)
i i
a
Unknown: S, D, E, ti,e
Constraints: s.t, =M t.d. =N s.d, = P where M, N, P are
i’i i’i i’i
known scalar constants
Vector loop egquation: Ki + Ssi + Tti + Ddi + Eei =0 (III-170),

where Ki = Ce, + Rri. Choose the ground frame so that el = e2= o,
i

ea = -1. Expand the three constraint equations
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FIGURE 16

CASE 9  PCCC MECHANISM

INPUT: R

. 4a
KNOWN : Cr Iy ey ries;r e, 0
UNKNOWN 2 S, D, E, t, 6

CONSTRAINTS: s,t, =M , td =N , sd, =P

Cci+Rri+Ssi+Tti+Ddi+E'ei=0



PCCC MECHANISM
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st +s8t +s8t =M (ITII-171)
11 2 2 3 3

it
=

td +td +td (I11-172)
1 1 2 2 3 3

[
"

sd +s8d +s8d (III-173)
11 2 2 33

Equation (III-173) may be solved for Gd. Equations (III-171 and

172) may then be solved for Gt, ¢t. The remaining unknowns then

are S, D, F and the problem is now analogous to Case 3a of the tet-

rahedron solutions and may be solved in the same manner.

Case 10: PCCR Mechanism

Referring to Figure 17, a PCCR mechanism is constructed and the

problem defined as follows:

Input: R

a
Known : C, D, e., 7., 8., ¢
1 1 1

a
Unknown: S, T, ti, 6

Constraint: siti =P diti = § where P and § are known scalar

constants.

Vector loop egquation: Ki + Ssi + Tti + Ddi =0 (ITI-174),

where K. = Ce. + Rr,. Multiply equation (III-174) by €,.. 8.%, to
i i i ijk ik

eliminate S and T

=0 (I1x-175).
eijk(Kisjtk + Ddisjtk)
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FIGURE 1/

cASE 10 PCCR MECHANISM

INPUT: R

a
KNOWN : ¢, D, cir ri' Si’ ¢
UNKNOWN ¢ s, 7, t,, 8%

CONSTRAINTS: s,t, =P , d.t. =@

Cci +11i’z'i +Ssi + Tf,-i + Ddi =0



Figure 17

PCCR

MECHANISM
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Expand the constraint equations

st 48t +s8t =P -
11 2 2 3 3 (1II-176),

n
L

dt +dt +d¢t -
12y 2% s 373 (III-177).

Equations (III-175, 176, and 177) contain the unknowns et, ¢t, and
d

0" and may be numerically solved. Multiplying equation (III-174) by

e‘jktjdk and €i'

i jksjdk yields the unknowns S and T respectively.

1. Canard Deployment Mechanism

While the foregoing ten cases are interesting and provide in-
sight into the method of tensor analysis it is much more interest-
ing to apply the method to a problem of practical nature from an
engineering point of view. The following problem represents the
application of tensor kinematics to an existing engineering problem
of current interest.

Modern interest in the short-field manuverability and low level
mission roles of supersonic military aircraft has led to much inves-
tigation of wvariable geometry configurations. One result has been
the development of the retractable Canard surface system. This con-
figuration produces a nose-up moment at low speeds and significantly
improves the aircrafts takeoff and landing performance and its sub-
sonic manuverability. Design considerations include the ability to
retract and deploy the surfaces through a single drive, thus elimi-
nating the possibility of asymmetrical deployment.

Figure 18 is a pictorial representation of the use of spatial

mechanisms to provide the required deployment system. Two four-bar

193967
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FIGURE 18
CANARD DEPLOYMENT MECHANISM

. ELECTRIC MOTOR

» WORM AND GEAR

1
2
3. ACTUATING BELLCRANK
i, ACTING ROD

5

. CANARD SURFACE SPAR MEMBER

TWO FOUR-BAR BENNETT MECHANISMS DRIVEN BY A SINGLE JACK SCREW. THE
ARRANGEMENT ALLOWS THE USE OF ALL REVOLUTE JOINTS AND PREVENTS ASYM-
METRICAL DEPLOYMENT.
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mechanisms with revolute joints are shown connected in parallel and
each driving one of the ¢anard surfaces. The parallel arrangement
allows the use of a single jack screw to drive both canard surfaces.
The four-bar linkages may be recognized as the Bennett RRRR mechanism
mentioned in section I-D and shown in Figure 4. It will be recalled
that the mobility criterion when applied to the Bennett mechanism
vielded -2 for the number of degrees of freedom, yet it is known
that the Bennett mechanism exists as a single degree of freedom link-
age. This leads to the supposition that the Bennett linkage posses-
ses three redundant constraints.

The peculiar geometric qualities that allow the Bennett mech-
anism to exist are well known; namely, that opposite links must have
the same lengths and the same degree of skew or twist. These con-
straints are most often demonstrated in an after-the-fact fashion
through the use of descriptive geometry. The present approach is
to assume only the existence of a four-bar RRRR mechanism and estab-
lish the geometric criteria for its existence through the use of

tensor analysis.

a. Existence Criteria for the Bennett Mechanism

Figure 19 is a vector loop representation of a Bennett mecha-
nism where C, R, S, T are the link lengths and ui, vi, wi, pi are
the directions of the axes of revolution of the R joints. To math-
ematically describe the RRRR mechanism, nine separate constraint
equations must be written. Closure must exist hence the vector loop

equation
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FIGURE 19
VECTOR REPRESENTATION OF A FOUR-BAR RRRR MECHANISM
THE REVOLUTE AXES OF THE JOINTS ARE LABELED Uu, Vv, Ww, AND Fp,.

