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CHAPTER 1. - Introduction 

This report is Volume I of a multi-volume report on the Fault­
Tolerant Multiprocessor (FTMP) project sponsored by the Langley 
Research Center of the National Aeronautics and Space 
Administration under contract NASl-l5336. The major topic covered 
by this volume is the FTMP architecture and principles of 
operation. Volume .11 describes the FTMP software, Volume III 
describes the FTMP test and evaluation results and Volume IV is 
an executive summary of the project. 

This volume is intended to serve as a comprehensive guide to 
the hardware organization and operation of the Fault-Tolerant 
Multiprocessor engineering model. The FTMP engineering model was 
constructed by the Collins Avionics Division of Rockwell 
International Corporation to the architectural specifications 
provided by the Charles Stark Draper Laboratory. The 
architecture of this engineering model is similar to the machine 
architecture developed under a predecessor contract (NASl-13782). 
Certain architectural modifications were made to this original 
baseline in order to facilitate the construction of this 
engineering model by Collins in a form which is compatible with 
current commercial avionics packaging and practice. It is 
believed that most of these modifications, in addition to the 
immediate goal of making the engineering model more practical, 
were desirable enhancements of the architecture in and of 
themselves. Chapter 2 summarizes the overall architecture of the 
FTMP and is intended to provide the necessary. context for the 
hardware details of the later chapters. Chapter 3 discusses the 
System Bus design and operation. Chapter 4 discusses the 
Processor Region design and operation. Chapter 5 discusses the 
Slave Region design and operation. Chapter 6 discusses the Clock 
Generation Region design and operation. Chapter 7 summarizes the 
Power System design. 
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CHAPTER 2. - Overall FTMP Architecture 

This chapter outlines the functional and design concepts of 
the Fault-Tolerant Multiprocessor engineering model, FTMP. The 
system is ~onstructed of ten identical line replaceable units 
(LRU's). Each LRU contains a Processor region, a Slave region, a 
Clock Generation region, two Bus Guardian Units, System Bus 
Interface circuits, and a Power Subsystem~ 

2.1 Processor Region 

The processor regions operate in groups of three called 
processor triads. Processor triads are formed by assigning the 
processor regions of any three LRU's to work together .in tight 
synchronism. It is possible for up to three processor triads to 
be in operation simultaneously, utilizing nine of the ten 
available LRU's. The processor region of the tenth LRU serves as 
a spare. A processor triad functions as if it were a single 
processor executing a single instruction stream. With three 
triads operating simultaneously, three instruction streams are in 
parallel execution. The system is then functioning as a normal 
three-processor multiprocessor. The failure of a single 
processor region of a triad does not impact the correct execution 
of that instruction stream, because voting is used to mask the 
effects of the failure. Comparison techniques also enable the 
failed region to be detected and identified. A spare processor 
region can then be used to replace the failed element of the 
triad. If no spares are available, the damaged triad is retired 
from service with the surviving functional elements being used to 
replenish the spares pool. 

The processor triads write data to, or read data from, 
locations within the system bus address space by means of the 
System Bus. This bus is a quintuply redundant fully duplex eight 
megabit per second serial bus. During a block transfer, data can 
be written from a processor triad at a peak rate of one word 
every 5 microseconds. Data can be read by a processor triad at a 
peak rate,of one word every 3 microseconds. The error correction 
and error detection relies upon voting and comparison of data and 
addresses appearing on redundant elements of the System Bus. 

At anyone time three of the fiv~ redundant bus lines are 
active. These active lines are called a bus triad. Each element 
of a processor triad transmits data and addresses on a different 
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one of the bus triad's lines. Since the elements of the 
processor triad are all operating in tight synchronism, it is 
possible for any unit receiving a processor triad read or write 
request to compare the separate versions of that request by 
examining the separate copy of that request arriving on each bus 
of the bus triad. The receiving unit can correct any errors 
caused by a single processor region failure or single bus failure 
by using majority voting. 

2.2 Slave Region 

The Slave Region contains a number of subsystems all of which 
are addressed, read and written, as locations in the System Bus 
address space. These subsystems are the System Memory Module, 
the I/O Port, LRU Control/Status and Communications Registers, 
and a Real-Time Clock/Counter. Certain of these modules are 
normally operated within triads of three like modules assigned to 
the same function and location, others are operated as single 
units. 

System Memory Modules are normally operated within a triad. 
The system memory modules of three tRU's are assigned to function 
together servicing a 16k word block of the system bus address 
space. Up to three memory triads can be formed from the system 
memory modules of nine of the ten LRU's. The tenth LRU's system 
memory module could then serve as a spare. Each memory triad is 
assigned to serve a different 16K block of the system memory 
address space. With three memory triads operating 
simultaneously, 48K words of the system memory address space can 
be served. The failure of a system memory module within a·triad 
does not impact the integrity of data stored in that block, as 
voting is used to mask the effects of the failed module. 
Comparison techniques also enable the failed module to be 
detected and identified. A spare memory module can then be user 
to replace the failed element of the triad. 

The real-time clock/counters of each LRU are also intended to 
operate together as a triad. All real-time clocks are addressed 
by the same system bus address. A processor triad write to that 
location sets all real-time clocks to the same value. The real­
time clocks of three LRU's can be armed to respond to read 
requests. Only those three LRU's respond to any processor triad 
read requests and as such they f~nction as the real-time clock 
triad. A failure of any element of that triad is masked by 
voting. Comparison techniques enable the faulty unit to be 
identified. Anyone of the unarmed real-time clocks can be used 
to replace the failed element of the real-time clock triad. Note 
that even the unarmed real-time clocks respond to write commands 
from a processor triad, thus they will always agree with the 
elements of the real-time clock triad and can therefore be used 
to replace an element of the triad without reinitialization. 
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Unlike the processor regions, the memory modules, and the 
real-time clock/counters, the I/O ports operate independently of 
one another. Each I/O port responds to its own unique set of 
system bus addresses. Data and command words are transferred 
from a processor triad to an I/O port over the System Bus~ 
appearing to the processor triad as routine system bus writes; 
As with any processor triad writes, voting at the receiving end 
serves to mask the failure of anyone of the processor triad 
elements. The I/O port buffers any I/O transmissions, assembling 
an entire message before initiating an I/O bus transaction. 'The 
I/O port also buffers any incoming I/O transaction, assembling an 
entire remote terminal message. The entire transaction is then" 
transferred as a block to a processor triad in response to a read 
request from that processor triad. The I/O port utilizes MIL­
STD-1553A data bus protocols and signalling standards in its 
communications with the exterior. Two twisted shielded pairs are 
used, one for transmitting and one for reception, creating a 
fully duplex data link. If these two pairs are tied together 
they conform to all specifications of MIL-STD-1553A. A MI~­

STD-l553A avionics data bus is a 1 MHZ serial data bus employing 
Manchester encoding to send both clocking and data information on 
a single shielded twisted pair bus line. Maximum I/O transaction 
length can be 32 data words, one command word and a status word 
requiring up to 700 microseconds for the transaction to be made. 
During this period the I/O port can act independently, and the 
processor triad may release the System Bus for regular bus 
traffic. Since each I/O port can operate independently, it is 
possible for the FTMP to be engaged in up to ten I/O bus trans~ 
actions simultaneously, one on each of the I/O buses dedicated to 
each of the ten I/O ports. 

The remaining elements of the Slave Region are System 
Control/Status and Communications Registers. These elements are 
used to control various parts of an LRU, to read the status of 
the error detection circuitry of an LRU, and to provide direct 
processor triad to processor triad communications. 

The control registers are all write only. They are assigned 
fixed locations within the system bus address space depending 
upon LRU identification number. These LRU control registers 
control which bus lines the LRU uses for voting, triad assignment 
for the processor region, memory relocation factor for the system 
memory, whether the real-time clock is armed or not and other LRU 
assignments or functions. 

The status registers, or error latches, can only be read by a 
processor triad. They report any bus errors observed by the error 
detection circuits of the LRU. Like the LRU control registers, 
the status registers are assigned fixed system bus addresses 
dependent upon their LRU identification number. 

The communications registers are used to implement direct 
processor triad to processor triad communications. Each 
communications register can only be written using the system bus. 
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The communications register can be read by the processor region 
of the LRU directly, appearing as a local memory locations on its 
internal processor region data bus. The system bus address 
assignment, of each communication register within the LRU, is 
keyed to the processor region triad assignment of that LRU. This 
assignment is contained in one of the control registers of the 
LRU. The local processor region transfer b.us address of each 
communications register is fixed and is the same for all LRU's. 

Only one LRU responds to control register writes or status 
register' reads, that LRU being determined by the system bus 
address of the register being accessed. All LRU's with the 
appropriate processor region triad assignment will respond to 
communication register writes. When multiple. LRU's are 
responding to a communication register write they act in tight 
synchronism with one another. 

Each LRU's Slave region is assigned to transmit on only one 
element of the redundant system bus. These assignments are made 
so that each element of a system memory triad or real-time 
clock/counter triad is assigned to a different bus. Each element 
of a processor triad therefore has simultaneous access to the 
redundant replies from each element of a responding triad. Each 
element of a processor triad can therefore mask a fault within a 
responding triad by appropriate majority voting circuitry. When 
reading from a simplex source, such as the I/O port or status 
register, the processor triad does not receive redundant 
information, but instead must accept the data from the single 
system bus line on which it appears and verify its accuracy by 
other means. 

2.3 Clock Generation Region 

All elements of the multiprocessor operate using a common time 
reference. This time base is provided by the Cloek Generation 
Regions of four LRU's which are phase locked to one another. The 
Clock Generation Regions of the remaining LRU's are then phase 
locked to any three of elements of the clock quad. Each clock 
generator thus provides a timing source for its LRU which is in 
synchronism with all other correctly functioning generators. 
Such a system can tolerate the failure of anyone of the clock 
generators. All correctly functioning clock generators remain 
synchronized despite such a failure. A failure within the quad 
is detected and identified and another clock generator can be 
assigned to replace the failed unit. Of the ten clock 
generators, four ate assigned to the quad clock and the remaining 
six are either spare and in standby mode, or failed. 

2.4 Bus Guardian Units 

The overall integrity of the system relies upon the ability to 
reliably control the access that any element of an LRU has to the 
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system bus. Each LRU of the system has two Bus Guardian Units, 
BGU's, which function to protect the system bus from a failed" or 
malperforming LRU or element within the LRU. Each BGU has bus 
enabl ing . regi sters which control the LRU access to. each 
individual line of the system bus. In order that the LRU .. be 
enabled to transmit on any line of the system bus it is necessary 
that the enabling bit from both BGU's within that LRU be set. 
Either BGU can block the LRU's ability to transmit on a line. 

When the configuration control program creates a proces~or 
triad, for example, it must first assign the processor regio~s of 
three LRU's to the same processor triad. It does this by writing 
into the system control registers of the selected LRU's. It must 
then assign each processor region to transmit on separate lines 
of the system bus triad. It does this by writing to the enablin"9 
registers of both BGU's of each selected LRU, assigning each LRU 
to the appropriate processor transmit lines of the system bus. 

The register loading mechanism of each BGU responds to a 
unique system bus address keyed to that BGU's LRU and location 
within the LRU. This register loading mechanism allows each" BGU 
register to be written by a normal system bus write transaction. 
Because it is important that a BGU act independently of the LRU 
in which it is located, each BGU receives all the redundant 
copies of all processor triad transmissions appearing on the 
system bus. I t decodes the system bus address of each w'r i te 
transaction, recognizin~ any writes addressed to itself. ' The 
data word of a write 1S then examined and enabling register 
contents are altered in response to a correctly formatted command 
contained in the data word. Since this requires that the BGU be 
aware of the current three of five bus I ines which are the ac'ti ve 
triad, each BGU also has one internal register which is used to 
store the select code which determines which System Busproc~ssor 
lines are to be used in the voting process. This processor line 
select register is also written by a processor triad using the 
same mechanism as is used to write to the enabling registers. 
All registers within the BGU are nonvolatile so that the bus 
assignments and line select codes are remembered during a power 
failure. 

2.5 System Bus Interface Circuits 

The actual connections to the system 
System Bus Interface Circuits within an 
perform several functions. 

bus are made by the 
LRU. These circuits 

First, and most obviously, they provide the necessary drivers 
and receivers for each individual bus line. Selection of these 
drivers and receivers is dictated by electrical constraints such 
as adequate power and noise immunity. 

Secondly; the interface circuits provide the 
controlling the fault environment of the system bus. 
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circuit for each line performs the necessary gating of LRU 
signals onto system bus lines depending upon the values obtained 
from the BGU enabling registers. Thus it is this driver circuit 
which actually functions to cut the connection between an LRU and 
the system bus. The receiver circuits distribute independent 
copies of the system bus data, as required to each BGU within the 
LRU and to the other LRU circuitry. Each BGU and the input 
processing circuitry of the slave region m~st receive independent 
copies of the processor transmissions lines so that they each can 
each perform an independent vote and act independently of one 
another in response to processor triad commands. Partitioning 
within the interface circuitry region is designed so that a 
single fault can bring down no more than one element of the 
system bus or pollute no more than one copy of the received data 
from the system bus. As will be clearer later, .the partitioning 
and fault containment aspects of these interface circuits are 
critical to the overall fault tolerance of the FTMP. 

2.6 Power System 

Each LRU has its own power subsystem. This subsystem consists 
of a power supply, which provides all the required voltages used 
within the LRU, and a battery backup circuit, which provldes low 
power battery power for maintaining the CMOS system memory and 
the nonvolatile registers during primary power loss. This local 
power subsystem is overvoltage and overcurrent protected. 

The local power subsystem of each LRU draws power from four 28 
VDC power buses. Each LRU is fused at its connection point to 
this quad redundant power bus so that internal shorts within an 
LRU can at most only momentarily disrupt power on the primary 
power' buses. The local power supplies have adequate energy 
storage to tolerate these interruptions while the fuses blow. 
The local power supplies draw power evenly from all of the power 
buses. Thus under most circumstances, each of the power buses is 
fairly equally loaded. Anyone of the power buses is capable of 
fully supplying all power to operate the entire FTMP. 

The four primary power buses are driven from four independent 
primary power supplies. In this particular implementation, each 
of these power supplies is identical and converts three phase 208 
VAC, 400 Hz input power to 28 VDC. 
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2.7 Software Overview 

Figure 2.1 illustrates the functioning of this system from a 
software or programmer's viewpoint. Three processor triads 
function as the logical equivalent of three simple processors 
with shared access to a single shared memory. Similarly, the 
processor triads share access to the ten I/O ports, a real-tim'e 
clock/counter, and control/status registers. Each processor 
triad can directly write'to the communications registers of the 
other processor triads using the system bus. A processor can 
read its own communications registers' directly using its own 
internal transfer bus. The entire system is synchronized by the 
equivalent of a single system wide clock. The actual redundancy 
underlying the buses, system memory triads, processor triads, the 
clock quad and the I/O system is invisible to the programmer. 
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PROCESSOR 
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Figure 2.1 Software Appearance of FTMP 
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CHAPTER 3. ~ The System Bus 

The System Bus interconnects all LRU's of the Fault-Tolerant 
Multiprocessor and is the transfer medium for exchanging all 
data, clocking, control and status signals. The bus system is 
five fold redundant, consisting of five identical bus sets. Each 
bus set is composed of four lines. These are a Poll line, P 
line, a processor Transmit line, T line, a processor Receive 
line, R line, and a Clock line, C ~ine. Each LRU of the system 
is interfaced such that it always receives all bus lines. In 
addition it can be dynamically configured such that it may 
transmit on any bus line. The design of the interface circuitry 
of the LRU is such that any single point fault within an LRU can 
at most·disable only one of the bus sets. Bus Guardian Units, 
BGU's, within each LRU are responsible for providing enabling 
signals to the interface circuitry which allow that LRU to 
transmit on particular bus lines. Each LRU has two BGU's. In 
order that the LRU be enabled to transmit on a bus line it is 
necessary that the interface circuitry receive e~abling signals 
from both BGU's of .that LRU. Thus the LRU can still be 
disconnected from the bus <blocked from transmitting> even if one 
of the BGU's should fail such that it is providing enabling 
signals to the interface circuitry. 

The basic, operating principles of the FTMP require that triads 
of processors and memories be formed and that each member of a 
triad be assigned to transmit on a different bus set. The triads 
operate in tight synchronism so that the transmissions from each 
element of a triad will be synchronized with one another. It is 
thus possible to listen to the three separate bus lines on which 
a triad is transmitting, and to perform a majority vote to 
synthesize a correct transmission even if one element of the 
triad should fail. It is also possible to note and record any 
disagreements between elements of a triad which might become 
apparent during this voting process. Processor triad, system 
memory triad and real-time clock/counter transmissions are always 
of this triplex form. The receiving party is responsible for 
performing the vote and error masking function, should one of 
these triads have a failed member. 

Synchronous operation requires that all LRU's operate with a 
common time base. This common time base is provided by the 
clocking system. Clock generators within each LRU lock to a 
voted version of the redundant system clocks which appear on the 
system bus clock lines. These redundant clock signals are 
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provided by gating the clock generator outputs of selected LRU's 
onto the C lines of the system bus. The selected LRU's 
effectively lock to each other while all other LRU's lock to the 
selected LRU's. 

This chapter discusses the System 
the LRU System Bus Interface design, 
design and operation. 

3.1 System Bus Design and Operation 

Bus design and operation, 
and the Bus Guardian Unit 

The System Bus interconnects all LRU's of the FTMP providing 
. the timing, control and data paths for all intermodule 
communication and synchronization. The basic construction 
provides five fold redundancy. There are five complete and 
independent bus sets. Each bus set is made up of a poll line, P 
line, a processor Transmit line, T line, a processor Receive 
line, R line, and a Clock line, C line. Each of these logical 
bus lines is a single twisted pair of wires. One of these wires 
serves as the signal wire, the other is grounded. The bus wires 
interconnect the LRU's in a multidrop fashion with each LRU 
attaching to the bus by means of a short stub to the LRU 
interface circuitry. LRU slots 00 and 11 are at opposite ends of 
the bus with the intervening slots being fairly uniformly spread 
along the bus. Each end of the bus is terminated with the 
·characteristic impedance of the transmission line so that signal 
reflections from the ends do not occur. Each bus operates as a 
wired 'OR'. If there are simultaneous transmissions from several 
LRU's onto one bus line, then the result is the logical 'OR' of 
the multiple transmission signals. The transmission line 
termination is such that the undriven state (when no 
transmissions are in progress) is a logical 'zero'. The overall 
length of the bus is roughly three meters, propagation time from 
one end of the bus to the other being about 20 nsec. The basic 
signal bandwidth of the bus is in excess of 20 MHz. 

The signal formats and protocols for each of the bus lines is 
described in the following subsections. 

3.1.1 The Clock Buses. 

Each of the bus sets contains a clock line. These lines are 
used to distribute redundant copies of a common system wide time 
base, called the system clock. At anyone time either three or 
four of the C lines are active, the other line(s) being either 
failed or spare. A copy of the system clock appears as a 1 MHz. 
square wave on one of the active C lines. One period of this 
square wave is called a system epoch. The system epoch begins at 
the rising edge of the system clock. All unfailed and active C 
lines carry independent copies of the system clock. All of these 
copies are identical excepting for some small time skews between 
them which result from circuit variations and propagation delay 
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variations due to LRU location on the bus. 
small fraction of the epoch time. 

This time skew is a 

An LRU receives all C lines, selects 3 of the 5 lines, 
performs a majority circuit reduction of those 3 signals to 1 and 
phase locks its own crystal oscillator to that one signal. 
Presumming that the LRU is configured to select 3 active Clines, 
this effectively creates within the LRU its own private copy of 
the system clock signal. Since all LRU's can be configured to 
lock to the active C lines, each LRU's crystal oscillator can in 
effect be locked to the same common time base. 

The LRU's themselves are used as the source of the individual 
system clock signals. The system is either configured such that 
four LRU's have their internal clock signal gated out onto 
separate C lines and each of these LRU's selects and locks to the 
clock signals of the three other LRU, or it is configured such 
that only three LRU's have their internal clock signal gated onto 
separate C lines and each of these LRU's selects and locks to the 
clock signals of the other two LRU's and itself. The first 
configuration allows all correctly functioning LRU's to remain 
synchronized with one another in the presence of any single fault 
in the clock system. LRU's which are not system clock sources 
can select and lock to any three of the four active C lines. The 
second configuration is nearly as good excepting for certain 
pathological single point failures which could induce lose of 
synchronization. In this case since there are only three active 
C lines, every LRU selects and locks to the same three signals. 
The likelihood that a single point failure is one of the 
pathological cases which could cause lose of synchronization is 
very remote. 

Should an LRU system clock source fail it is possible to 
detect that failure, disconnect that LRU from its C line and to 
connect another LRU to the same line. Since there are ten LRU's 
within the system a large number of this type of failures could 
be tolerated without degradation of the clocking system. If one 
of the C lines itself should fail it can be replaced by an 
inactive but functional C line from another bus set. Initially, 
one such failure can be tolerated and still maintain the quad 
clock source configuration. A second such failure necessitates 
reversion to the triplex clock source configuration. 

