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Abstract
Genomic editing to correct disease-causing mutations is a promising approach for the treatment of human diseases. As a
simple and programmable nuclease-based genomic editing tool, the clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has substantially improved the ability to make precise changes in
the human genome. Rapid development of CRISPR-based technologies in recent years has expanded its application scope
and promoted CRISPR-based therapies in preclinical trails. Here, we review the application of the CRISPR system over the last
2 years; including its development and application in base editing, transcription modulation and epigenetic editing, genomic-
scale screening, and cell and embryo therapy. Finally, the prospects and challenges related to application of CRISPR/Cas9
technologies are discussed.

Introduction
The clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein (Cas) system is a bacterial
and archaebacterial defense mechanism against phage infec-
tion and plasmid transfer in nature. In recent years, this system
has garnered increasing attention as an effective and simple
genome-engineering tool and has revolutionized the life scien-
ces. It has been recognized for its potentially transformative
applications in transcriptional perturbation, epigenetic modula-
tion, base editing, high-throughput genetic screening and gen-
eration of animal or cell models of diseases (1).

Based on the effector protein organization, CRISPR/Cas sys-
tem is classified into two distinct classes that are subdivided
into 6 types and 19 subtypes. Class 1 CRISPR/Cas systems uti-
lize multi-protein effector complexes, whereas class 2 CRISPR/
Cas systems utilize single-protein effectors (2,3). The diverse
CRISPR/Cas systems have a number of features in common,

such as the use of short DNA sequences known as ‘spacers’ to
direct the targeting of Cas proteins. In addition, there is a re-
quirement for a conserved sequence to aid targeting, called
the protospacer adjacent motif (PAM) for DNA-targeted Cas
proteins, or the protospacer flanking sequence (PFS) for RNA-
targeted Cas proteins (4). The Cas9 endonuclease from
Streptococcus pyogenes, which belong to the class 2 CRISPR sys-
tem, has been the most widely used CRISPR system for gene
editing. Currently, there are ongoing clinical trials using
CRISPR/Cas9-edited human cells, for example, to treat cancer.
In the following sections, we review the applications of
CRISPR/Cas9 technologies in the last 2 years; including base
editing, transcription modulation and epigenetic editing,
genomic-scale screening, and cell and embryo therapy (Fig. 1).
We will also discuss the limitations as well as regulatory
and ethical implications of this transformative set of
technologies.
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Base Editing
Traditional CRISPR/Cas9 protein-RNA complexes localize to a
target DNA sequence through base pairing with a guide RNA,
and natively create a dsDNA break (DSB) at the locus specified
by the guide RNA (1). In response to DSBs, cellular DNA repair
processes result in random insertions or deletions at the site of
DNA cleavage through homology-directed repair (HDR) or non-
homologous end joining (NHEJ), depending on the presence or
absence of a homologous DNA template, respectively. However,
HDR-dependent genome editing is limited by low efficiency
arising from competition with NHEJ outcomes and from the de-
pendence of HDR on mitosis. Therefore, the primary strategies

of modifying eukaryotic genomes using HDR are more unpre-
dictable than the prospection of precise mutation correction
(5,6). While researchers have attempted to increase the effi-
ciency of HDR by suppressing NHEJ, the strategies for correction
of point mutations using HDR under therapeutically relevant
conditions remain inefficient (7,8). In this instance, the third-
generation base editor (BE3), a single protein, was designed to
allow the direct and stable transformation of target DNA bases
into an alternative in a programmable way, without DNA dou-
ble-strand cleavage or a donor template (9). BE3 contains a tri-
partite fusion between Rattus norvegicus APOBEC1 cytidine
deaminase, S. pyogenes Cas9n (D10A) and Bacillus subtilis

Figure 1. Applications of CRISPR/Cas9 technology. (A) Traditional genome editing: CRISPR/Cas9 is used for making DSB at particular sites. These introduced DSBs are

mended by either NHEJ or HDR. (B) Base editing: A base editor consists of a catalytically modified Cas9, deoxyadenosine deaminase enzymes and TadA fusion proteins

complex. Through deoxyadenosine-deaminase action, adenosine is transformed into inosine. (C) Transcription modulation: CRISPR transcription modulation system

has been developed by modifying dCas9 protein. Combined with activate or repression domain (such as VP64 and KRAB), dCas9 can activate or repress, respectively,