THE SKEW ANGLES S, o, 8, Y REPRESENT THE TWIST IN THE C, R, S, T
LINKS RESPECTIVELY.
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Figure 19
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Cci + Rri + Ssi + Tti =0 (III-178).

The condition that the axes of revolution of each joint must remain
mutually perpendicular to the links which it joins leads to the con-

straint equations

€i95% = U (11I-179),
€i9x%57% = 7%y (III-180),
€i9x5%k = My (111-181),
€59x%5%% = Py (111-182).

Definition of the skew or twist in each link leads to the equations

eijkujpk =c, sin(U,P) = e sind - (I1I~-183),
eijkvjuk =7, sin(V,U) = r, sino (111-184),
eijkwjvk =8 sin(W/,V) = 8 sinB (IIr-185),
eijkpjwk = ti sin(P,W) = ti sinY (III-186).

The angles §, a, B, Yy are the skew or twist angles of the c,R,S,T
links respectively.

Multiply equation (III-178) by Eijkejpk’ Eijkcjsk’ eijkcjtk’

. €.. 8.t, to form six equations involving the
€967 5%% " Cikl3%k’ Figk®3tk O q g

possible permutations of vector products. There results
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Eijk(ssicjpk + Tticjrk) =0 (II1-187),
eijk(RTicjsk + Tticjsk) = 0 (rrr-188),
eijk(Rricjtk + Ssicjtk) =0 (I11-189),
eijk(Ccirjsk + Z%irjsk) =0 (III-190),
eijk(ccirjtk + Ssirjtk) =0 (III-191),
eijk(ccisjtk + Rrisjtk) =0 (III-192).

After some manipulation the various terms in equations (III-187
through 192) may be recognized in the constraint equations (III-179
through 186). Substitute equations (III-179 through 182) into equa-

tions (III-183 through 186). These eight equations are reduced to

ekmnrkcmtn = PU sind (II1-193)
ekmnskrmen = UV sino (II1~194)
ekmntksmrn = WV sinB (II1-195)
€kmncktmsn = PW siny (I11-196)

Substitute equations (III-193 through 196) into equations (III-187

through 192). We have

SVsino - TPsind = 0O (III-197)
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RUV sin0 - TPW siny = 0 (II1-198)
RU sin§ + SW siny= 0 (ITI1-199)
CU sina + TW sinB = 0 (III-200)
-CPU sind + SWV sinf = 0 (I11-201)
CP sinY + RV sinB = 0 (II1-202)

The six equations (III-197 through 202) may be used to algebraically
eliminate the magnitudes of the revolute axes P, V, W, U. Equations
(III-197 through 202) can be arranged so that these unknowns occur
only in the ratios P/V and W/U, therefore, two equations are required
to eliminate the four parameters P, V, W, U. Of the remaining four
equations one is an identity and the remaining three are triply re-

dundant, all being the same equation.

CS sina siny = RT sind sing (I1I~203).

Equation (III-203) represents a single constraint equation that an
RRRR mechanism as defined must satisfy in order to exist. Of the
nine original constraint equations, we have one remaining which is
triply redundant indicating that the RRRR mechanism possesses three
redundant constraints. It may be concluded that any set of parame-
ters that will satisfy equation (III-203) will result in a workable

RRRR mechanism. One such set is

C=8=4 sina

siny (III-204),

R=T-=B ginB = sin§ (111I-205).

]
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Then equation (III-203) may be written

4 B (III-206)

sin0  =sinB

The conditions (III-204, 205) indicate that opposite links are equal

and have the same skew angle and must satisfy egquation (III-206).

b. Position Solution

Having established the geometric constraint criteria for the
Bennett mechanism, the position solution of the canard deployment
mechanism may proceed. Figure 20 depicts one half of the mechanism
in its physical configuration as well as the vector loop which rep-
resents the mathematical counterpart. Physically, links Rri and Ssi
are offset from the vector loop. This is possible if they are con-
structed so as to retain the spatial relationship among the joints
and links as determined by the constraint equation (III-205). That
is, it is not necessary for the actual links to follow the path of
the vector loop provided the direction of the revolute joint axes
as shown in Figure 20 are preserved.

Referring to Figure 20, the ground frame is placed at the bell
crank pivot with the X2 axis colinear with the es vector and the X3
axis along the revolute axis of the bell crank. The driving screw
link Eei, link Ff}, and the input link to the spatial mechanism Bri
are all coplanar. The vector ri may be determined as a function of

the length of link E. The spatial mechanism problem may then be

defined as

Input: r
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FIGURE 20

CANARD DEPLOYMENT MECHANISM

THE PHYSICAL CONFIGURATION OF THE MECHANISM AND THE VECTOR
LOOP COUNTERPART. LINKS Br, AND 4s, ARE OFFSET FROM THE
VECTOR PATHS BUT THE REVOLUTE AXIS RELATIONSHIPS ARE MAIN-
TAINED,

THE DESIGN DIHEDRAL ANGLE DETERMINES THE SKEW IN THE Ac;
GROUND LINK,
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Figure 20

Dihedral

Angle
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Known: A, B, ¢
Unknown: s., €,

Constraint: AsinfB = Bsina

Vector loop equation: Aci + Bri + Asi + Bti = 0 (IT1I~-207)

An important design parameter is the dihedral angle of the canard
surface. Flight characteristics would determine the best dihedral
angle which in turn determines the skew angle of the ground link Aci.
The length of the links 4 and B are specified from congiderations of
available gpace, clearances, etc. and are considered as variable
parameters. The skew angle B of the links Bri and Bti is then deter-
mined from the constraint equation.

