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Information on where species occur is an important component of conservation and management decisions, but knowledge of distributions is
often coarse or incomplete. Species distribution models provide a tool for mapping habitat and can produce credible, defensible, and repeatable
information with which to inform decisions. However, these models are sensitive to data inputs and methodological choices, making it important
to assess the reliability and utility of model predictions. We provide a rubric that model developers can use to communicate a model’s attributes
and its appropriate uses. We emphasize the importance of tailoring model development and delivery to the species of interest and the intended
use and the advantages of iterative modeling and validation. We highlight how species distribution models have been used to design surveys for
new populations, inform spatial prioritization decisions for management actions, and support regulatory decision-making and compliance, tying

these examples back to our model assessment rubric.
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Information on species distributions underlies nearly
every aspect of managing biodiversity, including efforts
to conserve rare species, anticipate problematic invasions,
identify biodiversity hotspots, and delimit valued habitat
types (Franklin 2010). Information about where individuals
of a species are or could exist is a key component to legally
binding decisions, such as regulatory actions under the US
Endangered Species Act (ESA; Schwartz 2008, Camaclang
et al. 2015) and establishment of quarantine zones for inva-
sive species (Robinson et al. 2017). Species distributions also
inform management activities, such as those found in state
wildlife action plans (Fontaine 2011). Typically, information
used for these purposes consists of narrowly delimited point
or polygon representations of observed species occurrences,
maps based on opinions (blob maps, sensu Jetz et al. 2008),
or maps indicating the presence of a species within a geopo-
litical boundary, such as a county (figure 1; Jetz et al. 2012).
Each of these summaries has substantial limitations. Point
observations underestimate the occupied area of a species
and conflate sampling biases and underlying distributions
(Rondinini et al. 2006). Geopolitical and expert-created
maps can overestimate a species’ occupied area and often
lack transparency and repeatability (Jetz et al. 2008, Peterson
et al. 2016). In each of these cases, variation in sampling

effort, geopolitical delimitations, and documentation of
expert decisions can result in a degree of arbitrariness that
may undermine credibility for decision-making (Hurlbert
and Jetz 2007).

Species distribution models (SDM) use known locations
of a species and information on environmental conditions
to predict species distributions. SDM use a variety of algo-
rithms to estimate relationships between species locations
and environmental conditions and predict and map habitat
suitability (Franklin 2010). The conceptual underpinnings
of SDMs originated in the midtwentieth century to describe
a species’ niche in both environmental and geographic space
(Colwell and Rangel 2009). In the early 2000s, the increasing
availability of geospatial data and computational resources
led to a rapid expansion of analytical methods and case
studies exploring the many uses and caveats of SDMs (Elith
and Leathwick 2009). More recently, SDMs have matured
to a point where the distributions that they predict have
found success in numerous on-the-ground conservation
efforts (Guisan et al. 2013). SDMs are now easily imple-
mented thanks to well-tested modeling algorithms (e.g.,
Elith et al. 2006), ever-increasing accessibility of occurrence
information, and software and computational resources that
facilitate model fitting and visualization (Thuiller et al. 2009,
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Figure 1. Comparison of data types often used to represent species distributions, shown in the present article for the
threatened frosted flatwoods salamander Ambystoma cingulatum including (a) species observation points (NatureServe
2017), (b) a range map (International Union for Conservation of Nature et al. 2007), (c) county records (US Fish and
Wildlife Service 2018), and (d) predicted suitable habitat from a species distribution model (Florida Natural Areas

Inventory 2017).

Morisette et al. 2013, Kass et al. 2018). The distributions pro-
duced by SDMs can ameliorate some of the mischaracteriza-
tions that arise from biased and sparse sampling of natural
populations (Phillips et al. 2009), can provide more localized
predictions than maps based on geopolitical boundaries,
and can be reproducible in a way that maps based on expert
opinion are not. Nevertheless, there remains a need to
address SDMs’ high sensitivity to data inputs and method-
ological decisions to ensure that models can effectively and
efficiently inform conservation and management decisions
across both jurisdictional boundaries and a range of legal
and social contexts.

