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Abstract
Effective management and restoration of salt marshes and other vegetated intertidal habitats require objective and spatially 
integrated metrics of geomorphic status and vulnerability. The unvegetated-vegetated marsh ratio (UVVR), a recently devel-
oped metric, can be used to establish present-day vegetative cover, identify stability thresholds, and quantify vulnerability to 
open-water conversion over a range of spatial scales. We developed a Landsat-based approach to quantify the within-pixel 
vegetated fraction and UVVR for coastal wetlands of the conterminous United States, at 30-m resolution for 2014–2018. 
Here we present the methodology used to generate the UVVR from spectral indices, along with calibration, validation, and 
spatial autocorrelation assessments. We then demonstrate multiple applications of the data across varying spatial scales: first, 
we aggregate the UVVR across individual states and estuaries to quantify total vegetated wetland area for the nation. On the 
state level, Louisiana and Florida account for over 50% of the nation’s total, while on the estuarine level, the Chesapeake Bay 
Estuary and selected Louisiana coastal areas each account for over 6% of the nation’s total vegetated wetland area. Second, 
we present cases where this dataset can be used to track wetland change (e.g., expansion due to restoration and loss due to 
stressors). Lastly, we propose a classification methodology that delineates areas vulnerable to open-water expansion based 
on the 5-year mean and standard deviation of the UVVR. Calculating the UVVR for the period-of-record back to 1985, 
as well as regular updating, will fill a critical gap for tracking national status of salt marshes and other vegetated habitats 
through time and space.
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Introduction

Coastal wetlands, including salt marshes, mangroves, and 
other vegetated intertidal habitats, provide numerous eco-
system services (Barbier et al. 2011). These habitats are 
also increasingly threatened by sea-level rise, eutrophica-
tion, sediment deficits, storms, and anthropogenic devel-
opment (Leonardi et al. 2018; Kirwan et al. 2010; Deegan 

et al. 2012). Though field-based assessments have linked 
wetland vulnerability to these processes over limited spatial 
scales (Cahoon et al. 2019), coastal managers and research-
ers could benefit from spatially comprehensive metrics that 
integrate a myriad of processes.

The concept of vegetative cover as a stability metric is 
established (Neckles et al. 2013); however, prior studies 
have been based on point, quadrat, or transect scales. A 
wealth of literature has reinforced that wetlands are three-
dimensional biogeomorphic structures (Redfield 1972; 
Fagherazzi 2013; Mariotti 2020) and therefore a complete 
spatial characterization of vegetation is necessary. Prior 
efforts have used remote sensing and aerial imagery to 
track salt marsh dieback (Rangoonwala et al. 2016; Burns 
et al. 2021), characterize gross primary production (Feagin 
et al. 2020), and evaluate large-scale coastal land loss 
(Couvillion et al. 2017). In this study, we extend the use 
of remote sensing by generating a conterminous United 
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States (CONUS)-wide dataset of the vegetated fraction 
and unvegetated-vegetated marsh ratio.

The unvegetated-vegetated marsh ratio (UVVR) is a spa-
tially integrative metric that correlates with sediment budg-
ets and sea-level rise (Ganju et al. 2017); it is defined as:

where Auv is the unvegetated area within a specified domain, 
and Av is the vegetated area. The total area of the wetland 
domain, Ad, is the sum of Auv and Av and the vegetated frac-
tion, Fv, is therefore:

Unvegetated areas can represent bare sediment, pools, 
channels, and intertidal flats. Vegetated areas are typically 
wetland plain areas, and in a “binary” context, any veg-
etated plain, regardless of stem density, would be con-
sidered vegetated at some nominal spatial scale (based 
on sampling resolution and methodology, discussed in 
the “Resolution and Aggregation Scales” section). In this 
study, we quantified the vegetated fraction, Fv, which is 
related to the UVVR through:

Note that the UVVR is a unitless ratio derived from the 
vegetated fraction and is therefore not suitable for calculat-
ing averages (Fv should be used for averages and aggre-
gates, and then converted to UVVR).

The UVVR was originally developed in conjunction 
with field-based sediment transport measurements over 
individual marsh complexes, and then expanded across 
entire estuaries following a “marsh unit” concept akin to 
a hydrologic watershed (Defne et al. 2020; Ganju et al. 
2020). The metric captures the tendency of vulnerable 
wetland areas to convert to open water in response to some 
external forcing, whether it is episodic dieback from salin-
ity stress, gradual loss to sea-level rise, or lateral erosion 
from wave attack. The UVVR ranges from 0 (fully veg-
etated) to near infinity for nearly unvegetated areas (com-
pletely open water is technically an undefined number), but 
all sites studied by Ganju et al. (2017) were below 1, with 
the most unstable wetland complex (Blackwater National 
Wildlife Refuge region, Maryland, USA) having a value 
of 0.94. Ganju et al. (2017), as well as other independent 
investigations (Wasson et al. 2019; D’Alpaos and Marani 
2016), have shown a stability threshold in the range of 
0.10–0.15. Above a UVVR of 1, a marsh complex may 
cease to be geomorphically characterized as a vegetated 
wetland and may function more as an estuary; therefore, 
the utility of the UVVR as a predictive metric diminishes 
above this threshold. The vegetated fraction metric, Fv, on 
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the other hand, is a basic quantity that identifies the change 
in inventory in response to restoration and loss.

The UVVR, by definition, is calculated over an areal 
basis, either across hydrologically distinct marsh units or 
as a raster/pixel-based metric; this distinguishes it from tra-
ditional metrics such as percent cover which are applied on 
quadrat or transect scales. Both the marsh unit and pixel 
approaches are valuable depending on the application. Prior 
work (Defne et al. 2020; Ganju et al. 2020) implemented 
detailed marsh-unit mapping, using elevation and watershed 
delineation tools, to compute the UVVR and other important 
metrics at scales that are often used by coastal managers 
(i.e., marsh parcels separated by channels or other geomor-
phic features). Satellite-based, pixel-level methods can be 
used to characterize broader spatial areas and relate vulner-
ability to spatially varying external forces such as sea-level 
rise, sediment supply, and tidal range (Sun et al. 2018). They 
are also valuable for rapid comparisons of stable and vulner-
able areas and for the generation of baseline metrics over 
areas that may be subject to restoration or intervention in the 
future. In this study, we present the development and appli-
cation of a national UVVR dataset using Landsat 8 satellite 
imagery (Vermote et al. 2016). We first describe the meth-
odology and assess the derived UVVR in comparison with 
high-resolution imagery and classified data. We then demon-
strate the use of the UVVR in evaluating state- and estuary-
level wetland cover, and present potential uses of the data 
in tracking restoration, dieback, and relative vulnerability.