We are interested in the position of the spar vector wi as a
function of F, the length of the jack screw link. It is advantageous
to define an auxiliary frame X: as shown in Figure 21. The X: axis
is aligned along the revolute axis of the joint at the intersection
of the ci and ti vectors. This can be accomplished by a single rota-
tion about the X2 axis through the angle o, the skew angle of the
Aci link. The wi and ti vectors then remain in the X:, X? plane;

R tt
and the t; vector is a function of the single unknown 6 .

t: = cosett, sinett, 0 (II1I-208)

The transformation coefficients are seen to be

coso. O sinQ
1
4% - 0 1 0 (111-209)
ij
sino. O coso
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FIGURE 21
DEFINITION OF THE AUXILIARY FRAVE X.

THE X; FRAME IS DEFINED BY THE ROTATION ABOUT THE X, AXIS THROUGH
THE ANGLE ©, THE SKEW ANGLE OF THE GROUND LINK, THE X AXIS IS THEN
THE REVOLUTE AXIS OF THE SPAR VECTOR ©;. THE VECTORS »; AND %,
REMAIN ALWAYS IN THE X., X PLANE AND ARE FUNCTIONS OF A SINGLE
AZIMUTHAL ANGLE 6",
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Figure 21

VIEW FROM THE | X_ p|ANE
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Let Ki = Aci + Bri then the loop equation becomes
K, + + = -
N Asi Bti 0 (1T1I-210).
Multiply equation (III~210) by A;:, transforming to the X: frame
t t t
K-+ + = -
- Asm Btm 0 (IIT-211).

Expand equation (III~-211)

Kf + A sind)St coseSt + B cosett =0 (ITI-212),
K: + A sintbst sinBSt + B sinett = 0 (I11-213),
K: + 4 cos$®t = 0 (II1-214).

Egquation (III-214) yields a solution for ¢St

cosd)St = —K:/A

Equations (III-212 and 213) may be solved iteratively for GSt and

tt

t .
8~ 7. Having a solution for 6 t enables the v, vector to be written

t
as a function of Gt

wi = 0036Wt, sinOWt, 0 (I11-215),

where GWt = ett

+ & £ a constant and may be considered a parameter.
wt
For any value of E, through its range, the value of 6 may be ob-

tained, Figqure 22 is a plot of 6¥% for values of E from the initial

configuration (canard surface fully deployed) to the final configu-
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FIGURE 22

PLOT OF POSITION AZIMUTHAL ANGLE 6% VERSUS

THE LENGTH OF THE JACK SCREW Z.



AZIMUTHAL POSITION ANGLE 6"¢

100°

80°

60°

40°

20°

OO

Figure 22
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CANARD STOWED

CANARD
DEPLOYED
i 1 e
1 2 3
LENGTH OF JACKSCREW LINK E
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ration (fully stowed). The parameters chosen for the problem are

as follows:

A = 4 units
B = 3 units
o = 60°
D = 2 units
6d= 330°

E (initial value) = DV3
F = 2 units

8¢ = 270°

starting values used Btt = 300°, GSt ~ 105°

The problem was programmed for digital computation and the solutions
obtained. The procedure used was to solve the two equations (III-
212 and 213) via the Newton method for systems of nonlinear equa~
tions for the initial configuration using the estimated starting
values shown. Values were calculated to four-place accuracy. The
link F was then incremented and a new solution sought using the last
solutions for starting values. At no step in the process was more
than four iterations required to provide the accuracy specified.
Less than 25 seconds of computer time were required to effect the

entire solution.
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v

VELOCITY AND ACCELERATION ANALYSIS OF SPATIAL MECHANISMS

As has been demonstrated, position sclutions are non-linear
and usually somewhat difficult to obtain. Motion solutions, on the
other hand, are always linear. Differentiation of a position solu-
tion will never introduce unknown vectors and the motion quantity
unknowns that are introduced are of the same or lower order and occur
in additive terms, not in products with each other. Thus, the prob-
lem of obtaining solutions for motion quantities is minimal and may
be accomplished by linear algebra. The difficulty lies instead in
obtaining the motion equations from the position solution.

A direct approach for obtaining motion equations is differen-
tiation of the position equations. This approach is relatively
tractable and straight forward when all quantities to be differenti-
ated are known with respect to the ground frame but becomes increas-
ingly difficult when one or more moving reference frames are included
in a problem. The combination of the tensor methods and the Newton
iterative process allows a large class of spatial problems to be
solved in the ground frame making the method of direct differentia-
tion a most useful tool.

Relative velocities between various points of a mechanism may
be obtained via the same procedures as well as relative angular

velocities between links.

A. Method of Direct Differentiation
If a position solution for a particular point in space can be

obtained, the velocity and acceleration of that point may always be
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obtained by direct differentiation of the position vector. The dif-
ficulty presented by this course depends upon how the position solu-
tion was obtained and its form. If a position solution can be ob-
tained sclely in the ground frame coordinates the differentiation is
particularly straight forward and for kinematic purposes, it is often
fruitful to attempt the attainment of a solution in the ground frame.
However, for purposes of dynamic analyses and rigid body mechanics,
it is necessary to allow for the expression of vectors in auxiliary
or body frames whose coordinate axes are functions of time when mo-
tion is considered. For this reason, the method of direct differen-
tiation will be developed in a general manner with the inclusion of

a moving coordinate frame. It will be seen that reduction of the

formulae thus developed to simpler cases is easily accomplished.

