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Abstract

Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to
enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-
assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers,
including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium
(The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in
peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina InfiniumH SNP
genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina
and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs.
Validation with the Illumina GoldenGateH assay was performed on a subset of the predicted SNPs, verifying ,75% of genic
(exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to
arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach
chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of
peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs. The almost 7,000 SNPs
verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies
in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC
peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and
related stone fruit and nut species.
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Introduction

Dissection of the genetic components underlying complex

agricultural traits in plants has so far used mainly experimental

bi-parental crosses and a limited number of genetic markers. The

growing number of draft genome sequences of many species

coupled with Next Generation Sequencing (NGS) technologies has

quickly changed the paradigm of plant genome analysis.

Alignment of the short NGS reads obtained from diverse and

unrelated varieties to a reference genome allows the identification

of large numbers of Single Nucleotide Polymorphisms (SNPs) and

small Deletion/Insertion Polymorphisms (DIPs) and the contex-

tual estimation of their minor allele frequencies (MAF).

Simultaneous genotyping of hundreds of thousands of SNPs in a

single assay has become feasible due to innovative combinations of

assay and array platform multiplexing [1]. Illumina’s InfiniumH

BeadArray Technology platform is an extremely high-throughput

SNP genotyping system that allows the detection of up to 2.5

million SNPs per single DNA sample [2]. Multiplex SNP

genotyping enables cost effective marker-assisted selection strate-

gies, whole genome fingerprinting, genome-wide association

studies (GWAS), map-based gene cloning and population-based

analyses. The availability of such tools fosters the application of

GWAS in plants and animals [3], [4], [5], [6] and provides the

opportunity to apply genomic selection (GS) methods to

agricultural species, including Prunus. High-density SNP genotyp-

ing arrays have been designed for several domestic animals

including cattle [3], pig [4] and chicken [5]; arrays are being

developed in several plant species including apple [6], maize,

tomato, and cherry (http://www.illumina.com/agriculture).

In peach [Prunus persica L. (Batsch)] and related Prunus species,

QTL studies have been conducted using experimental bi-parental

crosses and a limited number of genetic markers [7], [8], [9], [10],

[11], [12], [13]. A recent association study by Aranzana et al. [14]

using a limited number (50) of SSR markers in unrelated

accessions from American and European origin indicated that

linkage disequilibrium (LD) in peach is quite high, up to 13–15 cM

with stratification of peach accessions into at least three sub-

populations. This study suggests that a small number of markers

(about 600) might be sufficient to scan the peach genome.

However, the peach gene pool used in this study [14] is known to

have a narrow genetic base [15] in comparison with Eastern

germplasm [16] where LD is likely to have a lower level of

conservation. Moreover, studies in grape [17], [18] and maize [19]

suggest that SNPs estimate a much lower decay of LD than SSRs.

Hence, we suggest that a higher number of SNP markers covering

the entire genome would be necessary to scan the peach genome

and to perform GWAS.

The availability of the peach reference genome sequence

recently released by the International Peach Genome Initiative

[20] facilitated genome wide variant detection and the develop-

ment of dedicated genomic tools. This and the ability to acquire

massive sequence datasets from next generation sequencers,

allowed the efficient identification of a large number of genetic

markers, such as SNPs and small DIPs, enabling the development

of a SNP array in this important horticultural crop. We describe

here how members of The International Peach SNP Consortium

(IPSC), that includes institutions from the U.S., Italy, and Spain,

have worked together to identify genome-wide sequence variation

and to develop a moderate-density peach high-throughput

InfiniumH SNP genotyping platform relevant for worldwide peach

breeding germplasm, utilizing SNPs discovered using next

generation sequencing platforms.

Materials and Methods

Whole genome re-sequencing of peach breeding
accessions
A SNP detection panel of 56 peach breeding-relevant accessions

assembled with the goal of achieving an efficient coverage of the

genetic background of cultivated peach (Table 1) was used for low-

depth genome re-sequencing. The accessions were founders,

intermediate ancestors, and important breeding parents used in

international peach breeding programs, chosen both for the

significance of their contribution to breeding germplasm according

to pedigree records, and for genetic diversity based upon

relatedness estimates from SSR studies [21], [14], (Verde I.

unpublished data). Accessions were divided into 12 pools. For each

accession in pools 1 through 11, paired-end libraries were

prepared as recommended by Illumina (Illumina Inc., San Diego,

CA, USA) separately at the USDA-ARS-National Clonal

Germplasm Repository (NCGR) and the Istituto di Genomica

Applicata (IGA, Udine, Italy) laboratories. In summary, library

preparations were performed using minor modifications of the

Illumina DNA-seq Sample Preparation protocol (Illumina, Inc.,

San Diego, CA). Briefly, 1–3 mg of genomic DNA was sheared by

sonication using Diagenode’s Biorupter XL sonicator system

(Sparta, NJ, USA). This was followed by standard blunt-ending

and ‘A’ was performed. Then, Illumina adapters with indexes

(3 bp or 6 bp, at the NCGR and IGA, respectively) were ligated to

the ends of the fragments. After the ligation reaction and

separation of un-ligated adapters, samples were amplified by

PCR to selectively enrich for those fragments in the library with

adapter molecules at both ends. The samples were quantitated and

quality tested using the NanoDrop ND-1000 UV-Vis Spectro-

photometer (Thermo Scientific, Wilmington, DE, USA) and

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,

CA). Libraries were pooled in equimolar ratios to yield a total

concentration of 10 nM. Aliquots of pooled libraries (5 pmol) were

processed with the Illumina Cluster Generation Station, following

the manufacturer’s recommendations. Pools were sequenced in

one lane of Illumina GA II with 94 cycles per read at the Istituto di

Genomica Applicata (IGA, Udine, Italy) for pools 1–5 and with 80

cycles per read at the Center for Genome Research and

Biocomputing (CGRB, Oregon State University, Corvallis, OR,

USA) for pools 6–11, as specified in Table 1. Libraries for

accessions in pool 12 were constructed for 454 GS FLX

sequencing with MID-labeled libraries. Nuclear DNA from the

eight accessions of pool 12 was digested with Alu1 and size-selected

for 400–500 bp fragments. At IGA the CASAVA 1.7.0 version of

the Illumina pipeline was used and at the OSU CGRB the

CASAVA 1.6.0 version of the Illumina pipeline was used. Raw

sequences were retrieved and kept separate for each accession and

then aligned to the Peach v1.0 reference genome [20] using CLC

Genomics Workbench (CLC Bio, Aarhus, Denmark) at IGA and

Soap2 [22] at the CGRB. In this paper, ‘‘chromosome’’ refers to

one of the eight pseudomolecules (scaffolds) of the Peach v1.0

reference genome.