Methods

Here we describe the analysis of spectral Landsat imagery 
to first calculate within-pixel vegetated fractional cover esti-
mates, and then the within-pixel UVVR. We calibrate and 
validate the analysis with spectral Sentinel-2 satellite imagery 
(10-m resolution; ESA 2022), and US Department of Agri-
culture’s National Agricultural Inventory Program (NAIP; 
U.S. Department of Agriculture 2022) aerial imagery (~ 1-m 
resolution). Additionally, we compare the Landsat fractional 
cover estimates with an unsupervised classification of NAIP 
imagery in two ways: (1) by aggregating binary (vegetated 
or unvegetated) classified NAIP pixels to Landsat pixels and 
(2) calculating the aggregates from Landsat fractional cover 
estimates and classified NAIP pixels for predetermined marsh 
units. These workflow steps are presented in Fig. 1.

Satellite Imagery Processing and Calibration 
for Annual Data

For this application, we considered the conterminous United 
States along all coastal regions landward to an elevation 

1862 Estuaries and Coasts (2022) 45:1861–1878



1 3

of + 10 m NAVD88 (U.S. Geological Survey 2022a) and sea-
ward to the federal waters boundary (Fig. 2). The National 
Land Cover Dataset (Wickham et  al. 2021) and Coastal 
Change Analysis Program (National Oceanic and Atmos-
pheric Administration 2022) dataset were used to identify 
wetland areas and mask the final output. While satellites such 
as Sentinel and other commercial satellites have a higher spa-
tial resolution, Landsat imagery was selected for use because 
of its 45-year long period of record. Landsat 8 (2013–present) 
was used for this assessment (Vermote et al. 2016). Below, 
we briefly describe the methodology and assessment; further 
details can be found in Couvillion et al. (2021).

We grouped cloud-free images for each year and used the 
annual median value of each index at each pixel for each year 
for this analysis. Masking, using the Pixel_QA band available 
in Landsat 8 imagery, was first used to remove clouds, cloud 
shadows, and other potential sources of image contamina-
tion (e.g., saturation) in the individual dates of imagery (U.S. 
Geological Survey 2022b). An annual median was calculated 
from the remaining observations. A median was used due to 
lower sensitivity than the mean to sources of contamination 
unrecognized by the previously mentioned mask.

The following indices were calculated for each image in 
the collection:

where mNDWI is the modified Normalized Difference Water 
Index (Xu 2006), NDVI is the Normalized Difference Veg-
etation Index (Kriegler et al. 1969), NDBI is the Normalized 
Difference Built-up Index (Zha et al. 2003), and R, G, SWIR, 
and NIR are the red, green, shortwave infrared, and near-
infrared bands, respectively.

Linear spectral unmixing was used to determine the 
relative abundance of the targets of interest (i.e., vegetated 
and unvegetated fractions) in the annual median images 
created in the previous step.  Linear spectral unmixing 
assumes that the reflectance of each pixel is a linear com-
bination of the reflectance of each target present within the 
pixel. Linear spectral unmixing requires the designation of 

(4)mNDWI = (G − SWIR)∕(G + SWIR)

(5)NDVI = (NIR − R)∕(NIR + R)

(6)NDBI = (SWIR − NIR)∕(SWIR + NIR)

Fig. 1   Processing workflow for 
vegetated fraction and UVVR 
from Landsat imagery. Pink 
ellipses represent masking 
steps, blue ellipses represent 
calibration, validation, and 
assessment steps, yellow ellipse 
represents aggregation step, and 
green boxes represent outputs
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“endmembers,” or pixel values which represent a homog-
enous target of each class.

High-resolution aerial-imagery based (NAIP) analyses 
of three large estuary-marsh complexes (Ganju et al. 2020) 
were used to develop endmembers in Landsat 8 data which 
represented unvegetated (bare earth), vegetated, and water 
conditions (Couvillion et al. 2018). These products yielded 
binary classifications of each pixel and were aggregated 
from a ~ 1-m spatial resolution to 30-m spatial resolution 
to match the Landsat pixels and the percent unvegetated/
vegetated/water in each 30-m pixel was recorded. These data 
were binned into 1% intervals from 1 to 99% of each cat-
egory. Bins for 0% and 100% were not used as these catego-
ries often contained variability not indicative of the fractions 
of the targets of interest.

Mean values of the Landsat-based NDVI, mNDWI, and 
NDBI for time periods which best matched the calibration 
datasets were recorded in each interval. Endmember values 
were calculated from the intercepts at 0 and 100% of the 
line which best fit the calibration data. The pixel values of 
the resulting images indicated the fraction of the pixel com-
prised by that target or endmember.

The Landsat orbit allows for a return interval of 16 days 
at a given location, yielding ~ 23 images per year at a given 
location (not considering cloud interference). This there-
fore prevents tidal aliasing (i.e., return interval is not aligned 
with semi-diurnal, diurnal, or spring-neap cycle) and yields 

enough images within a year to capture a mixture of high 
and low water events. Compositing of annual data over 
5 years (the “Multi-year Composite for Coastal Wetlands” 
section) further minimizes potential artifacts due to tides.

Validation and Assessment with Higher‑Resolution 
Spectral Data

We assessed the moderate resolution spectral unmixing esti-
mate with higher-resolution data to determine if the 30-m 
satellite product captures  the same vegetation coverage 
as a finer-resolution aerial product. The datasets used for 
validation were created from high-resolution (~ 1 m) data-
sets representing median conditions during the 2014–2019 
time period. We used imagery from the US Department 
of Agriculture’s National Agricultural Inventory Program 
(NAIP), as well as Sentinel-2 satellite imagery in consist-
ently open-water areas, to estimate the fractional compo-
sition of unvegetated, vegetated, and water in each pixel.  
Sentinel-2 imagery was used to identify persistent open water  
and reduce the error in these areas often caused by issues 
such as inconsistency in spectral reflectance values in 
NAIP data. Random samples from these higher-resolution 
datasets were used to assess the 30-m resolution Landsat 
datasets. To facilitate comparability with the Landsat data-
sets, the finer resolution data were aggregated to a 30-m 
spatial resolution.

Fig. 2   Domain (shown in red) considered for Landsat 8-derived 
UVVR coverage for the conterminous USA. This domain includes 
wetland areas from the seaward boundaries of federal waters, land-

ward to the 10-m contour relative to the North American Vertical 
Datum of 1988. Background map from Earthstar Geographics
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Landsat-derived unvegetated, vegetated, and water frac-
tional  cover estimates for the same 2014–2019 period 
were reclassified into 1% interval bins and a stratified ran-
dom sample was taken from each bin from 1 to 99%. For 
the purposes of this analysis, 0% and 100% cover were 
excluded from this random sample, as we are most con-
cerned with fractional estimates of cover. In general, 100% 
water is straightforward to quantify from a spectral perspec-
tive, and the inclusion of large areas of 100% water (for 
example) would bias the statistics towards higher accuracy. 
The sampling consisted of 500,000 random points which 
were intersected with the corresponding vegetated, unveg-
etated, or water percent derived from the NAIP images com-
posited over the same time-period. For the purposes of this 
accuracy assessment, the NAIP-derived fractional cover esti-
mates were considered the reference data and compared to 
the Landsat-derived estimates. The root mean squared error 
(RMSE) and bias of the Landsat-derived fractional cover 
estimates were calculated.

