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Abstract
A novel QSPR model is developed and evaluated for the prediction of diamagnetic
susceptibility. The model was produced using the Multiple Linear Regression (MLR)
technique on a database that consists of 406 organic compounds involving a diverse set of
chemical structures. The accuracy of the QSPR model (R2¼0.88) is illustrated using
various evaluation techniques, such as leave-one-out procedure (Q2¼0.87) and validation
through an external test set (R2

pred¼0.89). The study leads to the conclusion that three
physical – topological descriptors affect significantly the diamagnetic susceptibility: Polar
Surface Area (PSAr), Principal Moment of Inertia X (PMIX), and Diameter (Diam).

1 Introduction

The design of new materials with optimal thermophysical,
mechanical, and optical properties is a challenge for com-
putational chemistry. Novel materials are typically devel-
oped using a trial and error approach, which is costly and
time-consuming [1]. An alternative strategy is to model
the material properties as functions of the molecular struc-
ture using the so-called Quantitative Structure – Property
Relationships (QSPR) [2 – 5]. Application of QSPR meth-
odologies in material design has the potential to decrease
considerably the time and effort required to improve the
material properties in terms of their efficacy or to discover
new materials with desired properties.
The diamagnetic susceptibility (c) of organic com-

pounds is a very important physicochemical property due
to the provision of structural information on resolving var-
ious existing structural controversies in structural chemis-
try [6]. According to the definition in the CRC Handbook
of Chemistry and Physics [7], when a material is placed in
a magnetic field H, a magnetization M is induced in the
material which is related to H by M ¼kM, where k is di-
mensionless. Usually molar susceptibility (cm¼kVm¼kM/
r) is used where Vm is the molar volume of the substance,
M the molar mass, and r the mass density. Compounds
without any unpaired electrons are called diamagnetic and
they have negative values of cm.

In the past, several attempts have been made for the
prediction of diamagnetic susceptibility applying QSPR
and semiempirical models [8 – 9]. The latest QSPR models
were presented by Estrada et al. [8] and Zhokhova et al.
[9] using TOSS-MODE and fragment based approaches,
respectively. In those studies an extensive bibliographical
research was made and the references herein are omitted
for brevity. Diamagnetic susceptibility (cm) is the only
measurable property, which is uniquely associated with ar-
omaticity since compounds which exhibit significantly ex-
alted diamagnetic susceptibility are aromatic [10]. An at-
tempt to apply QSPR models for the quantification of aro-
maticity was made by Duchowicz and Castro [11].
In this work, we present a new linear QSPR model for

predicting diamagnetic susceptibility, which contains only
three descriptors. Three particular variables were selected
among 30 candidates by using the Elimination Selection
Stepwise Regression (ES-SWR) variable selection meth-
od. The produced model was validated using several strat-
egies: cross-validation, Y-randomization, and external vali-
dation using division of the entire dataset into training and
test sets. Furthermore, the calculation of the domain of ap-
plicability defines the area of reliable predictions.
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2 Materials and Methods

2.1 Dataset

The experimental values of diamagnetic susceptibility of
406 common organic compounds were used for this study.
All values refer to room temperature and atmospheric
pressure and to the physical form that is stable under these
conditions [7]. Diamagnetic susceptibility units are given
in the CGS system (multiplied by 4p to convert them into
SI). In order to model and predict diamagnetic susceptibil-
ity, 30 physicochemical constants, topological and structur-
al descriptors for each chemical structure (Table 1), were
considered as possible input candidates to the model. All
the descriptors were calculated using ChemSar which is in-
cluded in the ChemOffice (CambridgeSoft Corporation)
suite of programs [12]. Before the calculation of the de-
scriptors, all structures were fully optimized using CS Me-
chanics and more specifically, MM2 force fields and the
Truncated-Newton –Raphson optimizer, which provide a
balance between speed and accuracy (ChemOffice Man-
ual).