DNA transcription without changing DNA sequence. (D) Epigenetic modulation: DNA methylation and histone modification; epigenetic effectors merged with dCas9

could change epigenetic states of target loci, such as through DNA methylation or histone modifications. (E) Pooled CRISPR screen strategy. In pooled CRISPR screens,

gRNAs are synthesized, cloned and constructed as a pool. Pooled screens have dissected genetic networks with the help of NGS like single-cell RNA-seq.
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bacteriophage PBS2 UGI. BE3 results in a higher base editing effi-
ciency than HDR, and a much lower indel frequency than
nuclease-mediated approaches. Moreover, multiple studies
have shown that BE3 has fewer off-target editing events than
Cas9 (10,11).

Subsequently, BE4 was designed based on B3 to increase the
efficiency of C: G to T: A base editing by approximately 50%,
while halving the frequency of undesired by-products with re-
spect to those generated by BE3. Fusion of this optimized con-
struct to the DSB binding protein Gam from bacteriophage Mu
yielded BE4-Gam, a base editor that retains the optimized prop-
erties of BE4 while further reducing indel formation (12). DNA
glycosylase inhibitor protein (e.g. UGI) was also used to enhance
base editing efficiency. In addition to BE3 and BE4, other cyti-
dine deaminase enzymes like activation-induced cytidine de-
aminase (AID) have also been developed to address the
inherent limitations of using DSBs for gene correction (termed
‘CRISPR-X’). Target-AID is a BE3-like base editor, and is a syn-
thetic complex of dCas9 and PmCDA1. Target-AID results in the
base substitution of C or G into T or A with a shifted deamina-
tion window compared with BE3 (13). Genome-wide specificity
of base editing approaches continues to be evaluated and im-
proved (10).

Over the last 2 years, base editing tools and related technolo-
gies have been successfully used by many researchers in a wide
range of applications, including plant genome editing, in vivo
mammalian genome editing, targeted mutagenesis and knock-
out studies (13–21). The ability to create or remove a single-
nucleotide variation (SNV) in target genes makes BEs valuable
tools in genetic, therapeutic and agricultural applications. BEs
can also create nonsense mutations by generating premature
TGA (opal), TAG (amber) or TAA (ochre) stop codons when tar-
geted to CGA (Arg), CAG (Gln) and CAA (Gln) (15,16,22). This
method has the advantage over traditional Cas9 in gene knock-
out experiments, as Cas9 often induces in-frame indels in a
protein-coding gene, which can still produce functional pro-
teins, and frame-shifting indels, leading to translation of out-
of-frame polypeptide sequences that can be immunogenic and
may have unknown effects in cells (23). Base editing can also be
combined with a library of sgRNAs targeted to a gene of interest
and used for high-throughput screening of gain-of-function var-
iants in cells (14,18).

Transcription Modulation and Epigenetic
Editing
The dCas9 protein is a Cas9 variant which is capable of binding
to the target sequence but unable to cleave its target (24). This
protein has been adopted as a DNA-binding platform for tran-
scription modulation and epigenetic editing, and engineered by
using a variety of effector domains.

In the previous studies, dCas9 use focused on target gene ac-
tivation (TGA) by fusion with conventional transcriptional
activators such as VP64, p65 or a subunit of RNA polymerase
(25–28). However, the dCas9-VP64 system was not very effective
and was also unable to stimulate robust TGA by using a single-
guide RNA (sgRNA) (29–31). Thus, fusion or recruitment of mul-
tiple transcriptional activation domains to the dCas9/gRNA
complex (32), synergistic activation mediator (SAM) (33,34) or
dCas9-Suntag (35,36) were performed to improve the activation
capacity and expand the range of applications. These systems
could induce very high activation by using several sgRNAs, or
even one sgRNA for each target gene, enabling high levels of

