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ABSTRACT-A single-image fringe projection profiling 
method suitable for dynamic applications was developed by 
combining an accurate camera calibration procedure and im- 
proved phase extraction procedures. The improved phase 
extraction process used a modified Hilbert transform with 
Laplacian pyramid algorithms to improve measurement ac- 
curacy. The camera calibration method used an accurate 
pinhole camera model and pixel-by-pixel calibration of the 
phase-height relationship. Numerical simulations and con- 
trolled baseline experiments were performed to quantify key 
error sources in the measurement process and verify the ac- 
curacy of the approach. Results from numerical simulations 
indicate that the resulting phase error can be reduced to less 
than 0.02 radians provided that parameters such as  fringe 
spacing, random measured intensity noise, fringe contrast 
and frequency of spatial intensity noise are carefully con- 
trolled. Experimental results show that the effects of random 
temporal and spatial noise in typical CCD cameras for single 
fringe images limits the accuracy of the method to 0.04 radi- 
ans in most applications. Quantitative results from application 
of the fringe projection method are in very good agreement 
with numerical predictions, demonstrating that it is possible to 
design both a fringe projection system and a measurement 
process to achieve a prespecified accuracy and resolution in 
the point-to-point measurement of the spatial (X, Y ,  Z) posi- 
tions. 

KEY WORDS-Profile measurement, single-image fringe 
projection, camera calibration, fringe extraction, Hilbert trans- 
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Introduction 

Noncontacting measurement of three-dimensional shape 
or object profile is important in many areas, includ- 
ing medicine, on-line inspection, computer-aided de- 
sign/manufacturing and reverse engineering. With recent 
advances in computing technology, some of these techniques 
have become automated, easier to use in applications and 
more efficient in data reduction, which has resulted in the de- 
velopment of full-field optical techniques that are being used 
for real-time profile measurements in a wide range of settings, 
including industry, government and university laboratories. 
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The form of the projected light pattern (e.g., random pat- 
tern, fringes) is one way to differentiate between various non- 
contacting, three-dimensional profilometers. Using this ap- 
proach, one category can be described as nonfringe methods. 
Included in this group are methods such as three-dimensional 
digital ima e correlation using either one camera1 or two 
carneras2-fwhereby a random speckle pattern is used to de- 
termine the object profile. In general, methods of this type 
are relatively robust and capable of achieving high accuracy 
for many applications. However, data reduction requires in- 
tensive computational effort, and the finite size of subregions 
used in the method makes it more difficult to locate and tra- 
verse edges. 

The other category, fringe methods, includes methods 
such as shadow moir~?-~ and grating projection.8 These 
methods extract height distribution information from fringe 
patterns through processing of the deformed fringe patterns 
to identify local variations in height. One advantage of these 
methods is that few calculations are required to convert im- 
age data into profile information. In fact, the methods have 
been used for real-time inspection in many applications. 

One popular method for extracting phase information from 
fringe patterns is known as phase ~ h i f t i n ~ . ~ - ' ~  This method 
requires several (at least three) images with known or un- 
known phase shifts between subsequent images. For pro- 
filing purposes, the fringe pattern is usually translated by 
mechanical shifting of the grating plate. In these cases, the 
accuracy of the extracted phase is limited by the accuracy of 
the translational process. Recent have shown 
that high-resolutibn programmable projectors can be used to 
electronically shift a projected grid with reasonable accuracy. 

Fourier transforms are also used to extract phase infor- 
mation. This technique was proposed by Takeda, Ika and 
~ o b a ~ a s h a ' ~  in 1982 and has the advantage of using only 
one fringe pattern image to extract the phase distribution. 
The image is processed in the frequency domain using fast 
Fourier transforms (FITS). Mathematica.lly, this method is 
closely related to the Hilbert transform used in this w ~ r k . ' ~ ~ ~ ~  

More recently, Tang and ~ u n ~ ~ ~  proposed a low-pass fil- 
ter method, which is performed in the spatial domain on one 
fringe pattern. The method is similar to the FIT approach. 
Thus, selection of an appropriate filtering window is also a 
critical problem in practice when using this method. Toyooka 
and ~ w a s a ~ ~  proposed spatial phase detection in 1986. This 
technique acquires phase at the midpoint of fringe intervals. 
All points in between the midpoint locations are interpolated 
assuming a linear phase change between fringes. Although 
relatively fast, the interpolation procedure limits the accuracy 
of the extracted phase. 
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Recently, a one-step phase shift projection procedure was 
proposed by Gu et Unfortunately, a requirement of this 
method is that the pitch of the fringe pattern be either four 
pixels or eight pixels, severely limiting the method for many 
applications. 

As noted above, much work has been done to develop ro- 
bust, fast algorithms for fringe analysis. However, much less 
work has been done to improve the phase-height relationship 
representation for the experimental setup so that highly ac- 
curate spatial position data can be acquired for object recon- 
struction using a single image, such as is needed for dynamic 
applications. 

In the enclosed work, an accurate camera calibration 
procedure and improved phase extraction procedures us- 
ing a modified Hilbert transform with Laplacian pyramid 
algorithms24 were developed and successfully demonstrated 
for measurement of the full (X, Y, Z) positions of surface 
points using single-image fringe projection profiling meth- 
ods suitable for dynamic applications. Detailed numerical 
simulations and controlled baseline experiments were per- 
formed to quantify the key error sources in the measurement 
process and verify the accuracy of the approach. 

Fringe Projection System 

The fringe projection system developed for this work was 
designed for profiling of static objects and for measurements 
of dynamic shape changes. The system uses only single 
fringe images, as opposed to multiple, phase-shifted fringe 
patterns. Thus, the focus of this research was to obtain opti- 
mal accuracy from single fringe images. 