SNP detection
SNP detection and filtering followed a multi-step procedure

(Figure 1). SNPs from sequences generated at IGA (pools 1–5)

were detected using CLC Genomics Workbench (CLC Bio,

Aarhus, Denmark), using default parameters for filtering except:

(1) minimum Illumina quality score (Qscore) was 25; (2) minimum

coverage of 30 reads and maximum coverage was 2.56 average

coverage, corresponding to 161 reads; and (3) a minimum of five

reads supported the presence of the minor allele in the accessions.

A 9K SNP Array for Peach
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Table 1. Accessions of peach, almond and peach x almond hybrid sequenced at the Istituto di Genomica Applicata (IGA, Udine,
Italy) (pools 1–5), the Center for Genome Research and Biocomputing (CGRB, Oregon State University, Corvallis, OR, USA) (pools 6–
11), and IRTA (Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB, Spain) (pool 12).

Pool Accession Adaptors Read length (bp)

Read count

(million)

Coverage of peach

genome

1 ‘Armking’ CACAGT 94 5.85 2.42

1 ‘Big Top’ CGAGAT 94 3.55 1.47

1 ‘Fidelia’ ATGGCT 94 6.47 2.68

1 ‘Flordastar’ GCATAG 94 7.27 3.01

1 ‘Silver Rome’ CATTCG 94 8.35 3.45

1 ‘Weinberger’ ACACTG 94 9.72 4.02

2 ‘Babygold 8’ TTGCGA 93 5.60 2.29

2 ‘Elberta’ CAGTAC 93 5.63 2.30

2 ‘Maruja’ TGCAAC 93 8.52 3.49

2 ‘Maycrest’ ACTAGC 93 8.61 3.52

2 ‘Oro A’ GAGCAA 93 7.20 2.95

2 ‘Stark Red Gold’ GCTACA 93 6.37 2.61

3 ‘Circe’ CATTCG 93 9.23 3.78

3 ‘Imera’ GCATAG 93 5.92 2.42

3 ‘Percoca di Romagna 7’ ATGGCT 93 4.27 1.75

3 ‘Pillar’ ACACTG 93 1.40 0.57

3 ‘S 2678’ CGAGAT 93 10.15 4.15

3 ‘Stark Saturn’ CACAGT 93 7.45 3.05

4 ‘Kamarat’ ACTAGC 93 9.63 3.94

4 ‘Leonforte 1’ GAGCAA 93 2.32 0.95

4 ‘Sahua Hong Pantao’ GCTACA 93 19.20 7.86

4 ‘Shen Zhou Mitao’ TTGCGA 93 12.54 5.13

4 ‘Tabacchiera’ TGCAAC 93 0.56 0.23

4 ‘Tudia’ CAGTAC 93 7.43 3.04

5 ‘GF677’1 CGAGAT 93 9.22 3.77

5 ‘Kurakata Wase’ ATGGCT 93 6.75 2.76

5 ‘Quetta’ CACAGT 93 12.76 5.22

5 ‘S6699’ ACACTG 93 4.90 2.01

6 ‘Admiral Dewey’ GGGT 80 2.42 0.85

6 ‘Babcock’ CCAT 80 3.19 1.12

6 ‘Elberta’ AGCT 80 0.64 0.23

6 ‘Slappey’ TCCT 80 2.02 0.71

7 ‘Bolinha’ AGCT 80 3.55 1.25

7 ‘Carmen’ GGGT 80 1.66 0.58

7 ‘Chinese Cling’ TCCT 80 2.50 0.88

7 ‘Mayflower’ CCAT 80 1.35 0.47

8 ‘Diamante’ AGCT 80 2.11 0.74

8 ‘J.H. Hale’ TCCT 80 3.18 1.12

8 ‘Rio Oso Gem’ CCAT 80 2.57 0.91

8 ‘Yellow St. John’ GGGT 80 1.35 0.48

9 ‘Dixon’ GGGT 80 1.25 0.44

9 ‘Early Crawford’ TCCT 80 3.89 1.37

9 ‘Florida Prince’ CCAT 80 1.85 0.65

9 ‘Nonpareil’2 AGCT 80 2.52 0.89

10 ‘Dr. Davis’ GGGT 80 2.31 0.81

10 ‘Nemaguard’ AGCT 80 2.38 0.84

10 ‘O’Henry’ TCCT 80 4.28 1.51

A 9K SNP Array for Peach
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SNPs in repetitive regions were also removed with internal scripts.

SNPs from the 23 CGRB-sequenced accessions (pools 6–11) and

from the eight accessions in pool 12 were detected using SoapSNP

(http://soap.genomics.org.cn/soapsnp.html) essentially as recom-

mended by Li [22]. In filtering for pools 6–12, SNPs were kept if:

(1) the Illumina Qscore was more than 30 (except for pool 12 for

which an Illumina Qscore could not be obtained); (2) the

maximum number of reads for either allele across all accessions

was less than the average read depth of all SNPs plus three

standard deviations, 380 in this case; (3) a minimum of five reads

supported the presence of the minor allele in the accessions,

providing a minimum coverage of 10 reads for the SNP; and (4)

the average copy number of the SNP flanking region was less than

two, corresponding to non-repetitive regions of the genome. These

detection and filtering efforts yielded ‘‘Stage 1 SNPs’’ (Figure 1).