activation in vitro (37–39). However, in vivo use remains a chal-
lenge (1,40), possibly attributed to the lower efficiency of in vivo
transferring of dCas9 fusion proteins and the lower level of TGA
in vivo. In addition, sequences encoding the dCas9/gRNA and
co-transcriptional activator complexes exceed the capacity of
most common viral vectors like AAV, which is the most promis-
ing vector for gene delivery in vivo (41). In a recent report, an
in vivo CRISPR/Cas9 TGA system was created to overcome this
problem. In this system, the transcriptional activators were sep-
arated from dCas9 to shorten the coding sequence. Other
researchers tried to optimize the shortening of gRNAs [14 or 15
base pairs (bp) rather than 20 bp] containing motifs that tether
bacteriophage MS2 coat protein domains fused to the MS2: P65:
HSF1 (MPH) transcriptional activation complex; this system
achieved high efficiency TGA in organs of living animals (41).

dCas9 can also block target gene transcription by fusing a re-
pressive effector domain such as the Krüppel-associated
box (KRAB) (27,42). KRAB repression is mediated by repressive
histone modifications such as H3K9me3. By utilizing epigenome-
modifying repressors, including Lys-specific histone demethylase
1 (LSD1) (43), histone deacetylase (HDAC) (44), DNA methyltrans-
ferases DNMT3A and MQ1 (39,45,46), and mSin3 interaction
domains (47), the scope of applying CRISPR repression has been
extended to epigenetic editing. Similarly, epigenome editing
approaches can also be used for targeted transcriptional activa-
tion, such as dCas9 fused with a DNA demethylase or a histone
acetyltransferase (39,48). Recently, Klann et al. (48) developed a
CRISPR/Cas9-based epigenomic regulatory element screening
(CERES) system, which combines dCas9-p300Core with dCas9-
KRAB to obtain both gain and loss of function information by tar-
geting the same regions with a repressor and an activator.

Genomic-Scale Screening
In recent years, tools that use the RNA interference (RNAi) path-
way, specifically short-hairpin RNAs (shRNAs), to perturb tran-
script levels have revolutionized screening approaches (49–51).
However, this approach was limited by incompletely abrogate
gene expression and high off-target effects, resulting in false
positive (52,53). Some studies have shown that CRISPR can be
adapted for genome-scale screening by combining Cas9 with
pooled-guide RNA libraries and next-generation sequencing
(NGS) (54). To date, two applications of CRISPR/Cas9-mediated
genomic modifiers have been available for genome-wide
screening, either by targeting about 20 000 genes or studying
one specific signaling pathway or gene function (55). The gen-
eral approach for screening of CRISPR is through loss-of-
function screens, which is based on indel-prone NHEJ repair or
repression of the underlying sequences (CRISPRi). The gain-of-
function screen, which uses endogenous HDR or CRISPR activa-
tion (CRISPRa) approaches, is also employed for some specific
applications (48). In addition, developments in the CRISPR sys-
tem for RNA targeting or base editing will further broaden the
research field of CRISPR screens (56,57).

Given the ever-growing CRISPR toolbox, a variety of high-
throughput pooled screening options have become available for
genome mutagenesis, transcription and epigenome modifica-
tion, and base editing. These screens utilize pooled sgRNA li-
braries generated by cloning chip-synthesized oligonucleotides,
which cover the entire human or mouse transcriptome, into
lentiviral vectors. Upon transduction of the libraries into cells,
sgRNAs inducing a selectable phenotype can be identified by
NGS. Traditionally, CRISPR/Cas9 screens have been used to
study intracellular phenotypes by combining with positive,
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negative or marker/reporter gene selection (58). Recently,
single-cell RNAseq has been developed for the pooled CRISPR
screen readout as an alternative strategy (‘Perturb-seq’), allow-
ing capture of multi-dimensional transcriptional phenotypes to
correlate with their respective genetic manipulation (59–61).

