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Abstract

Collaborative optimization is a design architecture applicable in any multidisci-

plinary analysis environment but speci�cally intended for large-scale distributed

analysis applications. In this approach, a complex problem is hierarchically de-

composed along disciplinary boundaries into a number of subproblems which

are brought into multidisciplinary agreement by a system-level coordination

process. When applied to problems in a multidisciplinary design environment,

this scheme has several advantages over traditional solution strategies. These

advantageous features include reducing the amount of information transferred

between disciplines, the removal of large iteration-loops, allowing the use of

di�erent subspace optimizers among the various analysis groups, an analysis

framework which is easily parallelized and can operate on heterogenous equip-

ment, and a structural framework that is well-suited for conventional disci-

plinary organizations. In this article, the collaborative architecture is developed

and its mathematical foundation is presented. An example application is also

presented which highlights the potential of this method for use in large-scale

design applications.

1 Motivation and General Description

Numerous design problems exist in which the product is so complex that a coupled
analysis driven by a single optimizer is not practical. This situation is often the result
of the organizational philosophy found in many large, design groups, where specialists
are typically separated by discipline and multidisciplinary interaction is di�cult. For
example, most large aerospace companies include aerodynamics, structures, and dy-
namics and control divisions. Typically, when beginning a multidisciplinary project,
such as design of a new airplane, a project-leader must decompose the original problem
and distribute the relevant parts among the existing organizational groups. Armed
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only with the current set of multidisciplinary design optimization (MDO) tools, a
large-scale design problem may be cumbersome to manage, time-ine�ective, and even
non-convergent. One problem which often occurs in this situation is disciplinary se-
quencing, where one analysis group must wait for data computed by another group.
In other cases, where an integrated analysis approach is possible, signi�cant time
must usually be invested a priori to integrate the analysis codes required for a so-
lution. Even in an integrated approach, time degradation as a result of disciplinary
sequencing may occur [7]. As a result, the solution of large, coupled, multidisciplinary
problems remains a challenging task in need of more exible solution methodologies.

Collaborative optimization is a design architecture applicable in any multidis-
ciplinary analysis environment but speci�cally intended for large-scale distributed
analysis applications. In this approach, a complex problem is hierarchically decom-
posed along disciplinary boundaries into a number of subproblems. With the use
of local subspace optimizers, each discipline is given control over its own set of lo-
cal design variables and is charged with satisfying its own disciplinary constraints.
The goal of each local optimizer is to agree with the other groups on values of the
multidisciplinary variables, while a system-level optimizer provides coordination and
minimizes the overall objective. This design strategy is analagous to that found in
most design teams where a team leader (system-level optimizer) is responsible for
minimizing the overall objective while guiding a set of disciplinary experts (subspace
optimizers) into agreement. As a result, this method should be well-suited for use in
conventional design organizations. Although the disciplinary decomposition increases
the total number of variables, for many problems the communication requirements
and the size of the system-level optimization problem are reduced in comparison to
non-hierarchically decomposed strategies [18]. These reductions are a direct result of
the collaborative architecture's reliance on subspace optimizers to handle the disci-
plinary decisions.

The characteristics of this approach to optimal design are quite di�erent from those
of the standard optimization procedure in use today; several of these distinctions in-
clude: (1) a natural �t to the current disciplinary expertise structure found in most
design organizations, (2) no analysis integration requirements, (3) the potential selec-
tion of each subspace optimizer to best �t the given disciplinary model (large/small,
sparse/full, constrained/unconstrained), (4) an analysis framework which is easily
parallelized and can be operated on heterogenous equipment, and (5) a synchroniza-
tion of the design process. (For instance, the structures group does not have to wait
a week for the aerodynamics group to provide a starting solution. Instead, each dis-
cipline may begin work on their local design simultaneously and convergence to an
overall solution is achieved through collaboration.)

This article focuses on development of the collaborative architecture. The niche
that this architecture �lls in the spectrum of MDO methods is discussed and the
mathematical formulation is presented. A highly constrained sample application is
also presented which demonstrates the solution characteristics of this architecture.