Note, that even though the C lines are wired 'OR' and no 
physical damage occurs if two LRU's are gated onto the same line, 
multiple transmissions onto the same line can considerably 
distort the square wave characteristic of the resultant system 
clock on that line. In the worst case the skews between the 
LRU's can produce a resultant clock signal which is always 'one'. 
This could frustrate the system's ability to obtain and maintain 
synchronization. If mUltiple clock sources are gated onto more 
than one of the active clock lines the operation of the clock 
system is indeterminate. Multiple clock sources may be gated 
onto one of the active clock lines and the clock system will 
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continue to function correctly as long as no clock faults or bus 
faults occur which disable any of the other active clock lines. 

3.1.2 The Poll Bus 

Each of the bus sets contains a poll line. These lines are 
used to arbitrate among the processor triads seeking control of 
the system bus., At anyone time three of the five P lines are 
active the other two lines are failed or spare. The data rate on 
the P line is 1 Mbit/sec. Transmissions onto the P lines are 
synchronous with the system clock. Transmission format is NRZ 
(Non Return to Zero). A transmitting processor's system bus 
controller drives the P line to the correct. bit value at the 
beginning of the epoch and holds that value until the next epoch. 
The P line bit value is read at the epoch midpoint. The time 
skews between LRU's is small enough to assure that the P line 
signal values will be correct and stable at all LRU's at the 
local timebase epoch midpoint. 

The resultant value read from the three P lines is the 
majority function of the three values sampled at the epoch 
midpoint. Each element of a processor triad is assigned to a 
different one of the three active P lines. Processor triads use 
the P lines in allocating control of the system bus. A processor 
triad participates in a competitive poll when it seeks control of 
the system bus. The winner of the poll obtains control of the 
bus. During a poll simultaneous transmissions onto the P lines 
by multiple triads may occur.' The signal value on anyone line 
is the wired 'OR' of the multiple transmissions onto that line 
during that bit period. The resultant value read from the P 
lines during any bit period is then the majority function of 
these wired 'OR' signals. 

A triad recognizes that the system bus is free if the P bus is 
'zero' for four consecutive bit periods. If a triad seeks 
control of the bus it then initiates a poll. The basic format of 
the bus poll is shown in Figure 3.1. The first bit of the poll 
is a 'one'. The next three bits are the most significant bits of 
the processor poll number. The fifth bit is a 'one' which 
prevents an inadvertent series of four 'zero's. The sixth thru 
eighth bits are the next three most significant bits of the 
processor poll number. Again this is followed by a 'one' to 
prevent an inadvertent series of four 'zero's. The tenth through 
twelfth bits of the poll are the least significant bits of the 
poll number. If at any time during this poll, the processor 
triad reads back a poll bit which differs from its transmitted 
bit, it immediately drops out of the poll. The triad with the 
highest poll number is the only triad that survives to the end of 
the poll sequence. This triad gains control of the system bus. 
It retains control by continually transmitting 'one's onto the P 
bus. When it wishes to release control, it simply stops 
transmitting. ,This will result in 'zero's on the P bus. After 
four bit periods the bus is recognized as free. The bus then 
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remains free until another triad(s) initiates the next poll. The 
functioning of the poll is relatively simple when all processor 
triads are synchronized. It is not as simple when processor 
synchronization has not been achieved. The reader is referred to 
Section 4.7 on the processor system bus controller for a more 
detailed description of the polling complexities and the dynamics 
of the interactions among the system bus controllers during 
polling sequences. 

bus idle -->I<------~poll sequence----------> 1<-- bus held 
o 0 001 a a alb b b 1 c c c 1 1 1 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 

where a a a b b b c c c = processor poll number 

Figure 3.1 Basic polling Sequence Format 

3.1.3 The Processor Transmit Bus 

Each of the system bus sets contains one processor Transmit 
line, a T line. The T lines are used in transmitting processor 
triad read and write commands. During a processor triad write 
the T lines carry both the system bus address and the data word. 
During a processor triad read the T lines carry only the system 
bus address. 

Each element of a processor triad is assigned to transmit on a 
different T line. All elements of a processor triad transmit 
their read or write commands in tight synchronism with one 
another. Processor commands are transmitted serially onto the T 
bus at an 8 Mbit/sec. rate. Figure 3.2 illustrates the format 
for both processor reads and writes. It is impossible for the 
separate elements of a processor triad to maintain synchronous 
operation to the extent that the skews between them would be less 
than one half of one of the T bus bit periods (62.5 nsec.) The 
time skew between processors of a single triad can in fact be 
several such bit periods. Because of this encoding of the 
transmitted bit streams at the source and resynchronization of 
the separate incoming bit streams at the receivers is required. 
The transmitter does not begin a transmission until the middle of 
an epoch. Since the synchronization of the processors is to 
better than a fraction of an epoch, any receiving element cannot 
mistake the epoch in which the transmission began. FIFO's within 
receiving circuitry provide adequate buffering so as to allow a 
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half epoch delay from the point when the second of the triplex 
transmissions begins to arrive at the receiver, to the point 
where the FIFO's begin to be. unloaded. All of the FIFO's are 
then unloaded synchronously with the receiving LRU's internal 
system clock. In effect the receiving element merely decides in 
which epoch a triplex transmission began, delays a half epoch, 
and starts accepting the received data bit by bit synchronously 
with its own internal view of the epoch alignment. Skew is never 
large enough to cause the beginning of . transmission from the 
separate elements of a triad to appear in different epochs. The 
FIFO's hold the variable. number of bits required in adjusting for 
the time skew between the transmitting processor system bus 
controller's epoch and the receiving units epoch. Since the same 
bit of the processor command is unloaded simultaneously from all 
three incoming channels, a simple voting circuit is adequate to 
perform error correction should one of the processor elements of 
a triad fail. 

This encoding and resynchronization requires that the serial 
bit streams from each source contain clock and transaction 
synchronization information. The beginning of a transaction 
synchronization is provided by a half epoch (the first half of 
the epoch) of null transmission. The address and data bits are 
then transmitted as a series of pulse width modulated pulses. 
The pulses are used to carry the clocking information, the width 
of the pulses carries the data. A 'one' is encoded as a long 
pulse on' the T line, a 'zero' is encoded as a short pulse. 
Within the 125 nsec. bit period of the T bus a 'one' is encoded 
by transmitting an 83 nsec 'one' followed by a 42 nsec 'zero'. A 
'zero' is encoded as a 42 nsec 'one' followed by a 83 nsec. 
'zero'. Figure 3.3 illustrates this encoding. 
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I single read command I next read command I 
epoch 1 epoch 2 epoch 3 epoch 1 epoch 2 epoch 3 
. . . . · · . I . . . . . . . I . . . . . . . I . . . . . . • I . . . . . . . I . . . . . . . I . . • . . . . I • . . . 

0< Address > 0< Address > 

System Read Command Format 

I 'single write command I next command 
epoch 1 epoch 2 epoch 3 epoch 4 epoch 5 epoch 1 epoch 2 

. . . . . . . I · . . · . . . I . . . . · · . I · · · . · . · I · · · · · • . I . . . · . . . I·· . · . · . I · . · . 
1< Address ><---Data > R< Address •• 

System Write Command Format 

R = 0 read command 
= 1 write command 

Address transmitted most significant bit first 
Data transmitted most significant bit first 

Commands may be tightly packed or idle epochs may exist 
between them. Reads and writes may be intermixed. 

Figure 3.2 System Bus Read/Write Command Formats 

/ 

_. ____ . ____ : ____ : ____ !-I __ i--I_i--. I-i--I-·-I--!-I~~_i-I __ i--I_. 
< SYNCH > R/W AlB A17 A16 A15 /. • • 
< EPOCH 1 > <--I A03 A02 A01 AOO 

/ EPOCH 3 > 
/ 

Figure 3.3 T Bus Signal Encoding Format 

3.1.4 The Processor Receive Bus 

Each of the system bus sets contains one processor Receive 
line, an R line. The R lines are used in receiving slave region 
replies to processor triad system bus read commands. During a 
processor triad read the R lines carry the data word being 
transmitted by the responding slave region{s). 
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At anyone time three of the five R lines are active; the 
other two are either failed or spare. This set of three lines is 
called the R line triad, or simply the R bus. Each slave region 
is assigned to transmit on one of the active R lines. These 
assignments are made such that each element of a system memory 
triad is assigned to transmit on a different R line. Processor 
commands are transmitted serially onto the T bus at an 8 
Mbit/sec. rate. Slave region replies are locked to the processor 
read command, following in epochs six and seven of a processor 
read transaction. Note that in a series of tightly packed read 
commands the T bus transmissions of the next transaction overlap 
the R bus transmissions of the current transaction. Figure 3.4 
illustrates the format for both processor read commands and the 
interlocking timing of the slave response. 

A single slave region may reply to a read command, as is the 
case when reading I/O port registers or LRU status registers. In 
such cases the receiving processor triad must accept data from 
one of the lines of the active R lines. Voting among redundant 
copies of the same transmission is not done in this case, but 
instead this single copy is accepted as is. In this case, 
synchronization among the incoming bits of multiple copies is not 
necessary. This is not the only form of a read transaction, 
however. Three slave regions may reply to a read command, as is 
the case when reading system memory or the real-time 
clock/counter. In these cases the receiving processors must 
accept the redundant copies of the incoming data from· the R bus, 
synch~onize the multiple bit streams and vote so as to mask any 
single element errors. This requires that many of the same 
techniques used in the encoding and resynchronizing of T bus 
transmissions must also be used for the R bus. It is impossible 
for the separate elements of a slave triad to maintain 
synchronous operation to the extent that the skews between them 
would be less than one half of one of the R bus bit periods (62.5 
nsec.) The time skew between slaves of a single triad can in 
fact be several such bit periods. Because of this encoding of 
the transmitted bit streams at the source resynchronization of 
the separate incoming bit streams at the receivers is required. 
The slave begins transmission of the requested data at . the 
beginning of epoch 6 of the read transaction. Since the 
synchronization is to better than a fraction of an epoch, all 
slave regions begin transmission of the reply during the same 
epoch. FIFO's within receiving processors permit each processor 
to delay until the middle of epoch six before beginning to unload 
the incoming bits. All of the FIFO's are then unloaded 
synchronously with the receiving LRU's internal system clock. In 
effect the receiving processors delay until they are confident 
that their FIFOs contain data and then start accepting the 
received data bit by bit synchronously with their own internal 
view of the epoch alignment. The FIFO's hold the variable number 
of bits required in adjusting for the time skew between the 
transmitting slaves and the receiving processors. Since, the 
same bit of the slave reply is unloaded simultaneously from all 
three incoming channels, a simple voting circuit is adequate to 
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perform error correction should one of the elements of a triad 
fail. 

This encoding and resynchronization requires that the serial 
bit streams from each source contain clock information. The data 
bits are transmitted as a series of pulse width modulated pulses. 
The pulses are used to carry the clocking information, the width 
of the pulses carries the data. A 'one' is encoded as a long 
pulse on the R line, a 'zero' is encoded as a short pulse. 
Within the 125 nsec bit period of the R bus a 'one' is encoded by 
transmitting an 83 nsec 'one' followed by a 42 nsec 'zero'. A 
'zero' is encoded as a 42 nsec 'one' followed by a 83 nsec 
'zero'. Figure 3.5 illustrates this encoding of the R bus reply. 
In this example, fragments of the wave form of two tightly packed 
read replies are shown. Note that each of the replies in a 
series of tightly packed responses is separated by an epoch of 
null activity on the R bus. This results from the difference in 
reply transmission time, two epochs, and read command 
transmission time, three epochs. Read commands can be packed no 
more tightly than one every three epochs, thus the replies can be 
no more tightly packed than one every three epochs. 

I first read command I possible second read ~ 
. epoch 1 epoch 2 epoch 3 B 
••••••• 1 ••••••• 1 ••••••• 1 ••••••• 1 ••••••• 1 ••••••• 1.. u 

0< Address > 0< Address > S 

R 
B 
U 
S 

.... epoch 4 epoch 5 epoch 6 

• . . . . . . I · · • . • · · I . • · . · • . I • • . . • • ~ I • · · • 
<---read data---> 

I reply to I 
first read 

Address transmitted most significant bit first 
Data transmitted most significant bit first 

Commands may be tightly packed or idle epochs may exist 
between them. Reads and Writes may be intermixed. 

Figure 3.4 System Bus Read Format 
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I 
I 

____ . ____ . ____ iOI __ i-rl_i-rl_iol_1 
null null null D15 D14 D13 I 
EPOCH 5 > I <--EPOCH 6--1 

I 
Ith READ I I 

I . . . I 
11 __ IOI __ I-rI_IOI __ . ____ . ____ . ____ . I 

I D03 D02 DOl Doolnu11 null null ~ 
I--EPOCH 7 > <--EPOCH 5-1 

I 
(I+1)th I 
READ I . . . 

1· ____ IOI __ I-rI_I-r 
III null D15 D14 D 

ICH 5--> I <--EPOCH 6--

Figure 3.5 R Bus Signal Encoding Format (Signal Fragment) 

3.2 LRU System Bus Interface Design 

Each LRU is interfaced to the system bus by means of System 
Bus interface circuitry. The design of this circuitry is 
critical from both a reliability and performance viewpoint. The 
design must be such that any single failure within the interface 
circuitry does not disable the bus system. Additionally, the 
communication data rates and signal modulation bandwidths are 
high enough to place rather rigid constraints on the electrical 
performance of all interface circuitry. 

Each bus set of the system bus is interfaced to the LRU by 
means of an interface circuit. Individual interface circuits are 
isolated from one another such that a single point failure can 
effect at most one of these circuits. A single point failure can 
therefore at most effect only one bus. These circuits listen to 
or receive the signal present on each line of the bus set. There 
are four receivers in each interface circuit, one for each line 
of the bus set, the P, T, R, and Clines. 

The T line is then buffered so as to create three copies. One 
copy of the T line is then run to each BGU and one copy is run to 
the slave region bus coupler. The T line is buffered in this 
fashion so that if a short should occur on the T line input to 
either of the ~GU's or on the T line input to the slave region 
bus coupler, then that element is the only T line destination 
affected. A short at the input to one BGU for example does not 
impact the- integrity of the T line signals being received at the 
input to the other BGU or the slave region coupler. 
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The P and R signal values are run to the processor region 
system bus controller. The C signal is run to the clock 
generation region. Again as with the T line signals, design of 
the buffering is such that any shorts on the outputs of the line 
receivers will not propagate back onto the system bus itself, or 
to another output of the interface circuit. 

Each interface circuit also contains a driver circuit for 
transmitting onto each line of the system bus set. A driver 
circuit must be enabled by a dedicated enabling line from each 
~GU before transmission onto a bus line is enabled. The driver 
circuit for the P and T lines of the bus set, when enabled, is 
driven by the P and T outputs of the processor region system bus 
controller. The driver circuit for the R line is driven by the R 
output of the slave system bus coupler. The driver circuit for 
the C line is driven by the C output of the clock generator. 

The P, T, R, and C signals provided to a bus interface circuit 
are individually buffered copies of these outputs. This 
buffering is done at the signal source so that ~ny shorts on 
these inputs to a bus interface circuit do not affect the 

'integrity of the' inputs to the other four interface circuits of 
the LRU. For example, the clock signal C is buffered so as to 
create five copies of this signal, one copy of which is 
distributed to each of the five bus interface circuits. Figure 
3.6 illustrates the consumption of these signals by a single bus 
ihterface circuit. If a failure of one of these interfaces 
should short its inputs to ground, the other interfaces would 
still receive a valid C, signal. 

Each of the interface circuits is fault isolated from all 
others so that any failure within such a circuit cannot affect 
any of the other interface circuits or the buses to which the 
other interfaces are attached, and the buffering is such that any 
fault cannot physically propagate across these fault isolation 
boundaries. In the worst case, a single interface circuit can at 
most disable only one bus set of the five. 

Figure 3.6 illustrates the logical organization of a bus 
interface circuit. 
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to BGU 1 < < <-+ 

I 
to slave coupler < < <-+-- < + 

I 
to BGU 2 < < <-+ 

+--> T Bus line 

BGU 1 enable > e I 
from bus controller > > AND > + 

BGU 2 enable > e 

Figure 3.6 Single ~us Interface Circuit. 

Electrically, each of the transceivers are of identical 
design. Signal formatting, encoding, decoding, etc. are not 
performed within this circuitry, but are done at the ultimate 
source or destination of the signal. As such they are just high 
speed buffering circuits. The 8 Mbit/sec data rates of the T and 
R bus lines place the most constraining specifications for buffer 
performance on the circuit design. 
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3.3 Bus Guardian Unit Design and Operation 

Each LRU contains two Bus Guardian Units, which function 
together and with the system bus interface circuits, to protect 
the system bus from LRU faults and failures. 

Each BGU provides, as its sole output, 20 enabling lines. 
Each enabling line runs to the driver of a bus interface circuit 
where it is used as an enabling line by that driver. The driver 
must bave an enabling signal from both BGU's of tqe LRU before it 
will allow transmission by the LRU onto the associated bus line. 
Thus either BGU can, by asserting a disable on the appropriate 
enabling line, block LRU transmissions onto a bus line. Both 
BGU's operating together are required to enable transmissions 
onto a bus line. 

The status of the enabling lines from a BGU is held by that 
BGU in enabling registers. There are four enabling registers, 
each of five bits. Enabling registe~ 0 contains the enabling 
bits for each of the five P bus lines on which an LRU might 
transmit. Enabling register 1 contains the enabling bits for 
each of the five R bus lines. Enabling register 2 contains the 
enabling bits for each of the five T bus lines., Enabling 
register 3 constrains the enabling bits for ~ach of the five C 
bus lines. Bit 0 of each of these four registers corresponds to 
the enabling bits for all lines, P, R, T, and C, of bus set O. 
Bit 1 corresponds to the enabling bits for bus set 1, bit 2 for 
bus set 2, etc. A one stored in a particular bit position 
provides an enabling signal to the bus interface. A zero 
provides a disabling signal. The register contents are backed up 
by LRU battery power should there be a primary power failure. 
Thus their contents are nonvolatile during power interruptions. 
While primary power is down the BGU's provide disabling signals 
to the interface circuitry. Should battery power fail (or be 
turned off) while primary power is off, the register contents are 
reset to zero. 

The register contents of a BGU may be altered by any processor 
triad by means of an appropriately constructed system bus write 
transaction. All five copies of the T bus are provided to each 
BGU by the bus interface circuitry. The BGU selects three of 
these five signals, processes them through the necessary 
deskewing circuits, voter, serial to parallel converter, and 
address recognition circuits. Each BGU of the system responds to 
one system bus address. Processor triad system bus write 
commands which are addressed to that BGU's system bus address are 
acted upon. All read commands and write commands to other than 
that BGU's unique address are ignored. The data word which is 
written to a BGU system bus address is interpreted as a command. 
Bits DlO, D09, and DOS of the data word are used to select a BGU 
register. The least significant bits of the data word are taken 
as the. new content to be stored into that register. 
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~' . . ....... 

In addition to the first four registers, which contain the 
enabling bits for the bus lines, there is a fifth register, of 
four bits, which is used to hold the five to three select code to 
be used by the BGU's T bus input select circuitry. A individual 
select code must be provided wherever redundant bus data is 
reduced and voted. In this case each BGU must select the three 
of five R buses which are active and then vote their content. 
The select code is used by the BGU to select which of the 5 T bus 
lines are to be used. All other BGU registers are spare and 
writes to them are ignored. Figure 3.7 illustrates these 
register functions and the system bus address format for writing 
to a BGU. 

enables 
X X X X X 0 0 0 X X X p4 p3 p2 p1 pO 

enables 
X X X X X 0 0 1 X X X r4 r3 r2 r1 rO 

enables 
X X X X X 0 1 0 X X X t4 t3 t2 tl to 

enables , 
X X X X X 0 1 1 X X X c4 c3 c2 c1 cO 

select 
X X X X X 1 0 0 X X X X S3 S2 S1 SO 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

BGU Command Word Formats 

1 1 1 1 1 1 1 1 1 1 11 a a a al 1 1 1 I~ 
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

aaaa = LRU identification number 
s =BGU number within LRU 

BGU System Bus Address Format 

Figure 3.7 BGU Command and Address Formats 

- 22 -



CHAPTER 4. - Processor Region Design and Operation 

This chapter discusses the processor region design and 
operation. It is intended to provide all the information 
required by the software designer on the operation of the 
processor region hardware. Hardware detail is provided to a 
level required for designing and implementing the software, and 
to a level adequate for the understanding of failure modes and 
their effects. This chapter should also serve as an outline or 
guide in understanding the detailed hardware documentation and 
logic diagrams. It is not however intended to be the detailed 
hardware documentation manual, such as might be used in making or 
effecting repairs to the system. Such documentation is provided 
by Collins Avionics in the form of a data package to be delivered 
with the FTMP engineering model itself. 