CRISPR/Cas9 library screening enables the identification of
critical components in a variety of biological processes. Apart
from being widely used to identify essential genes in mamma-
lian cell lines (62), the CRISPR screen has recently been used to
analyse synthetic lethal genes (63), HIV host dependency factors
(64), genetic vulnerabilities in cancer (65,66), novel targets of dis-
eases (67–69) and resistance phenotypes (70). Moreover, the
identification of non-coding sequences and characterized en-
hancer elements and regulatory sequences belongs to a novel
application scope of CRISPR screens. With tiling sgRNAs
(‘saturating mutagenesis’), researchers could identify non-
coding regions involved in resistance to pharmacological inhibi-
tors (71), enhancers required for oncogene-induced senescence
(72), or novel enhancer elements (71). CRISPR/Cas9 screens have
also been extended to the identification of short-length miRNAs
through combining CRISPR/dCas9 with a split-HRP-based re-
porter system (73). In addition, high-throughput genetic studies
combined with CRISPR screens have also been performed in vivo
by delivering gRNA and nuclease with vectors or using constitu-
tive or inducible Cas9-expressing mouse models that only re-
quire gRNA delivery (65,74,75).

Applications in Cell Therapy
The CRISPR/Cas9 system has produced a revolution in the field
of cell therapy, mainly involving immune cell therapy and
stem cell therapy [42]. Treatment using ex vivo gene-editing T
cells from patients with cancer or autoimmune diseases have
shown promising results (28,76–78); one example being next-
generation chimeric antigen receptor (CAR) T cells. The feasi-
bility of using CAR T cells for targeted therapy of malignancies
has been established through using electroporation of Cas9
ribonucleoproteins (RNPs) to transfect activated various tar-
gets including CXCR4, CCR5, PD-1 and CD7 in human T cells
(54,76,79–82). The first clinical trials using CRISPR/Cas9-RGNs
to create a PD-1 knockout in T cells have been approved for the
treatment of muscle-invasive bladder cancer, castration-resis-
tant prostate cancer, metastatic renal cancer and metastatic
non-small cell lung cancer. These phase I clinical trials were
commenced in 2016 (83). However, severe side effects due to
cytokine release syndrome (CRS), neurotoxicity or on-target
off-tumor toxicity are major obstacles for effective treatment
of patients. To relieve such limitations related to T cell–based
immunotherapies, CRISPR/Cas9 system was used to delete en-
dogenous TCRs and HLA class I to generate the universal
allogenic ‘off-the-shelf’ CAR T cells, or disrupt inhibitory
receptors, such as CTLA-4 or PD-1 (76,79,84,85), or target CAR
constructs to the endogenous TCR a constant locus in the pri-
mary human T cells with gene editing tools (86). Immune cell
therapy will achieve greater breakthroughs in clinical applica-
tion, as the US Food and Drug Administration (FDA) has ap-
proved two global CAR-T cell products targeting CD19 for the
treatment of acute lymphoblastic leukemia and non-Hodgkin
lymphoma in the past year.

Apart from T cells, ex vivo editing of induced pluripotent
stem cells (iPSCs) and hematopoietic stem cells (HSCs) derived
from the patient’s somatic cells also likely offer the opportunity
for investigating the pathophysiological mechanisms of heredi-
tary diseases. With this technology, researchers have made

advances in the treatment of b-hemoglobinopathies, hemo-
philia B, hearing loss, Alzheimer disease, oculopathy, cardiac
diseases and other genetic diseases (Table 1). Notably, the pro-
duction of organoids from engineered iPSCs has developed
rapidly in recent years. Patient-specific organoids offer unprece-
dented opportunities for studying phenotypes manifested at
the cellular level, and provides a framework for both disease
modeling and regenerative medicine based on the synthetic re-
constitution of tissues with physiologically relevant structural
and functional features that could be transplanted into patients
(87). With these organoids, the in-depth mechanisms of muscu-
lar development and disease (116), epithelial development (117)
and some other genetic diseases (118,119) have been revealed. A
clinical trial for age-related macular degeneration (AMD) was
performed whereby autologous iPSC-derived retinal pigment
epithelial (RPE) cells were transplanted into the patient’s patho-
logical tissue. Although this treatment could improve a
patient’s symptoms and avoid immune rejection, the non-ideal
therapeutic effects and tumorigenicity of iPSCs are still serious
disadvantages (120).