2



2 Development of the Collaborative Architecture

Optimizer

                  Min J(x)

            s.t. c(x) ≥ 0

Analysis

 x J, c

Figure 1: Standard Optimization Approach

Consider the approach to optimization illustrated in Fig. 1, where we are concerned
with a problem in n variables and m constraints. Here

x 2 <n

J : <n ! <

c : <n ! <m;m � n:

Within the present article, this formulation will be referred to as the standard op-
timization approach. At present, this formulation has the broadest use in engineering
design. For a multidisciplinary system, use of this approach requires an integrated
set of analysis models such that for a given set of design variables (x), the analysis
returns the values of each constraint (c), and the objective function (J). Hence, in
this formulation, the role of each discipline is limited to one of function evaluation
only (i.e., the analysis-block has no explicit decision-making power).

Since we are concerned with decomposition of the optimization problem in an
\analysis-convenient" manner, we must �rst examine the analysis block of Fig. 1 in
more detail. Note that instead of the single analysis-block shown in Fig. 1, the mul-
tidisciplinary analysis actually looks more like that shown in Fig. 2, where

x1 2 <n1 c1 : <n1 ! <m1

x2 2 <n2 c2 : <n2 ! <m2

...
...

xN 2 <nN cN : <nN ! <mN

NX
i=1

ni � n
NX
i=1

mi = m

Here, the individual analysis-blocks may be thought of as multiple subroutines
in a single program or multiple programs in a single analysis. According to the re-
quirements of the individual analysis-blocks, the original design variable vector x is

3



Analysis block

 x J, c

Analysis

 x J, c

Analysis 1

 y21

Analysis 2

Analysis block

Analysis N

   x1

   x2

   x3

  y12

 yN2  y2N

  c1

  c2

   c3

J

.

.

.  yN1 y1N

Figure 2: Detailed schematic of the multidisciplinary analysis-block

Optimizer
             	       
Min	 J(x,y)
         	
s.t.	 c(x,y) ≥ 0
          	

d(x,y) = 0

Analysis 2 Analysis NAnalysis 1
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  c2
yi2
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yiN
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yi1
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Figure 3: Simultaneous Analysis and Design [1] or All-At-Once [9] Optimization
Formulation.

partitioned into N subsets xi which, in general, are not mutually disjoint. The orig-
inal set of constraints is also partitioned into N pieces, ci, where the ci vectors are
mutually disjoint.

From Fig. 2, the linking among the analysis blocks is evident, appearing in the
form of intermediate or coupling variables, yij. In general, there may be any number
of these coupling variables. Note that in this article, yij refers to a variable computed
in analysis block j, and required as input to analysis block i.

As shown in Fig. 2, in the standard optimization approach, the original constraint
vector is reassembled and along with the objective function (which is assumed to be
computed in analysis block N) is returned to the optimization block. Hence, in this
approach, this design variable and constraint decomposition occurs implicitly, unbe-
knownst to the optimization package.

Research in decomposition analysis [14, 18, 20] has led to a class of alternative
formulations, known as either \simultaneous analysis and design" or \all-at-once"
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Analysis 1

 
 x1 
y1j

Analysis 2 Analysis N

System-Level Optimizer
 

Min	Jsys(z)

s.t.	 di(x*,y*,z)	 = ∑(p(x*) – z)2

+ ∑(p(y*) – z)2 = 0

 
c1 
d1

 
 x2 
y2j

c2 
d2

 
 xN 
yNj

 
cN 
dN

JN

Subspace Optimizer 1 

Min	d1(x1,y1j,q1)	= ∑(x1 – q1(z))2

+ ∑(y1j – q1(z))2

        s.t.	 c1(x1,y1j) ≥ 0

Subspace Optimizer 2

Min	d2(x2,y2j,q2)	= ∑(x2 – q2(z))2

+ ∑(y2j – q2(z))2

       s.t.	 c2(x2,y2j) ≥ 0

...

q2(z) p2(x2*, y2j*)

i = 1,N

q1(z) p1(x1*, y1j*)

Subspace Optimizer N

Min	dN(xN,yNj,qN)	= ∑(xN – qN(z))2

+ ∑(yNj – qN(z))2

+ (JN – Jsys)2
       s.t.	 cN(xN,yNj) ≥ 0

qN(z)
Jsys

pN(xN*, yNj*)