2.2 Multiple Linear Regression (MLR) Model
Development – Variable Selection

The first objective was to determinate the best variables
which produce the most significant linear QSPR models
linking the structure of compounds with their diamagnetic
susceptibility. The ES-SWR algorithm was used on the
training dataset to select the most appropriate descriptors.
ES-SWR is a popular stepwise technique [13] that com-
bines Forward Selection (FS-SWR) and Backward Elimi-
nation (BE-SWR).

2.3 Model Validation

The accuracy of the proposed MLR model was illustrated
using the following evaluation techniques: leave-one-out
and leave-five-out cross-validation procedures, validation
through an external test set, and Y-randomization.

2.4 Cross-Validation Test

Cross-validation is a popular technique used to explore
the reliability of statistical models. Based on this tech-
nique, a number of modified datasets are created by delet-
ing in each case one or a small group (leave-some-out) of
objects. For each dataset, an input – output model is devel-
oped, based on the utilized modeling technique. The mod-
el is evaluated by measuring its accuracy in predicting the
responses of the remaining data (the ones that have not
been used in the development of the model) [14, 15].

2.5 Validation Through the External Validation Set

According to the Tropsha group [16, 17] a QSAR model is
considered predictive, if the following conditions are satis-
fied:

R2
pred > 0:6 ð1Þ

ðR2 � R2
0Þ

R2
or
ðR2 � R’2

0 Þ
R2

islessthan0:1 ð2Þ

k or k’ is close to 1 (3)

In Eqs. (2 and 3) R2 is the coefficient of determination be-
tween experimental values and model prediction on the
training set. Mathematical definitions of R2

0, R02
0 , k, and

k’are based on regression of the observed activities against
the predicted activities and vice versa (regression of the
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Table 1. Physicochemical constants, topological and structural descriptors.

ID Description Notation ID Description Notation

1 Molar refractivity MR 16 Diameter Diam
2 Partition coefficient (octanol water) ClogP 17 Molecular topological index TIndx
3 Principal moment of inertia Z PMIZ 18 Number of rotatable bonds NRBo
4 Principal moment of inertia Y PMIY 19 Polar surface area PSAr
5 Principal moment of inertia X PMIX 20 Radius Rad
6 Connolly accessible area SAS 21 Shape attribute ShpA
7 Connolly molecular area MS 22 Shape coefficient ShpC
8 Total energy TotE 23 Sum of valence degrees SVDe
9 LUMO energy LUMO 24 Total connectivity TCon
10 HOMO energy HOMO 25 Total valence connectivity TVCon
11 Balaban index BIndx 26 Wiener index WIndx
12 Dipole length DPLL 27 Electronic energy ElcE
13 Repulsion energy NRE 28 Connolly solvent-excluded volume SEV
14 Ovality Ovality 29 Cluster count ClsC
15 Sum of degrees SDeg 30 Molecular weight MW
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predicted activities against observed activities). The defini-
tions are presented clearly in Ref. [18] and are not repeat-
ed here for brevity.

2.6 Y-Randomization Test

This technique ensures the robustness of a QSPR model
[16 – 18]. The dependent variable vector (diamagnetic sus-
ceptibility) is randomly shuffled and a new QSPR model is
developed, using the given modeling algorithm. The proce-
dure is repeated several times and the new QSPR models
are expected to have low R2 and Q2 values. If the opposite
happens then an acceptable QSPR model cannot be ob-
tained for the specific modeling method and data.

2.7 Defining Model Applicability Domain

In order for a QSAR model to be used for screening new
compounds, its domain of application [16 – 18] must be de-
fined and predictions for only those compounds that fall
into this domain may be considered reliable. Extent of Ex-
trapolation [16] is one simple approach to define the ap-
plicability of the domain. It is based on the calculation of
the leverage hi [19] for each chemical, where the QSPR
model is used to predict its property.

hi ¼ xiðXTXÞ�1xT
i ð4Þ

In Eq. (4), xi is the row vector containing the k model pa-
rameters of the query compound and X is the n � k ma-
trix containing the k model parameters for each one of the
n training compounds. A leverage value greater than 3k/n
is considered large. It means that the predicted response is
the result of a substantial extrapolation of the model and
may not be reliable.