Validation and Assessment with Aerial 
Imagery‑Based Classification

Visual classification methods for evaluating vegetated and 
unvegetated (bare land and water) area were also compared 
with the Landsat-derived method for determining fractional 
estimates. For this comparison, we used an additional data 
set for the wetlands on the eastern side of Chesapeake Bay 
(Ackerman et al. 2021). These data were generated in the same 
fashion as the calibration data used in the “Satellite Imagery 
Processing and Calibration for Annual Data” section (Ganju 
et al. 2020). In brief, an unsupervised classification of NAIP 
four-band imagery and elevation data was used to identify 32 
imagery classes. The user then identified each class as either 
unvegetated or vegetated. The final result of this process is 
a binary classification of vegetated or unvegetated pixels. 
Two methods using the 0.60-m spatial resolution 2018 NAIP 
imagery were compared with the Landsat classification: the 
first method aggregated binary pixels across delineated marsh 
units (Ganju et al. 2020) to compute a NAIP-based fractional 
vegetative cover. The Landsat-based 30-m pixels (and their 
associated fractional vegetation cover value) were then aggre-
gated over those same units. For the NAIP imagery, we calcu-
lated the vegetated fraction of the marsh unit by first dissolving 
the unvegetated and vegetated areas smaller than nine pixels 
(to eliminate spurious pixels; this yields a minimum mapping 
unit of nominally 3.25 m2 for 0.60 m resolution imagery) into 
the surrounding vegetated and unvegetated regions, respec-
tively, and then calculating the vegetated area in each marsh 
unit (Ackerman et al. 2021). For the Landsat imagery, we 
used the vegetated fraction of the 2018 Atlantic Coast Land-
sat UVVR raster (Couvillion et al. 2021) to generate a mean 
vegetated fraction for each marsh unit. There were 8,518 marsh 

units in this region, 130 of which did have null Landsat val-
ues due to complete open water within the pixel. The second 
method directly compared NAIP pixels aggregated up to the 
same resolution as the Landsat pixels. For this method, we first 
created a random sample of points within the exclusive mask 
(see exclusive mask description below), with a minimum dis-
tance of 60 m between points to avoid computation of adjacent 
pixels. We then extracted the footprint of the corresponding 
Landsat pixel containing the random point, aggregated the 
1-m resolution NAIP pixels over that footprint, and computed 
the fractional vegetative cover. We also computed total veg-
etated area over all marsh units using both Landsat and NAIP 
imagery, to compare aggregated estimates.

Multi‑year Composite for Coastal Wetlands

Annual data may contain spatiotemporal variability due 
to fluctuating water levels, vegetation, or anthropogenic 
effects. Wasson et al. (2019) showed that detecting mean-
ingful changes in vegetation cover and the UVVR with aerial 
imagery was feasible at the decadal level. Therefore, we pro-
vide a 5-year composite dataset for long-term tracking of 
vegetation changes. For the composite product, we defined 
a mask that further limited the spatial coverage to tidal areas, 
coastal vegetation, and adjacent coastal lands, based on the 
National Wetland Inventory (NWI) delineation of coastal 
wetlands (Cowardin et al. 1979). For analysis purposes, 
we used a more restrictive mask that included all estuarine 
intertidal subsystems, and all subsystems in the classifi-
cation that were marked with a saline or freshwater tidal 
modifier (U.S. Fish and Wildlife Service 2022a). Emergent 
vegetation and unconsolidated shore classes from the tidal 
riverine classification were also included. All nontidal sub-
classes or unconsolidated shore marked with special modi-
fiers (farmed, artificial, excavated, etc.) from lacustrine and 
palustrine systems was excluded (see Couvillion et al. 2021 
metadata for detailed listing of subclasses that were included 
and excluded). Using the annual data, we calculated a 5-year 
mean value of the vegetated fraction and its standard devia-
tion for each pixel. The standard deviation is presented as 
the potential uncertainty in the 5-year mean value, and the 
standard deviation of the UVVR is used later as a threshold 
for detecting vulnerability. Note that in practice, spatial and 
temporal averages should be computed from the vegetated 
fraction then converted to UVVR following Eq. (3) as the 
UVVR is a unitless ratio. The aforementioned mask is then 
applied to the 5-year mean and standard deviation.

Assessing the Robustness of Spatial Patterns

Temporal variability and therefore uncertainty in the UVVR 
at a given pixel can be simply addressed using the stand-
ard deviation in UVVR at each pixel through time. This is 
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predicated on the assumption that annual variations may 
either be artifacts or short-term variations due to actual pro-
cesses that are not representative of average wetland con-
ditions. If we accept that assumption, then the underlying 
spatial patterns in the UVVR may come into question. We 
can address this by using spatial autocorrelation and the vari-
ogram shape to test if broad-scale patterns (despite pixel-
level variability) are robust, thereby lending confidence in the 
relative value of the UVVR across a landscape and enabling 
comparison within both the annual and 5-year composite 
data. The variogram quantifies the spatial scale of variance 
and can identify inherent spatial patterns (or lack thereof) 
within the data. For example, if a marsh complex consists 
of regularly spaced ditches and marsh plain, the variance in 
UVVR would peak at the spacing of the ditches; conversely 
if the UVVR pattern consisted of random noise, the vari-
ance should be constant (and small). These patterns should be 
relatively consistent from year-to-year if the satellite-derived 
metrics contain a high signal-to-noise ratio.

We selected five individual marsh regions of varying 
morphology and environmental setting (Sandwich Marsh, 
Massachusetts; Saxis Wildlife Management Area, Virginia; 
Delta National Wildlife Refuge, Louisiana; Bair Island, Cali-
fornia; and the Skagit River Delta, Washington) to assess the 
robustness of the spatial patterns. Uniform areas of 125 × 125 
pixels (or 3.75 × 3.75 km) were selected, and the anisotropic 
variogram was computed with the UVVR values for each 
year using the MATLAB variogram function (Schwanghart 
2021) and the associated default parameters (six pixel bins, 
half of the total distance for the maximum distance). The 
variance was normalized by the maximum value to simplify 
annual comparisons. The mean UVVR and standard devia-
tion were also computed for visual comparison.

