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Development and Evaluation of an Evolutionary

Algorithm-Based Online Energy Management

System for Plug-In Hybrid Electric Vehicles
Xuewei Qi, Member, IEEE, Guoyuan Wu, Senior Member, IEEE, Kanok Boriboonsomsin, Member, IEEE,

and Matthew J. Barth, Fellow, IEEE

Abstract— Plug-in hybrid electric vehicles (PHEVs) have been
regarded as one of several promising countermeasures to
transportation-related energy use and air quality issues. Com-
pared with conventional hybrid electric vehicles, developing an
energy management system (EMS) for PHEVs is more chal-
lenging due to their more complex powertrain. In this paper,
we propose a generic framework of online EMS for PHEVs that
is based on an evolutionary algorithm. It includes several control
strategies for managing battery state-of-charge (SOC). Extensive
simulation testing and evaluation using real-world traffic data
indicates that the different SOC control strategies of the proposed
online EMS all outperform the conventional control strategy. Out
of all the SOC control strategies, the self-adaptive one is the most
adaptive to real-time traffic conditions and the most robust to
the uncertainties in recharging opportunity. A comparison to
the existing models also employing short-term prediction shows
that the proposed model can achieve the best fuel economy
improvement but requiring less trip information.

Index Terms— Plug-in hybrid electric vehicle, intelligent
transportation system, energy management, evolutionary
algorithm.

I. INTRODUCTION

A IR pollution and climate change impacts associated with

the use of fossil fuels have motivated the electrification

of transportation systems. In the realm of powertrain electri-

fication, groundbreaking changes have been witnessed in the

past decade in terms of research and development of hybrid

electric vehicles (HEVs) and electric vehicles (EVs) [1].

As a combination of HEVs and EVs, plug-in hybrid electric

vehicles (PHEVs) can be plugged into the electrical grid to

charge their batteries, thus increasing the use of electricity and

achieving even higher overall fuel efficiency, while retaining

the internal combustion engine that can be called upon when

needed [2].
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In comparison to conventional HEVs, the energy manage-

ment systems (EMS) in PHEVs are significantly more complex

due to their extended electric-only propulsion (or extended

all-electric range capability) and battery chargeability via

external electric power sources. Numerous efforts have been

made in developing a variety of EMS for PHEVs [3], [4].

From the control perspective, existing EMS can be roughly

classified as rule-based [5] and optimization-based [6]. This is

discussed in more detail in Section II.

In spite of all these efforts, most of the existing PHEVs’

EMS have one or more of the following limitations:

1) Lack of adaptability to real-time information, such as

traffic and road grade. This applies to rule-based EMS

(either deterministic or using fuzzy logic) whose para-

meters or criteria have been pre-tuned to favor certain

conditions (e.g., specific driving cycles and route eleva-

tion profiles) [3]. In addition, most EMS that are based

on global optimization off-line assume that the future

driving condition is known [2]. Thus far, only a few

studies have focused on the development of on-line EMS

for PHEVs [7].

2) Dependence on accurate (or predicted) trip information

that is usually unknown a priori. Many of the exist-

ing EMS require at a minimum the trip duration as

known or predicted information prior to the trip [20].

Furthermore, it is reported that the performance of EMS

is largely dependent on the time span of the trip [20].

There are very few studies analyzing the impacts of trip

duration on the performance of EMS for PHEVs.

3) Emphasis on a single trip level optimization without

considering opportunistic charging between trips. The

most critical feature that differentiates PHEVs from

conventional HEVs is that PHEVs’ batteries can be

charged by plugging into an electrical outlet. Most of

the existing EMS are designed to work on a trip-by-trip

basis. However, taking into account inter-trip charging

information can significantly improve the fuel economy

of PHEVs [2].

To address these limitations, we herein propose a generic

framework of on-line EMS for PHEVs that uses an evo-

lutionary algorithm (EA) to optimize vehicle fuel economy

in real time. For the purpose of on-line implementation,

the optimization is conducted on a sliding time window basis

rather than on an entire trip basis. Meanwhile, two types of

1524-9050 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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state-of-charge (SOC) control strategies (i.e., SOC reference

control and self-adaptive control), which govern the utilization

of vehicle battery power to achieve optimal fuel efficiency for

the vehicle without the knowledge of trip duration, are pro-

posed within the framework and compared with conventional

binary control strategies.

The major contributions of this paper include: 1) develop-

ment of a generic framework of on-line EMS for PHEVs;

2) exclusion of trip duration as required information for

PHEVs’ energy management; 3) quantification of the perfor-

mance of the proposed EMS with respect to different trip

durations; and 4) consideration of the impacts due to inter-trip

charging opportunities.