1. General Velocity and Acceleration Equations for Spatial Motion

Figure 23 depicts a moving point in space following a path S.
At the time of interest the point is at point P as shown and the po-
sition of point P may be defined by the vector Ssi, written with
respect to the inertial frame or ground frame Xi’ or by the vector
Rri written with respect to the X; frame. The fact that the X§
frame is allowed to move with respect to the Xi frame is of conse-
quence only if one is concerned with the relativity of writing quan-
tities as measured in one frame and relating them to the the same
quantities as measured in another frame. That is, to an observer in
the Xi frame, and unaware of the existence of the Xi frame, the sole

. r
definition of the point P at the time of interest is the vector Rri.
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"FIGURE 23
THE CASE OF GENERAL SPATIAL MOTION

A MOVING POINT IN SPACE FOLLOWING A PATH S, AT THE TIME OF INTEREST
THE POINT IS AT POINT P AND THE POSITION OF POINT £ MAY BE REFERENCED
TO EITHER OF THE TWO COORDINATE FRAMES; THE X, FRAME IS REGARDED AS
THE GROUND FRAME AND THE Xi FRAME IS FREE TO MOVE RELATIVE TO THE X,
FRAME .
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Figure 23

Path S
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The same may be said for an equivalent observer in the Xi frame and
the vector Ssi. Now suppose an observer in the Xi frame who is aware

of the Xf frame and may write the position relation

Ssi = qu + Rri (Iv-1).

Differentiating equation (IV-1l) with respect to time, we may obtain
a relation between the velocity of point P as observed in the ground
frame and that observed in the X§ frame if the term Rri is replaced

with the transformation relation A§§Rr¥.

J
It will facilitate the notation to write vectors in unfactored
form as Ri = Rri. Differentiating equation (IV-1) we have

S. =4, + &, (Iv-2).
1 1 1

Employing the transformation relation we may write

R, = AT%RE + AR (Iv-3) .
1 J1 3 Ji 3
s s . . I‘Xi?r
Examining the terms in equation (IV-3): the term Aji 3 represents
differentiation in the Xi frame holding the Agz constant and hence
is the velocity of the point P relative to the Xi frame. The term
* R r
A¥§R§ represents differentiation of the A§: holding the vector Rj
J
constant and is the contribution to the absolute velocity due to the
. r .

rotation of the Xi frame relative to the Xi frame.

To further examine the character of this last term, suppose

that the R~ vector is fixed in the X; frame. Then equation (IV-3)
J

becomes
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= AR, (IV-4).

Substituting the transformation relation RX = 45*r  into equation
3 jm m

(IV-4) we have

e erx,YX
Ri AjiAijm (IV-5)

*rX,rxX rx
The product 4.4, m be denoted by w
P 51%5m ay ote Y im” then

> rx
Ri = wimRm (IV-6)

Multiply equation (IV-6) by Ri

hd rx
= -
RiRi i RmRi (IV-7)

Now RiRi represents the scalar product of the position vector with
the velocity vector of a point which is in circular motion with
respect to the origin. Hence these vectors must be perpendicular

and their scalar product is zero, therefore

0=wr R (IV-8)

im m i
Since RmRi is a symmetric tensor of second order, it follows from
equation (IV-8) that(uiz is a skew-symmetric tensor of second crder.
Recalling the duality property discussed in section II, it will be
remembered that (in three-dimensional space) there may be associated

with any skew-symmetric second order tensor, a vector. The relations

were

U = Cign®y
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w = %
N zeijkwkj (Iv~10),
explicitly w =w , W =8 , ®W =W
1 32 2 13 3 21
and from egquation (IV-5)
_ 'YX, rXx
wim = AjiAjm (Iv-11).

r
It may be concluded that wi; represents the angular velocity tensor
containing the rotation relations between the Xi and Xi frames and

that

rx rx
=%

w,” = eijkwkj (IV-12)

is the angular velocity vector of the X§ frame with respect to the

Xi frame. Equation (IV-6) may be written

e

.= €., WR (Iv-13),
i ijm 3 "m

which states that the velocity of the point P in the Xi frame due
to the rotation of the X; frame is equal to the vector product of
the angular velocity wvector of the Xi frame and the position vector

of the point P, a result familiar from vector kinematics. Equation

(IV-3) may be stated as

R, = AS%FY + o ¥R (IV-14),
i ji®j im'm

and equation (IV-2) as

4 pd rxex rx
Si = Qi + AjiRj + wimRm (1Iv-15).
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Equation (IV-15) may be regarded as the velocity equation for the
case of general spatial motion. It is easily reduced for applica-
tion to simpler cases.