Results

Calibration

Endmember values were calculated from the line which 
best fit the calibration data. Initially, spectral unmixing con-
sisted of separating land and water categories on the basis 
of the mNDWI. The mNDWI values of these lines at 0% 
land (100% water) and 100% land (0% water) were 0.15388 
and −0.272949, respectively, in wetland areas.

Following unmixing into land and water categories, a sec-
ond iteration of linear spectral unmixing was used to quan-
tify the unvegetated and vegetated components of Landsat 
pixels. For this process, NDVI and NDBI indices were used. 
The values of the endmembers for those indices were 0.0713 
(NDVI) and −0.0402 (NDBI) for 0% vegetated land (100% 
unvegetated) and 0.5575 (NDVI) and −0.1586 (NDBI) for 
100% vegetated land (0% unvegetated).

Validation and Assessment: Resolution

Using a stratified random sample of 500,000 pixels, the over-
all RMSE of the Landsat-derived percent unvegetated, vege-
tated, and water estimates (when compared to NAIP-derived 
estimates) were 13%, 18%, and 17%, respectively. Overall 
bias in the Landsat-derived percent unvegetated, vegetated, 
and water estimates were + 0.81%, + 1.5%, and −0.87%, 
respectively, as compared to the NAIP-derived datasets. This 
indicates that overall, the Landsat-derived product overesti-
mates unvegetated and vegetated land, and slightly underes-
timates water compared to the NAIP analyses.

The overall RMSE and bias results are considerably 
affected by the distribution of values within the data set, 
which is heavily biased toward pixels containing more than 
70% land. The relatively low bias at this range of the data set 
biases the overall statistics toward a low bias. It is important 
to note however that the bias and RMSE vary through the 
percent cover estimate range.

Overestimates of percent vegetated land were highest in 
the lower portions of the percent cover range (i.e., vegetated 
cover from ~ 1 to 33%). The Landsat-derived product overes-
timated percent vegetated substantially in this portion of the 
range (bias: + 16%). Conversely, an underestimate of water 
was typical in these regions. At the higher end of the range 
(i.e., NAIP-derived percent unvegetated and vegetated cover 
from ~ 70 to 100%), the Landsat-derived percent unvegetated 
and percent vegetated and NAIP-derived percent vegetated 
were in close agreement. Note that the NAIP-derived prod-
uct is being designated as truth due to its superior spatial 
resolution; however, it also contains error. We discuss this 
later as a source of uncertainty when using remote-sensing 
methods for vegetative cover.

Validation and Assessment: Classification

Comparison of the Landsat-derived vegetated fraction with 
NAIP-based classification methods was largely consistent 
with the Landsat-to-NAIP spectral comparison in terms of 
error, though bias was higher. For the marsh-unit compari-
son, we aggregated the vegetation fraction estimates from 
Landsat pixels over 8,518 marsh units in Chesapeake Bay 
and compared them with vegetation fraction estimates using 
the NAIP pixel-based classification method. The RMSE, 
mean absolute deviation, and median difference were 17%, 
12%, and 7%, respectively. The total vegetated area using 
the NAIP-based classification was 314 km2 (over a 356 km2 
total area), while the Landsat-derived fractional estimate 
yielded 283 km2 of vegetated area over 347 km2. The total 
areas between the two methods differ due to resolution of 
the Landsat pixels; if scaled to match, the vegetated area 
estimate from Landsat increases to 290 km2, yielding a 7.6% 
difference between the two methods.

1866 Estuaries and Coasts (2022) 45:1861–1878



1 3

For the aggregated pixel comparison, we selected 
12,663 random points from the Chesapeake Bay domain, 
extracted the corresponding Landsat pixel footprint and 
vegetated fraction value, and aggregated the NAIP-based 
binary pixels to compute a vegetation fraction. Errors were 
similar to the marsh-unit comparison, with RMSE, mean 
absolute deviation, and median differences of 19%, 13%, 
and 5%, respectively. In completely vegetated areas, agree-
ment was very high, resulting in many difference values 
near zero for the aggregated pixel comparison (Fig. 3). 
As discussed in the NAIP vs. Landsat spectral indices 

comparison (the “Validation and Assessment: Resolution” 
section), Landsat-based values tended to overestimate veg-
etative cover in less vegetated areas but perform well in 
completely vegetated areas. This resulted in an overall bias 
(underestimation) of 5–7% as quantified above, given that 
50% of the areas are more than 97% vegetated (based on 
aggregated NAIP pixels). It is important to note the con-
ceptual difference between a visually classified pixel (with 
a binary 0 or 1 value) and a within-pixel spectral estimate 
that is quantifying vegetative cover over a larger footprint. 
We discuss nuances regarding binary classifications and 
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Fig. 3   Comparison of US Department of Agriculture National Agri-
culture Imagery Program (NAIP) classification based vegetated frac-
tion and Landsat-based estimate. Marsh-unit comparison aggregates 
NAIP and Landsat pixels over topographically constrained units; 

aggregated pixel comparison aggregates NAIP pixels (0.6 × 0.6  m) 
over Landsat pixel footprint (30 × 30  m). Comparison is based on 
eastern Chesapeake Bay dataset (Ackerman et  al.  2021). RMSE is 
root-mean-square error, MAD is mean absolute deviation
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continuous spectral estimates at the pixel-scale in the 
“Resolution and Aggregation Scales” section.

Variogram Results in Specific Test Regions

The variogram was calculated annually for 5 years of data 
over 3.75 km × 3.75 km square areas (14 km2), at five dif-
ferent locations on all three US coasts. The spatial autocor-
relation of five test regions, quantified using the anisotropic 
variogram, demonstrates robust spatial patterns from year-
to-year despite variability in the underlying UVVR values 
(Fig. 4). This indicates that the signal-to-noise ratio is high, 
and annual fluctuations in vegetative cover do not affect the 
underlying spatial pattern in the UVVR. Furthermore, the 
consistency of the variogram demonstrates that a 5-year aver-
age of the data will maintain spatial patterns and allow for a 
relative comparison of vegetative cover across marsh com-
plexes. The largest deviation was observed in a single year 
(2017) at the Delta National Wildlife Refuge location, where 
a peak in spatial correlation at approximately 1 km resulted 
from increased UVVR values across the entire domain, per-
haps due to anomalously high water levels during image 
collection. The shapes of the variograms also highlight the 
underlying variability in salt marsh morphology; e.g., the 
Sandwich Marsh location was characterized by two peaks, 
corresponding to the spacing of tidal channels. Variograms 
can help establish the annual consistency of the data, and to 
probe deeper aspects of salt marsh morphology. Applying 
the variogram over longer timescales as newer data become 
available may reveal underlying mechanisms of salt marsh 
loss (e.g., channel widening, pond expansion, submergence).