The processor region of the LRU consists of a CAPS-6 
processor·, a cache memory management unit, local cache memory in 
the form of both PROM and RAM modules, an interval timer, a 
communications and control register interface, and a system bus 
coupler. These elements are interconnected by the processor 
region transfer bus, a parallel 16 bit address and 16 bit data 
bus. Figure 4.1 illustrates the overall organization of this LRU 
region. The transfer bus of the processor region extends to·a 
test connector at the front of the LRU. The CAPS-6 test adapter 
can be connected at this point and the activity of the transfer 
bus can then be remotely monitored or controlled. This chapter 
does not discuss the test adapter further and for purposes of 
this discussion the processor region is assumed to be operating 
without the test adapter attached. 
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<------data lines----------------> 
CAPS-6 

PROCESSOR 
--add--> 

MEMORY 
MANAGEMENT 

UNIT 
(MAPPER) I . 

+-lnterrupt--

INTERVAL 
+--interrupt--- TIMER 

+-reset---

+--interrupt-----

>--from sys. I/O & 

CONTROL and 
COMMUNICATIONS 

REGISTERS 
INTERFACE 

memo region---> 

PROM (8R) 

RAM (8R) 

>--P line select code---> 
>--R line select code-> SYSTEM 

<-' -P line errors 
<--R line errors 

BUS 
<--P lines (5) out 
>--P lines (5) in > 

COUPLER 
>--R lines (5) in > 

<--T lines (5) out 

T 
R 
A 

--add--> N 
S 
F 
E 

R 

B 

<------> U 
S 

<------> 

<-----> 

< > 

< > 

Figure 4.1 Processor Region Organization 
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4.1 The Processor Region Transfer Bus 

Data can be transferred between two units of the processor 
region by means of the processor region transfer bus. During 
each transfer, the bus is controlled by the unit which initiated 
the data exchange. This unit is called the bus master. The 
responding unit is called the target. Only one unit at a time 
may be bus master. Control is allocated to units desiring 
control of the transfer bus by a hardwired arbitration circuit. 
The only units capable of initiating a transfer and of 
controlling the transfer bus are the processor and the system bus 
coupler. Once it gains control, the bus master selects a target 
device for a transfer by outputting a transfer bus address and 
asserting appropriate control signals so as to effect a read 
(transfer of data to the ~aster) or write (transfer of data from 
the master). Each potential target device responds to fixed 
transfer bus addresses. The master unit then transfers data from 
the target device or to the target device. A single target 
device may respond to a number of transfer bus addresses with 
each address referring to a different information source or 
destination within the device. For example, the RAM memory unit 
responds to 8192 transfer bus addresses corresponding to 8192 
memory locations. Each of the memory locations can be either 
individually read or written by any bus master. Certain target 
addresses are either read only or write only. Reads of write 
only or non-existent target addresses return "0000". Writes to 
read only or non-existent target addresses have no effect. As an 
example, the PROM memory is read only and responds to 8192 memory 
locations. These locations cannot be altered by transfer bus 
writes. It is also possible for otherwise unrelated functions to 
share the same address, as might be the case of a write only 
command register and a read only status register. In this case, 
a write to a particular location need not directly affect the 
information content which might subsequently be read from that 
location. Reading or writing to certain target addresses might 
also initiate peripheral actions beyond simple stores or fetches. 
A write to the command register of the system bus coupler can 
cause data blocks to be transferred from the processor region's 
local memory to system memory for example. Figure 4.2 summarizes 
the device location and function of all transfer bus addresses. 
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Transfer Bus 
Address 

OOOO-->lFFF 

2000-->3FFF 

FEOO-->FEFF 

FFE8-->FFEB 

FFEC-->FFEF 

FFFO 

FFF1-->FFF7 

FFFC 
FFFD 
FFFE 

FFFF 

Device 

PROM 

RAM 

Mapper 

Control 

Comm 

Timer 

SBC 

Mapper 

Rupt 

Function 

Read only memory array 

CMOS read/write memory array 

Memory Management Page Table 

Control registers (read only) 

IPC registers (read only) 

Interval timer register 

System bus controller 
command/status registers. 

Map interrupt fault address 
Map clear command/status reg. 
Map enable/disable reg. 

Interrupt register 

Figure 4.2 Processor Transfer Bus Address Assignments 

These transfer bus address assignments are permanent and cannot 
be altered (except by means of wiring changes). 

The processor when accessing the transfer bus often configures 
the cache memory management unit, the mapper, so that it 
transforms the address provided by the processor into a new 
address, which is the actual address used on the transfer bus 
during that read or write. The input address to the mapper is 
called the virtual address and the output address is the real 
address. The operation of the mapper can cause the apparent 
addresses of devices, registers or memory locations to change as 
viewed from the processor. The operation of the mapper and the 
apparent address alterations should not be confused with the 
fixed real addresses of all devices, registers and memory 
locations. When the operation of the mapper is disabled, the 
virtual address provided by the processor is used as the real 
address for a bus transaction. The operation of the mapper is 
discussed in further detail in Section 4.4. 

4.2 Cache RAM 
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The cache RAM is an 8192 word CMOS memory that can be read or 
written by using the processor region transfer bus. The 16-bit 
transfer bus real addresses to which qache RAM responds are 2000 
to 3FFF. After a power interruption or cold start the cache RAM 
memory contents are indeterminate. 

4.3 Cache PROM 

The cache PROM is an 8192 word semiconductor memory that can 
be read by using the processor region transfer bus. The 16-bit 
transfer bus real addresses to which cache PROM responds are 
"0000" to "lFFF". The PROM is made up of 2K X 8 programmable read 
only memory arrays (2716). These PROM chips can be erased with 
ultra-violet. light and reprogrammed. It is not necessary to 
remove the chips from the cards to reprogram them. The PROM 
memory card must be removed from the LRU and inserted ·into a 
special programming fixture in the ground support equipment to 
reprogram it. The PROM is non-volatile and holds its contents 
until reprogrammed. 

4.4 Memory Management Unit (Mapper) 

The function of the memory management unit or the mapper is to 
map processor generated virtual addresses into real addresses. 
These real addresses are then used in place of the virtual 
addresses in processor controlled transfer bus transactions. The 
mapper mechanism uses a 256 word page table of 12-bit words. 
When in operation the mapper uses the high order byte of the 
virtual address to index into the 256 word page table, and 
obtains a replacement high order byte. The least· significant byte 
of th~ page table entry replaces the high order byte of the 
virtual address creating a real address. Each entry in the page 
table effectively relocates or maps a 256 word page of virtual 
memory onto a 256 word page in real memory. Since it is not 
always possible to assure that the virtual page is present in 
memory and since it will also be necessary to write protect pages 
of the real memory store, two of the remaining four bits of each 
page table entry are used to indicate absence of the associated 
real page, and to write protect the page. Bit 09 of the page 
table entry should be set to 'one' to indicate that the page is 
present in real memory and should be set to 'zero' to indicate 
its absence. A processor reference to an absent page will cause 
a page fault .interrupt. The instruction in progress is 
interrupted, the processor state is backed up to the pre­
instruction state, and processor accepts the page fault 
interrupt. Bit 08 of the page table entry is used to write 
protect the associated page of real memory. If set to 'one', the 
page is write protected. A processor store to a write protected 
page while the processor is in user mode interrupts the 
instruction in progress, backs up the processor to the the pre­
instruction state, and causes the processor to immediately accept 
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the write protect interrupt. A write protect bit is ignored when 
the processor is operating in the privileged state. 

The map fault register latches and holds the virtual address 
whenever an instruction causes a page fault or write protect 
interrupt. The map fault register can be read by the appropriate 
interrupt handling routine from real address "FFFC". It is read 
only. 

The mapper page table may be read by the processor if the 
processor is in privileged mode by reading any address that maps 
into real address "FEOO" through "FEFF". The mapper page table 
may be written by the processor only if the mapper is turned off 
and the processor is in privileged mode by writing real addresses 
"FEOO" through "FEFF". Location "FEOO" corresponds to page "00", 
"FEFF" corresponds to page "FF". The mapper may be turned on or 
off <enabled or disabled} by writing a 'one' or a 'zero' in 
location FFFE, provided the processor is in privileged mode. 
Location FFFE may also be read to determine mapper status. 

The processor reset microcode disables the mapper and 
initializes the processor to interrupt mode. 

If the processor is in privileged mode and the mapper is 
disabled the page table can be quickly initialized by writing a 
'one' into the least significant bit of real address "FFFD". 
This results in all 256 entries of the mapper being set to "OFE". 
The address "FFFD" may be read to determine when the 
initialization procedure has been completed. The least 
significant bit of the word will read 'one' as long as the 
procedure is in progress and will read 'zero' when it has been 
completed. The initialization procedure takes ,about 32 
microseconds. 

Figure 4.3 illustrates the overall functional organization of 
the Memory Management Unit. Note that the mapper only maps 
virtual addresses of the processor. Any other bus master deals 
exclusively with the real address space of the transfer bus. In 
controlling anyDMA devices, such as the system bus controller, 
the programmer must explicitly translate addresses from the 
virtual address space, used by the processor, to the real address 
space of the transfer bus before setting up the DMA control 
registers. 
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-------------------------------------------------------+====> 

real 
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write protect-+ 
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ENTRIES 
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interrupt 

memory 
----->protect 

interrupt 

Figure 4.3 Memory Management Unit Organization 

4.5 Interval Timer , 
The interval timer is a system clock driven 16 bit count down 

register and interrupt mechanism that can be used to accurately 
meter time intervals. The system clock is divided by 250, and 
the output of the divider network is used to decrement the timer 
count down register. The register may be loaded by writing to 
real address "FFFO". The intermediate states of the divider 
network are cleared whenever the register is written, thus the 
first decrementing occurs exactly 250 microseconds after the 
register has been loaded. The register may be read at any time 
without affecting its operation. A timer interrupt is requested 
whenever the register is decremented to zero. The timer 
interrupt is interrupt number C. The content of the timer 
register can be treated as a 16 bit positive number. It can 
therefore be set to request an interrupt at up to 16 seconds into 
the future. The timer is continually decremented and a timer 
interrupt is requested every 16 seconds. The timer interrupt may 
be disabled by masking interrupt 'C'. The timer interval can be 
reset at any time by a new store to the timer register. The 
timer register is volatile and is reset to zero after a power 
interruption. 

4.6 Control and Communication Registers 

- 29 -



There are sixteen control and communication registers within 
each LRU. Each of these registers can be written by means of a 
standard system bus write transaction to the appropriate system 
bus address. They are all write only from the system bus, they 
cannot be read by means of a system bus read transaction. 
However, eight of these registers can be directly read by the 
processor by means of the processor region transfer bus. These 
registers are read only from the transfer bus. The writing of 
these registers must therefore be done by a triad of processors 
(any triad can write any register), while the reading of the 
registers can only be done by the single processor of the LRU 
containing the register. Four of these eight registers are the 
CPU control registers. Four of them are inter-processor triad 
communication registers. 

The four CPU control registers are each 4 bits wide, with the 
4 bit wide bit field being right justified in the word. Certain 
of these registers in addition to being directly accessible to 
the processor, have hardwired control functions. Register a 
controls whether the processor is in the run or reset state and 
is called the RESET register. Bit a (BOO) of that register is 
used to control the processor reset signal. When it is 'zero' 
the reset signal is asserted., When it is 'one' the reset is 
unasserted. The processor executes the standard microcode reset 
sequence when the reset signal is released. Control register 0, 
bits B03, B02, and BOl, dictate the three bit triad 
identification code of the processor region of the LRU. This 
code is used by the poll sequence mechanism of the system bus 
controller and by the slave region's communication register 
address recognition mechanism. Registers 1, 2 and 3 can be read 
by the processor and have no hardware assigned function. Figure 
4.4 illustrates the register system bus address (for writing), 
the processor transfer bus address (for reading) and the function 
of any hardware assigned bits of each register. 

- 30 -



Reg 

00 
0 

01 
1 

10 
2 

11 
3 

System Bus Address Transfer Bus Add Format 

111,1111,1111,iiii,0000 1111,1111,1110,1000 t2 t1 to rr 
7 F F I 0 F F E 8 

111,1111,1111,iiii,0001 1111,1111,1110,1001 ua ua ua ua 
7 F F I 1 F F E 9 

111,1111,1111,iiii,0010 1111,1111,1110,1010 ua ua ua ua 
7 F F I 2 F F E A 

111,1111,1111,iiii,0011 1111,1111,1110,1011 ua ua ua ua 
7 F F I 3 F F E B 

iiii LRU identification (binary) 
I LRU identification (hex) 
rr -- reset/run 
t2,t1,tO -- triad identification 
ua -- unassigned 

Fig~re 4.4 Processor Control Registers. 

The four Inter-Processor triad Communication (IPC) registers 
provide the means for implementing direct processor triad to 
processor triad communications. Each of the IPC registers is 
four bits wide with the bit field being right justified in th~ 
word. An IPC register can be written by a system bus write 
transaction to the appropriate address just as the control 
registers can. Unlike the control registers, the system bus 
address of an IPC register is keyed to the processor triad 
identification code of the LRU (contained in processor control 
register 0) instead of by the LRU identification directly. It is 
therefore possible to simultaneously write to the communication 
registers of every processor with the same triad identification. 
In effect this provides the means of directly transmitting from 
one processor triad to another by means of system bus write 
transactions. Two of these IPC registers (2 and"3) generate an 
IPC interrupt ("B") when they are written into. Figure 4.5 
summarizes the system bus addresses and transfer bus addresses 
for each of these registers. 
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Reg 

'"If() 

o 

01 
1 

10 
2 

11 
3 

System Bus Address Transfer Bus Add Interrupt 

111,1111,1111,11tt,tOOO 1111,1111,1110,1100 no 
7 F F - - F F E C 

111,1111,1111,11tt,tOOl 1111,1111,1110,1101 no 
7 F F - - F F E D 

111,1111,1111,11tt,t010 1111,1111,1110,1110 yes "B" 
7 F F - - F F E E 

111,1111,1111,11tt,tOl1 1111,1111,1110,1111 yes "B" 
7 F F - - F F E F 

ttt -- processor triad identification 

Figure 4.5 Inter-Processor triad Communication (IPC) Registers 

The CPU control registers as. well as the IPC registers are 
provided with a battery back-up, and are therefore non-volatile. 
If the battery power is lost when the primary power is off the 
registers are reset to zero. A processor is initially held in the 
reset state when power is first applied after loss of both 
battery and primary power, as a consequence of control register 0 
having been reset. This control register reset can be 
circumvented by means of a shorting plug which can be inserted 
into the front of an LRU. If a processor reads the reset/run bit 
and finds it set to zero then the shorting plug must be inplace 
on that LRU. 
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4.7 System Bus Controller 

The System Bus Controller is designed to transfer blocks of 
from 1 to 256 words between the local processor region memory and 
system memory. It also serves as a synchronizing mechanism, 
whereby the operation of two or more processor regions can be 
brought into synchronism. 

A single transfer of a block of data of from 1 to 256 words is 
called a system bus transaction. A transaction may either be a 
system memory write: data is moved from the processor region 
memory to system memory, or a transaction may bea system memory 
read: data is moved from system memory into the local processor 
region memory. It is necessary that the system bus controller 
perform a number of sequential operations in order to effect 
either a read or a write transaction. First the controller must 
gain control of the system bus. It then retains control of the 
bus while it effects the desired data transfer. Finally, it 
releases the system bus. Once a processor triad has gained 
control of the system bus it retains control until it voluntarily 
releases the bus. The controller may be instructed to hold the 
bus between transactions, allowing the processor to string 
together a number of transactions. In this mode of operation the 
controller need only obtain control at the beginning of the 
compound transaction and release it at the end. Alternatively, 
the controller may be instructed to obtain control of the system 
bus, perform a single transaction, and immediately release the 
bus. This is called a simple transaction. 

Arbitration for control of the bus is provided by having each 
of the contending processor triads participate in a competitive 
cooperative poll each time they desire control. The processor 
triad with the highest competitive poll number is the processor 
which gains control of the bus. The poll number is a nine bit 
code consisting of three, three-bit subfie1ds. The three most 
significant bits are the static priority code, SPC. The next 
three-bit subfie1d is the dynamic priority code, OPC. The least 
significant three bit field is the unique triad identification 
code, TID, of the requesting processor triad. The static 
priority code is set by the processor and is used by the 
processor to give its request for bus service priority over less 
urgent requests. If a conflict occurs between two processor 
triads, each seeking control of the bus at the same time, then 
control always passes to the triad with the highest static 
priority. If multiple triads are seeking control, all of which 
are using the same static priority code, then control will pass 
to the controller triad with the highest dynamic priority code. 
When a system bus controller initiates the effort to obtain 
control of the system bus it initially sets the dynamic priority 
code to zero. It then increments this code by one each time it 
loses a polling sequence to another controller of equal static 
priority. This effectively boosts the priority of the requesting 
controller by a factor related to that controller's waiting time 
for the bus. A triad is thus assured that it cannot be 
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repeatedly beaten by another triad" of equal static priority. 
Finally, if both the static and dynamic priority of the competing 
triads are equal the poll sequence is decided by the triad 
identification. The bus is granted to the unit with highest 
triad identification. Since the triad identification is unique 
to a triad this serves to break any ties. 

The operation of the separate processor regions of a processor 
triad is normally tightly synchronized. Under such circumstances 
this replicated operation can be discussed as if it were a single 
unit. The most noteworthy exception to this generalization is 
the operation of the system bus controllers during a polling 
sequence and before the separate elements of a processor triad 
have achieved synchronous operation. It is this behavior which 
provides the mechanism for synchronizing the separate elements of 
a processor triad. 

A system bus controller participates in a poll sequence by 
transmitting one bit at a time on its assigned P line and 
listening to the voted input from all three active P lines. A 
poll may begin when the system bus is free. The system bus is 
free if during the preceding four bit periods the voted P bus 
value was 'zero'. 'Zero' is the undriven state of the P bus 
lines, therefore zero will be the voted result when n"o triad is 
controlling the bus and holding the P lines at 'one'. A bus 
controller, seeking control of the system bus, recognizes that 
the bus is free by detecting four sequential 'zero's on the P 
lines and attempts to initiate a poll by transmitting a 'one' on 
its assigned P line. 

Under normal circumstances when the bus controller is 
synchronized with the other two members of its triad, the 
resultant voted P bus value is a 'one', as each element in 
synchronism transmits on its assigned P bus. This series of at 
least four 'zero's followed by a 'one' marks the beginning of the 
poll. The poll then proceeds and for the next three bit periods 
the controller transmits the static priority code, most 
significant bit first. If for any bit period the voted result of 
the P bus, differs from the transmitted bit, then the controller 
immediately drops out of the poll and waits for the system bus to 
become free again. Under normal circumstances when all triads 
are synchronized, the only time the resultant might differ from 
the transmitted value of a controller is when its 'zero' 
transmission is overwritten by a 'one' transmitted by a competing 
triad, with a higher poll number. After the static priority code 
is transmitted a 'one' is transmitted to prevent the possibility 
of four 'zero's in a row. This is followed by the dynamic 
priority code another 'one' and finally the triad identification. 
Again, if for any bit period the voted results differ from the 
transmitted bit then the triad immediately drops from the poll. 
Thus under normal circumstances, when all triads are 
synchronized, the triad with the highest nine-bit poll number 
will be the only triad surviving to the end of the poll. It then 
retains control of the system bus by transmitting 'one's on the 

- 34 -



poll bus lines until it wishes to release it. Any triads which 
dropped out of the poll wait for the bus to be released and then 
reattempt the poll sequence. 

This fairly tidy behavior is somewhat more complex if the 
individual bus controllers are not synchronized" with each other 
at the beginning of the poll. Under this circumstance the voted 
result read from the P bus can differ from the bit transmitted 
because of the wired 'OR' characteristic of the bus, or it can 
differ because the single element transmitting on the bus was not 
joined by a partner. Thus, a controller may transmit a 'one' and 
read back a 'zero', it may transmit a 'zero' and read back a 
'one', or it may actually read back what it transmitted. At the 
beginning of the poll a controller will detect that the bus is 
idle by a series of four or more 'zero's on the P bus and 
attempts to initiate a poll by transmitting a 'one' on its 
assigned P bus line. If it is the only controller transmitting a 
'one' then it will read back a 'zero'. The controller in effect 
stalls at this point repeatedly transmitting a 'one' on its 
assigned bus as it attempts to initiate a poll sequence. It 
remains stalled at this point until it is joined by another 
controller, assigned to another bus, which is also attempting to 
initiate a poll sequence. Together, with each transmitting a 
'one' on separate P lines they can initiate a poll sequence. The 
voted result will be 'one' and the poll begins. These two bus 
controllers are in fact now synchronized with one another. If 
these two bus controllers are members of the same triad they will 
continue through the poll sequence, gain control of the system 
bus, perform any commanded transaction and then release their 
processors to continue instruction execution. After obtaining 
synchronization the bus controllers remain synchronized, and the 
release of their processors is synchronous. Operation of the bus 
controllers and processors is such that this synchronous release 
in effect synchronizes the operation of the separate processor 
regions. If the individual processors are so configured as to 
have been in identical states (executing the same program, being 
at the same point in that program, etc.) then they will remain 
synchronized with one another. This synchronization process is 
likely to succeed in only synchronizing two of three elements of 
a triad on the first pass. When all the elements of a triad are 
completely out of synch then the leading element seeks control of 
the bus, but stalls and is forced to wait for the second element. 
When the second element catches up with the first they 
synchronize and together perform the poll sequence and gain 
control and proceed. The third element arriving late is left 
behind and stalls at the bus request stage. The two synchronized 
elements must then execute the proper procedures for looping back 
and picking up the tardy processor region. They can do this by 
repeating the bus request sequence. This causes them to sweep by 
and pick up the stalled processor region. Appropriate coding 
will assure that when this micro level of synchronization is 
obtained, that it can be preserved, and that all processors of 
the triad will execute the same code from that point onward. 
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A different and more complex sequence of events occurs if a 
bus controller is joined not by a member of its own triad, but by 
a member of a second triad. Together they can and do initiate 
the poll sequence. However since they are using different poll 
numbers they are unable to complete the sequence and will both 
drop out before gaining control. This will cause them to recycle 
to the point where they are both waiting for the poll to begin 
again. Since they have both stopped transmitting, four 'zero's 
will occur and another poll sequence will begin. There may.in 
fact be a number of these false starts before a successful poll 
sequence takes place. Greater complexity occurs when the 
competing and separate bus controllers overwrite each other when 
assigned to the same bus. In the end these repeated numbers of 
false starts succeed in stalling everyone until a high priority 
triad synchronizes and gains control of the bus. Note that the 
dynamic priority adjustment mechanism could frustrate this effort 
to synchronize. A means of disabling the dynamic priority 
mechanism is therefore provided. 