Four major criticisms have been leveled against SDMs
that have inhibited their use in management decision-
making: First, they are overcomplicated and difficult for
a broad audience to interpret. They lack expert intuition,
particularly when methodological choices are not rooted in
relevant natural history knowledge. Variation in the quality
of input data and model-development decisions can result
in important differences in the predicted distributions. And
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careful interpretation of model output is necessary when
distinguishing correlative representations of potential (i.e.,
within a species’ niche) versus actual (i.e., currently occu-
pied) distributions (Jiménez-Valverde et al. 2008, Araujo and
Peterson 2012, Guisan et al. 2013). The first two criticisms
are general to many models, and can be best addressed via
clear communication, involving experts and end users in the
modeling process, and considering the process of structured
decision-making (Addison et al. 2013, Guisan et al. 2013,
Morisette et al. 2017). The final two criticisms (sensitivity to
data and modeling processes, and issues of interpretation)
are methodological concerns that speak to the credibility of
a particular SDM and its context-dependent utility.

To be used effectively in decision-making, the entire
process used to build any model—including an SDM—must
be credible, transparent, and reproducible (Guisan et al.
2013, Villero et al. 2016, Morisette et al. 2017). There are
numerous decisions that must be made in estimating and
interpreting species distribution models, including those
about the input data, modeling processes, and depiction of
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model outputs (Franklin 2010). Modeled responses to envi-
ronmental variables and mapped model predictions should
be scrutinized and not treated as truth, and performance
assessments (including enumeration of strengths and weak-
nesses) should be clearly documented and communicated.
Support for the interpretation of model outputs should be
accessible to people that lack technical expertise in species
distribution modeling for those products to bear on impor-
tant decisions.

Here, we establish guidelines for model development
and communication to provide a framework for assessing
the suitability of a given SDM for a particular purpose. We
provide an assessment rubric (table la-1d) for evaluating
and communicating the quality of SDM inputs and model-
ing methods. This rubric defines the attributes of models
important for end users and provides objective criteria for
comparing the context-dependent utility of models pro-
duced by different researchers, agencies, or organizations.
Referencing the SDM assessment rubric (table la-1d), we
review the use of SDMs for informing three types of deci-
sions: designing field surveys, prioritizing locations and
actions for conservation and management, and supporting
regulatory decision-making. We provide examples of how
SDMs have been applied in these three common decision
categories and emphasize the importance of iterative model-
ing (reestimating models to incorporate new information)
and model validation. The generalities of these three deci-
sion categories are highlighted by including use cases cover-
ing a range of taxonomic groups, geographies, and spatial
extents from the United States.

In considering the use of SDMs in decision-making, it
is important to recognize that model outputs alone do not
determine outcomes, but are combined with expert knowl-
edge, resource constraints, priorities, and other information
to inform decisions. In some cases, SDMs may provide lim-
ited added value, often because spatial information on the
factors that truly limit distributions is unavailable, or because
key threats are not represented within SDM inputs (Tulloch
et al. 2016). However, given the many situations where the
efficacy of species management and conservation actions
would benefit from improved distribution information, the
SDM rubric outlined in the present article (table la-1d)
provides a means of evaluating SDMs and improving com-
munication between modelers and practitioners who could
benefit from the information SDMs can provide.

Guidelines for model development and delivery

Guidelines for production of SDMs are important because
results are often sensitive to methodological decisions,
and the intended uses of an SDM’s output can alter the
decisions made during model development (Guisan and
Zimmermann 2000, Araujo et al. 2019). To determine how
much to emphasize a model’s output in a given decision-
making process, end users need accessible information
about how a distribution model was produced, and what it
should and should not be used for. Does the model conform
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to basic SDM standards? Were the environmental predictors
selected based on taxon-specific natural history informa-
tion? Have taxonomic or regional experts reviewed the
predicted distribution?