Applications

The vegetative cover and UVVR datasets for the Atlan-
tic, Gulf, and Pacific coasts of the conterminous USA are 
accessible through ScienceBase at https://​doi.​org/​10.​5066/​
P97DQ​XZP. Shapefiles are available for download, for 
annual data (2014–2018), the multi-year composite, and 
the standard deviation described above and used below 
in example applications. For web-based visualization of 
only the multi-year composite, users can visit the USGS 
Coastal Wetland Synthesis geonarrative at https://​wim.​
usgs.​gov/​geona​rrati​ve/​uscoa​stalw​etlan​dsynt​hesis/.

Multi‑year Composite Aggregates at the Estuary 
and State Level

We exploited the national-scale data to compare marsh veg-
etation coverage and the UVVR at state and estuary scales 
to provide an example of how these data can be used for 

rapid assessment. Perhaps more importantly, this aggrega-
tion allows for up-to-date and efficient quantification and 
comparison of vegetated areas at spatial scales for which 
data are presently lacking. The wetland classification mask, 
based on the National Wetland Inventory (NWI), yields a 
total area but does not provide a dynamic differentiation 
between vegetated and unvegetated areas. We can therefore 
use the vegetated fraction estimates over the NWI mask to 
directly calculate total vegetated wetland area in each state 
and estuary. Ultimately, this estimate is necessary for track-
ing national-scale investments in restoration, carbon seques-
tration, habitat availability, and coastal protection.

We considered US state- and estuary-level aggregates 
along the three conterminous US coastlines. A state-level 
vegetated fraction was calculated as the mean of the aggre-
gated pixels within each state and converted to a UVVR fol-
lowing Eq. (3). For estuary-level estimates, hydrological unit 
maps from the U.S. Geological Survey (USGS) Watershed 
Boundary Dataset (USGS 2013) were used to define the sea-
ward and landward boundaries for each estuary (Supp. S1).

In practice, the Landsat-derived estimates will con-
tain empty (null) values in completely unvegetated areas 
that exceed the pixel size (30 × 30  m). For example, a 
60 m × 60 m pond within a salt marsh plain will be char-
acterized by at least a single null value, and therefore not 
be included in an aggregated calculation of the vegetated 
fraction over that entire marsh complex. Similarly, highly 
fragmented wetland complexes with vast open-water areas 
but relatively small intact marsh plains may yield a mislead-
ingly high estimate of vegetative cover due to large expanses 
of null values within the domain. Therefore, we present two 
estimates of the aggregated UVVR for state- and estuary-
level estimates. First, a low-end estimate (UVVRlo) is cal-
culated by excluding all null values during aggregation, and 
a high-end estimate (UVVRhi) is calculated by assuming 
all null cells are completely unvegetated and assigning a 
vegetative cover value of zero. For both estimates, a more 
restrictive mask was used that excluded a number of classes 
not generally representative of tidal wetlands (Supp. S2), 
and not considered germane to a state/estuary level compari-
son. Because this mask includes unvegetated classes (bar-
rier islands, intertidal flats) that vary based on geomorphic 
environment or state-specific delineation, comparisons of 
UVVRhi between states and estuaries should be interpreted 
with caution. The primary role of this more restrictive mask 
is to yield a robust estimate of vegetated area for each region 
without inadvertently excluding potential vegetated areas.

State‑Level Estimates

We analyzed the intra-annual mean vegetative cover and 
UVVR in the 22 CONUS coastal states (Table 1, Fig. 5). 
Louisiana and Florida account for over half of the nation’s 
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vegetated wetland area. Louisiana’s wetlands, nearly con-
tinuous along the state’s coast, account for 32% of the 
nation’s total while Florida’s wetlands, which include 
large expanses of mangrove in the southern portions of the 
state, represent 25% of the nation’s total. Both states have 
relatively low UVVRlo indicating well-vegetated, intact 

wetland areas. However, Louisiana has a large UVVRhi 
due to fragmentation on spatial scales larger than the 30-m 
pixels.

South Carolina and Georgia each account for about 
7% of the nation’s total vegetated area, but both exhibit a 
high UVVR that is not connected with fragmentation or 

Fig. 4   Aerial imagery, mean UVVR, standard deviation of UVVR val-
ues from five years, and spatial autocorrelation for each year of UVVR 
data (variogram), at five salt marsh complexes: A) Sandwich Marsh, 
MA; B) Saxis Wildlife Management Area, VA; C) Delta National 
Wildlife Refuge, LA; D) Bair Island, CA; and E) Skagit River Delta, 

WA. Each analysis area is 125 × 125 pixels, or 3.75 × 3.75 km. Annual 
variograms were normalized by mean variance to enable comparison 
of spatial autocorrelation. Similarity in variograms between years 
implies consistent spatial patterns between years

1869Estuaries and Coasts (2022) 45:1861–1878



1 3

open-water expansion. Closer inspection of aerial imagery 
and ground photos (Fig. 6) shows that sparseness of the 
vegetated plain and exposed sediment lead to relatively low 
estimates of vegetative cover. Satellite-based methods that 
use within-pixel, continuous spectral information to quantify 
vegetative cover account for sparseness of stems; this con-
trasts with visual classification methods that select a binary 
choice for a pixel (e.g., the NAIP-based methods described 
in the “Validation and Assessment with Aerial Imagery-
Based Classification” section). In this particular case, visual 
classification of the plain in Fig. 6 would result in a “veg-
etated” selection, while the spectral estimate would assign 
a relatively low value of vegetative cover. We discuss these 
nuances in the “Resolution and Aggregation Scales” section.

The UVVRlo metric quantifies wetland plain integrity but 
neglects large open-water areas. The states with the lowest 
UVVRlo, in addition to Louisiana and Florida as discussed 
above, are Mississippi, Oregon, Alabama, Maine, Massa-
chusetts, and New Hampshire. The highest UVVRlo outside 
South Carolina and Georgia is found in New York and Vir-
ginia. In the case of New York, extensive ditching and the 
relatively small scales of the wetland complexes (which results 
in inclusion of open water within pixels) yield a low vegeta-
tive fraction and high UVVR. Much of Virginia’s wetland area 
is contained within the Virginia Coastal Reserve, which has 

expansive intertidal flats as well as a dynamic coastline. In both 
New York and Virginia, barrier islands that are included in the 
wetland mask may account for low vegetative fraction as they 
may include bare sediment within back-barrier wetland pixels.

The UVVRhi metric is more difficult to interpret because 
it includes a number of NWI classes that will vary based on 
how those classification boundaries are drawn within each 
state. We include those classes in order to cover the largest 
possible area for vegetated area computations, but the met-
ric may represent an underlying geomorphic characteristic 
in some cases. For example, in Louisiana, the large differ-
ence between UVVRlo and UVVRhi is due to marsh frag-
mentation, at scales larger than the 30-m pixel, which then 
generates empty values over the masked area. Conversely, 
the similarity between UVVRhi and UVVRlo, as in South 
Carolina and Georgia, indicates intact marsh plain expanses, 
with little fragmentation despite sparsely vegetated plains. 
For tracking basin-scale changes, however, UVVRhi may be 
more useful for temporal trends as it can be scaled up into 
larger units and capture fragmentation changes.