We compared the SNP calls in three of four pairs of accessions

independently sequenced in different labs (Table 1). SNP calls

were not compared for ‘Lovell’ because of low amount of sequence

generated by one sample (0.016 coverage). For the remaining

three cultivars, ‘Elberta’ (2.36Illumina by IGA vs. 0.236Illumina

by CGRB), ‘Big Top’ (1.476 Illumina by IGA vs. 0.296 454 by

IRTA), and ‘O’Henry’ (1.516 Illumina by CGRB vs. 0.186 454

by IRTA) (Table 1) the SNP calls were compared when they

belonged to the 320,747 SNPs supported by .4 accessions in

Stage 2 filtering (Figure 1).

SNP validation with GoldenGateH assay
A set of 96 SNPs was chosen from the Stage 1 SNPs from pools

6–11 to validate the efficiency of SNP detection and adjust

subsequent filtering parameters (Figure S1). The initial selection

comprised 74 Stage 1 SNPs evenly spread over the eight

pseudomolecules representing the haploid chromosomes and

linkage groups (LGs) of the Peach v1.0 ‘dhLovell’ genome

assembly [20]. One SNP was chosen to be located within

200 kb of each end of each LG. SNPs chosen between these ends

were then evenly spaced along each LG according to their total

genetic distance [23], corresponding to one SNP every 2–5 Mb.

The spacing across all LGs averaged 3.28 Mb (standard deviation

of 0.67 Mb), with a minimum average of 2.51 Mb (60.01 Mb) for

LG7 and a maximum average of 4.44 Mb (60.01 Mb) for LG2.

Approximately 40% of the 74 chosen SNPs were in exons (CDS)

of annotated genes, 20% in introns, 20% in 59 or 39 untranslated

regions (UTR, outside genes but within 2 kb of start or stop

codons), and the final 20% in intergenic regions. Fourteen more

SNPs spanned a 774 kb region near the end of LG4, at a major

trait locus associated with fruit texture (Freestone-Melting flesh [F-M]

locus) [24], at an average spacing of 60 kb (ranging from 8 kb to

113 kb). The final eight validation SNPs targeted candidate genes

for the Y locus on LG1 (four SNPs at 123, 270, and 341 kb

intervals), the Cs locus on LG3 (two SNPs 38 kb apart), and the G

locus on LG5 (two SNPs 272 kb apart) according to the genomic

positioning reported by Dirlewanger [23]. While trait locus-

targeted SNPs were chosen for variation in genic regions when

possible, preference was given to achieving uniform target spacing

in designated windows. Approximately 20% of the 96 SNPs

chosen were planned to be accession-specific, i.e., their minor

allele would be detected in only one re-sequenced accession of the

detection panel (for which data available at the time included only

accessions from pools 6–11). Sixteen of the evenly spaced SNPs

and four of the trait locus-targeted SNPs met this criterion.

Accession-specific SNPs were from nine peach accessions, with the

almond ‘Nonpareil’ and the peach reference cultivar ‘dhLovell’

having five and six such SNPs, respectively. The 96 SNPs also

deliberately included a wide range of MAFs.

To test the variables of genomic location, genic location, and

MAF for their effects on genotyping efficiency, a validation panel

of 160 Prunus accessions (54 peach cultivars, three interspecific

hybrid cultivars, three almond cultivars, 59 breeding selections of

peach and related species, and 41 seedlings of breeding

populations as listed in Table S1) was screened with the 96-SNP

subset, using the GoldenGateH assay. Individuals in the validation

panel were founders, intermediate ancestors, important breeding

parents, and seedlings of modern peach cultivars, forming a

complex pedigree structure linking much of the world’s cultivated

Table 1. Cont.

Pool Accession Adaptors Read length (bp)

Read count

(million)

Coverage of peach

genome

10 ‘Okinawa’ CCAT 80 2.15 0.76

11 ‘Georgia Belle’ AACT 80 14.42 5.08

11 ‘Lovell’ GTGT 80 6.55 2.30

11 ‘Lovell’ CCTT 80 0.03 0.01

11 ‘Oldmixon Free’ TGGT 80 3.26 1.15

12 ‘Big Top’ ACACGTAGTAT 330 0.20 0.29

12 ‘Binaced’ ACACGACGACT 355 0.16 0.26

12 ‘Catherina’ ACACTACTCGT 288 0.17 0.22

12 ‘Elegant Lady’ ACGACACGTAT 243 0.19 0.20

12 ‘Nectaross’ ACGAGTAGACT 275 0.19 0.23

12 ‘O’Henry’ ACGCGTCTAGT 289 0.15 0.18

12 ‘Sweet Cap’ ACGTACACACT 251 0.16 0.18

12 ‘Venus’ ACGTACTGTGT 278 0.15 0.19

1Peach x almond hybrid;
2Almond accession.
Pools 1–11 were sequenced with the Illumina Genome Analyzer while pool 12 was sequenced with the Roche 454 platform. Adaptors were used for retrieving
accession-specific sequences from pools.
doi:10.1371/journal.pone.0035668.t001

A 9K SNP Array for Peach

PLoS ONE | www.plosone.org 4 April 2012 | Volume 7 | Issue 4 | e35668



peach crop and including the 23 accessions in pools 6–11 of the

detection panel. The validation panel also included the T6E bin-

mapping set of six ‘Texas’ almond6‘Earlygold’ peach seedlings

and ‘Earlygold’ [25] to enable validation of SNP genomic

locations. For a snapshot of SNP polymorphisms in breeding

populations, five progenies of six F1 seedlings were included, with

one progeny set each from U.S. peach breeding programs in

Arkansas, South Carolina, and Texas, and two from California.