A laboratory-scale fringe projection system is shown in 
Fig. 1. The system consists of a CCD camera with a regular 
photographic lens (Nikon 200 mm) and aprojector assembled 
from standard optical components. Also shown in Fig. 1 is a 
calibration plane mounted to a translation stage. 

Basic Equations and System Calibration 

In this work, a pinhole camera model2 was used for the 
camera system because it has been shown to be an accurate 
method for mapping positions in three-dimensional space 

Fig. 1-Photograph of laboratory setup 

into camera coordinates. The pinhole camera is described 
by its optical center, ox, oy , the aspect ratio of the sensor, k, 
the focal length, f ,  and a lens distortion coefficient, K. To cal- 
culate the pixel coordinates ( x ,  y) of a point X = (X, Y, Z) 
in global coordinates, a rotation matrix [R] and a translation 
vector T, which relate the global coordinate system and the 
sensor coordinate system, are introduced. Then, neglecting 
the distortion, the image of a point X is given by 

where ri denote the rows of the rotation matrix and (tl, t2, 
t3) are components of T. If the Z-coordinate of a point in 
the global coordinate system and its image (x, y) are known, 
the global X and Y coordinates of the point can be calculated 
from eq (1) as follows: 

where rT denote the transpose of the rows of the rotation 
matrix and denotes the inner product of the two vectors. 
Equation (2) suggests the following procedure for calibrating 
the fringe projection system: 

1. Calibrate the intrinsic camera parameters (ox, oy , f ,  
CL, K) through calibration techniques as described In 
Refs. 2, 3 and 4. 

2. Calibrate the extrinsic parameters of the system ([R], 
T) with respect to a reference plane. The extrinsic 
parameters can also be obtained by the calibration 
procedures.2~3 

For every pixel in the image, obtain a functional form 
Z = f ((p), where (p is the phase of the fringe image. 
This is accomplished by translating the reference plane 
along its normal and recording fringe images at known 
distances Zi throughout the depth range of interest. 
After phase extraction and unwrapping, the function 
Z = f ((p) can be obtained by fitting a low-order poly- 
nomial. 

After calibration, the phase extracted from a measurement 
fringe image can be used to calculate the Z position for a 
given pixel (x, y) using the calibration polynomial. Then, 
eq (2) can be used to calculate the X and Y position of the 
corresponding measurement point. 
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Importance of Z Correction to (x, Y) Positional Data 

As shown in eq (2), the (X, Y) coordinates of an object 
point are a strong function of the Z position if the range of 
Z positions is not negligible compared to the distance be- 
tween object and camera. Thus, apparent (x, y) positions 
must be corrected using the measured Z height to obtain ac- 
curate (X, Y, Z) measurements. Furthermore, Fig. 2 clearly 
shows that all measured (X, Y, Z) coordinates for every point 
on the object are related to the measurement system pararne- 
ters. Hence, any simple estimation of the system parameters 
or assumption with regard to the geometry of the experi- 
mental setup will introduce errors in the final measured data. 
Thus, calibration of both the camera system and the phase- 
height relationship is critical to the accurate profiling of a 
component. 

Figure 2 illustrates the differences between the measured 
X-coordinates, with and without the Z-coordinate correction. 
Point A on the object surface is imaged as point B on the im- 
age plane of the camera. Point B is off the optical axis of 
the camera by a distance x in the x-direction. Traditionally, 
the X position for A is calculated by multiplying the mag- 
nification factor fM by x, that is, Xn0-,, = fM . x, where 
fM is calibrated on the reference plane and fM = Lid. To 
properly account for the depth effects, the X-coordinate of 
point A should be calculated by Xcr = (L - Z)/d x, where 
the difference between X,,-,, and Xcr is 

For a typical test, in which d = 20,000 pixels, Z = 10 mm 
and x = 250 pixels, the positional error in X or Y can be 
as large as 125 pm, which cannot be ignored when making 
precision measurements of an object's shape. 

Phase Extraction 

As noted earlier, multiple phase-shifted fringe images can- 
not be used for shape measurement in dynamic applications. 

t~ 
I $(Ay plane of camera 

Reference Plane 

Fig. 2-Correction for X-coordinate 

Thus, in this work, emphasis is placed on accurate shape mea- 
surement and phase extraction using single fringe images. 

For such applications, there are two steps in the phase ex- 
traction process. First, phase information is extracted from 
a projected fringe pattern that is "wrapped" from -x to +x 
due to well-known characteristics of inverse trigonometric 
functions. Second, the original phase is "unwrapped" to ob- 
tain a continuous phase map as a function of height. Simple 
unwrapping techniques unwrap the phase on a line-by-line 
basis. However, new approaches have been developed re- 
cently to deal with fringe discontinuities and to more ac- 
curately extract phase over a wider range of object height 
v a r i a t i ~ n s . ~ ~ - ~ l  Unfortunately, many of the more elaborate 
phase-unwrapping techniques are not applicable for single- 
image applications.30 

In this work, a Hilbert transformation approach is pro- 
posed for obtaining phase information from a projected fringe 
pattern and a flood-fill algorithm is implemented for phase 
unwrapping. 