Estuary‑Level Estimates

A total of 29 estuaries of varying size from 0.4 to over 1,200 
km2 were analyzed (Table 2, Fig. 7, Supp. S1). Chesapeake 

Table 1   Compilation of 
aggregated state level total 
wetland area, UVVRlo (null 
pixels excluded), UVVRhi (null 
pixels included as unvegetated), 
mean vegetated fraction over 
wetland mask, vegetated area, 
and percent of national total

State Total area (km2) UVVRlo UVVRhi Vegetated 
fraction

Vegetated 
area (km2)

% of total

Louisiana 6843 0.10 0.31 0.76 5228 32.1%
Florida 4607 0.08 0.12 0.89 4113 25.3%
South Carolina 1911 0.52 0.58 0.63 1213 7.5%
Georgia 1640 0.46 0.49 0.67 1099 6.8%
Texas 1151 0.22 0.28 0.78 898 5.5%
North Carolina 992 0.14 0.18 0.85 842 5.2%
Maryland 850 0.18 0.24 0.80 684 4.2%
New Jersey 772 0.24 0.30 0.77 593 3.6%
Virginia 811 0.33 0.50 0.67 542 3.3%
Delaware 278 0.16 0.21 0.83 230 1.4%
Mississippi 246 0.09 0.13 0.89 218 1.3%
Massachusetts 154 0.13 0.27 0.79 122 0.7%
Washington 136 0.23 0.31 0.76 104 0.6%
Oregon 100 0.10 0.16 0.86 86 0.5%
Alabama 96 0.10 0.14 0.88 84 0.5%
Maine 90 0.10 0.25 0.80 72 0.4%
New York 95 0.41 0.62 0.62 59 0.4%
California 61 0.22 0.38 0.73 44 0.3%
Connecticut 39 0.25 0.47 0.68 27 0.2%
New Hampshire 20 0.13 0.26 0.79 16 0.1%
Rhode Island 9 0.27 0.61 0.62 6 0.0%
Pennsylvania 2 0.15 0.29 0.77 2 0.0%
Total 20903 NA NA NA 16,281 100%
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Bay contains over 6% of the nation’s vegetated wetland 
area, while the aggregate of the selected Louisiana coastal 
systems (Terrebonne Bay, Barataria Bay, Atchafalaya/Wax 
Lake Delta, Plaquemines-Balize Delta) accounts for over 
8%. Albemarle/Pamlico Sounds and Delaware Bay were 
the next largest vegetated areas, with 5% and 3%, respec-
tively. From a UVVR perspective, the detailed inventories 
mirror results at the state level. For example, the relatively 
large differences between UVVRlo and UVVRhi for Bara-
taria Bay, Terrebonne Bay, and the Plaquemines-Balize 
Delta result from large open-water areas and fragmenta-
tion between relatively intact marsh plains (at the sub-
30-m pixel scale). St. Helena Sound in South Carolina has 

a high UVVRlo and UVVRhi despite expansive marsh and 
little marsh fragmentation. This is due to the sparse veg-
etation signal over the vegetated plain (discussed above). 
Future research can connect the UVVR in such systems 
with stem density measurements and/or aboveground bio-
mass, and regionally variable endmembers for calibration 
may be implemented if warranted. In the northeast, Long 
Island Sound and Narrangansett Bay, which cover portions 
of New York and Connecticut, show a large difference 
between UVVRhi and UVVRlo, due to the small wetland 
plains relative to pixel size (which will naturally incorporate 
more open water/flats), as well as occurrence of constructed 
ditches and ensuing pool formation (Smith et al. 2021).
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Fig. 5   State-level UVVRlo (colored circles) and percent of national wetland area total (adjacent to state abbreviation). Basemap layer credits: 
VITA, Esri, HERE, Garmin, FAO, NOAA, EPA, USGS
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Comparisons between estuaries and linkages with broad-
scale external forcings are confounded by the myriad factors 
contributing to salt marsh degradation. The estuary-wide 
metrics are presented here to establish a baseline condition 
and enable tracking of vegetated habitat status through time 
for each specific system. As Wasson et al. (2019) pointed 
out, there are multiple factors contributing to marsh degrada-
tion that do not necessarily act consistently across all marsh 
environments. It is more appropriate to compare UVVR over 
time for marsh complexes within a similar setting, and there-
fore, we demonstrate methods to establish relative vulner-
ability within an estuary or marsh complex in the “Using 
the Composite and Standard Deviation for Vulnerability 
Assessment” section.

Detecting Spatiotemporal Trends due 
to Restoration, Recovery, and Loss

Despite annual variability in the UVVR due to natural pro-
cesses or artifacts, the data can be used to track restora-
tion, recovery, and/or loss in areas with known histories. 
For example, techniques such as sediment placement and 
hydrologic restoration can be objectively judged based on 
the trajectory of the UVVR and vegetated fraction. While 
very high-resolution methods, such as unoccupied aerial sys-
tems imagery, can be performed over small spatial scales 
(and repeated often), the ability to track multiple regions 
with a single data set is efficient and standardizes processes 
across agencies and initiatives.

At Prime Hook National Wildlife Refuge in Delaware, 
extensive restoration of tidal hydrodynamic processes 
and seeding (U.S. Fish and Wildlife Service 2022b) led to 
increased vegetation in multiple regions, especially at the 

southeastern edge and central landward portion of the marsh 
(Fig. 8A). In Louisiana, sediment placement was performed 
in two bayous (Bayou Chevee and Turtle Bayou; USACE 
2022) to restore open water to marsh. The annual data from 
2014 to 2016 show unvegetated plains initially, followed by 
bare sediment, both with vegetation fractions of zero, with 
revegetation occurring over both areas by 2018 (Fig. 8B). 
In south San Francisco Bay, California, the Alviso–Island 
Ponds project breached salt pond levees in 2006 (California 
Wetlands Monitoring Workgroup 2022); restoration of tidal 
flows has accelerated marsh development at areas near the 
breach (Fig. 8C). Lastly, loss of vegetation due to storms can 
also be detected in impacted areas. In 2017, Hurricane Irma 
reduced the coverage of mangroves throughout South Florida 
through storm surge and ponding (Lagomasino et al. 2021); 
in Everglades National Park, the decrease in vegetative cover 
is readily detectable in 2018 (Fig. 8D).