Genomic DNA was isolated from each accession using the E-Z 96

Tissue DNA Kit (Omega Bio-Tek, Inc., Norcross, GA, USA).

DNA was quantitated with the Quant-iTTM PicoGreenH Assay

(Life Technologies, Grand Island, NY, USA), using the Victor

multiplate reader (Perkin Elmer Inc., San Jose, CA, USA).

Concentrations were adjusted to a minimum of 50 ng/ml, in

5 ml aliquots and were submitted to the Research Technology

Support Facility at Michigan State University (East Lansing, MI,

USA), where the GoldenGateH assay was performed following the

manufacturer’s protocol (Illumina Inc.). After amplification, PCR

products were hybridized to VeraCode microbeads via the address

sequence, for detection on a VeraCode BeadXpress Reader. SNP

Figure 1. Workflow for SNP detection, validation, filtering, and final choice employed for development of the International Peach
SNP Consortium (IPSC) peach 9 K SNP array v1.
doi:10.1371/journal.pone.0035668.g001
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genotypes were scored with the Genotyping Module of Geno-

meStudio Data Analysis software (Illumina Inc.).

SNP final choice
Stage 1 SNPs from pools 1–5 and pools 6–12 were

independently converted to Illumina Assay Design Tool (ADT)

format with custom scripts and scored by Illumina. ‘‘InfiniumH I’’-

type SNPs (A/T or C/G transversions) were removed, as well as

SNPs with any failure code or ADT score ,0.9. Then the two

datasets were merged, and duplicates were removed with custom

scripts. The remaining SNPs were filtered by removing those: (1)

where the last 25 bp of the 50 bp probe were duplicated; (2)

supported by less than five accessions; (3) not in predicted coding

regions; and (4) not located on one of the first eight pseudomo-

lecules representing the eight peach chromosomes. This process

yielded ‘‘Stage 2 SNPs’’ (Figure 1).

Pre-validated SNPs were obtained from several sources: (1)

polymorphic SNPs from the GoldenGateH validation activity; (2)

peach RosCOS SNPs [26]; and (3) SNPs requested for inclusion

by the international peach genomics community. Pre-validated

SNPs were filtered to remove InfiniumH I SNP types and those

with an ADT score ,0.6.

For the final choice of 9,000 SNPs for the IPSC peach 9 K SNP

array v1, filtered pre-validated SNPs were automatically included.

For the remainder, SNPs were chosen to provide an even spacing

across the genome, corresponding to one SNP selected for every

4.74 Stage 2 SNPs (40,794/8,613).

SNP array evaluation
The IPSC peach 9 K SNP InfiniumH II array v1 was evaluated

using 709 accessions divided in two independent evaluation

panels, one panel from the European Union (EU) and the other

from the USA (US). The EU panel comprised 232 accessions, of

which 229 were peach cultivars and three were wild related Prunus

species or their hybrids with peach. The US panel comprised 479

accessions that included pedigree-linked cultivars, breeding lines,

and seedlings (Table S2). Overall, selected material comprised

cultivars (45%), advanced selections (4%) and seedlings (51%).

Accessions with pure peach and almond ancestry accounted for

82% and 2%, respectively, while 16% of genotyped material had

interspecific backgrounds with almond (7%), and peach and

almond wild relatives, 5% and 4%, respectively, in their pedigrees.

Some US panel accessions were related Prunus species or were

known interspecific hybrids: 5% had peach-related (P. davidiana

and P. mira) ancestry, 10% had almond (P. dulcis), and 3% had

almond-related (P. argentea and P. scoparia) ancestry. Genomic DNA

extraction and quantitation were conducted as described above for

the SNP validation panel for the U.S. accessions. For the EU

panel, genomic DNA was extracted using the DNeasy Plant Mini

Kit (Qiagen) and quantitated using a Fluoroskan Ascent (Thermo

Scientific, Finland) microplate reader. The IPSC array, employing

exclusively Illumina InfiniumH II design probes and dual color

channel assays (Infinium HD Assay Ultra, Illumina), was used for

genotyping, following the manufacturer’s recommendations. SNP

genotypes were scored with the Genotyping Module of the

GenomeStudio Data Analysis software (Illumina, Inc.). A

GenTrain score of .0.4 and a GenCall 10% of .0.2 were

applied to remove most SNPs that did not cluster (homozygous), or

had ambiguous clustering. SNPs that did not cluster for more than

50% of samples were also eliminated from further consideration.

The threshold of allowed No Calls (failed genotyping) was

‘relaxed’ in anticipation of the presence of null alleles for some

SNPs contributed by non-peach species.

Results

SNP detection
A total of 25.4 Gb of DNA sequence (111.76 coverage of the

peach genome) was obtained from 279.7 million reads (Illumina

and 454) generated for the 56 peach accessions multiplexed among

12 pools (Table 1). Excluding one sequencing run for ‘Lovell’ that

generated an unusually low number of reads, the total number of

reads sequenced using the Illumina platform averaged 2.166

coverage per accession and ranged from ,0.56 to 19.2 million

reads in ‘Tabacchiera’ and ‘Sahua Hong Pantao’, respectively.

The total number of reads per accession sequenced using the 454

platform averaged 0.226 coverage and ranged from 0.145 to

0.198 million reads in ‘Sweet Cap’ and ‘Big Top’, respectively.

The number of SNPs identified after Stage 1 detection was

943,549 for pools 1–5 and 57,933 for pools 6–11 (Figure 1). When

the same filtering parameters as those used for pool 6–11 were

reapplied to pools 6–12, the number of SNPs increased to 78,805.