Numerical Phase Shifting 

Various methods for phase extraction from a single fringe 
image exist, most notably the Fourier transform method in- 
troduced by Takeda, Ika and ~0ba~asha . l '  A method mathe- 
matically closely related to the Fourier transform method can 
be implemented in the spatial domain using Hilbert filtemz2 
The ideal Hilbert filter introduces aphase shift of n/2 without 
altering the signal amplitude and removes the DC component 
of the signal. For a fringe image 

the background term a(x) can be removed by an appropriate 
high-pass filter provided that the background intensity varies 
slowly compared to the frequency of the fringes. After ap- 
plication of the high-pass filter to eq (4), one obtains a fringe 
image 

which can then be passed through the Hilbert filter to obtain 

The principal value of the phase is given by 

-Iz(x) 
+(x) = atan-. 

I1 (x) 

Inspection of eqs (4) through (7) demonstrates that the 
accuracy of phase values obtained in this manner is highly 
dependent on (1) preservation of the signal amplitude, bl (x), 
during the shift process, (2) accuracy of the numerical phase 
shift and (3) elimination of the background intensity. In the 
following sections, the Hilbert transform (filter) is described 
and its effectiveness is discussed in detail. 

Hilbert Transform 

The transfer function for an ideal Hilbert filter is shown in 
Fig. 3. Here, the wave number is the normalized ratio k,/ k ~ ,  
where k, and kN are the signal and Nyquist wave numbers, 
respectively (e.g., for a CCD camera, kN is n/2 pixels -I). 
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Fig. &Imaginary part of the ideal transfer function for the 
Hilbert filter (the real part is zero) 

Because convolution of a signal with a convolution mask 
in the spatial domain corresponds to multiplication of the 
Fourier transforms in the frequency domain, we can write 

where F () is the Fourier transform operator, H (x) is the con- 
volution mask or point spread function and F(H(x)) is the 
transfer function. Because the real part of an ideal Hilbert 
filter is zero and its magnitude is identical to one, multipli- 
cation of a signal by the Fourier transform of this transfer 
function results in a phase shift of n/2 while preserving the 
signal amplitude. 

Because the point spread function H ( x )  decreases only 
slowly with l /x ,  the ideal Hilbert filter cannot be accurately 
implemented with a compact convolution kernel. However, 
it is possible to construct compact Hilbert filter kernels with 
minimal amplitude error in a certain wave number range. For 
symmetry reasons, a filter kernel of double step-width and 
odd symmetry is chosen. As an example, a four-coefficient 
filter can be expressed by 

1 where the dot indicates the center pixel. The corresponding 

1 transfer function can be written as 

4 

6 (Z) = C h, sin ((21 - I )nZ) . (10) 

Appropriate coefficients h, are found through a weighted 
least squares optimization, where the weighting function is 
used to control the wave number range for which the filter is 
to be optimized. For details of the optimization procedure, 
as well as further optimization through recursive pre-filters, 
we refer to ~ a e h n e . ~ ~  As an example, an optimized transfer 
function for the coefficients hi = 0.62078, h2 = 0.168256, 
h3 = 0.0629796 and h4 = 0.0190886 is shown in Fig. 4. 
Because the optimized filter is not unity for all wave numbers, 

the signal amplitude will be slightly altered. For example, 
for the wave number range of [0.2, 0.81 corresponding to 
wavelengths between 3 and 10 pixels, the amplitude errors 
are below 1 percent. 

With regard to the selection of a spatial domain filter, in 
place of a frequency domain filter, it is noted that the re- 
markable accuracy obtained with the Hilbert transform is 
achieved with only four multiplications and four additions per 
pixel, allowing for extremely fast and accurate fringe pattern 
analysis. 

If the frequencies of the fringes are contained within the 
optimal work range of the Hilbert filter, the Hilbert filter can 
be directly applied to the fringe image. As can be seen from 
the transfer function of the Hilbert filter (Fig. 4), the filter 
can also be used to remove low-frequency background com- 
ponents. Thus, a first application of the filter to the fringe 
image given by eq (4) will yield 

and a subsequent application of the filter 

The principal value of the phase for this case is given by 

The limitations of this approach are the relatively narrow 
range of fringe spacing that can be accurately processed 
and the requirement of virtually constant background inten- 
sity, since the transfer function of the Hilbert filter increases 
rapidly at low wave numbers (see Fig. 4). 

To overcome the restrictions of the direct approach, the 
fringe image can first be decomposed into a Laplacian 
pyramid.N The Laplacian pyramid provides an efficient 
band-pass decomposition of the fringe image combined with 
appropriate subsampling of lower frequency components. 
The name pyramid refers to the pyramid that would be formed 
if the increasingly smaller image layers were stacked upon 
each other. To obtain the Laplacian pyramid, the Gaussian 
pyramid24 is constructed first. By applying a low-pass filter 
to the original image and then subsampling the image by a 
factor of two, the first layer of the Gaussian pyramid is calcu- 
lated. This procedure is recursively repeated with the newly 
constructed layers until no further subsampling is possible. 
The low-pass filtering ensures that no aliasing occurs due to 
subsampling. 