Using the Composite and Standard Deviation 
for Vulnerability Assessment

The annual variability in the UVVR can be deployed as 
a diagnostic tool for identifying vulnerable areas. Prior 
work has shown a stability threshold ~ 0.15, indicating 
that marshes with UVVRs above this threshold are more 
vulnerable to runaway expansion and conversion to open 
water (Wasson et al. 2019). Using this value as a 5-year 
composited UVVR and the standard deviation (sd) thresh-
old, we can separate domains into four categories: sta-
ble with low uncertainty (mean and sd of UVVR < 0.15), 
unstable with low uncertainty (mean > 0.15 and 
sd < 0.15), unstable with high uncertainty (mean and sd 
of UVVR > 0.15), and stable with high uncertainty (mean 

Fig. 6   An in  situ example of typical vegetative cover observed in 
South Carolina and Georgia salt marshes. Cross-marsh view (A) and 
a birds-eye view (B) for a marsh complex southeast of Charleston, SC 

(latitude: 32.7490334, longitude: -79.8985239), from April 6, 2021. 
(Photographs courtesy of Katie Luciano, South Carolina Department 
of Natural Resources)
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UVVR < 0.15 and sd > 0.15). The first two categories are 
the most informative, indicating areas with present-day 
stability or instability (and low uncertainty). The third 
category, unstable with high uncertainty, indicates large 
annual fluctuations over areas which are already over the 
stability threshold. This may be due to variable inunda-
tion (either from natural tidal processes or anthropogenic 
impoundment management), vegetation changes, or land 
management (e.g., controlled burn). Lastly, the fourth cat-
egory, stable with high uncertainty, may result from the 
same aforementioned processes, though the variability is 
perhaps observed less frequently (e.g., episodic overwash 
of sand on back-barrier marshes).

As an example of this, we apply the categorization to 
Mackay Island National Wildlife Refuge, in northern Cur-
rituck Sound, North Carolina. The categorization, with 
thresholds at 0.15, isolates the four aforementioned regions, 

which can then be mapped (Fig. 9). Most of the complex 
(71%) falls within the first category of stability with low 
uncertainty, while 13% falls within the unstable and low 
uncertainty category. These areas mostly correspond to the 
northern region of the island where there are large open-
water ponds and fragmented marsh plain. Two managed 
impoundments, on the southern and western edges, account 
for most of the unstable with uncertainty category (14%), 
likely due to annual changes in water level that modulate the 
UVVR. Less than 2% of the complex presents as the final 
category. The value of this assessment is two-fold: it allows 
for rapid characterization of vulnerability over large spatial 
scales, with an objective metric used to categorize areas. 
Secondly, the relative distribution of these categories can 
be observed through time with updated products, allowing 
for a tracking of vulnerability, again with an objective and 
reproducible metric.

Table 2   Compilation of aggregated estuary level total wetland area, 
UVVRlo (null pixels excluded), UVVRhi (null pixels included as 
unvegetated), mean vegetated fraction over wetland mask, vegetated 

area, and percent of national vegetated wetland area total. See Supp. 
S1 for list of hydrologic units used for each domain

Name of domain State Total area (km2) UVVRlo UVVRhi Vegetated 
fraction

Vegetated 
area (km2)

% of total

Chesapeake Bay DE, MD, VA 1266 0.17 0.25 0.80 1014 6.2%
Albemarle and Pamlico Sounds NC, VA 874 0.06 0.08 0.93 809 5.0%
Delaware Bay NJ, PA, DE 593 0.19 0.23 0.81 481 3.0%
Barataria Bay LA 689 0.12 0.50 0.67 459 2.8%
Terrebonne Bay LA 695 0.25 0.74 0.57 399 2.4%
Wax Lake Delta, Atchafalaya LA 344 0.01 0.08 0.93 319 2.0%
St. Helena Sound SC 458 0.61 0.68 0.59 272 1.7%
Timucuan Preserve FL 236 0.26 0.32 0.76 179 1.1%
Plaquemines-Balize Delta LA 204 0.11 0.36 0.74 150 0.9%
Ossabaw Sound GA 211 0.41 0.43 0.70 147 0.9%
Mississippi Sound MS 173 0.11 0.19 0.84 146 0.9%
Barnegat and Great Bays NJ 181 0.22 0.29 0.77 140 0.9%
San Francisco Bay CA 162 0.19 0.32 0.76 123 0.8%
Galveston Bay TX 122 0.21 0.29 0.78 95 0.6%
DE/MD/VA Coastal Bays DE, MD, VA 130 0.33 0.45 0.69 90 0.5%
Columbia River OR 86 0.10 0.16 0.86 74 0.5%
Mobile Bay AL 55 0.09 0.12 0.89 49 0.3%
Plum Island Sound MA 39 0.07 0.09 0.92 36 0.2%
Long Island Sound CT, NY 46 0.29 0.54 0.65 30 0.2%
Willapa Bay WA 35 0.23 0.28 0.78 27 0.2%
Puget Sound WA 33 0.36 0.55 0.65 21 0.1%
Hampton-Seabrook Complex NH, MA 16 0.16 0.27 0.79 13 0.1%
Wells/Rachel Carson NWRs ME 6.2 0.13 0.23 0.81 5.0  < 0.1%
Narragansett Bay RI, MA 6.9 0.20 0.47 0.68 4.7  < 0.1%
Elkhorn/Moro/Cojo Sloughs CA 3.5 0.43 0.58 0.63 2.2  < 0.1%
Humboldt and Arcata Bays CA 2.9 0.48 0.68 0.59 1.7  < 0.1%
Tijuana River Estuary CA 1.9 0.28 0.35 0.74 1.4  < 0.1%
Tomales Bay CA 1.3 0.35 0.86 0.54 0.7  < 0.1%
South Slough OR 0.4 0.24 0.42 0.71 0.3  < 0.1%

1873Estuaries and Coasts (2022) 45:1861–1878



1 3

Discussion

The development of a national inventory of wetland veg-
etative cover and UVVR provides a baseline data set for 
tracking trends in salt marsh trajectory across state, estu-
ary, and system scales. We also demonstrate the use of 
the UVVR for spatial assessment of vulnerability across 
the marsh complex scale, where targeted management 
and restoration decisions are typically made. These data 
are ultimately most valuable when used at the appropri-
ate scale, in combination with other relevant metrics 
(e.g., elevation, tide range, aboveground biomass, habi-
tat usage). Below, we discuss the impact of resolution 

on interpretation of wetland processes and highlight the 
value of these data for national-scale efforts.

Resolution and Aggregation Scales

The spatiotemporal completeness of coverage and resolu-
tion of satellite imagery together with modern computational 
capabilities (i.e., cloud-based solutions) makes satellite 
imagery an ideal dataset for analyses at national and regional 
scales. For this reason, we used Landsat imagery for explor-
ing spatial trends at the national scale, compared state-level 
UVVR aggregates, and provided results at estuary-level 
scales. Improvements could include non-linear methods of 

Fig. 7   Estuary-level UVVRlo (colored circles) and vegetated area (in km2, adjacent to estuary identifier). Basemap layer credits: VITA, Esri, 
HERE, Garmin, FAO, NOAA, EPA, USGS. See Supplemental S2 for details
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spectral unmixing, regionally variable endmembers, and 
other methods of image compositing and/or analysis such 
as harmonic analysis.