When the SNP calls were compared among the three pairs of

independently sequenced accessions, the majority of the positions

were not covered by at least one of the two datasets and

corresponded to 297,078, 301,617 and 309,027 positions in

‘Elberta’, ‘Big Top’ and ‘O’Henry’, respectively. Thus, the SNP

positions that could be compared among these accessions ranged

from 3.75% and 4% of the SNP calls in ‘O’Henry’ and ‘Big Top’

(sequenced by Illumina and 454) to 7.48% in Illumina-

resequenced ‘Elberta’. In these positions, most of the SNPs had

the same genotype (51.2%, 72.4% and 79.9% of reads in ‘Elberta’,

‘Big Top’ and ‘O’Henry’, respectively) while a negligible number

of positions did not share any allele (0.05% of positions in ‘Big

Top’ to 0.6% in ‘Elberta’ and ‘O’Henry’).

SNP validation
Several SNP characteristics were associated with performance

differences in the GoldenGateH assay (Table 2). Exonic and

intronic SNPs were the most successful, with approximately 75%

of polymorphisms verified; in contrast, intergenic SNPs were the

worst performers, with only a third being polymorphic and a third

failing (Table 2, Figure S2). Although MAF observed from

sequencing of the detection panel (n = 23) and MAF observed after

GoldenGateH genotyping of the validation panel (n = 119) were

not well correlated (R= 0.12), the higher the detection panel MAF

of a SNP, especially .30%, the more likely its validation panel

MAF was.10%. Yet SNPs with a detection panel MAF of,20%

were more likely than higher MAF SNPs to convert to a validation

panel MAF of ,10% without a higher-than-average rate of failure

or monomorphism (Table 2). Of the 74 SNPs evenly distributed

over the genome, those on LG6, LG1, and LG3 had the highest

conversion to polymorphism yet did not have a higher-than-

average proportion of exonic and intronic SNPs (Table 2, Figure

S2). LG1 and LG6 also had the highest SNP representation

because they were the longest in genetic length. LG8 gave a high

proportion of polymorphic SNPs with low MAF (,10% in the

validation panel). LG2 had a very high failure rate yet only an

average proportion of exonic and intronic SNPs (Table 2, Figure

S2). Accession-specific SNPs had a close to average performance

for rate of failure, monomorphism, and polymorphism, but

provided a higher-than-average proportion of low MAF SNPs

observed in the validation panel. No SNPs designated as accession-

specific in the detection panel remained accession-specific after

genotyping the validation panel, although those developed from

the almond accession ‘Nonpareil’ were obviously indicative of

almond introgression in the validation panel. SNPs targeted to the

F-M locus also provided a high proportion of low-MAF SNPs, but

A 9K SNP Array for Peach
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had a high failure and monomorphism rate as did the SNPs

targeted to other trait loci (Table 2). All trait locus-targeted SNPs

were associated with a very high proportion of intergenic SNPs

(Figure S2). Overall, SNP failure was similar across all parameters

except for a high level for SNPs that were on LG2, targeted to trait

loci, or intergenic. Monomorphism was highest for SNPs with a

detection panel MAF of 21–30%, trait locus-targeted, or those that

were intergenic (Table 2).

Of the 32 validation SNPs that were polymorphic in the

interspecific T6E bin-mapping set, 31 had joint genotypes

corresponding to their expected genomic region. The presence

of null alleles was evident for 14 of these polymorphic SNPs. One

intergenic SNP targeted to the F-M locus on LG4 (bin 4:63;

Scaffold_4:22274908) resulted in polymorphism (MAF 23%) with

a joint genotype that unexpectedly placed it on LG2 (bin 2:13).

Of the 55 SNPs polymorphic in the entire validation panel, 52

(95%) were polymorphic in at least one of the five six-seedling

breeding progenies. One SNP was polymorphic in all five

progenies, 10 in four progenies, 17 in three progenies, 10 in

two, and 14 in just one progeny. Proportions of the 55

polymorphic SNPs that were polymorphic within individual

progenies were 58%, 40%, 53%, 44%, and 42% from Arkansas

Table 2. Validation outcomes for 96 SNPs with the GoldenGateH assay.

SNP parameter Total Proportion of SNPs

Failed Mono-morphic Poly-morphic MAF (validation panel)

,5% 5–10% .10%

Evenly spaced 74 0.22 0.14 0.65 0.01 0.04 0.59

F-M locus 14 0.29 0.36 0.36 0.07 0.14 0.14

Other trait loci 8 0.38 0.38 0.25 0.00 0.00 0.25

Accession-specific 19 0.26 0.11 0.63 0.11 0.11 0.42

Genomic location:

LG1 13 0.08 0.15 0.77 0.00 0.00 0.77

LG2 7 0.71 0.00 0.29 0.00 0.00 0.29

LG3 7 0.14 0.14 0.71 0.00 0.00 0.71

LG4 9 0.33 0.11 0.56 0.00 0.11 0.44

LG5 7 0.14 0.29 0.57 0.00 0.00 0.57

LG6 12 0.00 0.17 0.83 0.00 0.00 0.83

LG7 10 0.30 0.10 0.60 0.00 0.00 0.60

LG8 9 0.22 0.11 0.67 0.11 0.22 0.33

Genic location:

Exonic 30 0.13 0.10 0.77 0.03 0.03 0.70

Intronic 19 0.21 0.05 0.74 0.00 0.05 0.68

UTR 16 0.25 0.25 0.50 0.00 0.00 0.50

Intergenic 31 0.35 0.32 0.32 0.03 0.10 0.19

ADT score:

,0.2 2 1.00 0.00 0.00 0.00 0.00 0.00

0.2–0.4 4 1.00 0.00 0.00 0.00 0.00 0.00

0.4–0.5 2 0.00 0.50 0.50 0.00 0.00 0.50

0.5–0.6 1 0.00 0.00 0.00 0.00 0.00 1.00

0.6–0.7 8 0.38 0.13 0.50 0.00 0.13 0.38

0.7–0.8 10 0.20 0.30 0.50 0.10 0.00 0.40

0.8–0.9 18 0.17 0.22 0.61 0.06 0.00 0.56

.0.90 54 0.22 0.17 0.61 0.00 0.07 0.54

MAF (detection panel):