The acceleration equation for the case of general spatial motion
may be obtained by again differentiating egquation (IV-2).

ve .o

Si Q + R (IV-16)

To obtain the term Ri differentiate equation (IV-14) term by term

. = ATRT EXRE ¢+ TR+ 0T ¥R (Iv-17) .
i 3i 3 jij imm imm

Substituting equation (IVv-14) for Rm we have

R, = A?? ? + AF*&I ArXRr wrxwer + w R (IvV-18) .
i jiJ jij Cim® 3m 3

Now from equation (IV-11l) we have

rxX ,rx *rX ,rX ,rx °rx °rx
= . o= A 06, = AL (Iv-19).
wim jm Akl kmAjm ki jk ji

Then equation (IV-18) may be written

'y

X, r IX, AT rX rx *rx
.+ W, WR + W, R (Iv-20).
Ri A R + zwlmAjm 3 immn n im m

Equation (IV-16) then becomes

s. Q + A R + wlmAizﬁf ?; rx R+ w R (Iv-21) .
1

Equation (IV-21) is the acceleration equation for the case of gener-

al spatial motion. Examination of the terms in equation (IV-21)

leads to the identifications
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rx, r . .
jiRj acceleration of the point of interest relative to

the Xi frame,

rx rxe . . .
R. coriolis acceleration,
1m Jm

rx rx . .
w + w .
( lmw Bn R } centrifugal acceleration

a. Moving Frames

When a moving frame is defined as in the development of the
previous section the general velocity and acceleration equations
may be applied as given. Modifications follow for less general
cases. Referring again to Figure 23, the following special cases

may be considered:

Xz frame not rotating relative to the Xi frame (wi; 0)

éi = éi + A§§é§ (Iv-22) .

R§ vector not rotating relative to Xi frame (P§ = 0), from equation

(IVv-22)

g =0, + A% m" (1v-23) .
i i 31773

R% vector rotating relative to X; frame but with constant magnitude

(é = 0), from eguation (IV-22)

e

= Q. + A Rr® (1v-24).
1 Jx J

The above special cases are easily applied to the general acceler-

ation equation (IV-21)
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b. Ground Frame Differentiation

When a problem (position solution) is obtained entirely in terms
of ground frame variables equation (IV-2) and (IV-16) may be employed
as they are. Differentiation of the velocity equation for example

takes the form

Ssi + Ssi = qu + qu + Rri + Rri (Iv-25).

c¢. Differentiation of Unit Vectors

Differentiation of a unit vector referenced to the ground frame

follows directly and has the form

}i = (&)r‘coscbr cosd® - g* sind)r siner),

(ér cos¢r sind® + 8 sin(br coser),

r

(- sin¢r) (IV-26).

Differentiation of a unit vector referenced to a rotating frame

follows from equation (IV-14) and has the form

r, = ALrL 4 Wor (Iv-27)
i i j im m
where
. . : . XYY . ,TY
5 = (357 cosd™ cos8™F - 8% sind™* sind™"),

. . A YY | AYY _. YT rr
($*F cos¢™® sin®"F + 07 sind” " cos87 ),

(_érr sin¢rr) (Iv-28).
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r . . . .
If the rj unit vector is fixed in the Xi frame the term r? is zero
J

and

rx
. = W, r
1 im m

e
|

(Iv-29)

2. Relative and Angular Velocities and Accelerations

The relative velocity and acceleration of any point in a mecha-
nism with respect to another point may be obtained by writing the
position vector from oﬁe point to the other and differentiating.

When a closed form solution is not available for the vectors involved
the relative velocity and acceleration expressions may be obtained
and solved at the points of the cycle of operation for which the
position solutions were numerically obtained.

It often occurs that the angular velocity and acceleration of a
particular link or links of a mechanism is of interest. The angular
velocities and accelerations of interest may be relative to ground
or relative to another point in the mechanism. Both of these quan-
tities for any link may be easily obtained once the position solution
is available. Recall the angular velocity relation previously de-

veloped

T Y e (IV-30) .
im ji®jm

Differentiating equation (IV-30)

OFF = aTEATE 4 ATEATE (IV-31).
im 3i gm ji jm
From equations (IV-30) and (IV-31) the angular velocity and acceler-

ation of any link vector in the mechanism loop relative to ground
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may be obtained.

If the appropriate Aij for the vector of interest have not been
developed in the course of the position solution they may be con-
structed using the link vector itself in the vector product manner
developed in the discussion of the tetrahedron problem. If the
position solution has been accomplished, it is always possible to
construct the Aij for that link and hence the angular velocity and
acceleration for any link relative to ground may be constructed.

It can be shown that there exists a first order motion analogue
of the zeroth order condition, sum of position vectors equal zero.
This condition is the sum of relative angular velocities of link

vectors around the mechanism loop is zero. That is

n
W+ 0T e L+ 0 =0 (Iv-32).
1 1 1 1

Equation (IV-32) follows from the conditions

w, = W, (Iv-33),
i i

WFS + ST = 5% (IvV-34),
i i

W€ ST oS - o (1v-35).
i i i i

Equation (IV-30) and equations (IV-33, 34, 35) may be used to obtain
explicit expressions for any of the relative angular velocities.
Similar conditions may be derived for angular accelerations by dif-
ferentiating equations (IV-32 through 35) and employing equation

(Iv-31).
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B. General Solution Procedure

Assume that the position problem has been solwved either in
closed form or for discrete steps of the input variables. Write
the position vector for each point of interest and differentiate.
Define the problem as to input velocities and identify the unknowns.
In general, the unknowns will be terms such as é and éi which are
functions of the unknown vector variables és and &S. These may be
obtained as functions of the input velocity terms by differentiating
the position solution expressions for 0° and¢s. The problem of ob-
taining explicit expressions for the velocity vectors of interest is
a linear algebraic one and may proceed without difficulty. Acceler-
ation solutions may be obtained by once again differentiating the
required expressions and assigning input accelerations. Angular
quantities of interest may be obtained as outlined in section IV-A-2.