However, for analyses at smaller scales (investigating 
variations within an estuary or a marsh complex), using 
higher-resolution data, such as sub-1-m resolution NAIP 
imagery, and delineating the study area into marsh units 
to calculate aggregates (Defne et al. 2020; Ganju et al. 
2020) would enhance fidelity. Either of the pixel-based or 
marsh unit approaches are suitable for geospatial analy-
sis to explore trends in wetland status, but a mixed use 
of methods or a direct comparison between results from 
different methods for deriving conclusions could be mis-
interpreted due to differences in spatial resolution and 
spectral resolution of source data. For example, imagery 

with sub-meter resolution can directly capture creeks nar-
rower than 10 m or resolve narrow swaths of vegetation 
(i.e., < 30 m), whereas these features are assimilated in the 
fractional proportion of cover type for the Landsat-based 
approach.

The UVVR concept was originally developed using 
supervised classification of aerial imagery (Defne et al. 
2020), where individual pixels are classified as vegetated 
or unvegetated, based on four-band imagery and elevation. 
The classification therefore imposes a binary choice on each 
pixel and does not account for sparseness of vegetation. In 
other words, a sparsely vegetated mudflat may be identified 
as unvegetated, though it technically contains a low density 
of stems. In contrast, satellite-based methods that are based 
on spectral returns will identify a sparsely vegetated pixel 

Fig. 8   Aerial imagery and annual vegetative cover at A) Prime Hook 
NWR, DE; B) Bayou Sauvage NWR, LA; C) Don Edwards San Francisco 
Bay NWR; and D) Everglades National Park, FL. White boxes over NAIP 
imagery indicate areas of largest vegetative change. Panels A–C represent 

changes due to tidal restoration, sediment placement, and levee breaching 
respectively; Panel D represents dieback due to Hurricane Irma in 2017
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with a relative value (as opposed to a binary choice). Ulti-
mately, the spectral signal is fundamentally related to above-
ground biomass which is in turn related to vegetative cover 
over some larger areal unit. Therefore, the interpretation of 
vegetative cover and UVVR should be based on the use of 
the data. For tracking the distribution of channels, flats, and 
plains using the UVVR, the visual, supervised classification 
method is likely the most robust. However, if the density of 
vegetation within the plain is of interest (for computations 
of wave attenuation, carbon stock, habitat suitability), then 
a continuous within-pixel estimate may be more relevant. In 
both cases, data must be aggregated over some spatial scale, 
as the relevance of vegetative cover becomes questionable 
as the footprint area approaches zero. Though not attempted 
here, there is also the option of within-pixel vegetative cover 
estimates (not binary) using aerial imagery. However, given 
the variability in aerial imagery based on sensor platforms, 
this may result in variable calibration across flight paths. 
The inconsistency in spectral information contained within 
the NAIP imagery leads to errors in its ability to estimate 
percent cover. It is also important to note that the Landsat 
imagery is collected more frequently than NAIP imagery 
(2–3 years return period). Finally, geo-rectification errors 
may lead to some differences in the ground area covered 
by the NAIP- and Landsat-derived percent cover estimates, 
which may lead to further discrepancy between the two data-
sets and explain some of the inaccuracy. Ultimately, super-
vised classification methods allow for flexibility in assessing 

imagery before and after processing (e.g., to account for 
seasonal differences), but include some subjectivity in the 
classification and interpretation of the results. As high-res-
olution commercial satellite imagery products increase in 
availability and temporal resolution, the creation of cloud-
free composites with improved spectral consistency as com-
pared to aerial imagery may become increasingly possible. 
This may enable the creation of high-resolution vegetated 
cover estimates from these products.

Value of a Nationally Consistent Data Set

Multiple federal, state, and local agencies, as well as land 
conservation groups, are focused on coastal wetland man-
agement and restoration, with different objectives. A consist-
ent national UVVR and vegetated fraction dataset provide 
a critical baseline for rapid assessment of wetland status 
for multiple agencies and objectives simultaneously. For 
example, the U.S. Fish and Wildlife Service is primarily 
concerned with habitat restoration for endangered species 
that use vegetated areas of salt marshes across the entire 
nation. Our study enables quantification of vegetated area 
at every coastal refuge and a baseline dataset for tracking 
future restoration efforts. On a national basis, CONUS-wide 
carbon inventories that include coastal wetlands could inte-
grate vegetative cover estimates, while forecasts will benefit 
from wetland stability predictions that can be based on the 
UVVR. For states and local agencies, the UVVR at 30-m 

Fig. 9   Application of UVVR threshold analysis at Mackay Island 
National Wildlife Refuge, North Carolina, USA. A) aerial image of 
the region (USDA 2022). B) scatterplot of five-year composited and 
standard deviation of UVVR, used to identify areas that have crossed 

the nominal 0.15 stability threshold; 1) indicates stable, low uncer-
tainty pixels; 2) indicates stable, high uncertainty pixels; 3) indicates 
unstable, high uncertainty pixels; and 4) indicates unstable, low 
uncertainty pixels. C) mapping of four stability regions
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resolution can be used in conjunction with finer-scale map-
ping efforts once vulnerable areas are identified. Updating 
satellite-based wetland metrics for entire periods-of-record 
and refining them with high-resolution sensors will be 
important for furthering management and research objec-
tives. However, Landsat 5 may be used also to extend the 
analyses from 1984 to 2012.

Conclusions

In this study, we presented a method to estimate vegeta-
tive cover and associated metrics for coastal wetlands of 
the conterminous United States. This dataset enables the 
observation of outcomes of multiple processes of interest 
across tidal wetlands. These data can be used to establish 
baseline vegetative cover at estuary and state scales, and to 
track annual changes in vegetation due to restoration or loss. 
Aggregation across estuary and state scales provides con-
trasting estimates of the UVVR depending on the inclusion 
of open-water areas often indicative of lateral instability. 
At the individual estuary scale, the annual variability can 
be used to classify vulnerable areas using threshold values 
for the UVVR. In contrast to field-based methods, remote 
sensing offers an objective technique to track wetland tra-
jectory in response to storms, sea-level rise, and anthropo-
genic actions. As higher-resolution sensors and approaches 
become available, remote sensing will be an important tool 
in coastal wetland research and management across smaller 
scales. Furthermore, the data offer an opportunity for devel-
oping and testing models of wetland geomorphology, and 
improving our basic understanding of wetland response to 
complex biophysical factors.
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