1–10% 8 0.25 0.25 0.50 0.00 0.13 0.38

11–20% 20 0.25 0.15 0.60 0.10 0.15 0.35

21–30% 9 0.00 0.56 0.44 0.00 0.00 0.44

31–40% 25 0.24 0.29 0.56 0.00 0.04 0.52

41–50% 34 0.20 0.09 0.62 0.00 0.00 0.62

Total 96 0.24 0.19 0.57 0.02 0.05 0.50

Observed minor allele frequency (MAF) of polymorphic SNPs among 23 accessions of the detection panel and 119 non-seedling accessions of the validation panel are
indicated. Values in bold represent considerably better than average SNP performance (e.g., high polymorphism), while values in italics are worse than average (high
failure and monomorphism).
doi:10.1371/journal.pone.0035668.t002
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(University of Arkansas Fruit Research Station, Clarksville),

California (National Clonal Germplasm Repository for Fruit and

Nut Crops at Davis, CA), California (UC Davis Wolfskill Orchard

at Winters, CA), South Carolina (Clemson University Musser

Fruit Research Station, Clemson, SC), and Texas (Texas A&M

University-College Station Research farm), respectively. These

proportions were lower bounds, given that the presence of

segregating null alleles was not considered for these progenies.

SNP final choice
Stage 2 filtering reduced the one million available SNPs by

96%. Restricting the SNPs to InfiniumH II types eliminated 18%

of Stage 1 SNPs from consideration, the thresholds of ADT$0.9

and supporting evidence from at least five accessions eliminated

50% of Stage 1 SNPs, and restriction to genic regions cut an

additional 23%. Considering only exonic SNPs more than halved

the remaining 86,360 to 41,800. Finally, 1006 SNPs located on

peach genome scaffolds as yet unassigned to one of the eight

chromosomes of this crop were discarded, resulting in 40,794

Stage 2 SNPs (Figure 1, Table 3). The distribution of Stage 2 SNPs

varied among and within the eight peach chromosomes (Figure 2,

Table 3).

A total of 649 pre-validated SNPs considered for inclusion in the

final array were reduced to 387 by the filtering parameters used for

these SNPs. Of the 55 polymorphic SNPs from the GoldenGateH

validation assay, 45 were included. Of the 453 peach RosCOS

SNPs considered, 225 were included in the final array. SNPs

requested for inclusion from the international community were

108 from the DRUPOMICS project (Verde I., unpublished data)

and 33 from the University of Chile (Silva H., unpublished data),

Figure 2. Distribution of SNPs along the Peach v1.0 pseudomolecules. All tracks are plotted in 100 kb windows; inner blue track represents
the frequency of coding DNA sequence CDS; y axis ranges from 0 to 100%. Red, yellow and green tracks represent, respectively, absolute number of
SNPs discovered within pool 1–5, 40,789 Stage 2 SNPs in exons, and 9,000 SNPs chosen for the array; values in the y axes are capped at 2000, 100, and
30, respectively.
doi:10.1371/journal.pone.0035668.g002
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of which 87 and 30 were included, respectively. Nineteen of the

387 pre-validated SNPs were located on unanchored scaffolds of

the Peach v1.0 assembly, four of which were RosCOS SNPs.

Inclusion of the 387 pre-validated SNPs left 8,613 positions

available in the final array for SNPs distributed over the eight

peach chromosomes.

The IPSC peach 9 K SNP array v1 achieved an average

spacing of 26.7 kb between SNPs (Table 3). Distribution of SNPs

along the Peach v1.0 pseudomolecules varied according to the

number of Stage 2 SNPs observed throughout the genome

(Figure 2). The largest average gap between successive SNPs

(42.0 kb) occurred on chromosome 1 and the smallest on

chromosome 4 (18.6 kb). A total of 252 gaps were larger than

150 kb and the largest single gap was 915.8 kb on chromosome 5

(Table 3), but the vast majority of gaps were less than 5 kb

(Figure 3). For most of the regions with large gaps there were

simply no SNPs available to reduce the gap size considerably.

However some of the gaps were caused by the loss of 856 SNPs

that occurred during the manufacturing of the array.

SNP array evaluation
Of the 9,000 candidate SNPs, 8,144 remained on the array after

Illumina technical dropout (loss during array manufacturing). Of

these, 8,125 were located on the first eight pseudomolecules of the

peach genome. The evaluation of IPSC peach 9 K SNP array v1,

performed in Europe and U.S., revealed no significant difference

in the number of polymorphic, monomorphic and failed SNPs

between peach-only samples and samples with interspecific

backgrounds (data not shown). The only difference was observed

for SNPs located in RosCOS, with only 2% of them being

polymorphic in peach-only samples versus 6% in all samples,

including those with interspecific ancestry. Moreover, independent

evaluation of the IPSC peach 9 K SNP array v1 using EU and US

accession panels revealed almost identical results for the numbers

of polymorphic, monomorphic and failed SNPs. Genome scans

performed with the IPSC peach 9 K SNP array v1 on the EU and

US evaluation panels resulted in a SNP polymorphism rate of 70%

for each panel and a failure rate of only 5% for each (Table S3).

Of the polymorphic SNPs, 92% were observed with a MAF.0.10

for each panel, and 74% and the 69% had a MAF.0.20 in the

EU and US evaluation panels, respectively (Table S3). When the

US evaluation panel was reduced to only cultivars and advanced

selections, the proportion of MAF.0.20 (73%) was almost

identical to that observed in the EU evaluation panel. Proportions

of SNPs in each MAF range were similar between the two

evaluation panels regardless of the type of the material analyzed

(Figure 4). In addition to 5,967 SNPs (73%) polymorphic in both

evaluation panels, 425 (5%) and 477 (6%) were polymorphic only

in the EU and US panels, respectively (Figure 5).