Each layer of the Laplacian pyramid is constructed as the 
difference image between each layer of the Gaussian pyra- 
mid and its next higher layer. To perform the subtraction, the 
next higher layer is first scaled by a factor of 2, using appro- 
priate interpolation filters. The highest layer of the Laplacian 
pyramid is identical to the highest layer of the Gaussian pyra- 
mid. A pyramid-merging process can be used to obtain the 
original image. The merging process is performed by adding 
all layers of the Laplacian pyramid after proper scaling. The 
first four layers of a Gaussian and Laplacian pyramid of a 

2 
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Wave number 
Fig. 4--Transfer function and point spread function for optimized four-coefficient Hilbert filter 

Fig. 5--Construction of Gaussian pyramids (top) and Lapla- fringe period [pixel] 
cian pyramids (bottom) after images are normalized to the Fig. &Maximum phase extraction error a s  a function of 
intensity range 10, 2551 and higher layers are scaled to the fringe spacing for the direct phase extraction algorithm and 
original size the Laplacian pyramid algorithm 

fringe image are shown in Fig. 5. One can see that only the 
first three layers contain fringe information and the fourth 
layer (and all higher layers) contains lower frequency back- 
ground information. This observation can be used to remove 
the background term a(x) from the fringe image by merging 
only the first three layers of the Laplacian pyramid: 

The numerically phase shifted image is obtained by indi- 
vidually applying the Hilbert filter to each of the first three 
layers of the Laplacian pyramid and subsequent merging of 
the shifted layers. Because the lower frequency fringes are 
contained in the higher layers of the pyramid and thus sub- 
sampled, they lie within the optimal working range of the 
Hilbert filter on the smaller grid. For instance, a fringe pe- 
riod of 30 pixels in the original image would be found in the 
third layer of the pyramid with a period of 7.5 pixels, which 
can be accurately processed by the optimized Hilbert filter. 

Accuracy Assessment for Phase Extraction Process 
Using the Hilbert Filter 

There are several sources of error in the process of extract- 
ing phase from a projected fringe pattern. In this work, the 
error sources considered are frequency content of projected 
pattern, variations in background intensity, variations in am- 
plitude of signal, variations in fringe spacing, digitization and 
contrast, and random intensity fluctuations. In the following 

sections, each error source is described and the magnitude of 
the phase error quantified through numerical simulations. 

FRINGE FREQUENCY RANGE FOR ACCUR~TE PHASE 
EXTRACTION 

Large height variations on a component will result in a 
substantial change in fringe spacing within the recorded im- 
age. To obtain accurate measurements over a large range 
of height variations, the fringe-processing algorithm must be 
capable of accurate phase extraction over a wide range of 
fringe spacing. 

Figure 6 shows a comparison of the phase extraction er- 
ror when analyzing perfect sinusoidal signals having a range 
of wave numbers for both the direct implementation and the 
pyramid implementation. In these simulations, the computer- 
generated, 8-bit test images had constant fringe spacing and 
amplitude of 64 gray levels with a constant background in- 
tensity of 128 gray levels. 

As shown in Fig. 6, frequency-dependent errors exist in 
the phase extraction process due to band-pass characteristics 
of the Hilbert filter. For both the direct and the pyramid 
implementation, fringe patterns having wavelengths from 3 
to 9 pixels, the phase error is nearly constant at 0.01 radians 
or ~ 1 3 1 5 .  For wavelengths greater than 10 pixels, Fig. 6 
clearly shows that the pyramid algorithm extends the range 
of acceptable fringe periods (low phase extraction error) from 
10 pixels to about 30 pixels, with only a slight increase in error 
at the lower period lengths. 
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Finally, it is noted that the Hilbert filter (see Fig. 4) does 
not fully eliminate components in the range [0.8, 1.01. Thus, 
intensity noise having a wavelength between 1 and 1.6 pixels 
should be minimized to reduce the potential for increased 
error in the phase extraction process. 

EFFECTS OF DIGITIZATION ON SIGNAL CONTRAST AND 
PHASE ACCURACY 

A fringe pattern image, generated with the phase and in- 
tensity distribution described in eq (4) and having a wave 
number k = 0.20 (X = 10 pixels), is used in these analyses. 
To isolate the effects of digitization, both a(x) and b(x) are 
fixed. The form for I (x) is written as 

The phase, +(x), is extracted from the fringe pattern image 
using the procedure described above, unwrapped, and com- 
pared with the actual phase given in eq (15). The difference 
in phase is taken as the error of phase extraction. 

To simulate the effects of digitization, floating point for- 
mat images are generated and then chopped using the INTO 
function in C language to obtain only integer intensity values 
corresponding to digitization levels of 2n, where n is the num- 
ber of bits used to record an intensity value. For example, an 
8-bit sensor would record intensity values in the range 0 to 
255. In this analysis, the amplitude of the intensity pattern is 
maximized and is given by the equation a = b = 1 /2(2" - 1). 

Figure 7 shows how accuracy is affected by quantization 
during the imaging process. As shown in Fig. 7, an increase 
in the number of sampling bits from 4 (16 gray levels) to 
9 (512 gray levels) results in a decrease of the maximum 
phase error from 0.09 radians to 0.01 radians, with negligible 
additional error reduction when using up to 14 bits (16,384 
gray levels). 

As shown in Fig. 8, random fluctuations are commonplace 
in digital cameras. Conceptually, the two sources of random 

Maximum 

Standard deviation 

3 

Sampling bits 
Fig. 7-Phase extraction error versus number of sampling bits 

noise are time-varying fluctuations in the sensor values and 
spatially varying fluctuations due to object surface variability. 

Baseline tests indicate that the time variations are random 
and Gaussian in distribution, with a standard deviation of 0.9 
gray levels for an 8-bit Pulnix 9701 CCD camera. Using 
time averaging to eliminate temporal noise, baseline tests 
demonstrated that the spatial noise varies randomly, with a 
standard deviation of approximately 2.2 gray levels for 8-bit 
recording of a projected fringe pattern on a white, painted 
planar surface. This level of intensity variation corresponds 
to a noise-to-signal ratio of 3.6 percent. 

To simulate the effects of either spatial or temporal vari- 
ations in the measured intensity data, Gaussian noise with 
a zero mean value and a range of standard deviation values 
was added to the signal generated by eq (4) and the phase ex- 
traction process described previously was performed. Fig. 8 
shows the relationship between both standard deviation in 
phase and maximumkrror in phase and the ratio between 
the standard deviation of the random noise and the signal's 
amplitude. Figure 8 was obtained by using 8-bit generated 
fringe patterns represented in eq (4). Maximum contrast was 
assumed, and all processing was done using the Hilbert filter 
with Laplacian pyramid modification. 