The processor controls the operation of the system bus 
controller by writing into several control registers. Figure 4.6 
summarizes the function of these registers and their real address 
assignments on the processor region transfer bus. 
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Processor 
Transfer Bus 

Address / 

----_./ 

FFF1 write 
read 

Control Reglster Content 

Command (write) and Status (read) Register 

I 
XI XI XI XI XI XI XI X\WRIRQIP2Ip1IpO\SXIHBIHA\ X X X X X X X X WR RQ P2 P1 PO SX BG ER 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

WR- Read(O)/Write(l) System Memory 
'RQ - Transfer Request(l)/NOP(O) 
P2,P1,PO - Static Priority Code 
SX - Simplex(1)/Voted(0) Read 
HB - Hold bus(1)/Re1ease bus(O) after Transaction 
HA - Increment(O)/Do not Increment(l) System 

Memory Displacement Reg. during transaction 
BG - Bus Grant: Holding Bus(l)/Not Holding Bus(O) 
ER - System Page Boundary Overflow 

Last Word Transferred, dddddddddddddddd 
FFF2 RO I dl dl dl dl dl dl dl dl dl dl dl dl dl dl dl dl 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

System Memory Page, nnnnnnnnnnn .. 
FFF 3 WO I X I X I X I X I X I n I n I n I n I n I n I n I n I n I n I n I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Page Displacement, dddddddd 
FFF4 WO I xl Xl Xl xl xl xl xl xl dl dl dl dl dl dl dl dl 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Local Memory DMA Control Word 
FFF5 WO I 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Word Count, cccccccccccccccc 
FFF6 WO I cl cl cl cl cl cl cl cl cl cl cl cl cl cl cl cl 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Starting Address, aaaaaaaaaaaaaaaa, in Local Memory 
FFF7 WO I al al al al al al al al al al al al al al al al 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Figure 4.6 System Bus Controller Register Assignments 
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Data is transferred between system memory and local memory by 
first writing into the control registers (FFF3-FFF7) and then by 
initiating a transfer by writing into the command register (FFFl) 
of the system bus controller. The order in which the control 
registers are written is not significant. 

Location "FFF3", the System Memory Page Register, should be 
set to point to the page of system memory from/to which the 
transfer is to take place. The system memory page of a word is 
determined by the lL most significant bits of the system bus 
address of the first word of the block. 

Location "FFF4", the displacement register, points to the 
starting location within the system memory page of the data block 
to be transferred. The displacement within the page is 
determined by taking the 8 least significant bits of the system 
memory starting address of the block to be transferred. At the 
end of a transaction this register will point to the next word of 
the system memory page which would have been transferred if the 
transaction had continued one more word. Note that it is 
impossible to perform a block transfer across a system memory or 
cache memory page boundary. If such a transfer is attempted the 
transaction is terminated when the 8 bit displacement address is 
incremented past "FF" to "00", and the word count has not been 
exhausted. In such a case the displacement register is left 
equal to zero at the end of the transaction. 

Location "FFF5", the local memory DMA control register, 
controls the processor region transfer bus DMA mechanism. It 
should be set to zero. It is unchanged at the end of a 
transaction. Note that since this register should always be 
zero, it will only be necessary to write it once during the 
initialization procedure following the power on reset. 

Location "FFF6", the word count register, specifies the number 
of words to be transferred. If an attempt is made to transfer a 
block of data which spans two pages of system memory or cache 
memory then the transaction is terminated after the last word of 
the first page is transferred and the ER bit of the status 
register is set. The status register is a read only register 
residing at location "FFFl".It mirrors the contents of the 
command register in bits 2 through 7. At the end of a 
transaction, the word count register will contain the number of 
words of the original block remaining to be transferred. 
Assuming normal termination (no attempt to transfer across a page 
boundary), the register will be zero. . 

Location "FFF7", the local memory starting address, points to 
the starting address in the processor region transfer bus real 
address space of the block of addresses from/to which data is to 
be read/written. This register is incremented after each word 
transfer. At the end of a transaction it points to the next 
address in the processor region transfer bus real address space 
from/to which the next word would have been read/written if the 
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transfer had continued one more word. 

A data transfer is initi~ted by writing to location "FFFl", 
the command register. 

Bit 6, the RQ or Request bit, of that write must be a one to 
initiate the transfer. 

Bi~ 7, the Write/Read bit, .determines the direction of the 
transfer. A one commands a transfer to system memory from local 
memory, a zero commands a transfer from system memory to local 
memory. 

Bit 0, the HA or Hold Address bit, inhibits the normal 
incrementing of the system memory page displacement register as 
each word is transferred. When HA equals one, each read or write 
of system memory is from or to the same address. Note that 
although the system memory address is frozen during the 
transaction, the normal incrementing of the local memory 
addresses still occurs. This mode of transfer is used in reading 
or writing the I/O port FIFO buffer or in writing multiple 
registers of a BGU in a single transaction. 

Bit 1, the HB or Hold Bus bit, 
controller to hold the bus after the 
set to zero the system bus will be 
transaction. 

when set to one commands 
transaction is complete. If 
released at the end of the 

Bit 2, the SX or Simplex read bit, when set to one configures -the 
R bus input circuitry to 'OR' all incoming data from the three 
selected R buses, and to ignore disagreements. When set to zero, 
the incoming data from the three selected R buses are voted 
normally and the error detection/monitoring circuitry is armed. 
This bit has no effect when the direction of the data transfer is 
from local memory to system memory. 

Bits 3, 4 and 5, the static priority bits, specify the static 
priority code to be used by the controller in its competition for 
the bus. If the bus controller already controls the system bus 
this field has no effect on the transaction. If the controller 
does not already have control of the bus it will acquire control 
in order to effect the commanded transfer. 

The command register must be rewritten each time a transaction is 
initiated. 

Bit 0, the ER bit, is set to one if the last transaction was 
terminated by an attempt to transfer data past a system page 
boundry. 

Bit 1, the BG bit, is set to one if the controller is holding 
control of the system bus. If HB set was specified in the 
previous request this bit should read one. If HB reset was 
specified in the previous request this bit should read zero. 
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Location "FFF2" can be read and will contain a copy of the 
last data word transferred by the system bus controller. 

, . 

Upon receiving a transfer request the bus ~ontroller seizes 
control of the processor region transfer bus and holds it until 
the transfer is complete. This effectively holds the processor 
in a suspended state awaiting completion of the transfer. If 
necessary the controller then seeks control of the system bus. 
If it already holds control of the system bus or after obtain~ng 
control it then affects the requested transfer. Once the 
transfer is complete it releases the processor region transfer 
bus and either releases or holds the system bus depending upon 
whether the HB was zero or one. The polling sequence, used in 
acqulrlng the system bus, will synchronize those controllers 
which participated in.in and won the poll to the same state •. If 
they then execute the same transfer they will remain in 
synchronism. They will release control of theiF processor region 
transfer buses at the same time and their processors will 
therefore resume processing at exactly the same time. This 
effectively synchronizes those processors. If they then continue 
to execute the same instruction stream they will remain 
synchronized. 

The bus controller accepts and processes the five redundant 
copies of the P and R system bus lines. It selects three of the 
five P lines and votes among them reporting any errors to the LRU 
status registers where they are latched. It uses the four bit P 
line select code provided by a system command register (the P 
Select Register, described in greater detail in Section 5.4.l) in 
determining which three of five P lines are selected. The voting 
and error detection takes place during each P bus bit period, 
even when the controller is idle. Thus, P bus errors are 
reported by all LRU's, even though some of the reporting.LRU may 
be unconnected to the erroneous activity. 

The bus controller accepts and processes the five redundant 
copies of the R bus only when it is expecting a reply over the 
system bus. It selects three of the five R lines for processing 
based upon the R line select code provided by a system control 
register. It either votes and performs error reporting on these 
lines or 'OR's them together suppressing error reporting 
depending upon the content of the SX bit of the controller 
command register. Only those bus controllers directly involved 
in the transaction will report R bus errors. 
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4.8 The CAPS-6 Processor 

The Collins Avionics CAPS-6 processor is used as the processor 
element of the processor region. Alterations were made to the 
standard CAPS-6 processor so as to allow the processor to be 
driven from an external clock source, in this case the clock is 
provided by the clock generation region. Since all operations 
within the processor region are synchronous with the clock, and 
since the clock regions of the several LRU's can be phase locked 
with one another, the operation of separate processor regions 
will stay tightly synchronized, once initially synchronized, as 
long as each processor executes exactly the same instructions, as 
long as the phase locked clocks remain synchronized, as long as 
the communications interrupts occur synchronously in each 
processor (as will be the case if the triad identification is 
identical), and as long as the timer interrupts occur 
synchronously (as will be the case· if the timer is set after 
synchronization is achieved). The CAPS-6 processor. was 
additionally modified to provide for instruction backup should a 
mapper interrupt occur during an instruction execution. This 
restores the processor state to the point that existed 
immediately before the execution of the instruction which caused 
the mapper interrupt. These changes while critical to the 
correct operation of the FTMP do not affect the apparent 
operation of the machine at the architectural and instruction 
description level. 

4.8.1 CAPS-6 Instruction Set and Architecture 

. In order to provide some context for the detailed instruction 
and architecture description which follows, it is necessary to 
provide a brief foundation description of the CAPS-6 overall 
architecture. This preliminary description is not intended to be 
complete but is intended to serve as a starting point. The 
detailed instruction set description which follows builds on this 
starting point, adding elaboration and detail as required and 
appropriate. . 

The basic architecture of the CAPS-6 processor is that of a 
stack machine. Figure 4.7 illustrates the basic processor 
organization as it is apparent to the programmer. 

The program syllable counter, SPC~, points to the byte address 
in memory from which the next instruction is to be fetched. 
Addresses in memory are word addresses. A byte address is 
con~tructed by shifting a word address left by one and using the 
least significant bit to address a byte within the word. The 
even byte is the least significant byte of a word, the odd byte 
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is the most significant byte. Program addresses are the only 
byte addresses used by this machine. All memory references made 
by the processor are references to memory words. Where necessary 
the processor performs the necessary word disassembly in order to 
access program bytes. 

The register TOS points to the top of stack. The word pointed 
to by TOS contains the value of the top word of the stack. The 
stack is stored in RAM memory. When a word is pushed onto the 
stack TOS is decremented by one and the word is stored into the 
memory location pointed to by the new value of TOS. When a word 
is pulled from the stack the memory location pointed to by TOS is 
read and the TOS is then incremented by one. As the stack grows 
the TOS points to successively lower addresses in memory. The 
register STKLM, stack limit, contains the lowest address that can 
be written into by a stack operation. An attempt to decrement 
the TOS register such that it would be less than the STKLM 
register. will cause a stack overflow interrupt. The local 
environment register, LENV, points to the stack frame mark of the 
current local environment. The local environment is an area of 
memory that contains local variables of the current procedure. It 
can be accessed by using LENV as a base register. A stack frame 
mark contains three quantities, the address of the entry point of 
the current procedure (called the PROC IO), the return SPCR 
address of procedure which called the current procedure, and a 
pointer to the stack frame marker of this calling procedure. 
When a procedure is called a new set of local variables are 
allocated on the stack: a new stack frame mark is written and 
linked back to the previous mark, and the LENV register is 
adjusted to point to the new mark. When a return is executed 
this process is reversed. The function of the stack is treated 
in greater detail by the instruction set description. 

In addition to the stack, the programmer 
register table in accessing global memory. 
points to the first word of a 16 word block 
active base register table is located. 
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The following sections detail the CAPS-6 instruction set. All 
addresses refer to locations in the virtual or real address space 
depending upon whether the memory management unit operation is 
enabled or disabled. Except where noted, the instruction 
execution is unaffected by whether dynamic address translation is 
being performed. The following notational conventions are used: 

OPCODE <OPERAND> 
OPCODE OPERAND 

where: <OPERAND> implies the operand is contained in the 
instruction stream. 

and OPERAND implies the operand is contained in the 
top of stack. 

additionally: 
(arg) 

for example: 
(TOS) 
(TOS+1) 

«TOS» 

is the content of the memory location 
whose address has a value of argo 

is the value stored at the top of stack 
is the value stored just under the top of 
stack 
is the value stored in the location pointed 
to by the value stored at the top of stack 

4.8.1.1 Data Transfer Instructions. 

Data transfer instructions are used for either loading data 
onto the top of stack for a subsequent operation or storing data 
residing on the top of stack into memory. 

LIT4 <K> : FOUR-BIT LITERAL. 

A 4-bit literal is contained in the least significant bits of 
the LIT4 operation syllable. This literal field is extracted from 
the operation syllable and pushed, right-justified, into the top 
of the stack. The 12 most significant bits of the new top of 
stack are cleared to zero. 

Stack 
position 

so 
Sl 
S2 
S3 

Stack Status 
Initial Final 

A 
B 
C 
D 
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LIT8 <K>: EIGHT-BIT LITERAL. 

An 8-bit literal 
operation syllable. 
justified, into the 
of the top of stack 

is contained in the byte following the LIT8 
This literal field is pushed, right­

top of the stack. The most significant byte 
is cleared to zero. 

Stack 
Position 

So 
Sl 
S2 
S3 

Stack Status 
Initial Final 

A 
B 
C 
D 

K 
A 
B 
C 

LIT16 <K>: SINGLE WORD LITERAL. 

A 16-bit literal is obtained from the program syllable string 
and placed in the top of stack. The LIT16 operation syllable is 
interpreted to reference the following two 8-bit syllables of the 
program and place them into the stack. The two successive 
syllables appear in order of the least significant half of the 
literal and then the most significant half of the literal. The 
literal may be in the same 16-bit memory word or it may bridge 
two consecutive memory words. 

Stack 
position 

So 
Sl 
S2 
S3 

Stack Status 
Initial Final 

A 
B 
C 
D 
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LIT32 <K>: DOUBLE WORD LITERAL. 

A 32-bit literal is obtained from the program syllable string 
and placed in the top of stack. The LIT32 operation syllable is 
interpreted to reference the following four a-bit syllables of 
the program and place them into the stack. The 4 successive 
syllables appear in order of the least significant byte of the 
literal and then the next least significant byte, etc. 

Stack Stack Status 
Position Initial Final 

SO A K(LS HALF) 
Sl B K(MS HALF) 
S2 C A 
S3 D B 

REFLS <K> :' REFERENCE LOCAL SINGLE WORD. 

References (reads) a l6-bit word from the Local Environment 
portion of memory and places it in the top of the stack. The base 
address is the contents of LENV register. K, the four least 
significant bits of the REFLS syllable, is the index on LENV 
(i.e., the sum of LENV and K points to the Kth word of the Local 
Environment). 

Stack 
Position 

SO 
Sl 
S2 
S3 

Stack Status 
Initial Final 

A 
B 
C 
D 
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REFLD <K>: REFERENCE LOCAL DOUBLE WORD. 

References (reads) a double word (two 16-bit words) from the 
Local Environment and places it in the two top words of the 
stack. The base address for the double word is the content. of 
the LENV register. K, the four least significant bits of the 
REFLD operation syllable, is the index on LENV. The sum of LENV 
and K points to the least significant half of the double word. 

ASNLS <K>,V 

Stack Stack Status 
position Initial Final 

SO A (LENV+K) 
Sl B (LENV+K+l) 
S2 C A 
S3 0 B 

• • ASSIGN TO LOCAL SINGLE WORD. 

The 16-bit word in the top of the stack is read destructively 
and stored (assigned) into memory in the Local Environment. The 
address in the memory where this assignment is made is computed 
by adding K to the contents of the LENV register. K is the four 
least significant bits of the ASNLS syllable. 

Stack 
. Position 

So 
Sl 
S2 
S3 

Stack Status 
Initial Final 

V 
A 
B 
C 
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ASNLD <K>,V' : ASSIGN TO LOCAL DOUBLE WORD. 

The double word, V', (two 16-bit words) is initially in 'the 
two top words of the stack: the least significant half is SO, and 
the most significant half is Sl. These two words are read 
destructively from the stack and stored (assigned) into two 
consecutive words of memory in the Local Environment. The 
assignment is made by computing addresses utilizing the LENV 
register and K, the four least significant bits of the ASNLD 
operation syllable. 

REFLSE <K> . 
• 

Stack Stack Status 
position Initial Final 

SO V' (LS half) A 
Sl V' (MS half) B 

S2 A C 
S3 B D 

EXTENDED REFERENCE LOCAL SINGLE WORD 

References (reads) a 16-bit word from the Local Environment 
portion of memory and places it in the top of the stack. The base 
address is the contents of LENV register (a pointer to the first 
word of the Local Environment). K, the a-bit value of the byte 
following the REFLSE syllable, is the index on LENV (i.e., the 
sum of LENV and K points to the Kth word of the Local 
Environment). The Local Environment has zero origin (i.e., the 
first word is word zero). 

Stack Stack Status 
position Initial Final 

SO A (LENV+K) 
Sl B A 
S2 C B 

S3 D C 
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REFLDE <K> EXTENDED REFERENCE LOCAL DOUBLE WORD 

References (reads) a double word (two l6-bit words) from the 
local Environment portion of memory and places it in the two top 
words of the stack. The base address for the double word is the 
contents of the LENV register (a pointer to the first word of the 
Local Environment). K, the value of the byte following the REFLDE 
operation syllable, is the index on LENV. The sum of LENV and K 
points to the least significant half.of the double word. 

ASNLSE <K>,V 

Stack 
Position 

SO 
Sl 
S2 
S3 

. . 

Stack Status 
Initial Final 

A (LENV+K) 
B (LENV+K+1) 
C A 
D B 

EXTENDED ASSIGN TO LOCAL SINGLE WORD • 

The 16-bit word in the top' of the stack is read destructively 
and stored (assigned) into memory in the Local Environment. The 
address in the memory where this assignment is made is computed 
by adding K to the contents of the LENV register (a pointer to 
the first word of the local environment) K is the value of the 
byte following the ASNLSE syllable and is the index on LENV 
(i.e., the sum of LENV and K is the address of the Kth word of 
the Local Environment). The Local Environment has zero origin 
(i.e., the first word is word zero). 

Stack 
position 

SO 
51 
52 
S3 

Stack Status 
Initial Final 

V 
A 
B 
C 
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ASNLDE <K>,V' EXTENDED ASSIGN TO LOCAL DOUBLE WORD. 

The double word, V', (two 16-bit words) is initially in the 
top words of the stack: the least significant half is SO, and the 
most significant half is Sl. These two words are read 
destructively from the stack and stored (assigned) into two 
consecutive words of memory in the Local Environment. The· 
assignment is made by computing addresses utilizing the LENV 
register (a pointer to the first word of the Local Environment) 
and K, the value of the byte that follows the ASNLDE operation 
syllable. 

Stack Stack Status 
Position Initial Final 

SO V' (LS half) A 
Sl V' (MS half) B 
S2 A C 
S3 B D 

LOCL I GLOBAL RELATIVE ADDRESS OF LOCAL WORD. 

Generates the absolute address of the Ith word of 
Environment. This computed address is placed in the 
stack. 

Stack 
position 

SO 
Sl 
S2 
S3 

Stack Status 
Initial Final 

I 
A 
B 
C 
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REFGS I REFERENCE GLOBAL SINGLE WORD. 

References (reads) a 16-bit word from memory and places it in 
the top of the stack. I, a 16-bit value initially in the top word 
of the stack, points to the word to be referenced. when the 
16-bit word is referenced (fetched) from memory, it replaces I in 
the top word of the stack (i.e., I is destroyed). 

Stack Status Stack 
Position Initial Final 

So 
Sl 
S2 
S3 

I 
A 
B 
C 

REFGD I : REFERENCE GLOBAL DOUBLE WORD. 