The IPSC peach 9 K SNP array v1 achieved a total of 6,869

polymorphic SNPs across the 709 accessions scanned in the two

panels combined (Table 3), representing 84.3% of SNPs present

on the array. These polymorphic markers provided an average

spacing of 31.5 kb across the peach genome, which was consistent

among the chromosomes. Fourteen SNPs out of the nineteen

localized on the unanchored scaffolds of Peach v1.0 assembly were

polymorphic. They provide useful coverage for the unmapped

fraction of the Peach v1.0 assembly by helping to reduce gaps. The

largest gaps between polymorphic SNPs were on chromosome 1

(1,254 kb). Physical positions and MAFs of polymorphic SNPs

were compared for the US peach and non-peach cultivars and

selections (Figure 6). The coefficient of regression (r) between MAF

in ‘‘peach cultivars and selections’’ and in ‘‘non-peach cultivars

and selections’’ within the US panel was 0.437. Predicted SNPs in
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RosCOS loci were mostly monomorphic, with only 14 being

polymorphic.

Discussion

SNP detection
The large difference in the number of SNPs identified between

pools 1–5 and pools 6–11 is not surprising given the much higher

sequencing coverage of pools 1–5 (84.86) than 6–11 (25.16)

(Table 1) and the greater genetic diversity expected in pools 1–5.

Updates in software and hardware for the Illumina Genome

Analyzer during the study were major reasons for the difference in

coverage between the two main pool groups. Accessions in pools

6–11 were sequenced in February 2010 with GAIIx technology,

when the expected number of reads was 17–21 million reads per

lane. Accessions in pools 1–5 were sequenced between May and

June 2010 with an Illumina GAIIx, when a normal run at IGA

was producing about 60 million reads per lane. This higher

coverage in pools 1–5 and the SNP validation results based on

pools 6–11 prompted some adjustments to the filtering adopted for

SNP prediction in pools 1–5. Modern western peach germplasm

has a narrow genetic base [15]. In addition to including cultivars

of modern U.S. and European breeding programs, pools 1–5 also

included landraces from around the world (China, Italy, Japan,

Spain, Pakistan, and Brazil). In contrast, the set of accessions of

pools 6–11 was less diverse, comprising mostly founders of

importance to modern U.S. peach breeding programs.

The low overall percentage of SNPs with matching genotypes in

the three independently sequenced pairs of accessions is caused by

low sequence coverage targeted here. The sequences generated in

this project that were not included in the IPSC peach 9 K SNP

array v1 are a valuable resource for peach and other Prunus species

as they can be searched for additional sequence variation in

regions underlying traits of economic importance.

SNP validation
SNP validation was a critical step for empirically determining

appropriate parameters for prioritizing detected SNPs, improving

the SNP detection for pools 1–5 that was conducted after SNP

detection for pools 6–11, and to choose from among approxi-

Figure 3. Frequency distribution of size of gaps between SNPs included on the IPSC peach 9 K SNP array v1. Gap sizes were based
on SNP physical locations in the Peach v1.0 assembly.
doi:10.1371/journal.pone.0035668.g003

Figure 4. Distribution of minor allele frequencies (MAF) in two
independent germplasm sets. A. EU evaluation panel (n = 232); B.
US evaluation panel (n = 115; cultivars and advanced selections only).
doi:10.1371/journal.pone.0035668.g004

Figure 5. Polymorphic SNPs detected in EU (n=232) and US
(n=477) evaluation panels from genome scans with the IPSC
peach 9 K SNP array v1.
doi:10.1371/journal.pone.0035668.g005
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mately one million SNPs just 9,000 used in the final array design.

The validity of the GoldenGateH genotyping results for extrapo-

lation of parameter thresholds to all detected SNPs was supported

by the correct genomic location assignment of polymorphic SNPs

by bin-mapping. Our observation that conversion of NGS-

detected SNPs to true SNPs was more reliable for polymorphisms

located in predicted exons and introns was consistent with

observations in apple [6]. Better performance of genic SNPs

may be due to a lower level of undetected sequence variation in

SNP-flanking regions, as opposed to reduced sequence conserva-

tion in UTRs and intergenic space, as argued by Chagné et al. [6].

If so, deeper sequencing of detection panel accessions to identify a

larger proportion of the polymorphisms would enable avoidance of

SNPs with polymorphisms in flanking probe sequences and hence

increase the probability of successful SNP marker development.

The low depth of sequencing of individual accessions in the

detection panel is the probable reason for the lack of significant

correlation between detection panel MAF and validation panel

MAF. However, detection panel MAF was still a useful parameter

for developing rare (,10%) or common (.10%) SNPs. Rare SNPs

would be useful for detecting unique haplotypes in a germplasm

set, although they would be uninformative for most individuals.

Common SNPs would be useful for detecting the majority of

genetic variation in a germplasm set and, with a high degree of

saturation of any given genomic region, may detect most or all

unique haplotypes and thus overcome a lack of rare lineage-

specific SNPs. The accession specificity of a SNP in the detection

panel was found to be a redundant criterion for developing rare

lineage-specific SNPs, and in any case, the relatively small number

of accessions in the detection panel and low sequencing coverage

of each negated true specificity.

The reason for differential performance of SNPs among some

LGs is not clear. In the development of a genome-wide array, it is

not advisable to avoid certain LGs or to saturate others just to

increase the overall proportion of successful SNPs. These

differences were not maintained in the final array (Table 3) and

hence probably represent sampling error in the relatively small set

of validation SNPs.

Although only about half of the successful SNPs segregated in

any of the four individual F1 populations included in the validation

assay, together these four populations captured most (95%) of the

polymorphisms. This observation highlights the importance of

utilizing diverse target germplasm rather than a narrow subset of

the target genepool, such as a single population, for SNP

evaluation and assessment of array informativeness.