Figure 4: Collaborative Optimization Architecture

approaches [1, 9]. As sketched in Fig. 3, in this type of formulation, the N analysis-
blocks are executed in parallel. Each analysis-block is responsible for computing its
own set of the originally partitioned constraints, ci. Furthermore, for each coupling
variable, yij shown in Fig. 2, a design variable, yij, and an equality constraint, dij, are
added to the optimization problem set. These auxillary constraints may be referred
to as compatibility constraints since their purpose is to ensure that multidisciplinary
feasibility is achieved by the parallel analyses at the problem solution. When sat-
is�ed, these equality constraints, dij, require that the value of a variable computed
in analysis block j match the value of the equivalent variable input to analysis block i.

In comparison to the standard formulation, the solution strategy depicted in Fig. 3
avoids disciplinary sequencing through the use of a parallel analysis strategy. Fur-
thermore, the requirement of producing a compatible multidisciplinary model (often
termed multidisciplinary feasibility) is removed from the analysis block. Instead, this
feasibility requirement is an added responsibility of the optimizer. In this manner,
consistency across the disciplinary models (the parallel analysis-blocks) is only re-
quired at the solution, where dij = 0. In some cases, these formulative changes have
been shown to produce computational savings by removing implicit iteration loops
from the original analysis-block [7, 15].

Although the approach of Fig. 3 may be computationally faster than the use of the
standard optimization approach, the analysis groups are still removed from the de-
sign decision-process, acting as mere function evaluators. Furthermore, in large-scale
applications, with thousands of design variables and constraints, the use of a single
optimizer may lead to two problems: (1) an ine�cient solution strategy where too
much time is spent on communications, and (2) the posing of a larger optimization
problem than necessary since all design decisions (no matter how small) are made by
the optimization routine.
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In the collaborative architecture, each of these issues is mitigated through a re-
liance on subspace optimizers to handle the local (single analysis-block) decisions.
As sketched in Fig. 4, the problem is hierarchically decomposed along analysis-block
boundaries into N subproblems. The original problem constraints and design vari-
ables are partitioned among these subproblems as presented in Fig. 2. Because the
design variable partitioning is not mutually disjoint, this approach to decomposition
permits the construction of subspace optimization problems in which a feasible point
is guaranteed to exist (assuming a feasible point existed in the original problem state-
ment).

Numerous multilevel optimization approaches have been documented in the liter-
ature [2, 3, 4, 16, 17, 19, 21]. The most signi�cant distinctions among these multilevel
methods include (1) the way in which the disciplinary constraints are handled and (2)
the manner and extent of coordination among the di�erent levels. In the collaborative
approach the disciplinary constraints are treated at the subspace level. Additionally,
the subspace problems are not burdened by the requirement of having to help sat-
isfy the constraint set of the other analysis-blocks. As a result, in the collaborative
approach, (1) the workload and communication requirements of the system-level co-
ordination process are signi�cantly reduced and (2) the computational burden and
the local design responsibility remains in the subspaces (where the disciplinary anal-
yses are located). This is in contrast to other multilevel methods which maintain
a majority of the design decision responsibility at the system-level. The price for
providing the subspace optimizers with the freedom to make local design decisions in
the collaborative architecture is an increase in the overall problem size through the
addition of an extra set of auxillary variables (referred to as system-level targets, z,
or subspace parameters, q).

In contrast to other multilevel methods [3, 17, 21], the collaborative architecture
allows the subspaces to disagree on the appropriate values for these multidisciplinary
variables (z). This results in a less-restricted sub-level design space and eliminates
the need for multiple equality constraints, often found in multilevel methods. At the
solution, these multidisciplinary variables are used to enforce compatibility among
the analysis blocks. An element of the system-level target vector, zij, is created for
(1) each variable which is input to one analysis-block and computed in another and
(2) each variable which requires input to multiple analysis-blocks.

Of the multilevel optimization methods cited previously, the collaborative archi-
tecture is most closely related to the strategies presented in Refs. [2, 19]. In each ap-
proach, the subspace optimization problems are formulated to guarantee the existence
of a feasible subspace point. In the collaborative architecture this is accomplished
by providing design freedom within the subspace optimization processes and enforc-
ing multidisciplinary compatibility at the system-level. In Refs. [2, 19], the subspace
constraints are augmented into the subspace objective function and dealt with cumu-
latively at the system-level. This results in smaller subspace optimization problems,
since there is no need for local variables to augment each system-level target, but a
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more complex set of system-level constraints.