3 Results and Discussion

First, the dataset of 406 organic compounds was parti-
tioned into a training set of 203 compounds, and a valida-
tion set of 203 compounds. The dataset was partitioned to
provide a representative training set (Supplementary Ma-
terial Table 1) and at the same time a diverse test set (Sup-
plementary Material Table 2) in terms of molecular struc-
ture [20]. More specifically, the selection of the com-
pounds formulating the training set was made according to
the structure and the scale of the investigated property, so
that representatives of a wide range of structures (with re-
spect to different substituents, atoms, and values of dia-
magnetic susceptibility) were included. Additional effort
was taken to achieve similar distributions of property val-
ues in the training and validation sets. According to Gol-
braikh and Tropsha [21] this approach is correct since rep-
resentative compounds in the test set must be close to
those of the training set and vice versa. The validation data

(Supplementary Material Table 2) were not involved by
any means in the process of selecting the most appropriate
descriptors or in the development of the QSPR model.
They were considered as a completely unknown external
set of data, which was used only to test the accuracy of the
produced model.
For the selection of the most important descriptors, the

aforementioned stepwise multiple regression technique
was used on the training dataset. The procedure was auto-
mated using a software that has been developed in our lab-
oratory on the MatLab platform, which realizes the ES-
SWR algorithm. The result was the following four-parame-
ter (three descriptors and the intercept) MLR QSAR
equation:

�cm*10
�6(CGS)¼25.8�0.31PSArþ0.08PMIXþ

9.84Diam (5)

RMS¼10.57, R2¼0.88, F¼500.03, Q2¼0.87,
SPress¼11.06, n¼203

From the above equation, it can be concluded that the
most significant descriptors according to the ES-SWR al-
gorithm are Polar Surface Area (PSAr), Principal Moment
of Inertia X (PMIX), and Diameter (Diam). Table 2 pres-
ents the correlation matrix, where it is clear that the three
selected descriptors are completely uncorrelated. It should
be mentioned here that the produced model does not pre-
clude any causal relationship between the diamagnetic sus-
ceptibility and the three selected descriptors.
A brief explanation of the descriptors that were selected

is as follows:
PSAr [13] is defined as the part of the surface area of

the module associated with oxygen, nitrogen, sulfur, and
the atoms of hydrogen bonded to any of these atoms.
The Principal Moments of Inertia (PMI) (g/mol N2) are

physical quantities related to the rotational dynamics of a
module [13]. The PMIs are the moments of inertia corre-
sponding to that particular unique orientation of the axes
for which one of the three moments has a maximum value
(PMIZ), another a minimum value (PMIY), and the third
(PMIX) is either equal to one or intermediate between the
other two [13]. In this case, the products of inertia tensor
matrix are zero and the three diagonal elements, PMIX,
PMIY, and PMIZ correspond to the moments of inertia
about the X, Y, and Z axes of the module. The ES-SWR
algorithm identifies PMIX as a significant descriptor for
modeling the diamagnetic susceptibility.
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Table 2. Correlation matrix of the three selected descriptors.

Diam PSAr PMIX

Diam 1
PSAr 0.223 1
PMIX 0.184 – 0.039 1
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Diam is the maximum such value for all atoms and is
held by the most outlying atom(s). In terms of graph theo-
ry, diameter is defined as the largest vertex eccentricity in
the graph [13].
Equation (5) was used to predict the diamagnetic sus-

ceptibility for the validation examples. The results are pre-
sented in the last columns of Table 2 of Supplementary
Material and correspond to the following statistics: R2

pred ¼
0:89 and RMSE¼10.27. A small percentage (5%) of the
test set falls outside the domain of the model (warning lev-
erage limit 0.059). The results illustrated once more that
the linear MLR technique combined with a successful vari-
able selection procedure is adequate to generate an effi-
cient QSPR model for predicting the diamagnetic suscepti-
bility of a large diverse set of compounds.
The proposed model (Eq. 5) passed all the tests related

to the predictive ability (Eqs. 1 – 3).