As shown in Fig. 8, for a fixed digitization level, enhanc- 
ing fringe contrast without increasing the level of noise will 
increase the accuracy of the phase extraction process. Simi- 
larly, increasing the digitization level without increasing the 
level of noise will also decrease the noise-to-signal ratio and 
increase the accuracy of the phase extraction process. As ex- 
pected, simulations performed with fringe patterns generated 
with 12 or more bits gave nearly identical results. 

Finally, a comparison of the magnitude of the errors in- 
troduced by digitization, fringe frequency and random noise 
clearly shows that random spatial intensity fluctuations are 
potentially one of the largest sources of phase error. 

Experimental Verification 

As outlined in the previous section, detailed numerical 
simulations have been performed to identify error sources 
and quantify their effects on overall accuracy of the method. 
In this section, results obtained from camera calibration and 
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Ratio between standard deviation of noise 
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Fig. &Relationship between phase error and random spatial 
noise level for k = 0.2 
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a series of baseline experiments are presented, along with 
comparisons to the error estimates obtained through numer- 
ical simulation of the measurement process. 

Measurement System Calibration 

One approach for calibration of the single-image projec- 
tion system would be to calibrate both the camera and the 
projector. If a pinhole model is assumed and the aspect ratio 
of the camera is determined independently, calibration re- 
quires that 20 parameters describing the camera and projec- 
tor be determined through a nonlinear optimization process. 
To eliminate the requirement for projector calibration, a two- 
step calibration process for the fringe projection system was 
used. First, calibration of the camera parameters was per- 
formed. Second, a separate calibration of the phase-height 
relationship at every pixel location was performed. 

Figure 9 shows a schematic of the setup used for cam- 
era calibration. Camera calibration follows the procedures 
outlined by Helm, Sutton and McNeill? ~ s a i ~  and Weng, 
Cohen and ~ e r n i o u ~  for three-dimensional machine vision. 
First, as shown in Fig. 9(a), the camera is placed in position 
and focused on a precision calibration grid such as is shown 
in Fig. 9(c). The grid is placed approximately where the 
specimen will be located. Lines on the calibration grid are 
used to establish the position and orientation of the system 
coordinate system, with the initial plane of the grid defined 
as Z = 0. A lens with a large f-number is used to increase 
the depth of field. 

To calibrate the camera, a series of images of the calibra- 
tion grid is acquired at several different relative positions of 
the grid and camera using the procedure outlined by Helm, 
Sutton and Mc~eill. '  In this regard, it is noted that the ra- 
tio of pixel dimensions is determined prior to performing the 
calibration process. By determining the ratio of pixel di- 
mensions prior to performing the calibration process, a total 
of nine camera parameters are obtained using the nonlinear 
optimization process described in Ref. 2. 

The procedure for pixel-by-pixel calibration of the phase- 
height relationship is as follows. First, the positions of the 
camera and projector are fixed and a fringe pattern is pro- 
jected onto a diffusely reflecting reference plane, as shown 
in Fig. 9(b). To complete the calibration process, the sim- 
plest approach is to ensure that the reference plane remains 
parallel to the plane of the calibration grid and to know the 
relative position of the two planes. This is easily achieved by 
mounting the calibration grid to the reference plane and, after 
camera calibration, moving the reference plane to compen- 
sate for the grid's thickness. Images of the fringe pattern are 
acquired as the reference plane is translated N times along 
the direction of the surface normal by known distances, Zi. 
Using the phase extraction procedure described previously, 
the phase-height relationship for each pixel is established by 
fitting a third-order polynomial to the N pairs of (Zi, AQi). 
By storing the polynomial coefficients in a look-up table for- 
mat, this procedure provides an efficient, accurate method for 
determining the object distance from the reference plane at 
each pixel location as a function of phase. 

Baseline Experiments 

In the following section, results from a series of laboratory 
experiments are described. The experiments were performed 
to determine how well the numerical simulations represent 
the physical situation. In particular, the effects of random 
noise and contrast were evaluated experimentally. 

To minimize the errors associated with higher frequency 
components, a high-quality sinusoidal grating (HQSG) pat- 
tern produced by Sine Patterns LLC is used in this work. Scan 
data offered by the manufacturer shows that the amplitude ra- 
tios among the first-order (allal), second-order (a2/al) and 
third-order (a3/al) harmonics amplitudes are 1,0.0008 and 
0.0004, respectively. Our numerical simulations with these 
parameters have shown that these higher order harmonics 
with low amplitude introduce phase extraction errors of less 
than 0.001 radians. 

Random Noise 

As shown in Fig. 8, random intensity fluctuations are po- 
tentially one of the largest sources of phase error. In all 
baseline tests, an image of an HQSG was projected onto a 
planar surface and imaged with an 8-bit camera-digitization 
board combination. The image-plane spacing of the fringe 
pattern is approximately 10 pixels, and the minimum contrast 
is approximately 120 gray levels, giving a minimum signal 
amplitude of 60 gray levels, which corresponds to approxi- 
mately 7-bit digitization with maximum contrast. Because 
the measured noise in real images is due to a combination of 
both temporal and spatial variations in intensity, the relative 
magnitude of each term is of interest in this study. 