Where a position solution has been obtained at discrete points
of the mechanism cycle, the instantaneous velocity and acceleration

solutions may be obtained as outlined above at the same point of

cycle.

C. Application to Velocity and Acceleration Solutions

1. RSSP Mechanism

Figure 24 depicts a RSSP mechanism which was analyzed as Case 1

of section ITI-B. The unknowns in the problem were T and Si. The

solutions obtained were

8 = K sing” cos6® (IV-36),
1 -
S
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FIGURRE 24

RSSP MECHANISM IN THE CONFIGURATION USED FOR THE VELOCITY AND

ACCELERATION ANALYSIS OF THE POINT P.
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Figure 24

RSSP MECHANISM
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g8 = X, - sin¢®sind® (Iv-37),
2
S
T = IK3 + Sssl (Iv-38).

The ri vector is defined to be at 90° to its revolute axis so that
r
the vector ri may be expressed as a function of the single azimuthal

angle ot

ri = coserr, sinerr, 0 (Iv-39),

where 87 is then the input variable. Since the ground frame and

the Xz frame as shown in Figure 24 are fixed relative to each other
the Ai? are constant. They may be obtained through the use of vec-
tor products. The (XI;)i vector is known in the ground frame and may

be described as

(Xj)i = sin¢ cos®, sind sind, cos¢ (IV-40),

where ¢ and O are known. Define then

(Xf)i = eijk(Xg)j(X3)k = sinB, -cosH, O (Iv-41),

(X§)j(xa)

|€..

ijk k|

(XJZ:)i = eijk(Xz)j(Xf)k = cosd cosb, cosd sinb, - sind (Iv-42).
eijk<X§)j(Xf)k

The Az; are thus defined and the vector r, may be written

r, = A% (Iv-43),
i 3i*j
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where

rl = A“cosGrr + Ausinerr (IV-44),
rr . oY
r2 = Alzcose + A2251n6 (Iv-45),
r =4 sind®t (Iv-46) .
3 23

The input link is now expressed in the ground frame as a function of
. . r . s .
the single variable 6 ¥ which is the input parameter. The direction
el . . . rr .
of the ( 1)i axis is specified by equation (IV-41) and 6 is mea-
sured from this axis.
It is desired to find the velocity and acceleration of point P
as shown in Figure 24. The position vector of this point may be

written as

P, = Ce, + Rr, + Ss, (IV-47),
i i i
or as P, = -Tt, (Iv-48).

Differentiation of either equation will result in the velocity of the

point P relative to ground. Differentiating equation (IV-47) we have

P. = Rp, + S8, (IV-49) .
1 1 1

The terms }. may be obtained from equations (IV-44, 45, 46) as
i
rr ry .
functions of the input parameters 0 and 677 . The terms Si are

obtained as follows. From equation (IV-36 and 37)

g = (1v-50) ,
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. K
§, = _2 (Iv-51).
S
Now X, = Ce, + Rr. then
i i
K, = Rr, (Iv-52).
s
Also s3 = cos¢~, and
s, = -6° sing® (Iv-53).
Squaring and adding equations (IV-36 and 37) results in

2 2
kD + k] (IV-54) .
5

sincbs =
Differentiating equation (IV-54) results in an expression for ¢s in
terms of known parameters. Expanding equation (IV-42) and employing
equations (IV-50, 51 and 52) we have for the components of the veloc-

ity of point P

P =0 (IV-55)
1

P =0 (IV-56)
2

P = Rz'=3 - 93° sin¢® (IV-57).
3 .

The acceleration of point P may be obtained by differentiating equa-

tion (IV-57)

Y3 - 2 ..
P =Rr - S[($%) cos¢® + ¢° sind®] (Iv-58) .
3 3



136

s
The terms r, and ¢~ may be obtained by differentiating equations

(IV-46 and 54) respectively. 1In this simple case, the velocity and
acceleration of interest were found in closed form due to the fact

that the position solution was effected in closed form.

2. RCCC Mechanism

Next consider the RCCC mechanism of case 8, section III-B-1.
As defined the unknowns were S, T, D, ti. The position solution
resulted in a single transcendental equation in the unknown Gt. In
order to effect a numerical solution, the parameters considered to
be known must be assigned values. Referring to Figure 25 and case 8

of section III-B-1 the following wvalues were assigned

C =4
R =1
Ci = 0, —-cos45°, sin 45°

The axis of the ri vector, labeled £ is selected to be in the Xl, X2
plane and at the 30° orientation shown so that the input variable

may be measured directly as ¢r. The ri vector is defined to be at

90° to the £ axis, therefore, the azimuthal angle Gr is a known con-
stant. The bend in the driving link is such that ri, si and are
coplanar. The angle between the R and S links is assigned the value
120°. Therefore, si may be written as a function of r, . The constant

parameters, P and @, are defined to be

P

cos 90°

cos 60°

L
i
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FIGURE 25

RCCC MECHANISM IN THE CONFIGURATION USED FOR THE VELOCITY AND ACCEL-
ERATION ANALYSIS OF THE POINTS 4 AND B.
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Figure 25

RCCC MECHANISM



139

The known parameters are now suitably defined. The unknowns may be

obtained from the position solution as follows:

t
t3 = =@ = cos¢ (IV-59)