( I ) 

A 
B 
C 

References (reads) a double word (two 16-bit words) from 
memory and places it in the two top words of the stack. The 
address for the double word is I, a 16 bit value initially in SO, 
the top word of the stack. The stack is first pushed, moving I to 
Sl, to make room for both halves of the double word. The least 
significant half goes to SO; the most significant half to S1. I 
is destroyed when Sl is loaded with the referenced most 
significant half of the double word. I. is the address of the 
least significant half of the double word, while I + 1 points to 
the most significant half of the double word. . 

Stack Stack Status 
position Initial Final 

SO I (I) 

Sl A (1+1) 
S2 B A 

S3 C B 
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ASNGS V, I ASSIGN GLOBAL SINGLE WORD. 

The 16-bit word in the second word of the stack is read 
destructively and stored (assigned) into memory. The address in 
memory where" this assignment is made is I, a 16-bit value 
initially in the top word of the stack. Upon completion of the 
assignment, both I and the value to be assigned are removed from 
the stack by incrementing TOS by two (i.e., popping the stack 
twice) • 

ASNGD V' ,I 

Stack 
position 

So 
Sl 
S2 
S3 

Stack Status 
Initial Final 

I 
V 
A 
B 

A 
B 
C 
D 

ASSIGN GLOBAL DOUBLE WORD. 

The address, I, is initially in the top of the stack (SO). 
The second and third words of the stack contain the double word, 
V', (two 16-bit words) with the least significant half in Sl and 
the most significant half in S2. The double word, V', is read 
destructively from the stack and stored (assigned) into two 
consecutive words in memory. The least significant half goes 
into the address I~ the most significant half to I + 1. Upon 
completion of the double word assignment, the stack is popped 
three times to remove the double word and the address I. 

Stack Stack Status 
position Initial Final 

SO I A 
Sl V' (LS HALF) B 
S2 V' (MS HALF) C 
S3 A D 
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REFSA <K>: REFERENCE SINGLE ABSOLUTE. References (reads) a 
16-bit word from memory and places it in the top of the stack. 
The address K, is the" l6-bit value in the two bytes £ollo,ing the 
REFSA syllable. 

Stack Status Stack 
position Initial Final 

So 
Sl 
S2 
S3 

A 
B 
C 
D 

REFDA <K>: REFERENCE DOUBLE ABSOLUTE. 

(K) 

A 
B 
C 

References (reads) two 16-bit words from memory and places it 
in the top of the,stack. The address K, is the 16-bit value in 
the two bytes following the REFDA syllable. 

Stack Status Stack 
position Initial Final 

ASNSA <K>,V • • 

SO 
S1 
S2 
S3 

A 
B 
C 
D 

ASSIGN SINGLE ABSOLUTE • 

The l6-bit word, v, in the top of 
destructively and assigned (stored) into the 
K, is the 16-bit value in the two bytes 
syllable. 

Stack Status 

(K) 
(K+1) 

A 

B 

the stack is read 
memory. The address 
following the ASNSA 

Stack 
position Initial Final 

so 
Sl 
S2 
S3 

V 

A 
B 
C 
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ASNDA <K>,V' ASSIGN DOUBLE ABSOLUTE. 

The double word, V', is initially in the two top words of the 
stack; the least significant half is SO, and the most significant 
is Sl. These two words are read destructively from the stack and 
assigned (stored) to the memory. The address K, is the 16-bit 
value in the two bytes following the ASNDA syllable. 

Stack Stack Status 
position Initial Final 

SO V' (LS half) A 
51 V' (MS half) B 
52 A C 
53 B D 

REFSC <0,1>: REFERENCE SINGLE COMPONENT. 

References (reads) a 16-bit word from memory and places it in 
the top of the stack. 0 is a positive offset <16. I is an index 
from the LENV register and points to the I'th word in the local 
environment. The address from which the word is obtained is 
computed by adding 0 to the contents of the word pOinted to by 
LENV + I. If, however, the index I is 0 then the address is 
obtained by adding 0 to the contents of the top of the stack. 

Stack Stack Status 
position Initial Final 

SO A «LENV+I)+O) 
Sl B A 
S2 C B 
53 D C 
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REFDC <0,1>: REFERENCE DOUBLE COMPONENT. 

References (reads) a double word from memory and places it in the 
top two words of the stack. 0 is a positive offset < 16. I is an 
index from the LENV register and points to the I'th word in the 
local environment. The addresses from which the double word is 
obtained are computed by adding 0 and 0 + 1 to the contents of 
the word pointed to LENV + I. If, however, the index i is 0 then 
the addresses are obtained by adding 0 and 0 + 1 to the contents 
of the top of the stack. 

Stack Stack Status 
position Initial Final 

SO A «LENV+I)+O) 
Sl B «LENV+I)+O+l) 
S2 C A 
S3 D B 

ASNSC <O,I>,V ASSIGN SINGLE COMPONENT. 

The 16-bit word, V, in the top of the stack is read 
destructively and stored (assigned) into memory. 0 is a positive 
offset < 16. I is an index fro~ the LENV register and points to . 
the I'th word in the local environment. The address in which the 
word is to be stored is obtained by adding 0 to the contents of 
the word pointed to by LENV + I. If, however, the index I is zero 
then the address is obtained by adding 0 to the contents of Sl. 

Stack 
position 

SO 
Sl 
S2 
S3 

Stack Status 
Initial Final 

V 
A 
B 
C 
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ASNDC <O,I>,VI ASSIGN DOUBLE COMPONENT. 

The double word, VI, in the top two words of the stack are 
read destructively and stored (assigned)" into memory. 0 is a 
positive offset < 16. I is an index from the LENV register and 
points to the lIth word of the local environment. The addresses 
in which the double word is to be stored are obtained by adding 0 
and 0 + 1 to the contents of the word pointed to by LENV + I. 
If, however, the index I is 0 then the addresses are obtained by 
adding 0 a,nd 0 + 1 to the contents of S2. 

Stack Stack Status 
position Initial Final 

SO VI (LS half) A 
Sl VI (MS half) B 
S2 A C 

S3 B D 

REFSP <P,O>: REFERENCE SINGLE USING POINTER TABLE 

References (reads) a 16-bit word from the Global Environment 
portion of memory and places it in the top of the stack. P is an 
offset . into the currently active base register pointer table 
(pointed to by the BRPT register) and 0 is either a positive 
offset or zero. The address from which the word is obtained is 
computed by adding 0 to the contents of the word pointed to by 
BRPT + P. 

Stack Stack Status 
position Initial Final 

SO A «BRPT+P)+O) 
Sl B A 
S2 C B 
S3 D C 
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REFDP <P,O>: REFERENCE DOUBLE USING POINTER. 

References (reads) a double word from the Global Environment 
portion of memory and places it into the top two words of the 
stack. P is an offset into the current base register pointer 
table and 0 is either a positive offset or zero. The addresses 
from which the double word is obtained are computed by adding 0 
and 0 + 1 to the contents of the word pointed to by BRPT + P. 

Stack Stack Status 
position Initial Final 

SO A «BRPT+P)+O) 
51 B «BRPT+P)+O+l) 
52 C A 
53 D B 

ASNSP <P,O>,V ASSIGN SINGLE USING POINTER. 

The 16-bit word, V, in the top of the stack is read 
destructively and stored (assigned) into memory. P is an offset 
into the current base register pointer table (pointed to by the 
BRPT register) and 0 is either a positive offset or zero. The 
address in which the word is to be stored is obtained by adding 0 
to the contents of the word pointed to by PDTR + P. 

Stack 
Position 

SO 
51 
52 
53 

Stack Status 
Initial Final 

V 
A 
B 
C 
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ASNDP <P,O>,V' ASSIGN DOUBLE USING POINTER. 

The double word, V', in the top two words of the stack are 
read destructively and stored (assigned) into memory. P is an 
offset into the current base register pointer table (pointed to 
by the BRPT register) and 0 is either a positive offset or zero. 
The addresses in which the double word is to be stored are 
obtained by adding 0 and 0 + 1 to the contents of the word 
pointed to by BRPT + P. 

Stack Stack Status 
Position Initial Final 

SO V' (LS half) A 
Sl V' (MS half) B 
S2 A C 
S3 B D 

REFSPI <P,O,I> REFERENCE SINGLE USING POINTER AND INDEX. 

References (reads) a l6-bit word from memory and places it in 
the top of the stack. P is an offset into the current base 
register pointer table (pointed to by the BRPT register). 0 is 
either a positive offset or zero. I is an index from the LENV 
register and points to the I'th word of the local environment. 
The address from which the word is obtained is computed by adding 
the contents of the word pointed to by LENV + I to the result of 
adding 0 to the contents of the word pointed to by BRPT + P. 

Stack 
Position 

SO 
Sl 
S2 
S3 

Stack Status 
Initial Final 

A 
B 
C 
D 
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REFDPI <P,O,I> REFERENCE DOUBLE USING POINTER AND INDEX. 

References (reads) a double word from the Global Environment 
portion of memory and places it into the top two words of the 
stack. P is an offset into the current base register pointer 
table (pointed to by the BRPT register). 0 is either a positive 
offset or zero. I is an index from the LENV register and points 
to the I'th word of the local environment. The addresses from 
which the double word is obtained are computed by adding twice 
the contents of the word pointed to by LENV + I to the results of 
adding 0 and 0 + 1 to the contents of the word pointed to by PDTR 
+ P. 

Stack 
Position 

ASNSPI <P,O,I>,V 

So 
Sl 
S2 
S3 

• . 

Stack Status 
Initial Final 

A 
B 
C 
D 

«BRPT+P)+O+2*(LENV+I» 
«BRPT+P)+O+l+2*(LENV+I» 

A 

B 

ASSIGN SINGLE USING POINTER AND INDEX. 

The 16-bit word, V, in the top of the stack is read 
destructively and stored (assigned) into memory. P is an offset 
into the currently active page definition table (pointed to by 
the BRPT register) and ~ is either a positive offset or zero. I 
is an index from the LENV register and points to the I'th word of 
the local environment. The address in which the word is to be 
stored is obtained by adding the contents of the word pointed to 
by LENV + I to the result of adding Oto the contents of the word 
pointed to by BRPT + P. 

Stack Stack Status 
Position Initial Final 

SO V A 
Sl A B 
S2 B C 
S3 C D 
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ASNDPI <P,O,I>,V I ASSIGN DOUBLE USING POINTER AND INDEX. 

The doub!e word, VI, in the top two words of the stack are 
read destructively and stored (assigned) into memory. P is an 
offset into the current base register pointer table (pointed to 
by the BRPT register) and ° is either a positive offset or zero. 
I is an index from the LENV register and points to the lIth word 
of the Local environment. The addresses in which the double word 
is to be stored are obtained by adding twice the content of the. 
word pointed to by LENV + I to the results of adding ° and ° + 1 
to the contents of. the word pointed to by BRPT + P. 

Stack Stack Status 
Position Initial Final 

SO VI (LS half) A 
Sl VI (MS half) B 
S2 A C 
S3 B D 

4.8.1.2 Arithmetic Instructions. 

ADD X,Y TWO's COMPLEMENT INTEGER OR FRACTIONAL ADD. 

The ADD operator performs binary addition on two l6-bit 
operands initially in the top two positions of the stack (SO and 
Sl) and pops the stack to replace the original operands, leaving 
the result in the top of the stack (SO). The result is the binary 
sum of the two l6-bit operands. Overflow occurs if the result x+y 
can not be represented in 16 bits. 

Stack Stack Status 
Position Initial Final 

SO y x+y 
Sl X A 
S2 A B 
S3 B C 
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SUB X,Y TWO's COMPLEMENT INTEGER OR FRACTIONAL SUBTRACT. 

The subtract operator performs binary two's complement 
subtraction of Y, a l6-bit operand initially in the top of the 
stack (SO) from X, a l6-bit operand initially in the second word 
of the stack (Sl). The stack is popped to remove· the original 
operands, leaving the result in the new top of the stack (SO). 
The result is the two's complement difference X-Yo Overflow 
occurs if the result X-Y can not.be represented in 16 bits. 

MPYI X,Y 

Stack 
Position 

SO 
Sl 
S2 
S3 

Stack Status 
Initial Final 

y 

X 

A 
B 

X-Y 
A 
B 
C 

TWO's COMPLEMENT INTEGER MULTIPLY. 

The MPYI operator performs binary multiplication of two l6-bit 
integer operands in two's complement form and pops the stack to 
replace the original operands, leaving the l6-bit result in the 
new top of stack. Initially, the multiplier Y is in the top of 
the stack (SO) and the multiplicand X is the next position (Sl). 
The result is the binary product Y times X, modulo 2expl6: i.e., 
the least significant 16 bits of the double-length product. 
Overflow occurs if the result x*y can not be represented in 16 
bits. In case of overflow the result in SO is 7FFF or 8000 
depending on the sign of the result. 

Stack 
Position 

SO 
Sl 
S2 
S3 

Stack Status 
Initial Final 

Y 
X 
A 
B 
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DIVI X,Y TWOs COMPLEMENT INTEGER DIVIDE. 

The DIVI operator divides X, a fixed point two's complement 
integer in stack position Sl, by Y, a fixed point two's 
complement integer in stack position so. The original operands 
are eliminated by a stack adjustment and the result, the quotient 
represented as a two's complement integer, is placed in the top 
of the stack, SO. If the divisor is zero, the divide operation 
is not performed, and the result equal to ·zero is left in the top 
of the stack. For non-zero operands, the result of the DIV 
operator is the 16-bit signed two's complement representation of 
the integer binary divide operation on the operands (originally 
in two complement representation) converted to positive integer 
representation. The two's complement of the integer divide 
quotient forms the result if. the original operands had opposite 
signs. Since an integer result is produced, the result quotient 
is zero if the absolute value of the dividend is less than that 
of the divisor. No remainder representation is preserved. 

ABSV X . . 

Stack 
position 

so 
Sl 
S2 
S3 

Stack Status 
Initial Final 

y 

X 

A 
B 

X/Y 
A 
B 

C 

ABSOLUTE VALUE, SINGLE WORD. 

This operator replaces the 16-bit word, X, in so by its 
absolute value. That is, if the leftmost bit (bit 15) of X is a 
1, the two's complement of X is placed in SO; otherwise, the 
stack remains as it was prior to the operation. Overflow occurs 
if X-"8000". 

Stack 
position 

so 
Sl 
S2 
S3 

Stack Status 
Initial Final 

X 

A 
B 

C 
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Ixi 
A 

B 

C 



MPY X,Y TWO's COMPLEMENT FRACTIONAL MULTIPLY. 

The MPY operator performs binary multiplication of two 16-bit 
fraction operands in two's complement form and pops the stack to 
replace the original operands, leaving the l6-bit result in the 
new top of stack. Initially the multiplier Y is in the top of the 
stack (SO) and the multiplicand X is the next position (51). The 
result is the binary product Y times X; i.e., the most 
significant 16 bits of the double-length product. Overflow occurs 
if x=y="aOOO". 

MPYE X,Y 

Stack 
position 

SO 
51 
52 
53 

Stack Status 
Initial Final 

Y 
X 
A 
B 

X*Y 
A 
B 
C 

TWO's COMPLEMENT FRACTIONAL MULTIPLY. 

The MPYE operator performs binary multiplication of two l6-bit 
fraction operands in two's complement form and pops the stack to 
replace the original operands, leaving the 32-bit result in the 
top 2 words of stack. Initially the multiplier Y is in the top of 
the stack (SO) and the multiplicand X is the next position (51). 
The result is the binary product Y times X; i.e., the the 32-bit 
double-length product. Overflow occurs if x=y·"aOOO". 

Stack Stack Status 
Position Initial Final 

SO Y x*y (LS HALF) 
51 X X*Y (MS HALF) 
52 A A 
53 B B 
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DIV X,Y TWO's COMPLEMENT FRACTIONAL DIVIDE. 

The DIV operator divides X, a fixed point two's complement 
fraction in stack position 51, by Y, a fixed point two's 
complement fraction in stack position SO. The original operands 
are eliminated by a stack adjustment and the result, the quotient 
represented as a two's complement fraction, is placed in the top 
of the stack, SO. If the divisor is zero, the divide operation 
is not performed, and the result equal to· zero is left in the top 
of the stack. Overflow occurs if IYI<IXI or X=Y="BOOO". 

ADDD X' , Y' 

Stack 
position 

SO 
51 
52 
53 

Stack Status 
Initial Final 

Y 
X 

A 
B 

x/Y 
A 
B 
C 

TWO'S COMPLEMENT DOUBLE WORD ADD. 

The ADDD operator performs binary addition on two 32-bit 
(double) operands initially in the top four positions of the 
stack (SO through 53) and pops the stack to replace the original 
operands, leaving the result in the top of the stack (SO, 51). 
The result is the binary sum of the two 32-bit operands. Overflow 
occurs if X'+Y' can not be represented in 32 bits. 

Stack Stack Status 
position Initial Final 

SO Y' (LS half) X'+Y'(LS half} 
51 Y' (MS half) X' +Y' (MS half) 
52 X' (LS half) A 
53 X' (MS half) B 
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SUBD X' , Y' TWO'S COMPLEMENT, DOUBLE WORD SUBTRACT. 

The subtract operator performs binary· two's 
subtraction of Y', a 32-bit operand initially in the 
registers from X' , a 32-bit operand initially in the 
registers. The stack is popped to remove the original 
leaving the result in the new top of the stack (SO, 
result is the two's complement difference X' - Y'. 
occurs if X' - Y' can not be represented in 32 ~its. 

Stack Stack Status 
Position Initial Final 

complement 
SO and Sl 
S2 and S3 
operands, 
Sl). The 

Overflow 

SO Y' (LS halt> X' -Y' (LS half) 
Sl Y' (MS half) X' -Y' (MS half) 
S2 X' (LS HALF) A 
S3 X' (MS HALF) B 

MPYD X' ,Y' : TWO's COMPLEMENT FRACTIONAL MULTIPLY, DOUBLE WORD 

The MPYD operator performs binary multiplication of two 32-bit 
fraction operands in two's complement form and POPS the stack to 
replace the original operands, leaving the 32-bit result in the 
new top of stack Initially the multiplier Y' is in the SO and Sl 
registers and the multiplicand X' is in S2 and S3. The result is 
the binary product Y' times X'; i.e., the most significant 32 
bits of the four word product. 

Stack Stack Status 
Position Initial Final 

SO Y' (LS HALF) X'*Y'(LS half) 
Sl Y' (MS HALF) X' *Y' (MS half) 
S2 X' (LS HALF) A 
S3 X' (MS HALF) B 
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DIVD X' ,Y' : TWO's COMPLEMENT FRACTIONAL DIVIDE, DOUBLE WORD. 

The DIVD operat?r divides X', a fixed point two's complement 
32 bit fraction ln (S2, S3), by Y', a fixed point two's 
complement 32-bit fraction in (SO, Sl). The original operands are 
eliminated by a stack adjustment and the result, the quotient 
represented as a two's complement fraction, is placed into SO and 
Sl. If the divisor is zero, the divide operation is not 
performed,.and the result equal to zero is left in the top of the 
stack. 

ABSDX' • . 

Stack Stack Status 
position Initial Final 

SO Y' (LS half) X' /Y' (LS 
Sl Y' (MS half) X' /Y' (MS 
S2 X' (LS half) A 
S3 X' (MS half) B 

ABSOLUTE VALUE, DOUBLE WORD • 

half) 
half) 

This operator replaces the 32-bit (double-length) word X' in 
(Sl, SO) with its absolute value. That is, if the sign bit of X' 
(bit 15 of Sl) is a 1, then the two's complement of X' is placed 
in (Sl, SO): otherwise, the stack remains as it was prior to the 
operation. Overflow occurs if X'="80000000". 

Stack 
position 

SO 
Sl 
S2 
S3 

Stack Status 
Initial Final 

X' (LS half) 
X' (MS half) 

A 

B 
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EXTS X EXTEND SIGN. 

This operator extends the sign bit of the operand in SO. The 
operand stays in the top of the stack (SO) and the extended sign 
(0 or -1) is stored in Sl. Space for SIGN (X) is allocated on the 
stack by pushing the stack once and moving X to the top of the 
stack. 

MPYID X' , Y' 

Stack 
Position 

SO 
Sl 
S2 
S3 

Stack Status 
Initial Final 

X 

A 
B 
C 

x 
SIGN(X) 

A 
B 

TWO's COMPLEMENT INTEGER MULTIPLY, DOUBLEWORD 

The MPYID operator performs binary multiplication of two 
32-bit integer operands in . two's complement form and pops the 
stack to replace the original operands, leaving the 32-bit result 
in the SO and Sl registers. Initially the multiplier Y' is in SO 
and Sl, and the multiplicand X' is in S2 and S3. The result is 
the binary product Y' times X', modulo 2 exp 32; i.e., the least 
significant 32 bits of the four word product. 

Stack Stack Status 
position Initial Final 

SO Y' (LS half) X' *y' (LS half) 
Sl Y' (MS half) X'*Y'(MS half) 
S2 X' (LS half) A 
S3~ X' (MS half) B 
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DIVID X' ,Y' : TWO's COMPLEMENT INTEGER DIVIDE, DOUBLEWORD. 