We describe the major steps involved in developing a
species distribution model along with criteria to classify
modeling inputs and procedures as interpret with caution,
acceptable, or ideal (table 1a-1d). The criteria in this table
offer a rubric for evaluating the scientific uncertainty of
SDMs. A model with some criteria classified as interpret
with caution may still be useful to guide additional field
surveys to support iterative modeling (Wisz et al. 2008) or
to gain a qualitative understanding of a species’ distribu-
tion. Conversely, a single criterion classified as interpret with
caution may undermine the utility of a model for a given
application, particularly when the quality of input data is
poor. Model attributes classified as ideal are developed using
current best practices from the academic literature, but those
practices are often beyond the scope of what is feasible given
limited time and resources, particularly in many resource
management situations. Standards for the quality (i.e., inter-
pret with caution, acceptable, or ideal) of model attributes
may be higher for models intended to guide decisions at
fine spatial resolutions or with important consequences.
Producing user friendly, comprehensive summaries of mod-
eling decisions and their implications for appropriate use is
a key part of the development of credible and relevant model
outputs.

Choices in model development

It is not our intent to duplicate existing publications that
have evaluated modeling choices, such as reviewing impor-
tance of inputs (Jarnevich et al. 2015) or comparing dif-
ferent statistical algorithms (Elith et al. 2006). Rather, we
reiterate that although there is no “best” modeling method
for all contexts (Merow et al. 2014, Qiao et al. 2015), there
is general agreement over many aspects of producing SDMs
(Aratjo et al. 2019). Data quality and quantity matter. This
includes the number and precision of presence locations
(Graham et al. 2008, Wisz et al. 2008), whether a model
relies on background or pseudoabsence information ver-
sus higher quality absence data (Barbet-Massin et al. 2012,
Guillera-Arroita et al. 2015), and the data’s biases, including
those associated with detection and sampling. Evaluation
metrics are most reliable when derived from independent
data (table 1a; Roberts et al. 2017). Predictors are best when
they are related to factors that govern the distribution of tar-
get species and are geographically and temporally matched
to occurrence data (table 1b). The use of ensemble methods
and visualizations provide ways to recognize explicitly that
no single model is likely to be ideal and instead to integrate
outputs from multiple models (table 1c; Aradjo and New
2007). Comparing and combining outputs from models pro-
duced with different predictors, methods, or assumptions
provides a tool for decision-making in the face of uncer-
tainty and has the added benefit of being able to readily
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Presence data

Absence/
background data

Evaluation data

Table 1a. Effects of the quantity and quality of species data on model credibility.

Acceptable

Spatial error in coordinates
< spatial grain of model.
Correction of taxonomic
inconsistencies.
Confirmation of outlying
presences and spatial
thinning as needed.

References

Sampling of background
points to mimic sampling
biases in data and/or
sensitivity analyses to
evaluate effects of different
background data sets.

Graham et al. 2008, Lozier
et al. 2009

Based on cross-validation of
training data (spatial cross-
validation preferred).

Phillips et al. 2009,
Barbet-Massin et al. 2012,
Guillera-Arroita et al. 2015

Roberts et al. 2017,
Fourcade et al. 2018

Ecological and
predictive relevance

Spatial and
temporal alignment

Table 1b. Attributes of environmental predictors affecting model credibility.

Acceptable

Selection of predictors

justified based on natural

history.

References

Predictors encompass the
study area and time period.
Resolution of predictors

is appropriate given
uncertainty and for the focal
species.

Guisan and Zimmermann
2000, Petitpierre et al.
2017, Fourcade et al. 2018

Roubicek et al. 2010

Algorithm choice

Sensitivity

Statistical rigor

Performance

Model review

Iterative
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Table 1c. Attributes of the modeling process affecting model credibility.

Acceptable

Selection of algorithm
aligned with objectives,
including need for
actual versus potential
distribution.

References

Assessment of sensitivity to
choice of algorithm(s) and
selected settings and input
data.

Qiao et al. 2015

Assumptions recognized
and considered.

Aratjo and New 2007

Multiple metrics evaluated
and evaluation scores are
close to generally accepted
levels, ecological plausibility
evaluated.

Dormann 2007, Dormann
et al. 2013

Review by regional and
taxonomic experts, their
comments considered
in model revisions or in
recommendations for its
use.