As noted previously, the standard deviation in intensity 
due to temporal random noise was approximately 0.9 gray 
levels before averaging. Thus, the ratio between standard 
deviation and minimum amplitude is -- 1.7 percent. For 
dynamic applications, this level of noise is expected to be 
present in single-image measurements. 

To demonstrate the effectiveness of time averaging in tem- 
poral noise reduction, image averaging was performed on the 
projected fringe images using a series of 500 images acquired 
at 25 Hz. Results from these experiments demonstrated that 
the standard deviation in the resulting intensity pattern is pro- 
portional to approximately N-'.~' for N < 200, which is 
consistent with statistical theory for variability of the mean 
value. Therefore, a portion of the variability in the intensity 
data is due to temporal random noise in the intensity pattern; 
when possible, image averaging can be used to reduce the 
errors associated with this form of temporal noise. 

To estimate the effect of spatially varying noise on the er- 
ror of phase extraction in a real image with unknown phase 
distribution, the following process is used. First, a total of 
100 images are averaged to minimize temporal noise in the 
intensity data. Second, assuming that the phase distribution 
is a continuous function, the phase of one row in the im- 
age is extracted using (1) the Hilbert filter with a Laplacian 
pyramid, (2) unwrapped and (3) fitted with a fourth-order 
polynomial. Third, the difference between this polynomial 
and the scattered, unwrapped phase data is considered as the 
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(a) (b) (c) 
Fig. 9-(a) Schematic of the setup for calibration of camera parameters, (b) schematic for calibration of the height-phase 
relationship, (c) binarized image of precision grid used in calibration 

Fig. &An &bit image of a fringe pattern taken by a CCD 
camera 

error of phase extraction. This approach has been verified by 
extraction and analysis of phase information from a generated 
image. 

The procedure outlined above was used to extract the 
phase from a time-averaged real image that is similar to the 
one shown in Fig. 10. Results from the analysis indicate that 
the maximum and the standard deviation in phase error are 
approximately 0.075 radians and 0.03 radians, respectively. 
Comparison of these values to simulation datain Fig. 8 shows 
that the measurement error values are reasonably close to the 
simulation predictions of 0.05 for the maximum error and 
0.02 for the standard deviation. 

It is worth noting that the use of fringe images that were 
not time averaged resulted in maximum phase error and stan- 
dard deviation in phase of approximately 0.08 and 0.035, 
res~ectivelv. These results indicate that a major source of 

for the combined effects of both variables will be compared 
to the experimental data. 

Using an experimental arrangement similar to the one 
shown in Fig. 1, a planar object was illuminated with a pro- 
jected fringe pattern using the HQSG. Time-averaged images 
were acquired with three different lens apertures to provide 
a range of fringe pattern contrast. Typical experimental pa- 
rameters for this work include a fringe spacing of 16 pix- 
elslfringe on the sensor array, a distance from the lens to the 
object of % 600 mm, a camera oriented nearly perpendicular 
to the object plane and a projector rotated % 25 deg from 
the normal to the object plane. Each image was obtained 
by averaging 100 consecutive images. Phase extraction fol- 
lowed the procedures outlined previously and included use 
of both a Hilbert filter with Laplacian pyramid algorithm and 
a flood-fill approach for phase unwrapping. 

For comparison to the measured phase data, numerical 
simulations were performed using both the measured inten- 
sity contrast and the measured intensity variations. The nu- 
merical simulations assumed uniform contrast. with additive 
random intensity noise having the same standard deviation 
as the measured data. 

The data for intensity contrast and intensity noise from 
all three experiments are shown in Table 1. In addition, a 
comparison of the predicted and measured maximum phase 
error and standard deviation in phase for three separate ex- 
periments are shown in Table 1. 

As shown in Table 1, the simulation results and exper- 
imental measurements are in good agreement for all three 
experiments. Furthermore, the results demonstrate that a 
combination of significant contrast reduction and spatially 
varying noise will dramatically increase the phase extraction 
error. Specifically, to ensure that the standard deviation in 
phase error is below 0.042 radians, image contrast must be 
% 70 gray levels and the noise-to-signal ratio must be less 
than % 2.25 percent. 

error in the extraction of phase is random spatial fluctuations 
in intensity values. FRINGE SPACING 

Because contrast variations may affect the accuracy of the 
height measurements, primarily through reduced accuracy in 
the phase extraction process, experiments were performed in 
which fringe pattern contrast was altered. Because exper- 
imental phase measurements will include errors from both 
spatially varying noise (e.g., due to reflectivity changes on 
the object surface) and contrast changes, numerical estimates 

Using an experimental arrangement similar to the one 
shown in Fig. 1, a diffuse planar object was illuminated with 
a projected fringe pattern using the HQSG. To obtain a wide 
range of intensity pattern frequencies in the image plane, 
the zoom of the camera lens and object distance were var- 
ied. Typical experimental parameters for these experiments 
were (1) object distances from 400 to 600 mm, (2) camera 
oriented nearly perpendicular to the object plane and (3) pro- 
jector rotated % 25 deg from the normal to the object plane. 
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TABLE 1-MEASUREMENTS AND PREDICTIONS FOR PROJECTED HIGH-QUALITY SlNUSOlDAL GRATING PAlTERNS 
WITH VARIOUS COMBINATIONS OF CONTRAST AND INTENSITY NOISE 

Fringe Fringe Fringe 
Pattern 1 Pattern 2 Pattern 3 

Maximum error in Simulation 0.070 0.090 0.187 
phase (radians) Experiment 0.100 
Standard deviation of error Simulation 0.035 
in phase (radians) Experiment 0.040 
Mean value of amplitude 70.37 
(gray level) 
Standard deviation of 1.57 
amplitude (gray level) 
Ratio between standard 2.23 
deviation of noise to 
the amplitude of the 
signal (percentage) 

To minimize the effects of temporal noise, each image was 
obtained by averaging 100 consecutive images. In all cases, 
the contrast is on the order of 70 gray levels and the noise-to- 
signal ratio is x 2.2 percent to minimize errors due to contrast 
and spatial noise. Phase extraction followed the procedures 
presented earlier in the section on the Hilbert transform. 