The DIVID operator divides X', a fixed point two's complement 
integer in 52 and 53 by Y', a fixed point two's complement 
integer in SO and 51. The original operands are eliminated by a 
stack adjustment and - the result, the quotient· represented as a 
two's complement integer, is placed in the top of the stack, in 
SO and 51. If the divisor is zero, the divide operation is not 
performed, and the result equal to zero is left in the top of the 
stack. 

Stack Stack Status 
position Initial Final 

SO y' (L5 half) X' /Y' (L5 half) 
51 Y' (M5 half) X' /Y' (M5 half) 
52 Xi (L5 half) A 
53 X' (M5 half) B 

4.8.1.3 Bit Manipulation Instructions. 

SRS X,L : RIGHT SHIFT. , 

This operator right shifts the operand X, in stack position 
51, by the amount L in stack position so. The shift is performed 
with a zero fill. The stack is popped once after the shift is 
performed. 

Stack 
position 

so 
Sl 
52 
53 

Stack Status 
Initial Final 

L 
X 
A 
B 
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SLS X,L : LEFT SHIFT. 

This operator left shifts the operand X, in stack position 51, 
by the amount L in stack position so. The shift is performed with 
a zero fill. The stack is popped once after the shift is 
performed. 

Stack 
Position 

50 
51 
52 
53 

Stack 5tatus 
Initial Final 

L 
X 

A 
B 

X 
A 
B 
C 

INSERT Y,X,S,L . . INSERT FIELD IN WORD • 

The INSERT operator extracts a right-justified field of length 
L from Y, a single-word stack operand, and inserts it into a 
cleared field (starting at bit number 5 and length L) in another 
single-word operand, X. Initially the source operand X is in 
stack position 52, the operand Y in 53. The starting bit number S 
(0<5<15) is encoded in the least significant four bits of (51), 
and the field length, L (0<L<16) is encoded in the least 
significant five bits of (SO). The extracted field begins at bit 
position 5 and ends at bit position S+L-l. For the purpose of 
counting bit positions, the least significant bit is '0' and the 
most significant bit is '15'. The l6-bit result with inserted 
field is placed at the top of the stack and the original stack 
contents (SO, 51, 52, 53) discarded. 

Stack 
Position 

50 
51 
52 
53 

Stack Status 
Initial Final 

l6-L 
5 
X 
Y 
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XTRACT X,S,L : EXTRACT FIELD FROM WORD. 

The XTRACT operator extracts a field defined bY,a starting bit 
number and a length (number of bits) from a 16-bit word (X) , in 
the third word of the stack. The result, the right-justified 
extracted field, is placed in the top word of the stack, and the 
field description parameters and the original word are discarded~ 
Initially the operand X is in stack location (S2), the starting 
bit number, S (0<S<15) is in the least significant 4 bits of 
stack location Sl, and the field length in bits, L (0<L<16) is in 
the least significant 5 bits of the top of the stack (SO). The 
extracted field begins at bit position S and ends at bit position 
S+L-l. For the purpose of counting bit positions, the least 
significant bit is '0' and the most significant bit is '15'. 

REFBIT N,X 

Stack Status Stack 
Position Initial Final 

SO 
Sl 
S2 
S3 

16-L 
S 
X 
A 

REFERENCE BIT. 

X 

A 
B 
C 

This operator reads the Nth bit of memory pointed to by X. 
Initially, address X is in the top of the stack (SO) and N is in 
Sl. Finally, X and N are popped from the stack and the bit value 
(0 or 1) is returned in SO. 

Stack 
Position 

SO 
Sl 
S2 
S3 

Stack Status 
Initial Final 

X 
N 
A 
B 

- 70 -

BIT VALUE 
A 
B 
C 



ASNBIT V,X,N: ASSIGN BIT. 

This operator assigns (writes) the value V (0 or 1) in the Nth 
bit of memory location X. Initially X, N and V are in SO, Sl and 
S2, respectively. Finally, all three operands are popped from the 
stack. 

Stack Status Stack 
position Initial Final 

SO 
Sl 
S2 
S3 

X 
N 
V 
A 

4.8.1.4 Logical Instructions. 

AND X,Y : LOGICAL AND, SINGLE WORD. 

A 
B 
C 
D 

This operator produces the logical bit-by-bit product of the 
two 16-bit words initially on top of the stack. That is, the word 
X in Sl is 'AND-ed' with the word Y in so. The result is placed 
in Sl and then the TOS pointer is incremented by 1, leaving the 
result on top of the stack. 

Stack Stack Status 
position Initial Final 

SO Y X AND Y 
Sl X A 
S2 A B 
S3 B C 
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OR X,Y : LOGICAL OR, SINGLE WORD. 

This operator produces the logical bit-by-bit inclusive OR of 
the two l6-bit words initially on top of the stack. That is, the 
word X in Sl is 'OR-ed' with the word Y in SO. The result is 
placed in Sl and then the TOS pointer is incremented by 1, 
leaving the result on top of the stack. 

Stack Stack Status 
Position Initial Final 

SO Y X OR Y 
Sl X A 
S2 A B 
S3 B C 

XOR X,Y LOGICAL EXCLUSIVE OR, SINGLE WORD. 

This operator produces the logical bit-by-bit exclusive-or of 
the two 16-bit words initially on top of the stack. That is, the 
exclusive sum of the word X in Sl and the word Y in SO is formed. 
The result is placed in 51 and then the TOs pointer is 
incremented by 1, leaving the result on top of the stack. 

NOT X • . 

Stack Stack Status 
Position Initial 

SO Y 
51 X 
52 A 
53 B 

LOGICAL COMPLEMENT, SINGLE WORD. 

Final 

X XOR Y 
A 
B 
C 

This operator replaces the 16-bit word X in SO by its one's 
complement. 

Stack 
position 

SO 
51 
S2 
S3 

Stack Status 
Initial Final 

X 

A 

B 

C 
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A 
B 
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4.8.1.5 Relational Instructions. 

GR X,Y TWO's COMPLEMENT INTEGER GREATER THAN, SINGLE WORD. 

This operator algebraically compares two 16-bit integers 
(fixed point representation) initially in the top of the stack. 
'Is X greater than Y?' (X is in 51 and Y in SO.) If X is 
algebraically greater than Y, then the logical true value (all 
ONEs) is placed in the top of the stack (SO). If X is equal to, 
or algebraically less than Y, then the logical false value (all 
ZEROs) is placed in the top word of the stack. In either case, a 
stack 'pop' adjustment replaces the original operands with the 
logical results in the new top of the stack. 

Stack Stack Status 
position Initial Final 

SO Y LOGICAL RESULT 
51 X A 
52 A B 
53 B C 

GRD x' ,y' : TWO's COMPLEMENT INTEGER GREATER THAN, DOUBLE WORD. 

This operator algebraically compares two 32-bit integers 
(fixed point representation) initially in the top of the stack. 
'Is X' greater than Y'?'. (X' is in (S2, 53); Y' is in (SO, 51». 
If X' is algebraically greater than Y', then the logical true 
value (all ONEs) is placed in the top of the stack (SO). If X' is 
equal to, or algebraically less than Y', then the logical false 
value (all zeros) is placed in the top word of the stack. either 
case, a stack 'pop' adjustment replaces the original operands 
with the logical results in the new top of stack. 

Stack 
Position 

SO 
Sl 
52 
53 

Stack Status 
Initial Final 

Y'(LS HALF) 
Y'(NS HALF) 
X'(LS HALF) 
X'(NS HALF) 
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RESULT(NS HALF) 
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EQ X,Y EQUAL, 5INGLE WORD. 

This 'operator compares two 16-bit operands in the top two 
stack positions for equivalence. If the contents of the top of 
the stack (50) is equal to the contents of the next stack 
position (51), then the result is the logical truth value (all 
ONEs); otherwise, the result is the logical false value (all 
ZEROs). In either case, a stack pop replaces the original 
operands with the logical result in the top of the stack (50). 

EQD X' , Y' . . 

5tack 
position 

50 
51 
52 
53 

5tack 5tatus 
Initial Final 

Y 
X 
A 
B 

LOGICAL RE5ULT 
A 
B 

C 

EQUAL, DOUBLE WORD •. 

This operator compares two 32-bit operands in the top four 
stack positions for equivalence. If the contents of 52 and 53 
(X') is equal to the contents of the 50 and 51 (Y') then the 
result is the logical truth value (all ones); otherwise, the 
result is the logical false value (all ZEROs). In either case, a 
stack pop replaces the original operands with the logical result 
in the top of stack (50). 

Stack Stack Status 
Position Initial Final 

50 Y' (L5 HALF) RE5ULT(L5 HALF) 
51 Y' (M5 HALF) RE5ULT(M5 HALF} 
52 X' (LS HALF) A 
53 X' (M5 HALF) B 
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, 

4.8.1.6 Control Transfer Instructions. 

1FT C,N . . IF CONDITION TRUE, CONTINUE, ELSE SKIP. 

The 1FT operator provides conditional self-relative program 
control transfer. If the condition, C, initially in stack 
location (Sl) is true (not all ZEROS), then the program syllable 
execution continues in sequence. If the condition, C, is false 
(all ZEROS), the N program syllables are skipped. If the skip is 
to be performed, the current contents of the program syllable 
counter are incremented by N, a TWOs complement number in the top 
of the stack (SO) to form the address of the next program 
syllable to be executed. A stack pop of 2 eliminates both the 
condition and the skip count from the top of the stack. 

Stack 
Position 

SO 
Sl 
S2 
53 

Stack Status 
Initial Final 

N 
C 
A 
B 

A 
B 
C 
D 

IFF C,N : IF CONDITION FALSE, CONTINUE, ELSE SKIP. 

The IFF operator ,provides conditional self-relative program 
control transfer. If the condition C, initially in the stack 
location (Sl) is false (all ZEROS) then program syllable 
execution continues in sequence. If the condition C is true (not 
all ZEROS) then N program syllables are skipped. If the SKIP is 
to be performed the current contents of the program syllable 
counter are incremented by N, a twos complement number in the top 
of the stack (SO) to form the address of the next program 
syllable to be executed. A stack pop of 2 eliminates both the 
condition and skip count from the top of the stack. 

Stack Stack Status 
position Initial Final 

SO N A 
Sl C B 
S2 A C 
S3 B D 
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BRANCH<L>: BRANCH TO LOCATION L. 

This operator transfers control to address L by loading SPCR 
with L. Address L is contained in the 2 bytes following the 
BRANCH opcode byte. 

SKIP N : UNCONDITIONAL SKIP. 

The skip operator provides unconditional self-relative program 
control transfer, an unconditional skip by the number of program 
syllables specified by N, a 16-bit two's complement number in the 
top of the stack. After incrementing the current value of the 
program syllable count register by the contents of the top of the 
stack, N, a stack adjustment pops N from the stack. 

Stack 
Position 

Stack Status 
Initial Final 

So 
51 
52 
53 

N 
A 
B 
C 

A 
B 

C 
D 

SVSKIP N • . SAVE CURRENT SPCR & SKIP N SYLLABLES. 

This operator saves the current 
syllable counter, SPCR, and skips 
address of the next program syllable 
incrementing the contents of the top 
contents of the SPCR replace the skip 
the stack. 

contents of the program 
N program syllables. The 
to be executed is formed by 
of the stack. The initial 

number, N,. in the top of 

Stack 
position 

Stack Status 

So 
Sl 
S2 
53 

Initial Final 

N 
A 
B 
C 
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POC : POWER ON CLEAR. 

Upon application of power to the CPU, the control is 
transferred to the microcode for this instruction. This 
instruction expects cache locations 0 to 3 in ROM to contain the 
following initialization information: 

o IPROC 
1 ITOS 
2 ISTKLIM 
3 IPSD 

The POC instruction initializes the TOS and STKLIM registers to 
values contained in locations land 2. The LENV and SPCR are 
initialized to O. The privileged mode is turned on by setting PMR 
tol and the mapper is turned off by writing 0 to "FFFE". 
Control is then transferred to CALL microsequence which in turn 
passes control to the procedure pointed to by location O. 
Location 3 of ROM should point to the PSD of this initial 
procedure. 
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4.8.1.7 Interrupt Related Instructions. 

INTERRUPT PROCESSING. 

The mechanism for handling interrupts includes procedures for 
interrupting a user program when interrupts are enabled, and an 
instruction for returning to user mode from interrupt mode, 
INTRTN. Since the procedure for interrupting a user program is 
not an instruction it is described here. For an interrupt to 
occur the processor must be in user mode (interrupts enabled)~ An 
interrupt can then occur at the end of the current instruction 
before the next instruction has begun. When this occurs the user 
stack becomes inactive and the interrupt stack is activated. :The 
machine state is saved in the current Processor State Descriptor 
(PSD). The location of this PSD is contained on the top of the 
Interrupt Stack. The PSD contains the following information: 

PSD 
o. TOS 
1. STKLIM 
2. SPCR 
3. LENV 
4. PMR 
5. MAP SELECT 
6. OTHER PSD 

INFORMATION 

The machine state is restored to the interrupt mode which is 
defined by the interrupt PSD. The interrupt PSD is pointed to by 
the internal register ISR. Next, the highest priority interrupt 
requesting service is pushed into the interrupt stack and that 
interrupt is cleared. Finally, all interrupts are disabled and 
interrupt program is activated. The instruction interrupt 
return, INTRTN, will reverse this process and restart .the 
interrupted procedure. The instruction HALT will cause an 
interrupt (number lO'Hex). The HALT interrupt can not be 
disabled. The instructions assign mask, ASNMSK and reference 
mask, REFMSK, allow access to the interrupt mask. The table 
below summarizes the interrupt assignments for the implementation 
of the CAPS-6 processor. 
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Interrupt 
Number 

o 
1 
2 
3 
4 
5 
6 
7 

·8 
9 
A 
B 
C 
D 
E 
F 

10 
11 
12 
13 
14 
15 
16 
17 

Maskab1e 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
yes 
no 
no 
no 
no 
no 
no 
no 
no 

Assignment/function 
unassigned* 
unassigned* 
unassigned* 
unassigned* 
unassigned* 
unassigned* 
unassigned* 
unassigned* 
unassigned 
unassigned 
arithmetic overflow 
IPC register 2 or 3 written 
interval timer 
write protect violate 
page fault 
reserved (for test adapter) 
halt instruction execution 
illegal opcode 
stack overflow 
non-local search fault 
privileged instruction fault 
pmcall fault 
unassigned 
unassigned 

* unavailable in this processor implementation 

INTRTN PSD.PTR : INTERRUPT RETURN 

Normally, this operator is executed in interrupt mode to 
return to a previously interrupted user mode program, the 
currently active stack is the interrupt stack (current contents 
of TOS point to the top of the interrupt stack). The current 
machine state is saved in the interrupt PSD. The user mode 
machine state is restored from the PSD pointed to by PSD.PTR (SO 
of the interrupt stack). The interrupts are enabled and the user 
task resumes in the state when the task was interrupted. 

HALT : 

This operator causes an interrupt 10'Hex. Interrupt lO'Hex is 
nonmaskable. 
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REFMSK: REFERENCE MASK. 

Thi~ operator references (reads) the mask register (M) from 
the interrupt controller and pushes the resulting word onto the 
top of the stack. Bit a of the mask register corresponds to 
interrupt 0, bit 1 to interrupt 1, etc. through bit 15 of the 
mask register which corresponds to interrupt 15. A bit set to 
'zero' implies that the corresponding interrupt is disabled, a 
'one' means it is enabled. 

ASNMSK M 

Stack Status Stack 
position Initial Final 

so 
Sl 
S2 
S3 

ASSIGN MASK •. 

A 
B 
C 
D 

M 
A 
B 
C 

This operator assigns (writes) M into the mask register of the 
interrupt controller. Initially M is in the top of the stack. 
After writing M into the mask register, the stack is popped once. 
The bit position n of the mask register corresponds to interrupt 
number n. A bit set to 'zero' implies that the corresponding 
interrupt is disabled, a 'one' means it is enabled. 

Stack 
position 

SO 
Sl 
S2 
S3 

Stack Status 
Initial Final 

M 
A 
B 
C 
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SWPMSK M : SWAP MASK 

This operator assigns (writes) M into the mask register of the 
interrupt controller. The original contents of the mask register 
are saved on top of the stack. Initially, M is in the top of the 
stack. That is, the new interrupt mask is swapped with· the old 
mask. 

CLRINT N 

Stack Status Stack 
position Initial Final 

So 
Sl 
S2 
S3 

M 
A 
B 
C 

CLEAR INTERRUPT. 

OLD.MASK 
A 
B 
C 

This operator clears the interrupt specified in the 4 least 
significant bits of the top of the stack. After the operation the 
stack is popped once. 

Stack 
Position 

So 
Sl 
S2 
S3 

, 
Stack Status 

Initial Final 

N 
A 

B 

C 
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4.8.1.8 Subroutine Linkage Instructions. 

CALL Xl, ••• ,XN,F CALL SUBROUTINE F. 

This operator transfers program control to a "called" routine 
and provides for passage of parameters, allocation of dynamic 
storage on the stack for local variables, and saving of the code 
descriptor of the "Caller" routine for subsequent return. 

a. Initially the top of the stack contains F, the l6-bit 
program syllable address of the called function or 
subroutine, and succeeding stack positions contain the 
respective parameters. 

b. A stack adjustment moves TOS so as to provide space for 
local variables (owns and temporaries). The number, w, 
of such variables is obtained from the 16-bit header of 
the subroutine body. (The leftmost byte of the header 
is masked prior to use.) 

c. The subroutine address ("procedure i.d."), LENV and 
SPCR are stored in the top three stack positions. 

d. Initial contents of the SPCR are replaced with the 
procedure address +4, effecting a transfer of control 
to the subroutine. 

e. The contents .of the LENV register are set equal to the 
stack pointer plus two, TOS+2. 

The initial and final stack states are 
Figure on the following page. 

indicated in the 

1 F actually points to the least significant byte of the 
header word of the procedure body. 

2 The compiler places a 1 in the leftmost bit position of 
every procedure body header word, in order to distinguish 
proc body code from alias beads. This is useful in 
implementation of DOlT-type mechanisms. 
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STACK BEFORE EXECUTION OF CALL INSTRUCTION 

• 
• 

TOS -> PROCID 

arg N 

arg N-l 

arg N-2 

· · · 
arg 1 

caller's 
accumulator 

space 

caller's SPCR 

PROCID 

LENV -> caller's LENV 

local 
environment 

• 

· 
• 
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STACK AFTER EXECUTION OF CALL INSTRUCTION 

• 

· 
TOS -> caller's SPCR 

PROCID 

LENV -> caller's LENV --+ 

J 

J-l 

• 

· 
• 

1 

arg N 

arg N-l 

arg N-2 

· 
• 

· 
arg 1 

caller's 
accumulator 

space 

<--+ 

• 

· 
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PMCALL Xl, ••• ,XN,N CALL PRIVILEGED SUBROUTINE N. 

This operator transfers program control to a call routine via 
an index into a table of privileged subroutine entry points. The 
table is pointed to by the real address 4. The index, N, is 
verified to be within the table limits. Upon CPU initialization 
the largest index is stored in real address 5. If the index is 
valid, the CPU enters the privileged mode state. SO is replaced 
with the indexed entry of the privileged subroutines table and 
the CPU transfers control to the CALL instruction. (See CALL 
instruction) 

Stack Stack Status 
Position Initial Final 

SO N PROC.ID 
Sl arg N arg N 
S2 arg N-l arg N-l 

• 
Sn arg 1 arg 1 

PMOFF: PRIVILEGED MODE OFF. 

This instruction compares the privileged mode register, PMR, 
with the contents of the location pointed to by LENV. If a match 
occurs, PMR is replaced with zeros and the CPU disables 
privileged mode. 

RETURN K : RETURN FROM SUBROUTINE. 

This operator provides for re-establishing the necessary state 
to return to a "caller" routine and to return (in the stack) an 
arbitrary number of values that may have been generated by the 
called subroutine. The number of words K (owns plus temporaries 
plus argument words) to be de-allocated is initially on top of 
the stack. The SPCR and LENV values of the caller program saved 
in the stack at the current LENV-2 and LENV locations replace the 
current SPCR andLENV values. The subroutine's returned values 
are copied down in the stack as K stack locations are de­
allocated (the called programs owns and temporaries plus any 
arguments). The initial and final stack states are shown in the 
figures on the following pages. 
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STACK BEFORE EXECUTION OF RETURN INSTRUCTION 

· 
• 

TOS -> K 

Subroutine 
Return 
Values 

caller's SPCR 

PROCID 

LENV -> caller's LENV --+ 

J 

J-l 

• 

· 
1 

arg N 

arg N-l 

· · 
arg 1 

caller's 
accumulator 

space 

<--+ 

• 
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STACK AFTER EXECUTION OF RETURN INSTRUCTION 

• 

· 
TOS -> Subroutine 

Return 
Values 

caller's 
accumulator 

space 

caller's SPCR 

PROCID 

LENV -> caller's LENV 

local 
environment 

• 
• 
• 
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GOTO A TRANSFER PROGRAM CONTROL VIA ALIAS BEAD. 