Another distinction between the collaborative architecture and the multilevel
methods cited previously is the manner in which the system-level gradient information
is obtained. As outlined in Section 3.4, as a result of structure of the collaborative
formulation, estimation of the system-level gradients is analytic and does not even
require accurate subproblem Lagrange multiplier estimates. This is in contrast to the
approaches discussed in Refs. [2, 4, 16, 19].

In the terminology of Ref. [9], the collaborative architecture is an individual
discipline-feasible approach. Multidisciplinary feasibility is handled by the system-
level optimizer much like the approach of Fig. 3. However, in contrast to this ap-
proach, insuring multidisciplinary feasibility at the solution is the only task of the col-
laborative architecture's system-level constraints, di. In this formulation, the system-
level optimizer is not responsible for any analysis evaluation and exists solely to
provide multidisciplinary coordination across the parallel analysis groups.

As outlined in Fig. 4, the objective of each subspace optimizer is to minimize
the discrepancy between the subset of subspace variables which are multidisciplinary
(both inputs, x and outputs, y) and the target values of these variables computed
by the system-level optimizer, q = z while satisfying the set of subspace constraints.
Knowledge of a particular set of subspace constraints is not required outside the rele-
vant subproblem. To enforce multidisciplinary feasibility at the solution, the subspace
objectives, di, are treated as constraints by the system-level optimizer. Details of the
mathematical formulation are provided in the following section.

3 Mathematical Formulation

3.1 System-Level Coordination Problem

The collaborative system-level coordination problem may be expressed as,

min JN (z) (1)

s:t: di(z; p) =
hiX
j=1

(pij � zij)
2; i = 1; N (2)

where,
JN : system-level objective function; computed in subspace N

z : system-level design variable vector of length k

p : system-level parameter vector of length l

d : system-level nonlinear constraint vector of length N

hi : number of system-level design variables of signi�cance within subspace i

7



Because each subproblem is only required to match a subset of the system-level
targets, there are at least twice as many system-level parameters as system-level
design variables. Furthermore, in the notation of eq. (2), the system-level design
variable vector, z, is not partitioned into mutually disjoint sets. For example,

z1 = z11 z1 = z21

z2 = z12
... z2 = zN1

... z3 = z22 z3 = zN2

...
...

...
zk = z1h1 zk = z2h2 zk = zNhN

As a result,

NX
i=1

hi = l � 2k

The system-level constraint vector, d, and parameter vector, p are obtained from
the optimal solution of a set of N subproblems, each of the form described in the
following section.

3.2 ith Subspace Optimization Problem

Partitioning the hi system-level targets, q, into the h
0

i multidisciplinary inputs of
analysis block i and h

00

i multidisciplinary outputs computed in analysis block i, each
subspace optimization problem may be expressed as,

min di(x; q) =
h

0

iX
j=1

(xij � qij)
2 +

h
00

iX
j=1

(yij � qij)
2 (3)

s:t: ci(x) � 0 (4)

where,
q : subproblem parameter vector of length hi, equal to system-level targets, z
x : subproblem design variable vector of length ni, where ni � h

0

i

c : subproblem nonlinear constraint vector of length mi

y : subproblem multidisciplinary output vector of length h
00

i

Note that only a subset of the subspace design variables are represented in the
subspace objective function, eq. (3). In particular, for analyses with less multidisci-
plinary coupling, the di�erence between ni and h

0

i will be larger denoting the increased
degrees-of-freedom for the analysis block. Note that the system-level targets appear
as parameters in the subspace optimization problem. As a result, the analysis block
constraints are explicitly dependent on the subspace design variables, x, only.
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3.3 System-Level, Subspace Relationship

The system-level and subspace optimization processes are related as,

pij = xij
� (5)

qij = zij (6)

where, xij �! x�ij at the subspace solution.

Hence, the subspace parameters, q, are represented at the system-level as design
variables, z, and the system-level parameter values, p, are determined by the subspace
optimization processes.