Table 2 presents a comparison of the experimental results 
of the analytical predictions for image plane fringe spacing 
of 9, 21, 30 and 35 pixels, respectively. As shown in Table 
2, the increase in experimental error that occurs as the fringe 
spacing increases is in very good agreement with simulation 
predictions. Furthermore, the results demonstrate that a com- 
bination of large fringe spacing and spatially varying noise 
can introduce large errors in phase. To ensure that the stan- 
dard deviation in phase error is below 0.042 radians, fringe 
spacing must be in the range 3 to 3 1 pixels while controlling 
both contrast and intensity noise. 

Experimental Validation Experiments 

In this section, two tests were performed with the fringe 
projection system shown in Fig. 1 to obtain spatial (X, Y, 2) 
data. For comparison, a coordinate measurement machine 
(CMM) was used to independently measure height data. The 
tests included measurement of a planar object in two positions 
and measurement of a portion of a turbine blade. Direct 
comparisons of the independent measurements are provided 
to demonstrate the accuracy of the fringe projection method 
and simulations. 

Planar Object 

A 100 x 100 mm diffusely reflecting planar object was 
used in these tests. Images were acquired of a 50 x 50 mm 
subregion in two positions. One position was normal to the 
camera, and the second position was tilted toward the cam- 
era - 3 deg. Setup parameters for the test included an object 
surface fringe spacing of approximately 0.6 mm (fringe den- 
sity of 9 pixelslfringe), fringe contrast of approximately 125 
gray levels, time-varying noise of approximately 1 gray level 
(standard deviation) and spatially varying noise of approxi- 
mately 2.3 gray levels (standard deviation). A Pulnix digital 
camera with 768 x 484 spatial resolution and 8-bit intensity 
resolution was used to record digital images of the fringe 
patterns. 

Camera calibration followed the procedure outlined pre- 
viously, and the resulting camera parameters are shown in 
Table 3. Figure 11 shows a typical phase-height relation- 
ship calibration curve obtained when using a reference plane 
translated perpendicular to the surface within the calibration 
range. 

The four coefficients for the fitted third-order polynomial 
in Fig. 11 are A0 = -1.458E - 03, A l  = 1.167E - 01, 
A2 = - 1.793E - 05 and A3 = - 1.554E - 09. It is noted 
that the second- and third-order coefficients are very small 
relative to the first-order coefficient and that the phase-height 
relationship curve is almost linear. Practically, third-order 
polynomial fitting is sufficient for most purposes because the 
difference between second- and third-order polynomial fits 
is on the order of 3 wm. However, it is easily verified that use 
of a linear fit instead of second- or third-order polynomials 
may cause errors up to 200 wm. 

Using these results, profiles of the plane before and after 
tilting are obtained and the (X, Y, Z) coordinates are fitted 
with a least squares plane. The residuals of the fitted data 
relative to the measurements for both planes are given in 
Table 3. 

Independent measurement of the planar surface profile 
by CMM was performed for comparison to the fringe pro- 
jection data. Using a least squares planar fit to approxi- 
mately 100 CMM data points, the surface fit indicated that 
the standard deviation was x 8wm, which is in reasonable 

Phase difference,p(radian) 
Fig. 11-A typical phase-height relationship 

Experimental Mechanics 21 3 



TABLE 2-MEASUREMENTS AND PREDICTIONS FOR FRINGE PATTERNS WlTH VARIOUS COMBINATIONS OF FRINGE 
SPACING AND INTENSITY NOISE 

Fringe Fringe Fringe Fringe 
Pattern 1 Pattern 2 Pattern 3 Pattern 4 

Maximum error Simulation 0.07 0.068 0.067 0.3 
in phase (radians) Experiment 0.10 0.075 0.081 0.17 
Standard deviation Simulation 0.035 0.038 0.037 0.052 
of error in Experiment 0.040 0.042 0.0408 0.062 
phase (radians) 
Fringe spacing 9 21 30 35 
(pixels) 
Mean value of 70.37 69.02 70.15 72.01 
amplitude (gray level) 
Standard deviation 1.57 1.50 1.53 1.58 
amplitude (gray level) 
Ratio of standard 2.23 2.17 2.18 2.19 
deviation and noise 
and signal (percentage) 

TABLE 3--RESULTS OF BASELINE PROFILE MEASUREMENT WlTH THE FRINGE PROJECTION METHOD 
Plane Tilted Plane 

Pinhole distance of camera (pixels) 
Distance Z (from camera to 
calibration plane, mm) 
Angle a(deg) 
Fitting coefficients A 

B 
C 

Residual relative Maximum (km) 
to fitting function Minimum (km) 

Mean (km) 
Standard deviation (km) 

agreement with fringe projection measurements. Because 
manufacturer's specifications for the CMM included an er- 
ror estimate of f 8.7km for each CMM measurement point, 
the flatness of the plate could not be determined with higher 
accuracy. Finally, inspection of the error distribution for the 
fringe projection data indicates that it is randomly distributed 
throughout the measurement region. 

Turbine Blade 

Figure 12 shows the region of a turbine blade that was cho- 
sen for profiling, along with a close-up of the region of interest 
after illumination by the projected fringe pattern. Analysis 
of the surface shape data indicates that the maximum height 
change is -- 4.7 mm and the minimum radius of curvature is 
-- 12.1 mm. 