Jarnevich et al. 2015

Updated based on

expert review and other
performance assessments.
Not updated based on new
field observations.

Guisan et al. 2013
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Table 1d. Attributes of the model products affecting model credibility.

Acceptable

Mapped products Continuous map with clear
description to interpret
range of values. Thresholds
based on test data (e.g.,
sensitivity equals specificity)
but not necessarily linked to

References

Liu et al. 2005, Owens et al.
2013, Guillera-Arroita et al.
2015, Liu et al. 2016

intended use.

Interpretation
support products

importance.

Enough information to
evaluate every row in this
table. Where explanation
is a goal, description

of variables and their

Reproducibility

results archived.

Inputs saved and made
available (excepting
locations of rare species),
scripts, settings, and model

assimilate models developed by different stakeholders, if
applicable.

The way in which model outputs are provided can be
tailored to the intended use, both for individual models and
for ensemble models. Using continuous predictive output
from models, in which predictions range from 0 to 1, can
have advantages over output classified into a binary map, in
which each location is defined as either suitable or unsuit-
able habitat, because this binary conversion entails the loss
of information (Guillera-Arroita et al. 2015). However,
many applications of species distribution modeling do
use the conversion of a continuous mapped surface into
a binary map (Liu et al. 2005). This transition is made by
considering continuous values above a selected threshold to
be potentially suitable. Practitioners can select a threshold
that appropriately reflects the context-specific costs of false
positives (predicting habitat where there is none) versus
false negatives (not recognizing habitat). Therefore, the
same continuous model output can be tailored for a specific
intended use (figure 2). Threshold choice depends not only
on the context but also on the set of models being considered
and the degree to which each model may underpredict or
overpredict habitat availability.

It is critical to assess model performance and uncertainty
in a manner guided by the focal application. For example,
even models based on irrelevant predictors can yield rea-
sonable distributions in the region of the training data but
will perform poorly if extrapolated to new areas (Fourcade
et al. 2018). Tools for quantifying and visualizing model
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extrapolation are available (Owens et al. 2013), but assess-
ing extrapolation performance requires independent data.
Prediction of future range expansion and contraction is
similarly challenging, and SDMs may not be reliable for
identifying either the species likely to exhibit the great-
est change in range size, nor the locations in which such
changes may occur (Rapacciuolo et al. 2012, Sofaer et al.
2018). Assessment of models should include computation
of performance metrics selected according to the intended
use (Jarnevich et al. 2015, Sofaer et al. 2019). For example,
minimizing false negatives is likely to be important in
ESA consultations, while minimizing false positives may
increase success when surveying for the location of new
populations. The model assessment should also include an
evaluation of ecological plausibility (Elith and Leathwick
2009), ideally based on criteria identified a priori. This will
generally be a qualitative assessment by taxonomic and
regional experts, focusing on whether modeled relation-
ships between predictor variables and habitat suitability
align with knowledge of the species’ natural history and
physiology, and whether the spatial pattern of predicted
suitability reasonably reflects known and likely occurrence
locations (table 1c¢).

Iterative modeling for decision support

An iterative process that reflects collaborations between
modelers, species experts, and practitioners can increase
model relevance and utility. Using existing occurrence data
from open-access repositories and best practices, modelers
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Figure 2. Species distribution map products for the Bog Turtle (Glyptemys muhlenbergii), a federally threatened species
(New York Natural Heritage Program 2017). (a) Continuous surface showing the full range of predicted habitat suitability.
(b) Map with a conservative threshold applied, which includes a higher proportion of the landscape so that potentially
suitable sites are unlikely to be missed. (c) Map with a higher threshold applied so that the shaded areas have much higher

likelihood of representing suitable habitat.

can often reach the acceptable criteria for relatively well-
known taxa, such as vascular plants and vertebrates. Moving
from acceptable to ideal will often require the acquisition of
new field data and collaborations between species experts,
modelers, and end users. Open and clear communication
can both improve models and promote uptake of model
outputs into decision-making processes (Addison et al.
2013). New field efforts can increase the quantity, relevance,
accuracy, and resolution of species and environmental data.
Visualizing maps and response curves can help experts
understand what aspects of a species’ ecology a model
appears to have captured appropriately, and expert knowl-
edge of a species’ natural and life-history traits can be used
to suggest additional or alternative predictors. In turn, itera-
tive modeling can increase understanding of species eco-
logical requirements. Iterative modeling provides a means
to move from left to right in table la-1d, and to compare
the impact of different modeling decisions in the context of
the intended use.