3.4 System-Level Gradient Information, Formulation Re-

�nements

Constraint and objective gradients may be obtained by �nite-di�erencing the sub-
problems. However, this approach is computationally expensive and requires tight
convergence of each subspace optimization [4]. Alternatively, an estimate of the
system-level constraint Jacobian can be obtained through post-optimality analysis of
each subproblem. In fact, the collaborative formulation has been speci�cally posed
to make use of this information which is readily available at the solution of each
subspace optimization problem [6].

@di

@zj

�����
system

�
d�di

dqij

�����
subspace

= �2:0(xij
� � qij) (7)

The equivalence statement made in eq. (7) is a result of the system-level targets
being treated as parameters within each subspace optimization problem. The simple
algebraic form of this equation results from (1) the subspace constraints being posed
as explicit functions of the subspace design variables only, and (2) a subspace objec-
tive function which is simply the sum of squared discrepancy terms. With use of eq.
(7), each time the system-level constraints are evaluated, the system-level Jacobian
can also be provided.

With the addition of an extra system-level target, zk+1, and augmentation of the
system-level parameter vector with the original objective function, pN(hN+1), the prob-
lem can be re-formulated (assuming the system-level objective is computed within the
N th subproblem) as,

System-level:

min J(z) = zk+1 (8)

s:t: di(z; p) =
hiX
j=1

(pij � zij)
2 + �iN(pN(hN+1) � zk+1)

2; i = 1; N (9)
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where,

pN(hN+1) = JN (10)

ith Subspace:

min di(x; q) =
h

0

iX
j=1

(xij � qij)
2 +

h
00

iX
j=1

(yij � qij)
2 + �iN(JN � qN(hN+1))

2 (11)

s:t: ci(x) � 0 (12)

where,

�iN =

(
1 if i = N

0 if i 6= N
(13)

With this re�nement in the collaborative architecture, all of the required system-
level derivative information is available at no additional computational cost over that
required for constraint evaluation.

3.5 Formulation Re�nement to AccommodateMultiple Fea-

sible Regions in the Subspaces

In general, an optimization problem posed with multiple nonlinear constraints, may
have multiple feasible regions; whereas, standard calculus-based optimization ap-
proaches only guarantee convergence to a local solution [11]. For the collaborative
architecture, where the original-problem constraints are accommodated at the sub-
space level, multiple feasible regions can pose an additional convergence di�culty. In
the collaborative approach, system-level variable perturbations translate directly into
subspace parameter variations. As the system-level converges upon a solution, the
subspace parameters may vary over a relatively large range. As a result, the subspace
optimizer may discontinuously jump from one feasible solution region to another.
This subspace solution inconsistency leads to non-smoothness in the subspace objec-
tive function which produces erroneous system-level constraint gradient estimates.

A solution to this di�culty is to limit the domain of each subspace optimization
process to a single feasible region. This restriction which is analagous to the local
convergence restriction of standard calculus-based optimizers may be enforced in sev-
eral ways. One possibility is to add a small penalty-term to the subspace objective
functions. Hence, eqs. (3) and (4) become,

min di(x; q) =
h

0

iX
j=1

(xij � qij)
2 +

h
00

iX
j=1

(yij � qij)
2 + �

h
0

iX
j=1

(xij �X�

ij)
2 (14)

s:t: ci(x) � 0 (15)
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where,

X� : optimum subproblem design variable vector from previous subproblem call
� : penalty magnitude (e.g., 10�6)

With this approach, an improper choice of � will a�ect problem convergence. An alter-
nate approach (which is applied in Section 4) is to replace each inequality constraint
with a slack-variable and equality constraint. As,

ci(x) � 0 �!

(
ci(x)� si = 0

si � 0
(16)

This approach does not eliminate the inequality; it is still present as a bound on
the auxillary subspace design-variable, si. Furthermore, the subspace problem size is
increased. However, because the inequality is present in the form of a simple bound,
an optimization algorithm may not include its e�ect in determination of the search
direction. As a result, use of the slack-variable formulation re�nement restricts the
subspace optimizer to a single feasible region (e.g., where the bound is always active).
This algorithmic re�nement yields a smooth variation in the subspace objective func-
tion with respect to parameter variations even in the presence of nonlinear constraints
with multiple feasible regions.