The GO TO instruction is used to jump to a program point which 
is outside the scope of the currently active subroutine. Control 
is passed by means of an alias bead. The formats for the four 
types of alias bead are shown below. Initially, SO contains the 
byte address of the least significant byte of the first word of 
the alias bead. If the transfer is through a switch, Sl must 
initially contain the switch index value. The situation is as 
follows: The new SPCR value is obtained from the alias bead, as 
is the LENV if the destination is a recursive procedure. If.the 
destination procedure is nonrecursive, the stack is "unwound" 
until a "proc i.d." is found in the stack frame which matches 
that of the alias bead. Then the associated local environment is 
activated. If the control transfer is to be through a switch~­

then the index value is moved from Sl of the initial stack to SO 
of the resulting stack. The microsequence for the GOTO operator 
is shown on the following page. 

LABEL AND SWITCH ALIASES. 
Label Alias, Non-recursive: 

Label alias Value 0 
VALUE SPCR of label 
VALUE procid 

Label Alias, Recursive: , Label alias VALUE 1 
VALUE SPCR of label 
VALUE LENV 

Switch Alias, Non-recursive: 
Switch alias VALUE 2 

VALUE SPCR of switch 
VALUE procid 

Switch Alias, Recursive: 
Switch alias VALUE 3 

VALUE SPCR of switch 
VALUE LENV 

Note: The code in the first word of an alias bead identifies 
its type. Any code value greater than 3 denotes a procedure; in 
fact, the leftmost bit of procedure body header word is always 
set to 1 by the assembler. Note: For recursive alias beads, the 
LENV (as well as the rest of the bead) is generated dynamically 
by run-time support software or microcode. 
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GOTO: 
so shifted right one ->SO 
M(SO) -> CODE; hardware temporary 
SO + 1 -> t; hardware temporary 
'POP' : 
CODE = 1 or 3 => 

begin 

end 

M(t+l) -> LENV; 
M(t) -> SPCR; 
go to alias.go; 

M(t+l) -> p; hardware temporary 
LENV -> tl; hardware temporary Loop: p = M<tl - 1> => 

begin 
tl -> LENV; 
M( t ) -> SPCR; 
go to alias.go; 

end 
M(tl) -> tl; 
tl = 0 => 

begin 

end 

Set program interrupt bit; 
DONE; 

go to loop; Alias.go: CODE = 2 or 3 => 
begin 
SO -> M(LENV-3); 

LENV-3 -> TOS: 
end 
else LENV-2 -> TOS; 

DONE: 
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4.8.1.9 Loop Control Instructions. 

The instructions FOR, STEP, UNTIL, and WHILE described in this 
section are used to efficiently implement FOR loops in the 
procedural language. These instructions are used for loops of ' the 
form: 

For I = II STEP 12 UNTIL 13 DO •••• ; 
or 

For I = II STEP 12 WHILE B3 DO 
the form: 

LOC I • Address of I , 
REF II • initial value , 
FOR L,B · Save SPCR and , 

· , · DO body code , 
· , 

REF 12 · step 12 , 
STEP · Increment I by , 

L EQU * · , 
REF 13 or B3 · 13 or B3 , 
UNTIL or WHILE • Test I against , 

.; The code will be of 

of I 
branch to L 

12 

13 or test B3 

FOR I,Il,<L> SAVE CURRENT SPCR AND BRANCH TO ADDRESS L. 

This operator saves the current contents of the program 
syllable counter, SPCR, and transfers control to address L by 
loading SPCR with L. Address L is contained in the 2 bytes 
following the FOR opcode byte. SO contains the initial value II 
of the loop variable I , Sl contains the address of the loop 
variable. SO is assigned to the location pointed to by Sl and the 
saved SPCR replaces SO. 

Stack 
Position 

SO 
Sl 
S2 
S3 

Stack Status 
Initial Final 

11 (value) 
I (adr) 
A 
B 
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STEP 12 STEP LOOP VARIABLE I BY AMOUNT 12. 

This operator adds the loop increment 12 to the loop variable 
I. Initially the value of 12 is in SO and the address of I is in 
S2. The stack is then popped once. 

Stack Stack Status 
Position Initial Final 

SO 12 (value) SPCR 
Sl SPCR I 
S2 I (adr) A 
S3 A B 

WHILE B3 TEST VARIABLE B3 AGAINST 0 AND LOOP OR EXIT. 

This operator tests the boolean variable B3 to determine if 
the loop should continue or exit. Initially the value of B3 is in 
SO. If SO is non-zero the loop continues by popping the stack 
once and storing SO (the saved SPCR) in SPCR. Otherwise the loop 
exits by popping the stack three times. 

Stack Stack Status 
Position Initial Loop Exit 

SO B3 SPCR A 
Sl SPCR I B 
S2 I A C 
S3 A B D 
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UNTIL 13 : TEST LOOP VARIABLE I AGAINST 13 AND LOOP OR EXIT. 

This operator tests the loop variable I against the final loop 
value 13 to determine if the loop should continue or exit. 
Initially the value 13 is in SO and the address of I is in S2. If 
the value of I is less than or equal to 13 the loop continues by 
popping the stack once and storing SO (the saved SPCR) into SPCR. 
Otherwise the loop exits by popping the stack three times. 

Stack Stack Status 
position Initial Loop Exit 

SO 13 SPCR A 
Sl SPCR I B 
S2 I A C 
S3 A B D 

LOOPT L,C LOOP ON CONDITION TRUE. 

This operator provides conditional loop return control (loop 
on condition true). Initially, the top of the stack (SO) contains 
a condition, C, and the next stack position (Sl) contains a 
16-bit absolute program syllable address corresponding to a loop 
head label, L. If the condition in SO is true (not all ZEROS), 
then the address in Sl replaces the current contents of the 
program syllable count register SPCR and a stack pop adjustment 
eliminates the condition, C, from the stack. If the condition is 
false (all ZEROS), then the SPCR is not changed (next program 
syllable in sequence to be executed; loop exit) and a stack 
adjustment pops both Land C from the stack. 

Stack Stack Status 
Position Initial Loop Exit 

SO C L A 
Sl L A B 
S2 A B C 
S3 B C D 
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LOOPF L,C LOOP ON CONDITION FALSE. 

The operator provides conditional loop return control (loop on 
condition false). Initially, the top of the stack (SO) contains a 
condition, C, and the next stack position (Sl) contains a 16-bit 
absolute program syllable address corresponding to a loop head 
label, L. If the condition in SO is false (all ZEROS), then the 
address in Sl replaces the current contents of the program 
syllable count register SPCR and a stack "pop" adjustment 
eliminates the condition, C from the stack. If the condition is 
true (not all ZEROS), then the SPCR is not changed (next program 
syllable in sequence to be executed- loop exit) and a stack 
adjustment pops both Land C from the stack. 

Stack Stack Status 
position Initial Loop Exit 

SO C L A 
Sl L A B 
S2 A B C 
S3 B C D 

4.8.1.10 Outer Block Data Transfer Instructions. 

REFNSE<K,P> 
SINGLE WORD. 

EXTENDED REFERENCE NON LOCAL ENVIRONMENT 

References (reads) a 16-bit word from the Nonlocal Environment 
portion of memory identified by the second and third syllables 
following the REFNSE syllable. The base address used is the 
address of the nonlocal stack frame located by matching the 
procedure I.D., P, to the proc. I.D. stored in the stack frame. 
If no match is found, a program interrupt will be generated. K, 
the value of the byte that follows the REFNSE syllable, is added 
to the base. 

Stack Stack Status 
position Initial Final 

SO A (LENV@P+K) 
51 B A 
S2 C B 
S3 D C 
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REFNDE<K,P> 
DOUBLE WORD. 

EXTENDED REFERENCE TO NONLOCAL ENVIRONMENT 

References (reads) a double word (two 16-bit words) from the 
Nonlocal environment identified by P, the second and third 
syllables following the REFNDE syllable~ The base address used is 
that of the nonlocal stack frame whose procedure I.D. matches P. 
K, the value of the byte following the REFNDE operation syllable, 
is the index used. The sum of base.and K points to the least 
significant half of the double word, while the sum of base and K 
+ 1 points to the most significant half of the double word. An 
interrupt occurs if no match on P is found. 

Stack 
position 

ASNNSE <K,P>,V 
SINGLE WORD. 

SO 
S1 
S2 
S3 

Stack Status 
Initial Final 

A (LENV@P+K) 
B (LENV@P+K+1) 
C A 
D B 

EXTENDED ASSIGN TO NONLOCAL ENVIRONMENT 

, 
The 16-bit word in the top of the stack is read destructively 

and stored (assigned) into memory in the Nonlocal environment 
identified by P, the second and third syllables following the 
ASNNSE syllable. The base address used is that of the nonlocal 
stack frame whose proc I.D. matches P. K is the value of the 
byte following the ASNNSE syllable and is added to the base to 
form the address of the resulting store. A program interrupt is 
generated if no match on P can be found. 

Stack 
Position 

SO 
S1 
S2 
S3 

Stack Status 
Initial Final 

V 
A 
B 
C 
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ASNNDE <K,P>,V' 
DOUBLE WORD. 

EXTENDED ASSIGN TO NONLOCAL ENVIRONMENT-

The double word, V', (two l6-bit words) is initially in the 
two top words of the stack; the least significant half is SO, and 
the most significant half is Sl. These two words are read 
destructively from the stack and stored (assigned) into two 
consecutive words of memory in the nonlocal environment 
identified by P, the second and third syllables following the 
ASNNDE syllable. The base address used is that of the nonlocal 
stack ~rame whose procedure I.D. matches P. K, the value of the 
byte following the ASNNDE byte, is added to the base to form the 
address of the least significant word of the resulting store. An 
interrupt occurs if no match on P can be found. 

Stack Stack Status 
Position Initial Final 

SO V' (LS half) A 
Sl V' (MS half) B 
S2 A C 
S3 B D 

NLOCL I,P : GLOBAL RELATIVE ADDRESS OF NON LOCAL WORD. 

Generates an address (relative to the Global Environment) that 
is the Ith word of the nonlocal environment identified by 
procedure I.D. P. This I-byte instruction is analogous to the 
LOCL instruction, but refers to nonlocal environment rather than 
to local environment. The two top words of the stack must 
indicate (a) in Sl, the environment being referenced, and (b) in 
SO, the relative displacement of the required variable within its 
environment. The stack is popped two places and then the global 
relative address of the requested variable is pushed onto the 
stack. 

Stack Stack Status 
Position Initial Final 

SO I LENV@P+I 
Sl P A 
S2 A B 
S3 B C 
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4.8.1.11 Stack Management Instructions. 

POP N POP STACK 

This operator pops the stack by one word. The value of TOS is 
incremented by one. 

DUPS V . 
• DUPLICATE TOP OF STACK, SINGLE WORD. 

The single word duplicate top of the stack operator executes a 
stack push operation and copies the initial contents V (16-bit 
word) of the top of stack into the location which is the new top 
of stack. The value V and its duplicate are left in the top two 
stack positions (Sl and SO). 

DUPD V' . . 

Stack 
Position 

SO 
Sl 
S2 
S3 

Stack Status 
Initial Final 

V 
A 

·B 
C 

V 
V 
A 
B 

DUPLICATE TOP OF STACK, DOUBLE WORD • 

The double word duplicate top of stack operator executes a 
push 2 operation and copies the double word V' initially in the 
top two positions of the stack into the corresponding two new 
positions at the top of the stack. The double word V' and its 
duplicate are left in the top four words of the stack. 

Stack Stack Status 
Position Initial Final 

SO V' (LS HALF) V' (LS HALF) 
Sl V' (MS HALF) V' (MS HALF) 
S2 A V' (LS HALF) 
S3 B V' (MS HALF) 
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EXCHS U,V EXCHANGE, 'SINGLE WORD. 

This operator exchanges the two words currently on top of the 
stack. 

Stack Stack Status 
Position Initial Final 

SO U V 
51 V U 
52 A A 
53 B B 

EXCHD U' , V' EXCHANGE, DOUBLE WORD. 

This operator exchanges the two double-length words currently 
on top of the stack. That is, SO and 52 are swapped, and 51 and 
53 are swapped. 

Stack Stack Status 
position Initial Final 

SO U' (LS HALF) V' (LS HALF) 
51 U' (MS HALF) V' (MS HALF) 
52 V' (LS HALF) U' (LS HALF) 
5'3 V'(MS HALF) U' (MS HALF) 

NOP: NULL OPCODE. 

This operator has no effect on the stack contents. Control is 
simply passed to the next instruction in the program sequence. 
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CHAPTER S. - Slave Region Design and Operation 

This chapter discusses the Slave- Region design and operation. 
Excepting for the BGU's, all devices. which are addressed 'and 
accessed by means of the system bus are within the Slave Region. 
These devices or modules are system memory modules, system I/O 
ports, real-time clock/counters, and LRU control, status and 
communications registers. Each of these units is interfaced to a 
transfer bus which is internal to the Slave Region. A slave 
coupler couples this slave transfer bus to the system bus. 

S.l Slave System Bus Coupler 

The Slave System Bus Coupler functions to accept the serial 
system bus commands, either reads or writes, convert them to the 
parallel format of the slave region transfer bus, and to control 
that transfer bus executing the indicated read or write to 
devices attached to the slave region transfer bus. 

The slave bus coupler first converts the serial address of a 
system bus read or write into a parallel format and then maps 
this 19 bit address into a 16 bit address. In the case of a 
system bus write, it then converts the serial data word to a 
parallel format and executes a transfer bus write of that word to 
the mapped 16 bit address. Devices attached to the slave 
transfer bus are responsible for recognizing their own addresses 
(in the mapped address space) and storing the data addressed to 
them. In the case of a system bus read, the slave coupler 
initiates a transfer bus read using the mapped address. Devices 
attached to the slave transfer bus are responsible for 
recognlzlng their own addresses (within the mapped address 
space). A device which recognizes its own address responds with 
the requested data word and a positive acknowledgment. If the 
slave coupler receives a positive acknowledgment it accepts. the 
data word, converting it to the serial format used on the system 
bus, and transmits it on the R bus outputs of the slave coupler. 
These R bus outputs are then gated directly to the system bus R 
line{s) where appropriately enabled by that LRU's BGU R line 
enabling registers. 

Operation 
the attached 
The arrival 
operation of 

of the slave coupler, the slave transfer bus, and of 
devices is synchronous with the LRU system clock. 

of a system bus command serves to synchronize the 
the slave coupler to a particular frame of the LRU 
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system clock. In those situations where several slave couplers 
must respond to a system read or write simultaneously, as in the 
case of a system memory triad read or ~rite, this synchronization 
to a particular frame of the LRU system clocks of each of the 
responding LRU's serves to assure simultaneous and tightly 
synchronized operation of each element of the responding triad, 
since the LRU system clocks of all LRU are synchronized by the 
system clocking mechanism. Thus the slave region is 
automatically synchronizing. No special action is required to 
achieve tightly synchronized operation of slave region triads, as 
is required to acheive processor triad synchronization. 

The mapping of the 19 bit system bus address into a 16 bit 
mapped address, which is used internally on the slave transfer 
bus, is relatively simple. In the case where the five most 
significant bits of the system bus address equal the content of 
the five least significant bits of the system memory relocation 
register (an LRU control register) the mapped slave transfer bus 
address is created by directly using the 14 least significant 
bits of the system bus address as the 14 least significant bits 
of the slave transfer bus address and using 00 as the two most 
significant bits of the 16 bit slave transfer bus address. The 
16K system memory module will respond to transfer'bus addresses 
"0000" through "3FFF". The writing of the LRU system memory 
relocation register thus determines which 16K block of the system 
memory address space the system memory module of an LRU will 
respond to. 

In the case where the 5 most significant bits of the system 
bus address do not equal the content of the relocation register 
the slave transfer address is constructed as fpllows. System bus 
address bits 18 through 10 are 'AND'ed together. If this result 
is 'zero' then 01 is used as the two most significant bits of the 
slave bus address and the 14 least significant bits of the system 
bus address are used as the 14 least significant bits of the 
slave bus address. There are no devices which respond to these 
addresses in the current implementation. If this result is 'one' 
then slave address bits 15, 13, 12, 11, and 10 are set to 'one', 
slave address bit 14 is set equal to system bus address bit 8, 
and slave address bits 9 and 8 are set equal to system bus 
address bits 9 and 8 except when the system bus address bits 9, 
8, 3, 2, 1 and 0 equal 100011 in which case slave address bits 9 
and 8 are set equal to 01. Figure 5.1 summarizes this mapping. 
Note that this entire mapping procedure is transparent to the 
processor triad and that for all practical purposes slave 
transfer bus devices can be treated as if they responded to 
system bus addresses directly. For this reason, all other 
sections of this volume discuss device function and system bus 
address assignments as if this were the case. Figure 5.2 
summarizes the system 'bus address assignments for all slave 
units. 
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if rrrrr = re10c reg. 

system bus address slave bus address 

rrr,rraa,aaaa,aaaa,aaaa -> OOaa,aaaa,aaaa,aaaa 

if rrrrrssss =1= 111111111 

system bus address slave bus address 

rrr,rrss,ssaa,aaaa,aaaa "-> 01ss,ssaa,aaaa,aaaa 

if rrrrrrrrr = 111111111 and abdddd =1= 100011 

system bus address slave bus address 

rrr,rrrr,rrab,cccc,dddd --> 1b11,11ab,cccc,dddd 

if rrrrrrrrr = 111111111 and abdddd = 100011 

system bus address slave bus address 

rrr,rrrr,rrab,cccc,dddd --> 1011,1101,cccc,0011 

Figure 5.1 System Bus Address to 
Slave Transfer Bus Address Mapping 

- 100 -



18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

I 

01 
reg 

1'1 1 1 1 1 1 1 1 1 1 0 0 sel LRU 

ERROR LATCH STATUS REGISTER ADDRESS 

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 1 1 1 1 1 01 LRU reg se1 

I/O PORT ADDRESSES 

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 1 1 1 1 1 11 LRU reg sel 

LRU CONTROL REGISTER ADDRESSES , 

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

11 I~I 
reg 

1 1 1 1 1 1 1 1 1 1 1 1 triad se1 

PROCESSOR TRIAD COMMUNICATION REGISTER ADDRESSES 

Figure 5.2 System Bus Address Assignment Summary 
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5.2 System RAM 

Each LRU in the FTMP contains 16K words of system memory. The 
system memory is made up of lK x 4 bit CMOS RAM chips. It is 
backed by battery power to provide non-volatile storage. The 
memory can be read or written over the system bus. It responds to 
a 19-bit address when the 5 most significant bits of the 19 bit 
address match the 5 low order bits of the MRR control register. 
The 14 low order bits of the address, which can range from 0000 
to 3FFF, select a word from the 16K memory array. Figure 5.3 
illustrates the address format for accessing system memory. 

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

block select Word Select (0000 to 3FFF) 

Figure 5.3 System Bus Address Format of System Memory 

5.3 Real Time Clock 

An accurate time reference is provided in the FTMP by a real 
time clock with a resolution of 250 microseconds. Logically, the 
real time clock is a 32-bit wide register that is incremented 
every 250 microseconds. Thus if reset, the clock can be 
incremented continually for approximately 12-1/2 days before 
overflowing. 

The clock can be read on the system bus by addressing 
locations "7FFFF" (high order clock word) and "7FFFE" (low order 
word). A read from 7FFFE latches the state of the clock (all 32 
bits) and the low order word is gated to the bus. A subsequent 
read from "7FFFF" gates the high order word that is already in 
the latch onto the bus. Each LRU has a 32-bit clock register but 
only one triad of LRU's is assigned to respond to reads· of the 
real-time clock. All LRU's respond to writes to the real-time 
clock. An LRU may be armed to respond to clock read requests by 
setting bit 5 of its Memory Relocation Register to 1. When the 
least significant word of the real-time clock ("7FFFE") is 
written, the divider network, which is used to derive the 250 
microsecond clock from the system clock, is cleared and held at 
zero. When the most significant word ("7FFFF") is then written 
the divider network is released. Since all real-time clocks and 
their associated divider networks respond to writes in 
synchronism with one another, a write serves to synchronize all 
clocks to one another. Furthermore, since they are all 
incremented by identical derivatives of the system clock time 
base, they will then stay synchronized. If an element of the 
clock triad fails it is not necessary to reinitialize the real-. 
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time clock system in order to effect repair. The failed unit can 
be replaced by removing it from ,the system and assigning another 
unit in its place. That unit is already operating in synchronism 
with the elements of the real-time clock/counter triad. 

The real-time clock is volatile and the loss of primary power 
causes its contents to be lost. 

5.4 Control, Communication and Status Registers 

There are 17 control, communication and status 
each LRU. These are described in the following 
sections. 

5.4.1 Control Registers 

registers in 
three sub-

There are nine control registers within each LRU. Each 
register is used to perform control specific LRU functions. These 
registers are shown in Figure 5.4. 

Registers 0 to 3 are 4-bit wide CPU control registers. The 
least significant bit of Register 0 controls the reset/run state 
of the CPU. The next 3 bits of Register 0 contain the processor 
triad identification assignment for the processor region. CPU 
control registers 1, 2 and 3 are presently unassigned. 