Model development for decision support occurs in the
context of continual changes in on-the-ground distributions,
environmental conditions, information availability, statis-
tical methods, and computational capacity. These ongo-
ing changes present both opportunities and challenges
in interpreting model output. How should we interpret
modeled distributions in a world where both the models
and the reality behind them may be in flux? The frequency
of iterative model updates can be related to the timing of

https://academic.oup.com/bioscience

management decisions, species’ population dynamics, and
patterns of environmental variability. Locality information,
environmental predictors, modeling methods, summaries
of model outputs, and stipulation of appropriate uses can
all be updated iteratively. An iterative modeling approach
can reflect species’ changing distributions, provide a better
understanding of key limiting factors, and increase buy-in
from experts and end users. Surveys conducted within an
iterative modeling process can also target locations of high
model uncertainty and disagreement (Crall et al. 2013), and
sensitivity analyses can reveal important sources of uncer-
tainty to help guide subsequent field and modeling efforts.
New locations—and absence records reflecting nondetec-
tions—can then be integrated into subsequent models to
refine distributions (figure 3). Decision-making structures
based on adaptive management are particularly well poised
to benefit from iterative modeling, because clear objec-
tives and recognition of key uncertainties can guide model
improvements, and decisions can be revisited as information
improves.

Decisions informed by species distribution models

Decisions that can be informed by species distribution mod-
eling generally fall into three categories: designing surveys
for new populations and individuals, identifying priority
locations and actions for conservation and management,
and supporting regulatory decisions and streamlining com-
pliance. The type of decision an SDM is intended to support
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Figure 3. USDA APHIS surveillance efforts for European gypsy moth (Lymantria dispar dispar) are guided by a species
distribution model that is updated annually. (a) Distribution model output for beyond the federal quarantine and active
spread areas for the 2015 survey year. (b) The risk map in the Pacific Northwest, overlaid with subsequent positive
detections for that year, shown with stars. The model was used to guide survey effort, and successfully led to the detection
of new populations, which were then eradicated. (c) Receiver operating curve showing iterative modeling improved
model performance each year; this program exemplifies the operational use of iterative modeling (table 1c). The first
model development in 2013 was an expert opinion, GIS-weighted overlay model. This model did not perform better

than random (AUC = 0.5) in predicting positive detections. In 2014, the first statistical species distribution model was
developed, which divided the study area into two management regions. The next iteration in 2015 explicitly tested spatial
stationarity and objectively divided the study into model regions on the basis of changes in the importance of different
spread pathways. The most recent model in 2016 retained the 2015 approach, but added the most recent outbreak
detections in the Pacific Northwest.
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will shape the best practices for model development and
interpretation (Guillera-Arroita et al. 2015). Despite these
differences related to intended use, there are commonalities
about how to rank models that are applicable across taxa and
geographies (table 1la-1d). We provide examples of SDMs
that have been used to inform these three types of deci-
sions, and we complete an assessment of the quality of those
models (table 2a-2d, supplemental table S1) to demonstrate
how the SDM rubric summarized in the present article can
concisely communicate the credibility of SDMs applied to a
variety of species management contexts.