4 Application To Aerospace Vehicle Design

4.1 Lunar Ascent Trajectory Optimization, 24 collocation

segments

To demonstrate application of the collaborative architecture, a lunar ascent trajectory
optimization problem was selected. The particular problem chosen has a well-known
variational solution [8]. The objective is to �nd the optimal thrust-angle pro�le such
that a minimum-time ascent ight path from the lunar surface to a prescribed orbit
(120 nm, circular) is achieved. In this case, minimum-time is equivalent to minimum-
fuel since a constant propellant-mass-owrate is assumed.

The problem characteristics are sketched in Fig. 5. Note that the constraint set
includes initial and terminal conditions as well as the equation-of-motion require-
ments. In the present study, this problem is modeled with the collocation technique
in which polynomial expressions are used to approximate both the state (position
and velocity) and control (thrust-angle) pro�les. The equations of motion (F=ma)
are then imposed at discrete points along the ight path such that the appropriate
physics is satis�ed [5, 10, 13]. This modeling technique was selected because the
number of variables and constraints could be simply varied; thereby, demonstrating
the collaborative architecture on problems of small, moderate, or large size.
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Figure 5: Lunar Ascent Trajectory Optimization Problem
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Figure 6: Collaborative Optimization Decomposition Structure; 3 equal-time arcs

In the present investigation, optimization is performedwith the sequential quadratic
programming algorithm, NPSOL [12]. NPSOL uses a quasi-Newton method to ap-
proximate the Hessian of the Lagrangian. Gradients are obtained by forward �nite-
di�erencing. This type of algorithm is known to converge to local minimum for
problems which are scaled properly and are twice-continuously di�erentiable.

Although this problem could be solved by standard optimization techniques using
a single optimizer (i.e., Fig. 1), for demonstration purposes we choose to decompose
the analyses into three equal-time, arcs (N = 3) as illustrated in Fig. 6. The mod-
eling of these three arcs comprises the analysis portion of each of three subspaces
optimization problems. Coupling requirements on the state and control pro�les at
the arc boundaries yield the system-level targets. In this case, we only require value-
continuity across the arc boundaries for each state and control variable. Since we are
concerned with a planar solution, this arc-boundary compatibility requirement yields
10 system-level targets (two-position, two-velocity, and one-control at each of the two
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Figure 7: Illustration of The Collaborative Optimization Process

arc-boundaries). An 11th system-level variable (arc time, �t) is added such that the
system-level objective gradient becomes analytic, as described in Section 3.4. Based
on the need of each of the subspaces, these 11 variables are partitioned into vector
sets such that, hi = f6; 11; 6g. Finally, since there are three subspaces, there are also
three system-level constraints.

Each subspace must satisfy its own set of equation-of-motion constraints. Satis-
faction of the initial and terminal state constraints are added responsibilities of the
�rst and third subspaces, respectively. Since the six system-level targets of signi�-
cance to the �rst subspace represent target conditions for the endpoint of the analysis
arc, h

0

1 = 0;h
00

1 = 6. Similarly, h
0

2 = 5;h
00

2 = 6, and h
0

3 = 5;h
00

3 = 1. Hence, in this
example, analysis-block coupling exists on a subset of both input and output variables.

The actual number of subspace variables and constraints depends on how �ne a
discretization is performed. Assuming each subspace arc is decomposed into s seg-
ments over which linear state and control pro�les are speci�ed, the subspaces will be
characterized by 5s + 2, 5s + 6, and 5s + 6 design variables and 4s, 4s, and 4s + 3,
constraints, respectively. For a �rst example, s = 8 is chosen. This results in a total
of 145 variables (including the 11 system-level targets) and 102 constraints (including
three at the system-level).