R2
pred ¼ 0:89 > 0:6

ðR2 � R2
0Þ

R2
¼ �0:07 < 0:1

k¼0.98

For a more exhaustive testing of the predictive power of
the model, validation of the model was also carried out us-
ing the LOO and the L5O cross-validation techniques on
the training set of compounds. The L5O method was im-
plemented by selecting randomly groups of five com-
pounds from the available training data. Each group was
left out and that group was predicted by the model devel-
oped from the remaining observations. Three thousand
random groups of five compounds were selected for the
implementation of the L5O cross-validation test. It should
be emphasized that the procedure for developing the
QSPR models included the selection of the best descrip-
tors. Therefore, each time one (LOO) or five (L5O) com-
pounds were excluded from the training set, the modeling
procedure selected the best descriptors and developed an
MLR model based only on the remaining observations.
The excluded compounds were not involved by any means
in the development of the model. It was important that the
model was stable to the inclusion/exclusion of compounds.
The results produced by the LOO (Q2¼0.87) and the L5O
(Q2

L5O ¼ 0.83) cross-validation tests illustrated the quality
of the obtained model.
The model was further validated by applying Y-random-

ization. Several random shuffles of the Y vector were per-
formed and the low R2 and Q2 values that were obtained
showing that the good results in the original model use not
due to a chance correlation or structural dependency of
the training set. It should be noted that for each random
permutation of the Y vector, the complete training proce-
dure was followed for developing the new QSPR model,
including the selection of the most appropriate descriptors.

The results of the Y-randomization test are presented in
Table 3.
According to the proposed QSPR model, high values of

PMIX and the diameter of the module correspond to in-
creased diamagnetic susceptibility. PMIX gives informa-
tion about how the product of mass and distance influence
the value of diamagnetic susceptibility.
On the other hand, a high value of the PSAr contributes

negatively to the diamagnetic susceptibility. The introduc-
tion of groups with high diameter (Diam) is recommended
to increase the diamagnetic susceptibility and hence the ar-
omaticity of the module [10]. In contrast, the presence of
atoms of oxygen, nitrogen, sulfur, and the atoms of hydro-
gen bonded to any of these atoms increases the PSAr val-
ue and should be avoided.
The proposed method, due to the high predictive ability

[22], could be a useful aid to the costly and time consum-
ing experiments for determining the diamagnetic suscepti-
bility. The method can also be used to screen existing data-
bases or virtual chemical structures to identify organic
compounds with desired diamagnetic susceptibility. In this
case, the applicability domain will serve as a valuable tool
to filter out “dissimilar” chemical structures.

4 Conclusions

A novel QSPR model was developed that can predict dia-
magnetic susceptibility using molecular descriptors. Using
a dataset of 406 common organic compounds and a rigor-
ous variable selection method, three descriptors were
chosen out of the 30 different descriptors that were exam-
ined. Several validation techniques illustrated the accuracy
of the produced model, not only by calculating its fitness
on sets of training data but also by testing the predicting
abilities of the model. The encouraging results showed
that the QSPR methodology overcomes several of the lim-
itations experienced by empirical models. The physico-
chemical constants, quantum, topological and structural
descriptors used in QSPR encode information about the
structure of the module and thus implicitly account for co-
operative effects between functional groups and charge re-
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Table 3. R2 and Q2 values after several Y-randomization test.

Iteration R2 Q2

1 0.15 0.02
2 0.16 0.04
3 0.05 0.00
4 0.35 0.12
5 0.08 0.01
6 0.28 0.10
7 0.19 0.08
8 0.09 0.01
9 0.30 0.13
10 0.27 0.09
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distribution. The selected descriptors offer clear physical
meaning and help the researcher to design novel chemistry
driven molecules with desired diamagnetic susceptibility.
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