. t t t
s1 sind  cosf + 82 sin¢ sinet + 8 t3 = P (IV-60)
3

Equation (IV-60) may be solved for the unknown Gt by the Newton iter-
ative technique as outlined in appendix I. The remaining unknowns
are from the position solution

= K¢, - K2t1

81t, = 8,%,

(Iv-61)

7= kis, = kysy (IV~-62)
tis, =~ t,8,

D=K + 8s + Tt (IV-63)
3 3 3

A solution by the above pfocedure was obtained for each discrete
increment of the input variable ¢r in steps of 5° and through a com-
plete cycle of operation (0°= ¢r ~ 360°). Once this set of soclutions
is complete the instantaneous velocities and accelerations of the
points of interest may be derived and numerical solutions obtained
using the position solution at each of the points of cycle. Points
of interest are selected as point A and B as shown in Figure 25.

Writing the position vectors we have

A,
i

Cc. + Rr_ 4 Ss. (1v-64),
1 1 1

B, = -Dd. (IV-65).
i i
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The velocities are

e
i

[ 3 + * * _
Rri Ssi + Ssi (Tv-66),

oy
Il

i —Ddi (IV-67),

and the accelerations

.. .. .. .

Rr. + Ss. + Ss. + 23s. (Iv-68),
1 1 1 1

hS
1

Bi = —Ddi (IV-69).
The various derivatives in the above expressions are readily obtained
by direct differentiation from expressions already established.
These velocities and accelerations were programmed and solutions
obtained at the 5° steps using the input data ér = 1 radian / sec
and &r = 0. The components of the velocity and acceleration as well

as the magnitudes are shown in Figures 26, 27 and 28.

3. Canard Mechanism

Returning to the canard deployment mechanisms of section III-B-2
it is now possible to examine some velocity and acceleration charac-
teristics of the mechanism configuration as defined in the position
solution. Of primary interest is the angular velocity and acceler-
ation of the spar vector wi.

Referring to Figure 21, it can be seen that the angular velocity
éwt

. t .
of the spar vector may be measured in the Xi frame directly as

. t t
Recall that the t: and w; vectors are both in the Xl, X2 plane and
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FIGIRE 26
VELOCITY OF POINT A
THE MAGNITUDE (4) AND THE THREE COMPONENTS OF THE VELOCITY OF POINT 4

VERSUS THE INPUT PARAMETER ¢° FOR A COMPLETE CYCLE OF OPERATION OF
THE RCCC MECHANISM,



(LENGTH/SEC)

VELOCITY OF POINT A4

Figure 26
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FIGURE 27

THE MAGNITUDE (4) AND THREE COMPONENTS OF THE ACCELERATION OF POINT 4
VERSUS THE INPUT PARAMETER ¢° FOR A COMPLETE CYCLE OF OPERATION OF
THE RCCC MECHANISM.
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FIGURE 28

THE VELOCITY AND ACCELERATION OF POINT B VERSUS THE INPUT PARAMETER
$" FOR A COMPLETE CYCLE OF OPERATION OF THE RCCC MECHANISM. ONLY
THE THIRD COMPONENT IS NON-ZERO DUE TO THE MECHANISM CONFIGURATION,
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wt tt .
that © = 87 + & where £ is a constant parameter. Therefore,

2wt 2ttt . ttt
6 8 and we may obtain 0 from the position solution by differ-

. . . t
entiation. Since the Xi frame is fixed with respect to the X. frame
i

we have from equations (III-212 and 213)
(Iv-70)
st st st st : .
K1 + A9 cosd cosB - BSt sincbSt sinGSt) - Bett sinett =0

(Iv-71)
.t L) t . 14 .
Kz -+A(¢s coscbSt 51n65t + BSt sincbSt cosGSt) + Bott cos@tt =0

The unknowns in equations (IV-70 and 71) are éSt and étt. These
equations are linear in these unknowns and they may be algebraically

_— . sst . .
solved. Eliminating 6 the expression is obtained

étt st

= —(kt sineSt + k? cosBSt + A$ cos¢St)/

B(sinett coseSt - cosett sinGSt) (IV-72)

The various derivatives in equation (IV-72) may be obtained from the
position solution egquations as functions of the linear velocity of
the jack screw length, E. A second differentiation of eguation
(IV-72) yields an expression for 6tt as a function of E and é.

The above angularx velocity and acceleration terms were included
in the general computer program for the canard solution. Input pa-
rameters were selected as i = .1 unit/sec and E = 0 which represents
a reasonable constant linear velocity of the jack screw drive.

Figures 29 and 30 depict the computer plots of éWt and 5Wt

versus the position of the driving link F for a complete cycle of

the mechanism (canard fully deployed to fully stowed).
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FIGURE 29

PLOT OF ANGULAR VELOCITY 6“* VERSUS THE LENGTH OF THE JACKSCREW
LINK F, REPRESENTS THE ANGULAR VELOCITY OF THE SPAR VECTOR v -



ANGULAR VELOCITY RAD/SEC

éwt

.150

.125

.100

.075

.050

.025

Figure 29

LENGTH OF

JACKSCREW E

149



150



FIGURE 30

PLOT OF ANGULAR ACCELERATION 6"° VERSUS THE LENGTH OF THE JACK-
SCREW LINK E- REPRESENTS THE ANGULAR ACCELERATION OF THE SPAR
VECTOR -
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v

CONCLUSIONS

The cartesian tensor analysis has been shown to be a compact
and tractable tool for the study of kinematic concepts and in partic-
ular the spatial kinematics. The difficulties of the position solu-
tion by other methods are largely alleviated by the brevity of the
tensor notation and operations.