Control registers 4 to 7 are 4-bit wide line select registers. 
Registers 4 and 5 are used by the processor region bus 
controller. Register 6 is used by the I/O region bus coupler and 
register 7 is used by the clock region bus coupler. Each four 
bit code designates which three of five lines are to be selected 
by the input voting circuitry. Figure 5.5 summarizes the code to 
line select relationship. The codes to line select mapping is 
identical from all lines. This code to line select mapping is 
also identical to the code to line select mapping used by the 
BGU's, however the select register and input circuitry of the 
BGU's are separate from this control and input circuitry. 

Register 8 is a 6-bit system memory relocation register. The 5 
low order bits of this register form the 5 high order bits (bits 
14 to 18) of the 19 bit address space to which system memory in 
this LRU responds on the system bus. The most significant bit of 
the relocation register is used to arm/disarm the real time clock 
of the LRU. If the MSB is a 'one', the LRU responds to 'read 
clock' requests. Otherwise, read clock requests are ignored. 

The system address format of control registers is shown in 
Figure 5.6. As can be seen from this figure, the address of the 
registers is LRU specific. Therefore, the contents of the control 
registers in a given LRU can be altered independent of other 
LRU's. The control registers can not be read over the system bus. 
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Reg. # Reglster Functlon 

0 CPU Control 0 
1 CPU Control 1 
2 CPU Control 2 

" 3 CPU Control 3 

4 P Select 
5 R Select 
6 T Select 
7 C Select 

8 Memory Relocation 

Figure 5.4 Control Registers 

Select Code Selected Bus Set 

0 1, 2: , 4 < 
1 1, 2, 5 < 
2 1, 3, 4 < 
3 1, 3, 5 < 
4 2, 3, 4 < 
5 2, 3, 5 < 
6 2, 4, 5 < 
7 3, 4, 5 < 
8 1, 2, 3 < 
9 1, 2, 3 
A 1, 3, 3 
B 1, 3, 3 
C 2, 3, 3 
D 1, 2, 3 
E 3, 4, 5 
F 1, 4, 5 < 

< : legal select codes 

Figure 5.5 Select Code to Selected Bus Set Mapping Table. 
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18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 1 1 1 1 1 1 LRU ID \REG SELECT 

Figure 5.6 System Bus Address Format of Control Registers 

5.4.2 Communication Registers 

There are four Inter-Processor triad Communication (IPC) 
registers in each LRU which provide a direct communication link 
between processor triads. The registers are 4 bits wide. Their 
system bus address format is shown in Figure 5.7. IPC register 
addresses are keyed to specific processor triad identification. 
Therefore the IPC registers of any LRU with the appropriate 
processor triad identification will respond to a system bus write 
to an IPC register. Since all members of a processor triad have 
the same processor triad assignment, all members of a processor 
triad will receive the IPC write simultaneously. Writes to IPC 
register 2 or 3 of the LRU will pend an interrupt for the 
processor. The IPC registers can not be read over the system 
bus. 

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Proc. REG. 
1 1 1 1 1 1 1 1 1 1 1 1 1 Triad 0 SELECT 

Id • ............... .... .... 

Figure 5.7 System Bus Address Format of IPC Registers 
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5.4.3 Status Registers 

There are four status registers in each LRU and are known as 
theP, R, T and C bus error latches. The error latches are 5 bits 
wide. They can be read over the system bus. The address format 
is shown in Figure 5.8. Error latches have LRU specific addresses 
and only one LRU responds to a given error latch read request. 
Reading an error latch clears that latch to zero. The latches can 
not be written into via the system bus. The bits in the error 
latches are set in response to pulses from the associated input 
circuitry: the system bus controller input circuitry in the case 
of the P and R error latches, the slave system bus coupler input 
circuitry in the case of the T error latch, and the clock 
generator input circuitry in the case of the C error latch. Bit 
o set corresponds to an error on bus set 1, bit 1 to bus set 2, 
bit 2 to bus set 3, bit 3 to bus set 4, and bit 4 corresponds to 
an error on bus set 5. An error latch is reset when it is read. 

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 1 1 1 1 1 0 0 0 1~~r~~TI LRU· 1D 

Figure 5.8 System Bus Address Format of Status Registers 

5.5 I/O Port 

Each LRU in the FTMP contains an Input/Output port. The I/O 
port links the LRU to remote terminals (RT) via an external 1553A 
bus. The port contains three 16-bit wide registers and a 32-word 
long first-in first-out (FIFO) type data buffer. The functions of 
the three registers are as follows. Register 0 (RO) is the 1553 
command register. Register 1 (Rl) is the port status register and 
register 2 (R2) is the port control register. These registers 
can be accessed on the system bus using the address format shown 
in Figure 5.9. The command and control registers (RO and R2) are 
write only while the status register (Rl) is a read only 
register. The FIFO buffer can be read and written over the system 
bus using the address shown in Figure 5.10. As can be seen from 
the figure the FIFO buffer in a given LRU responds to a single 
system bus address. The buffer as well as the registers have LRU 
specific system bus addresses and only one LRU responds to a 
given I/O port command. 

Section 5.5.1 describes various fields in the command, control 
and status registers. Section 5.5.2 describes the operation of 
the I/O port to communicate with the remote terminals. 
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5.5.1 I/O Port Registers 

The various fields of the 1553 command register are shown in 
Figure 5.11. Bits 11 to 15 (5 high order bits) of RO contain the 
address of the remote terminal to which the transmission is 
directed. Bit 10 is the 'Receive/Transmit' bit. It determines the 
direction of the transmission. If bit 10 is zero the I/O port 
will transmit; if one the I/O port will receive. Bits 5 to 9 are 
the RT subaddress. If .all zero then it is a mode command. Bits 0 
to 4 (5 low order bits) contain the number of words to be 
transmitted. If all 5 bits are zero, the number is 32. 

Figure 5.12 shows the detailed fields of the port status 
register. Bit 15 (the most significant bit) is the 'Ready' bit. 
It is set when the port is ready for another 1553 transaction 
sequence. Bit 14 is the 'Bus Busy' bit. It is set if a command 
word transmission is attempted while the 1553 bus is busy. Bit 13 
is the 'Buffer Full' bit. It is set when the FIFO buffer is full, 
that is, contains 32 words. Bit 12 is the 'Buffer Em~ty' bit and 
is set if the FIFO is empty. Bit 11 is the 'Word Count Error' 
bit. It is set if a word count error is detected. The count error 
occurs if 1) the port transmitted a 'Receive' command and too few 

\ words were contained in the FIFO to transmit the required word 
count or 2) the port transmitted a 'Transmit' command and the RT 
transmitted too few or too many words. If the FIFO contains more 
words than required before a transmission no count error will 
occur. Bit 10 is the 'Message Error' bit. It is set when a 
message error during a 1553 transaction is detected. A number of 
different errors can cause this bit to be set. This bit will be 
set if the RT fails to send a status reply within 15 microseconds 
after the completion of the command word transmission. The 
message error bit is also set if a command word transmission is 
attempted when the 1553 bus is busy. This also sets the 'Bus 
Busy' bit, explained earlier. A word count error also sets the 
message error bit. Bits of 0 to 9 (the 10 low order bits) of Rl 
contain the 1553 RT status reply. Upon completion of a 1553 
transaction the remote terminal sends its status into these bits. 

A write into the port command register clears the status 
register to zero. 

Figure 5.13 shows the format of the port control register. 
Bit 15 of the control register is the 'Reset' bit. Setting this 
bit clears the command and status registers and the FIFO data 
buffer. The reset bit itself is cleared by the port after the 
port reset sequence has been completed. The reset sequence may 
take up to 55 microseconds if the buffer is full. After a reset, 
the 'Empty' bit will be set in the status register indicating 
that the data buffer is empty and the 'Ready' bit will be set 
indicating that a transaction sequence may begin. Bit 0 of the 
control register is the 'Flush Buffer' bit. Setting this bit 
empties the FIFO buffer. The bit is reset by the port when it 
has completed emptying the buffer. 
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5.5.2 I/O Port Operation 

All 1553 data words are written to or read from the 32-word 
FIFO buffer. To send a message to a remote terminal, it is 
necessary first to load the buffer with the data to be sent, 
assuming that the I/O port has already been reset by setting the 
'Port reset' bit in the control register. The next step then is 
to check the 'Ready' bit in the status register to make sure that 
the port is ready for a 1553 transaction. If so, the command 
register is loaded with the RT address, the word count and 
Receive command since the RT is going to receive the message. 
Writing into the command register clears the status register to 
zero, causes the contents of the command register and 'word 
count' number of words from the FIFO buffer to be transmitted 
over the 1553 bus. At the completion of the I/O transaction the 
status register contains the. status reply from the remote 
terminal. The status register also contains the status of the 
transaction. That is, 'Message Error' , 'Word Count Error' and 
other bits in the status register are set to indicate whether the 
transmission was successful. 

To receive a message from an RT, a 'Transmit' command is 
loaded into the command register after the data buffer has been 
cleared and the 'Ready' bit of the status register has been 
checked. writing into the command register causes the contents of 
the command register to be sent on the 1553 bus. After the data 
from the RT has been received in the port buffer, the status 
register would contain the RT status reply and the outcome of the 
transaction. 

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 11 1 1 1 1 1 0 LRU ID o 0 SELECT I 
REG. 

Figure 5.9 System Bus Address Format of I/O Port Registers 

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 1 1 1 1 1 1 1 110 LRU ID o 0 1 1 

Figure 5.10 System Bus Address Format of FIFO Buffer 
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15 14 13 12 11 10 9 8 7 6 5 4 3 210 

RT XMIT/ RT WORD 
ADDRESS RECV SUBADDRESS COUNT 

Figure 5.11 I/O Port Command Register(Reg. 0) 

15 14 13 12 11 10 987 654 3 2 1 a 

PRT BUS BUF BUF WRD MSG 
RDY BSY FUL ZRO CNT ERR REMOTE TERMINAL STATUS REPLY 

ERR 

------
Figure 5.12 I/O Port Status Register (Reg. 1) 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 a 

RESET I I FLUSH 
BI T UNUSED BUFFER 

-----------------------------------------
Figure 5.13 I/O Port Control Register (Reg. 2) 

- 109 -



CHAPTER 6. - Clock Generation Region Design and Operation 

All circuitry of the LRU (except for the BGU's) use or rely 
upon the timing base provided by the clock region. This region 
provides the local LRU version of the 1 MHz. system clock, as 
well as clock multiples such as 16 MHz., 8 MHz., 4 MHz., 2 MHz. 
and the submultiples such as 500 KHz. All of these auxiliary 
frequencies are phase related to the -local system clock by the 
divider and generation mechanism which are used to create them. 

The heart of the clock region is a voltage controlled crystal 
oscillator, with a nominal center frequency of 16 MHz. All of 
the subfrequencies including the basic 1 MHz. system clock are 
created by dividing this source signal. The crystal oscillators 
are accurate to .001 % and may be pulled via the control voltage 
input by .01 %. Such variations in the clock frequencies are 
insignificant relative to the correct operation of the FTMP 
circuitry. Use of the system clock as the ultimate time base for 
the real-time clock/counter limits its accuracy to that of the 
system clock signal. In the worst case, this implies an error of 
about 1 minute per day. Such an error could manifest itself into 
navigation errors as large as four nautical miles over a. ten hour 
mission. Typical performance should be about four or five times 
better than this worst case number. 

Each clock generation region synchronizes with the clock 
generation regions of the other LRU's by phase locking its 

_ internal 1 MHz. system clock to the system bus timing signals. 
Certain of these LRU's serve as the sources of system bus timing 
signals when their internal 1 MHz. system clocks are gated onto 
system bus C lines. Others simply listen to the C bus and have no 
effect on its content. In either case an LRU generates an 
internal reference signal by recelvlng all five Clines, 
selecting three of these five and passing them through simple 
majority logic. This reference signal is then phase compared to 
the internal system clock. If the system clock leads the 
reference signal, an error signal proportional to this lead is 
generated and applied to the voltage control input of the crystal 
oscillator. This signal tends to depress the operating frequency 
of the oscillator. If the internal system clock lags the 
reference signal the error signal, proportional to the lag, is in 
the direction such that it elevates the operating frequency of 
the oscillator. The code used by the input select circuitry in 
determining which three of the five C lines are to be gated to 
the voter is provided by an LRU control register of the slave 
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region. Figure 6.1 illustrates the basic organization of the 
clock generation region. Figure 6.2 depicts this block diagram 
using classical control block representations for its operation. 

to Bus interface <-+------------+ 
circuitry local system 

to other LRU 
circuitry <----+ 

> 

> 

clock 

Figure 6.1 Clock Generation Region. 

reference reLclk. 

phase compare 
+ 

I 
+----+ 

----
error 

sign 

inp-ur-
voltage 
controlled 
crystal 
oscillator 

clock >---> l/S 
(frequency) 

----->0----> K/(T*S+l) -+ 
(phase) A 

from voter 
system 
clock 
(phase) 

l/S <-----------------+ 

internal system clock (frequency) 
to other cir. <------------------------------------------+ 

al 

Figure 6.2 Clock Generator (Frequency/Phase Control Diagram) 
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The transfer function of such a system is: 

(freq. in)/(freq. out) = K / (T*S**2 + 5 + 1) 

As a minimum for clock system stability this loop should be 
overdamped. Damping is: 

D = .5 / SQRT(T*K) 

The K chosen for this implementation is: 

K = .1 Hz./deg. phase error 

or dimensionally more correct 

K = 37 / sec. 

which implies: 

T < .006 sec. 

The T's for the voltage controlled crystals are all comfortably 
below this limit. 

The phase locked loop also serves to filter the reference 
signal, eliminating the effect of high frequency glitches and 
asymmetric duty cycles. The output of the voter circuit may be 
asymmetric or have high frequency spikes due to legitimate skews 
between valid clock signals and the effect of a failed clock line 
on the operation of the voter circuit. The outputs of the 
crystal oscillator and its various divider circuits are always 
symmetric and the phase lock loop rejects frequency components in 
the reference signal which are beyond the capture range of the 
crystal. It is this basic unsuitability of the raw reference 
signal which compels the use of the crystal output for internal 
timing instead of the direct use of the reference for LRU 
clocking functions. 

The clock generation regions of mUltiple LRU's may be used in 
either of two ways to create the common C line timing signals. 
Four LRU's may be selected as the clock quad, with the output of 
each LRU's clock generator being gated onto a different Cline. 
Each LRU then selects and votes on the C lines being used by the 
other three LRU's. Configured in this fashion, the clock 
generators of the clock quad effectively lock to each other so 
that their transmissions onto the C lines are of the same 
frequency and are in phase with one another. Any single failure 
of the clocking system, either in a clock generator or in the 
bussing distributing the clocks, can at most disable one of the C 
line bus signals. Any LRU which is not a member of the clock 
quad can synchronize its internal system clock to that of the 
clock quad by selecting and voting on any three of the four 
active bus lines to create its reference signal. All functioning 
LRU's can therefore maintain clock synchronism with one another 
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despite any single fault in either the clock quad or the bus 
system. When such a fault occurs the system can be repaired by 
assignin~ one of the functioning but passive LRU generators to 
take over transmissions onto a C line in place of a failed 
generator, or by using the spare C line in place of a failed C 
line. 

An alternate configuration is to select three clock generators 
to function as a clock triad. Each element of the clock triad 
transmits onto a different C line. Each element of the clock 
triad selects and votes on the same C lines. Thus the reference 
signal used by a clock triad member is a combination of, the 
signals from the other two elements of the triad and one's own 
signal. The reference signal used by the LRU's which are not 
members of the clock triad is simply derived by voting on the 
three signals from the clock triad. The clock generators of all 
LRU's will remain synchronized with one another despite any 
single failure of a clock generator or any single failure of the 
bussing system, excepting for certain pathological and remote 
failure events. It is- because of these pathological failure 
events that the clock quad configuration is preferred and the 
clock triad is only used when inadequate buses or generators 
remain to construct a fault free clock quad. 

Figure 6.3 illustrates the interconnections to create a clock 
quad. Figure 6.4 illustrates the interconnections to create a 
clock triad. 

- 113 -



clock 
quad 

element 
# 1 

clock 
quad 

element 
# 2 

clock 
quad 

element 
# 3 

clock 
quad 

element 
# 4 

passive 
clock 

element 

Figure 6.3 

<------­
<.--------­
<-------+ 

Clines 
I 

- ->+ 

--+ 
-+ 

->+ 

<------­
<--------- --+ 
<.----------+ 

-+ 

<,--------­
<,------­
<,--------+ 

------->+ , 
<:----------­
<:----------­
<:----------

< 
< 
< + 

I 

->+ 

-+ 
-+ 

----+ 
- -'-+ 
-+ 

-- -+ 
-+ 

bus system 

Clock Quad Interconnections 

- 114 -



clock 
triad 
element 

# I 

clock 
triad 
element 

# 2 

clock 
triad 
element 

# 3 

passive 
clock 

element 

passive 
clock 

element 

Clines 

<------­
<------­
<-------+ 

<.------­
<,------­
<-------+ 

>+ 

< 
< 
< + 

<------­
<------­
<-------+ 

I 
- ->+ 

I 
--+ 
-+ 

->+ 

-1-+ 
-+ 

- -+ 
-+ 

--+ 
-+ 

<------- -- --+ 
< -+ 
< + 

1 
bus system 

Figure 6.4 Clock Triad Interconnections 
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CHAPTER 7. - Power System 

The power system consists of four primary power supplies, 
which function to provide quad redundant power to each LRU of the 
system, local power regulators in each LRU, and local battery 
backup within each LRU for maintaining system memory and system 
configuration registers during primary power interruptions. 

Each of the four primary power supplies accepts 208 VAC, 400 
Hz three phase power and outputs 28 VDC onto a different one of 
the four primary power buses. Each power supply can sustain 150 
amperes output current indefinitely and in excess of 1500 amperes 
peak output current for short periods. Total power consumption 
of all LRU's can be sustained by anyone of the four primary 
power supplies. Four primary power buses distribute power to all 
LRU's of the system. Each primary power supply drives a 
different power bus and each LRU has access to all power buses •. 

Each LRU has a power regulator which accepts power from the 
quad redundant primary power buses, and converts it to the 
appropriate LRU internal voltages. Each power regulator can draw 
power from anyone of the four primary power buses, and will 
maintain internal LRU voltages within regulation as long as at 
least one of the power buses is within its input operating range 
of 18 to 40 VDC. Within each LRU, the combining of primary power 
is provided in a two stage process. First, two pairs are 
combined by a diode junction. Secondly, a dual switching 
regulator draws power from this intermediate pair, combining them 
to produce the regulated internal ·power. Each primary power bus 
is fused as it enters the LRU so that any internal short circuits 
within an LRU could at most only provide a momentary disturbance 
on the primary power buses before the fuses blew. Energy storage 
within the regulator is such that the LRU internal voltages will 
remain within regulation in the event that another LRUbriefly 
shorts all primary power buses. Due to the nature of the diode 
junction which is used to combine the power from two buses, it is 
impossible to assure that most of the power being drawn from the 
diode junction is not being sourced from only one bus of the 
pair. If diode junctions were used exclusively to combine power 
it would in fact be difficult to assure that all power for all 
LRU's was not being drawn from one supply. The second stage dual 
switch regulator provides the means for balancing the power drain 
f~om each of the primary power supplies. Within the LRU, the 
dual regulator draws nearly equal power from each of the two 
diode junctions. Since it is possible that all of the power 
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drawn from a diode junction may be sourced from only one bus, a 
single LRUf may under worst case draw about half its power from 
one power bus. If all LRU's combined the same pairs of primary 
power buses, then it would be possible that only two power 
supplies were driving the entire system. Each LRU is configured 
to combine differing pairs of the primary power buses so as to 
avoid this possibility. Thus while any single LRU may be drawing 
power from only two buses, it is impossible for all LRU's to be 
drawing power from only these two buses. This tends to 
distribute the load among the power supplies such that in the 
worst case power is drawn from at least three of the power 
supplies, and in most cases power is drawn from all power 
supplies. Figure 7.1 illustrates examples of interconnecting two 
LRU's to the primary power buses. 

fuse 
+- -(-)--:>1-+ 

1-> 
+- - -(-) >1--+ switching 

+-- -- - --(-) > 1--+ 
1--> regulator 

+- - - -- -(-) > 1--+ 

LRU 00 

+- -(-)-->1--+ 
1-> 

+- -- -- --- --(-) >1--+ switching 

+-- - - -(-) > 1--+ 
1-> regulator 

+-- -- -(-) > 1--+ 

primary power 
buses 

LRU 01 

LRU 

----> 
power 

LRU 

---> 
power 

Figure 7.1 LRU Power Interconnection Examples. 
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Each LRU also contains battery backup circuitry to power the 
CMOS memory and configuration registers should primary power be 
lost. These batteries can provide some 100 hours of protection 
against power loss. Integral charging circuitry assures that the 
batteries are recharged when primary power is available. A 
switch on the front of each LRU allows the batteries to be 
disconnected and the LRU completely shut down for long term 
storage or shipment. This avoids discharging the batteries 
needlessly, and provides the means of assuring that all power has 
been removed from the backplane and circuit cards when repair is 
undertaken. Total charging time from complete discharge is eight 
hours. 
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