The collaborative solution architecture begins with the system-level optimizer
partitioning its initial guess of the system-level design variables and sending this in-
formation to the relevant subspaces. Within each subspace, these system-level design
variables are treated as parameters (or targets). Each subspace optimization pro-
cess produces a result which satis�es its respective set of constraints while trying
to match the system-level targets as closely as possible. When discrepancies occur
over the proper value of a multidisciplinary variable, the system-level optimizer co-
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Figure 8: Collaborative Optimization Convergence History

ordinates with each subspace optimizer to resolve the di�erence. This coordination
appears through selection of the system-level variables such that the system-level con-
straints, di, become satis�ed. As an example of this collaborative process, consider
the negotiation that must occur between the system-level optimizer, and the �rst two
subspace optimizers over the appropriate value of the thrust-angle at the interface
of these two arcs. This collaboration is highlighted in Fig. 7 which depicts the �rst
three system-level iterations. As shown in this �gure, neither subspace is able to
match this system-level target during the �rst iteration. In fact, the �rst subspace
optimization process terminates higher and the second subspace optimizer terminates
lower than the target. Based on each subspace's ability to match the complete set
of system-level targets (measured by the subspace objective functions), a new set
of targets is produced. With these new targets in the Fig. 7 example, much better
agreement is reached during the second system-level iteration. With a good match in
this particular system-level target, a step is taken to reduce the system-level objective
function (arc time, z(11)). This results in the bigger change in the system-level target
between system-level iteration 2 and 3.

The convergence history of the collaborative solution to this problem with s = 8
is shown in Fig. 8. The sharp initial decrease in the system-level objective function
results from the use of a linear system-level objective and is characteristic of solutions
obtained with this approach [7]. As multidisciplinary feasibility is achieved (denoted
by the value of Log kdik in Fig. 8), the system-level objective returns towards the
appropriate value. Upon convergence, the objective function and control pro�le were
found to agree quite well with the published solution (to within 0.16% on the objec-
tive function). Even closer agreement could have been achieved through speci�cation
of a smaller system-level nonlinear feasibility tolerance.

To obtain the convergence history described in Fig. 8, the basic collaborative for-
mulation (Section 3.1 and 3.2) was modi�ed with the re�nements presented in Sections
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Figure 9: One-dimensional Slice of the Subspace 1 Design Space

3.4 and 3.5. As suggested by Fig. 9, without the Section 3.5 re�nement, system-level
convergence could not be achieved. For nonlinearly constrained subspace problems,
this lack of convergence is a result of non-smoothness in the subspace objective func-
tion yielding bad system-level sensitivities. This degree of subspace non-smoothness
had been observed in a previous problem in which this same type of convergence
di�culty was noted [7]. As shown in Fig. 9, use of the slack-variable formulation re-
�nement restricts the subspace optimizer to a single feasible region. This restriction
yields a smooth variation in the subspace objective function with respect to parame-
ter variations (i.e., a smooth system-level constraint gradient) enabling system-level
convergence.

4.2 Problem Size and Analysis Coupling E�ects on the Rel-

ative Performance of the Collaborative Architecture

By varying s, the problem size may be modi�ed; however, the degree of coupling
among the analysis groups remains the same. In this manner, the performance of
the collaborative architecture on problems of di�erent size with various degrees of
analysis-coupling is assessed.

The lunar ascent problem was posed for s = 2; 3; 8; 16; 32; and 64. In each case,
the problem was solved using the standard optimization approach (Fig. 1) and using
the collaborative architecture (Fig. 4). As shown in Table 1, with use of the standard
approach, the number of variables and constraints varied from 32 to 962 and from 27
to 771, respectively. For these same problems, the collaborative architecture required
from 55 to 985 and 30 to 774 design variables and constraints, respectively. In each
case, the collaborative posing of the problem requires 3 additional constraints (the
N = 3 system-level constraints) and 23 additional design variables to accommodate
analysis coupling. The suitability of the collaborative architecture for a given problem
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Table 1. Lunar Ascent Problem Characteristics and Solution Requirements

No. Standard Optimization Approach Collaborative Architecture*
Subspace
Segments Design Constraints Iterations Analysis Final Scaled Design Constraints Iterations Analysis Final Scaled

(s) Variables Evals. Obj. Function† Variables (system-level) Evals. Obj. Function†