Applications in the Modification of Human
Embryo
Gene editing in human zygotes or embryos were previously un-
thinkable due to the low efficiency of traditional biological tech-
nologies. With the rapid development of CRISPR technology,
researchers have attempted to edit human embryos using
CRISPR and made some progress. Several scientific groups in
China have reported genes corrected with the CRISPR/Cas9
technique in human zygotes or 3PN embryos (121,122).
Recently, Ma et al. (123) described the correction of a pathogenic
gene mutation in human embryos using CRISPR technology.
They corrected the heterozygous MYBPC3 mutation in human
pre-implantation embryos with precise CRISPR/Cas9-based tar-
geting accuracy and high HDR efficiency by activating an endog-
enous, germline-specific DNA repair response. Other studies
were the first to use the base editor system to correct HBB (A>G)
mutation within the human embryonic genome (124,125).
These breakthroughs highlight the tremendous potential of cor-
recting homozygous and compound heterozygous mutations by
base editing in human embryos.

Although the gene targeting efficiencies in the above studies
were quite low and were accompanied by significant off-target
effects as well as mosaicism, CRISPR/Cas systems have the po-
tential of correcting heritable mutations in human embryos. Ma
et al. (123) reported that 72.4% of human embryos fertilized with
sperm carrying the heterozygous MYBPC3 mutation could carry
two copies of the non-mutated gene copy after Cas9-sgRNA pro-
teins injected, as opposed to 47.4% in untreated embryos.
Moreover, only one mosaic embryo was detected, with results
showing 100% targeting efficiency based on the absence of
detected heterozygous blastomeres (123,126). Notably, embry-
onic genome editing with a base editor showed higher effi-
ciency: targeted deep sequencing on injected embryos revealed
that 17 out of 17 (100%) or 6 out of 9 (67%) embryos carried the
targeted point mutations at the target site in FANCF or DNMT3B
gene, respectively (125). This supports the supposition that base
editors can be beneficial for correcting genetic defects in human
embryos.

In addition, the above achievements have led to the debate
of human embryo genome editing regarding ethical implica-
tions, especially clinical applications (127). Although some
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institutions like the National Academy of Sciences, Engineering,
and Medicine in the United States have started the support for
modifying human embryos by correcting mutations that cause
serious disease when no reasonable alternatives exist (128), fur-
ther progress is necessary before CRISPR/Cas9 techniques can
become a reasonable and safe approach for clinical applica-
tions, especially in relation to embryo genome editing.

Limitations and Prospects
Despite being effectively useful in genome modification and
functional regulation in biological systems, CRISPR/Cas9 sys-
tems have also encountered various inherent challenges.
Among them, the off-target effect is the foremost challenge. In
the last few years, researchers have attempted to make
improvements by optimizing sgRNA, or artificially modifying
the protein structure of Cas9, such as the PAM structure (129). In
addition, there are investigations into anti-CRISPR proteins
which promise to be a useful Cas9 off-switch for avoiding unde-
sirable off-target effects by limiting the amount of time that
Cas9 is active in the nucleus (130–132).

The delivery efficiency of Cas9 into cells or tissue is another
problem that is preventing successful CRISPR-mediated genome
editing. Initial CRISPR-mediated genome editing approaches re-
lied on delivering plasmids or viral vectors encoding Cas9 and
sgRNAs. Adeno-associated virus (AAV) vectors, which can facili-
tate gene transfer and episomal expression in non-dividing cells,
are the mostly used vectors in Cas9 delivery. However, its appli-
cation suffers from limitations associated with the size of encap-
sulated transgenes, pre-existing immunity against AAV vectors

and CD8þ T cell-mediated adaptive response against the AAV
capsid (133). Several studies have shown that the delivery format
of active as9 protein/gRNA RNP complex through microinjection,
liposome-mediated transfection, electroporation or nucleofection
(134) has more advantages due to lower off-target effects and
rapid gene editing (135,136) when compared with plasmid DNA
transfection. However, the in vivo delivery formats of mRNA and
protein pose certain technical challenges, including inability to
globally deliver to the target cells or organs or trigger RNA-
sensing innate immune responses in human and murine cells,
leading to cytotoxicity (137). Further improvement in the perfor-
mance of the CRISPR components and means of delivery is neces-
sary to increase the efficiency of in vivo genome editing, such as
delivering nanoparticles carrying sgRNA and Cas9 protein (138).