Table 4 presents the parameters used in the experimental 
setup to measure the three-dimensional shape of the turbine 
blade. For the setup parameters shown in Table 4, the esti- 
mated standard deviation of the measurements is % 10km. 

For direct comparison to the measured turbine blade data, 
independent measurements of the same region on the tur- 
bine blade were obtained using a CMM. l b o  hundred CMM 
measurements were obtained for the turbine blade. Due to 
curvature variations on the object surface and the presence 
of a 7.5 mm spherical ball at the end of the surface probe, 
the CMM measurements for the coordinate of the center of 

the ball were modified to improve the accuracy of the surface 
positions for the curved turbine blade. The procedure used 
to improve the CMM measurement accuracy is as follows. 

Assuming that the surface height data are z = z(x, y) and 
the center of the ball is (x,, yc, z,), then along a line on the 
surface, one can write 

X c - x  Yc-y -- - 
az - az 
ax ay 

yc-Y zc-z ' -- - 
(16) 

az - - 1 

ay 

Also, the spherical surface can be written in the following 
form: 

Approximating the derivatives for the true surface with 
derivatives on the surface obtained using the CMM measure- 
ments, one can write I 
Provided that both R and the CMM data set [(x,)~, (Y,)~, 
( z ~ ) ~ ] ,  i = 1.2, . . . , m, are known, the true coordinates of 
the surface can be estimated using eqs (16)-(18) to give I 
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TABLE 4-SETUP PARAMETERS AND ERROR ESTIMATES FOR BLADE PROFILE MEASURE- 
MENTS 

Angle Weg)  -34.55 
Angle ~l(deg) -7.383 
Angle ~ ( d e g )  0.975 
Pinhole distance of camera (pixels) 2.803 x lo4 
Distance Z (from camera to 1301 

calibration plane, mm) 
Angle ~ ( d e g )  ~ 2 5  
Object surface fringe ~ 0 . 6 5 2  

spacing (flmm) 
Error in phase (radians) Maximum 0.087 

Minimum -0.08 
Standard deviation 0.04 

(a) (b) 
Fig. 12-Painted tuhine blade with selected measurement region (a) and projected fringe pattern (b) 

where eq (19) is accurate everywhere away from sharp edges, 
with the error in (x, y, z) being on the same order as the 
accuracy in determining (x,, y,, z,). 

Using eqs (16) to (19), the CMM measurements over a 
24.6 x 24.3 mm patch on the turbine blade were converted 
into a final data set. Figure 13 shows the full-field comparison 
of the two data sets after optimal registration of the two data 
sets and the relative error between the two data sets along one 
line. In Fig. 13, the regions of mismatch appear in lighter 
tone. 

Results indicate that the average error between all match- 
ing points on the two surfaces is 19.7 km after optimal 
registration was completed. Because the estimated error in 
the fringe pattern measurement is f lOkm and the specified 
CMM accuracy is f 8.7km, the difference between the two 
data sets after registration is consistent with a Euclidean norm 
error estimate for the combined data sets of 13.3 km. 

Summary 

An accurate camera calibration procedure and improved 
phase extraction procedures using a modified Hilbert trans- 

form with Laplacian pyramid algorithms were developed and 
successfully demonstrated for measurement of the full (X, Y, 
Z) positions of surface points using single-frequency fringe 
projection profiling methods. Detailed numerical simula- 
tions and controlled baseline experiments were performed to 
quantify the key error sources in the measurement process 
and verify the accuracy of the approach. 

Simulation results indicate that for fringe patterns having 
sensor plane fringe spacing from 3 to 30 pixels, the resulting 
phase error can be reduced to less than 0.02 radians provided 
that the spatial frequency of the background intensity varia- 
tions meets the inequality k = 2n/X < 0.01 pixels-', the 
recorded fringe patterns have an amplitude of at least 64 gray 
levels and the recorded fringe patterns have a random noise 
of less than 1 percent of the signal amplitude. These re- 
sults can be converted into requirements on experimental pa- 
rameters (e.g., image magnification, object surface prepara- 
tion, projection angle, surface curvature) to ensure optimum 
accuracy. 

Baseline experiments were performed that demonstrate 
that the error sources (e.g., random intensity fluctuations, 
contrast reduction) quantified in the numerical simulations 
are in good agreement with physical measurements. Specifi- 
cally, results indicate random spatial changes in the intensity 
pattern due to variations in object surface reflectivity intro- 
duce negligible bias and a random variation of 0.05 radians 
in the extracted phase for almost all experiments performed. 

To demonstrate the method for applications, spatial 
(X, Y, Z) data were obtained by both CMM and fringe 
projection for both a planar surface and a turbine blade. 
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Fig. 13--(a) Measured shape after registration of coordinate I 
in measured height along one line 

Results indicate that the CMM measurements are in good 
agreement with fringe projection data for both cases and that 
simulation estimates for the fringe projection errors are con- 
sistent with measurements. 

Taken together, the experimental studies and numerical 
simulations confirm that very high accuracy shape measure- 
ments can be made with single-frequency projected grids. 
Specifically, phase errors of less than 0.04 radians on a pixel- 
by-pixel basis are achievable for a wide range of fringe den- 
sity using the proposed method. Furthermore, the experi- 
mental and numerical results demonstrate conclusively that 
it is possible to design both a fringe projection system and a 
measurement process to achieve a prespecified accuracy and 
resolution in the point-to-point measurement of the spatial 
(X, Y, 2) positions. 
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