2 32 27 32 1.29e3 0.17051 55 30 30 9.33e3 0.16902

3 47 39 55 2.71e3 0.17045 70 42 33 1.43e4 0.16966

8 122 99 167 2.07e4 0.17019 145 102 31 4.71e4 0.16991

16 242 195 214 5.23e4 0.17016 265 198 25 9.64e4 0.17004

32 482 387 218 1.79e5 0.17015 505 390 28 2.62e5 0.17004

64 962 771 398 3.10e5 0.17013 985 774 29 4.10e5 0.17006

*Warm-start subspace optimization problems
†Variational calculus solution, 0.16994, [15].
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depends on the relative proportion of multidisciplinary coupling, (which decreases as
s increases). For small problems with a relatively large amount of coupling, use of the
collaborative architecture is computationally ine�cient as a result of the strategy's
large amount of optimization overhead. However, as one moves from small problems
with signi�cant coupling to large, loosely-coupled problems, the decomposition char-
acteristics of the collaborative architecture become computationally tractable. This
trend is shown in Fig. 10.

Table 1 also shows that as a result of the convergence character of the collab-
orative solution, the �nal objective achieved is always observed to be below that
obtained by the standard optimization approach (within the system-level nonlinear
feasibility tolerance). This is a consequence of the architecture's individual discipline
feasible approach where multidisciplinary feasibility is only achieved through system-
level constraint satisfaction.

Figure 10 shows the number of analysis calls required by the collaborative ar-
chitecture to reach the solution relative to the number of analysis calls required by
a standard optimization approach. Comparison of the two curves shown in this �g-
ure illustrates the e�ect of warm-starting the subspace optimization problems on the
computational solution requirements. Here, a warm-start refers to restarting each of
the subspace optimizers from their prior solution with the prior solution estimates
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of the active constraint set, Lagrange multipliers, and Hessian of the Lagrangian.
Because the subspace optimization problems converge as the system-level solution is
approached, warm-starting helps to signi�cantly reduce the method's computational
requirements.

As shown in Fig. 10, the collaborative architecture begins to become computation-
ally competitive with the standard optimization approach as s increases. Note that
as the overall problem size increases, the number of system-level iterations (Table 1,
column 9) required by the collaborative architecture to reach the solution remains
approximately constant. This is a result of the architecture's formulation in which
the subspace analyses are required to work harder as the problem size is increased;
while, the system-level is driven by the number of coupling variables. For the largest
problem considered here (s = 64), the collaborative solution still requires more anal-
ysis calls than the standard optimization approach to reach the solution. However, in
the present comparison, the subspace optimization problems were solved sequentially
(neglecting the parallel processing capability of the collaborative scheme). Further-
more, if the analysis-integration and communication requirements (a priori setup
time) were included, the collaborative architecture would prove to be more e�cient
than standard optimization approaches when applied to large, loosely-coupled multi-
disciplinary problems. For a multidisciplinary problems of this size (on the order of a
thousand variables and constraints), these a priori requirements are often substantial.

5 Summary

Collaborative optimization is a design architecture applicable in any multidisciplinary
analysis environment but speci�cally composed for large-scale, distributed analysis
applications. In this approach, a complex problem is hierarchically decomposed along
disciplinary boundaries into numerous subproblems which are guided towards mul-
tidisciplinary convergence by a system-level coordination process. When applied to
problems in a multidisciplinary design environment, this scheme has several advan-
tages over traditional solution strategies. These advantageous features include mini-
mizing the amount of information transferred between disciplines, the removal of large
iteration-loops between disciplines, allowing the use of di�erent subspace optimizers
among the various analysis groups, an analysis framework which is easily parallelized
and operable on heterogenous equipment, and a structural framework that is well-
suited for conventional disciplinary organizations.

In the present article, the collaborative architecture is developed and its mathe-
matical foundation is presented. Re�nements to the basic formulation are presented
which demonstrate that the system-level gradient information may be obtained with
no additional computational cost over that required for constraint evaluation and
multiple subspace feasible regions may be accommodated. The niche which this ar-
chitecture �lls in the spectrum of MDO methods is also discussed.
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A lunar ascent trajectory problem is presented which demonstrates the ability of
this architecture to reach the appropriate, highly constrained solution. Size variations
are used to infer the general characteristics of problems for which the collaborative
architecture would be well-suited. In addition to becoming computationally com-
petitive with standard optimization approaches as the problem size increases, the
organizational advantages of the collaborative architecture make it well-suited for
large, loosely-coupled, multidisciplinary design problems.
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