The method of approach to a particular problem may be quickly
arrived at with a minimum of experience in handling tensor equations.
In addition, the tensor analysis reduced to cartesian form has the
advantage of being not a new concept but merely a more succinct
method of handling familiar concepts.

Many of the familiar vector operations are introduced in the
form of definitions with unclear origin. With the vector analysis
in tensor form, this is not necessary as the operations arise as
natural consequences, for example, scalar and vector products and
the formulae for differentiation with respect to moving coordinate
frames. Also, the algebraic character of vector equations is ex-
plicit in tensor form requiring a minimum of manipulation to arrive
at solutions.

The combination of the tensor method and the simple numerical
procedures required provide a powerful tool for the solution of a
large class of spatial mechanism problems. The tensor notation due
to its algorithmic character is extremely conducive to ease of com-

puter programming allowing its use by engineerxs with lesser sophis-

ticated programming experience.
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In todays times significant engineering effort is spent in the
kinematic analysis of mechanisms such as gears, cams, and linkages.
Although linkages present a more complex problem of analysis than
other basic mechanisms, they are widely employed due to their relia-
bility, speed and force transmission properties. Industry continual-
ly seeks to devise linkages for new mechanical systems and to improve
existing linkages. If engineers have knowledge of spatial concepts
and the analytical tools at their disposal, they may be encouraged
to try the use of spatial mechanisms which have few joints and few
links in an intricate system in order to obtain an optimum design.

In practice many spatial motions are arrived at through the over use
of spherical joints which are much more difficult to manufacture than
the simple revolute and cylindrical joints which might replace them
in a properly designed spatial mechanism.

Besides the ordinary machine design, spatial mechanisms can be
utilized in many other areas. A recent series of moon landing space-
crafts, for example, were equipped with spatial mechanisms in their
solar panels and landing gear actuators. Spatial mechanisms are
extensively used in the automotive industry, particularly in suspen-
sion systems. In the future, the excursion vehicles of planetary or
ocenographic exploration will inevitably use spatial mechanisms.

The practitioners of medical science constantly search for a
better understanding of human body motions. The continuing develop-

ment of spatial kinematics certainly would give an improved knowledge

of kinesiology.
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VI

APPENDICES

A. Newton - Raphson Method

Consider the set of n equations in n unknowns

1

FX, X, o, X)) =0

2
X v X4 oen, =
Fu,x, X) =0

(a-1)

R O R O T N N A R S PP

A, X, o, X) =0
1 2 n

* * *
Assume that the set of values X , X2, ceer Xn be a solution to this
1

system and let

* °
X =X + AX
1 1 1

»* °

x =¥ + Ax
2 2

(a-2)
X" =X + AX
n n n

(-3

o [-3
where X , X , ..., Xh are known approximate solutions.
1 2

Expand the original functions about these approximations via Taylor

series to yield
1

1 * 1 - 1 1
f &y =o0=f&x)= fxlAX1 + fszX2 + ... ¥ fanXn
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2 ° 2 2 2
X,
Fo&) + fx1AX1 + fszX2 + oo+ fanXn

'-.‘)
[\v3

Pand

.

%

]

o

il

(a-3)

I
o]
i

*
)

n

f‘n(Xi)+f::1AX1+f;‘AX2+...+f‘“xAX
2 n

where fﬁ = Bfn(Xi)/BXn and the partial derivatives in equations
n
o
(A-3) are understood to be evaluated at the values X,. Higher order
i

terms in AXi are neglected.

Rearranging equations (A-3) yields

1 ° 1 1
Sf ) = F M+ Lk f X

1 n

2 ° 2 2
_f (Xi) = fXIAXI + ... + anAXn

(a-4)

- )

A
&
x b
B

Provided the determinant of the above system, equation (aA-4), is

non-zero, this system of linear egquations may be solved for the AXi.

Uging Cramer's rule an expression for each of the AXi is obtained,

for example, AX1
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x X
2
2 . 2 1
f XD f e f
AX = 2 n

a1 ~

1 2
T o F v eer I

where J is the Jacobian of the system.

Having found the AXi equations (A-2) are used to form the improved
value of the root. These improved values are not exact because higher
order terms were neglected in the expansion. However, the new values
are improved and the process may be repeated to any desired degree
of accuracy. The recursion formula takes the form
Xi+1 = Xi + ;det

n *idet)

n
1

where Xi+1 represents the (i + 1) approximation to the nth unknown
variable.

While the foregoing development may seem detailed and cumbersome
it igs developed for a n by n system of equations. In practice most
spatial mechanism problems result in a system of few equations for
which case the Newton method is quite straightforward and tractable,

both in terms of mechanical manipulation and computer programming.
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B. Convergence of the Newton - Raphson Method
A set of conditions sufficient to ensure convergence is the follow-~

ing [20Q].

1 2
1. F. 5. ., f'n and all their derivatives through order n are

continuous and bounded in a region A containing the solutions.
2. The Jacobian of the system does not vanish in R.

3. The initial starting values are chosen sufficiently close to the

roots.

In the experience of the author starting values are uncritical and
may be selected by visualization of the initial configuration of a
given mechanism. Convergence of the Newton method is quadratic and

solutions are obtained in very little computer time.
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