Designing surveys for new populations and individuals
Species distribution models can effectively guide surveys for
new populations of rare species (Guisan et al. 2006, McCune
2016). Distribution models have been shown to improve
the efficiency of search efforts, with the number of new
populations discovered exceeding that from searches guided
by expert opinion (Aizpurua et al. 2015). Use of SDMs to
discover new or larger populations can lead to delisting peti-
tions under the ESA (Deseret milkvetch Astragalus desereti-
cus, 2017 Federal Register 82: 45,779-45,793) or contribute
to the decision to not list a species under state and federal
endangered species laws. For example, starting with just
nine occurrence records, the Wyoming Natural Diversity
Database developed an initial SDM for the Wyoming pocket
gopher (Thomomys clusius) in 2006. The model was used
to guide subsequent field surveys, an appropriate use for
a model in the interpret with caution category because of
low sample size (table 1a). New occurrence records were
incorporated into a series of model iterations and refine-
ments (Keinath et al. 2014), shifting the models out of
interpret with caution categories (table 1a, 1d). These field
and modeling efforts located 34 new occurrences and con-
tributed to a 2010 decision not to list the species under the
federal ESA (2010; Griscom et al. 2010 Federal Register
75:19,592-19,607).

For invasive species, distribution models have been used
to inform surveillance efforts for risk assessment and early
detection and rapid response (EDRR) programs. For spe-
cies not yet introduced or established in a given country or
region, risk assessments use models of potential distribu-
tions to evaluate whether the climatic conditions in the given
area may be suitable for the potential invader (Venette et al.
2010). Because these models often include extrapolation to
novel regions with new environmental conditions, they are
most credible when they are based on a clear understanding
of limiting factors for the focal species (table 1b).

Another method to support EDRR is to integrate disper-
sal vectors as predictors, to reflect propagule pressure. For
example, the US Department of Agriculture Animal and
Plant Health Inspection Service (USDA APHIS) is charged
with preventing the introduction, establishment, and spread
of the European gypsy moth (Lymantria dispar dispar) into
uninfested areas of the United States. APHIS currently
develops iterative, annual spread-risk models that forecast
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the likelihood of detecting gypsy moth outside the federal
quarantine area the next survey year (figure 3). Prior to
using species distribution models to guide surveillance, field
managers relied on state surveyors to interpret guidance
from qualitative categories in a program manual to allocate
traps to high-risk areas. The first attempt to standardize
surveillance nationally was an expert-created, weighted GIS
layers model, an approach characterized by low repeatabil-
ity and performance (table 2a-2d, table S1, figure 3). Poor
model performance motivated a second and more objec-
tive model iteration: a species distribution model. USDA
APHIS collaborated with the US Geological Survey and the
USDA Forest Service to develop statistically rigorous and
defensible methodologies (table 2a-2d, table S1). The model
was regionalized to capture the transitions in mechanisms
of spread (natural to human assisted) across space (Cook
et al. 2019). In 2015, the risk model correctly predicted an
outbreak of gypsy moth in the Pacific Northwest that was
subsequently eradicated (figure 3). The surveillance pro-
gram uses the updated statistical model output to prioritize
trap surveillance nationally for the next year, and by utilizing
continuous predictions, follows ideal practices for table 1d.
The field observations of presence and absence are then used
to validate and improve the next year’s model, thus improv-
ing the quality of the model (table 2a-2d) and successfully
integrating iterative modeling into an operational context.

Prioritizing locations and actions for conservation
and management
On-the-ground conservation and management requires
selecting a set of actions and deciding where on the land-
scape to implement them. SDMs can be used to understand
a species’ responses to attributes of land use and land cover
that can be influenced by management and inform the selec-
tion of management actions. Spatial predictions from SDMs
can be used to direct management and conservation actions
to priority locations. For example, a model developed by
West and colleagues (2017) used remotely sensed indices as
environmental predictors within an SDM to predict loca-
tions that had high cheatgrass (Bromus tectorum) cover in
recently burned forest land in Wyoming. In this case, the
environmental predictors were chosen to reflect the man-
agement need to identify locations with high cheatgrass
cover rather than locations with potential for high cheatgrass
cover, tailoring the model to its intended use (table 1b). This
model used best practices, with no interpret with caution
classifications (table 2a-2d, table S1), making it suitable
for use in guiding the desired management activity: weed
control. The Medicine Bow National Forest and Wyoming
Game and Fish presented model results to partner agencies
and org