In conclusion, there are some difficulties that need to be
overcome for effective use of CRISPR-based gene editing, espe-
cially in clinical therapy. Nevertheless, genome editing has be-
come a powerful tool for modifying cell lines and organisms to
investigate the biology and pathophysiological mechanisms of
various genetic diseases. Further studies will continue in order
to improve gene targeting accuracy and efficiency, delivery
potentials into particular cells, tissues or organs, detection
and modulation efficiencies of activity time and activity area
of Cas9 in vivo, and prediction and treatment efficiencies of
undesired mutations caused by gene editing. Another impor-
tant issue is represented by the ethical concern related to the
use of CRISPR technology in humans, and the appropriate ethi-
cal and regulatory guidelines that must be developed to judge
the reasonable use of these tools. There is anticipation that we
can integrally understand the intricacy and diversity of

Table 1. Ex vivo editing of induced pluripotent stem cells (iPSCs) related to genetic diseases

Associated diseases Mutant genes Citation

Sandhoff disease Exosaminidase subunit beta (HEXB) (88)
Long QT syndrome (LQTS) Calmodulin 2(CALM2) (89)
Duchenne muscular dystrophy X-linked dystrophin gene (DMD) (130)
Cleidocranial dysplasia (CCD) Runt-related transcription factor 2 (RUNX2) (90)
N370S GBA1 Parkinson’s disease (PD) Glucosylceramidase beta1 (GBA1) (91)
Coenzyme Q10 deficiency Coenzyme Q4(COQ4) (92)
Danon disease Lysosomal-associated membrane protein 2 (LAMP-2) (93)
Glanzmann thrombasthenia Integrin subunit alpha 2b (ITGA2B) (94)
Metachromatic leukodystrophy Arylsulfatase A (ARSA) (95)
Neuronal ceroid lipofuscinoses (Batten disease) CLN5, intracellular trafficking protein (CLN5) (96)
Niemann-Pick disease, types A and C1 Sphingomyelin phosphodiesterase 1 (SMPD1), NPC in-

tracellular cholesterol transporter 1 (NPC1)
(97)

Pelizaeus-Merzbacher disease Proteolipid protein 1 (PLP1) (98)
Pompe disease Glucosidase alpha, acid (GAA) (99)
Prader-Willi syndrome 15q11.2-q13; Various; Chr.7 (100,101)
Retinitis pigmentosa MER proto-oncogene, tyrosine kinase (MERTK) (102)
Smith-Lemli-Opitz syndrome 7-Dehydrocholesterol reductase (DHCR7) (103)
Wolman disease (lysosomal acid lipase disease) Lipase A, lysosomal acid type (LIPA) (104)
Congenital neutropenia (SCN, Kostmann disease) HCLS1-associated protein X-1 (HAX1) (105)
X-linked RP (XLRP) Retinitis pigmentosa GTPase regulator (RPGR); nuclear

receptor subfamily 2 group E member 3(Nr2e3)
(106,117)

Leber congenital amaurosis (LCA) Centrosomal protein 290 [Homo sapiens (CEP290)] (107)
MEN2A Ret proto-oncogene (RET) (108)
Familial platelet disorder (FPD) Runt-related transcription factor 2 (Runx1) (109)
Parkinson’s disease (PD) Triplication of the a-synuclein (SNCA) (110)
AD Presenilin (PSEN1) (111)
Hemophilia B Coagulation factor IX (F IX) (112)
Hereditary sensual deafness Myosin VIIA (MYO7A); myosin XVA (MYO15A) (113,114)
Retinitis pigmentosa MEN1 (115)
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CRISPR/Cas in gene editing and thereby improve this
technology.
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