SNP final choice
The SNPs identified within this internationally coordinated

effort were subjected to stringent filtering criteria to maximize the

efficacy of the IPSC peach 9 K SNP array v1. Given that most

candidate SNPs were essentially anonymous, InfiniumH I SNPs

were avoided because these require two bead types and thus use

two SNP slots of the assay, unlike the single bead type for

InfiniumH II SNPs. InfiniumH II SNPs have also been reported to

Figure 6. Distribution and physical spacing of polymorphic SNPs across the eight peach chromosomes and comparison of SNP
minor allele frequencies between peach and non-peach samples, including almond, and peach and almond wild relatives, in US
data set. Data set comprises cultivars and advanced selections only. The coefficient of regression (r) between the MAF in peach and non peach set is
0.437.
doi:10.1371/journal.pone.0035668.g006
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perform better (92% vs. 85%) [3]. Furthermore, InfiniumH II

SNPs were the most abundant class detected in our study: 82% of

the SNPs detected were of this type. SNPs with an ADT score

higher than 0.9 were used to increase the probability of SNP

success as observed in the validation assay. This Illumina design

score reflects the predicted ability of the SNP-flanking sequences to

provide a successful assay [5]. The availability of a large number of

SNPs allowed us to employ a stringent threshold that was higher

than that used in the recently released Illumina Beadchips for

apple, pig and chicken, which used ADT thresholds of 0.7, 0.8 and

0.6, respectively [6], [4], [5].

An important aspect we took into consideration in choosing the

SNPs for the array was their genomic context. The large number

of SNPs discovered in this study allowed us to select 9,000 exonic

markers to be included in the array. The high level of

transferability of transcriptomic markers across Prunus species

[27] makes these exonic SNPs useful tools even for related non-

peach species such as almond. We also expected exonic SNPs to be

more commonly associated with causative mutations underlying

phenotypic differences than intergenic SNPs, because of their

potential to alter protein sequences.

Finally, another important criterion for a whole genome

genotyping assay is to have a uniform distribution of the SNPs

across the genome, as this greatly facilitates finding associations

between markers and phenotypes. The SNPs on our array cover

most of the peach genome with markers well distributed over all

chromosomes. The average gap size across the genome achieved

was 26.7 kb and increases to 31.5 kb when only polymorphic

SNPs are considered. The average ratio of genetic to physical

distance in peach is about 440 kb/cM, which was obtained by

comparing the Peach v1.0 assembly with an updated version of the

Prunus reference map [23] (IPGI unpublished results), and this

gives an average of 13.3 polymorphic SNPs per cM for our array.

Such resolution provides unprecedented power to dissect the

peach genome for pinpointing QTLs and determining genetic

relatedness. However, SNPs on the array developed here were not

evenly spaced across the genome physically or genetically, and a

few regions remained with gaps up to 915.8 kb (1,254 kb when

considering only polymorphic markers). As the SNP spacing on

the array was determined from the density of SNPs detected across

the genome and was randomly but proportionally reduced by

filtering and non-polymorphism, we expect that the largest gaps

exist in regions of low polymorphism (low informativeness) in this

crop. Even the largest gap corresponds to a genetic distance of

about 2.8 cM, which is still powerful for QTL and relatedness

studies. LD decay in peach was estimated at about 13–15 cM [14],

so even the regions with large gaps have a density of markers at

least 5-fold higher than estimated to be needed to perform optimal

GWAS in peach.

SNP array evaluation
In summary, the total of 6,869 SNPs on the IPSC peach 9 K

SNP array v1 verified as polymorphic through extensive empirical

evaluation represent an excellent source of markers for studies in

genetic relatedness, genetic mapping, and dissecting the genetic

architecture of complex agricultural traits. The SNPs included in

the array were successfully used for genotyping 709 accessions in

two independent evaluation panels. The majority (86.9%) of these

markers were polymorphic in both experiments (Figure 5)

indicating that the array contains a very low number of false

positive SNPs. The comparison (Figure 6) between peach and non-

peach accessions showed a common pattern in MAF distribution

and large common gaps. The correlation (r = 0.437) between MAF

calculated within peach vs. non peach cultivars and selections

shows that the array can be efficiently used in peach related species

as well. The most notable difference in MAF for the polymorphic

SNPs between the peach and non-peach selections was on

chromosome 2 around 19 Mbp, where the non-peach group

had higher MAF. The common gaps on chromosome 1

(,21 Mbp), chromosome 2 (,8.5 Mbp), chromosome 4

(,24.5 Mbp), chromosome 5 (,7 Mbp), and chromosome 8

(,10 Mbp), may represent putative centromeric regions (S.

Scalabrin, personal communication).

Conclusion
The SNP array described here will foster genetic studies in the

stone fruits and will help bridge the gap between genomics and

breeding activities because breeding germplasm was the basis of

detected SNPs and SNP choices of the final array. The IPSC

peach 9 K SNP array v1 is commercially available and we expect

that it will be used worldwide for genetic studies in peach and

related stone fruit and nut species.

Supporting Information

Figure S1 Characteristics of 96 SNPs used in a valida-
tion assay to test various parameters.

(TIF)

Figure S2 Performance of a 96-SNP subset according to
genic and genomic location, using the GoldenGateH
assay on 160 accessions of the validation panel.

(TIF)

Table S1 Accessions of the validation panel used for a
GoldenGateH assay of 96 SNPs. (a) 124 accessions (cultivars,

selections, and miscellaneous seedlings). (b) Six full sib progenies of

6 seedlings each. ‘‘-’’ = unknown parent.

(DOCX)

Table S2 Accessions in two independent evaluation
panels used for evaluation of the OPSC peach 9 K SNP
array v1. (a) 232 cultivars and selections from the European

Union (EU panel). (b) 115 cultivars and selections from the USA

(partial US panel) (c) 362 seedlings of breeding progenies from the

USA (remainder of US panel). ‘‘-’’ = unknown parent.

(DOCX)

Table S3 Performance of the IPSC peach 9 K SNP array
v1 on (a) EU (n=232) and (b) US (n=477) evaluation
panels.

(DOCX)
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