The remainder of this paper is organized as follows:

Section II presents background information on PHEVs, in par-

ticular some of the existing EMS strategies. We then formulate

the PHEV’s EMS problem and develop an EA-based on-line

EMS framework in Section III. Next, we propose a variety of

SOC control strategies, including a self-adaptive implementa-

tion which does not require the knowledge of trip duration in

Section IV and extensively evaluate the proposed on-line EMS

in Section V using data collected in the real world. Lastly,

Section VI concludes this paper along with further discussion

on future work.

II. BACKGROUND & RELATED WORKS

A. PHEV Modeling

Typically, there are three major types of PHEV powertrain

architectures: a) series, b) parallel, and c) power-split

(series-parallel). This study is focused on the power-split

architecture where the internal combustion engine (ICE) and

electric motors can, either alone or together, power the vehicle

while the battery pack may be charged simultaneously through

the ICE. Different approaches with various levels of complex-

ity have been proposed for modeling PHEV powertrains [21].

However, a complex PHEV model with a large number of

states may not be suitable for the optimization of PHEV energy

control. A simplified but sufficiently detailed power-split pow-

ertrain model has been developed in MATLAB and used in this

study. For more details, please refer to [2].

B. Operation Mode and SOC Profile

During the operation of a PHEV, the SOC may vary with

time, depending on how the energy sources work together to

provide the propulsion power at each instant. The SOC profile

can serve as an indicator of the PHEV’ operating modes,

i.e., charge sustaining (CS), pure electric vehicle (EV), and

charge depleting (CD) modes [3], as shown in Fig. 1.

The CS mode occurs when the SOC is maintained at a

certain level (usually the lower bound of SOC) by jointly

using power from both the battery pack and the ICE. The pure

EV mode is when the vehicle is powered by electricity only.

The CD mode represents the state when the vehicle is operated

using power primarily from the battery pack with supplemental

power from the ICE as necessary. In the CD mode, the ICE is

turned on if the electric motor is not able to provide enough

propulsion power or the battery pack is being charged (even

Fig. 1. Basic operation modes for PHEV.

when the SOC is much higher than the lower bound) in order

to achieve better fuel economy.

C. EMS for PHEVs

The goal of the EMS in a PHEV is to satisfy the propul-

sion power requirements while maintaining the vehicle’s per-

formance in an optimal way. A variety of strategies have

been proposed and evaluated in many previous studies [4].

A detailed literature review on EMS for PHEVs is provided

in this section. Broadly speaking, the existing EMS for PHEVs

can be divided into two major categories:

• Rule-based EMS are fundamental control schemes oper-

ating on a set of predefined rules without prior knowledge

of the trip. The control decisions are made according

to the current vehicle states and power demand only.

Such strategies are easily implemented but the resultant

operations may be far from being optimal due to not

considering future traffic conditions.

• Optimization-based EMS aim at optimizing a predefined

cost function according to the driving conditions and

behaviors. The cost function may include a variety of

vehicle performance metrics, such as fuel consumption

and tailpipe emissions.

For Rule-based EMS, deterministic and fuzzy control strate-

gies (e.g., binary control) have been well investigated. For

Optimization-based EMS, the strategies can be further divided

into three subgroups based on how the optimizations are

implemented: 1) off-line strategy which requires a full knowl-

edge of the entire trip beforehand to achieve the global optimal

solution; 2) prediction-based strategy or so called real-time

control strategy which takes into account predicted future

driving conditions (in a rolling horizon manner) and achieves

local optimal solutions segment-by-segment. This group of

strategies are quite promising due to the rapid advancement

and massive deployment of sensing and communication tech-

nologies (e.g., GPS) in transportation systems that facilitate the

traffic state prediction; and 3) learning-based strategy which is

recently emerging owing to the research progress in machine

learning techniques. In such a data-driven strategy, a dynamic

model is no longer required. Based on massive historical

and real-time information, trip characteristics can be learned

and the corresponding optimal control decisions can be made

through advanced data mining schemes. This strategy fits very

well for commute trips. Figure 2 presents a classification tree

of EMS for PHEVs and the typical strategies in each category,

based on most existing studies.
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Fig. 2. Basic classification of EMS for PHEV.

TABLE I

CLASSIFICATION OF CURRENT LITERATURE

In addition to the classification above, Table I highlights

several important features which help differentiate the afore-

mentioned strategies. Example references are also included

in Table I.

D. PHEVs’ SOC Control

For a power-split PHEV, the optimal energy control is,

in principle, equivalent to the optimal SOC control. Most of

the existing EMS for PHEVs implicitly integrate SOC into the

dynamic model and regard it as a key control variable [18],

while only a few studies have explicitly described their SOC

control strategies. A SOC reference control strategy is pro-

posed in [15] where a supervisory SOC planning method is

designed to pre-calculate an optimal SOC reference curve.

The proposed EMS then tries to follow this curve during

the trip to achieve the best fuel economy. Another SOC

control strategy is proposed in [19] where a probabilistic

distribution of trip duration is considered. More recently,

machine learning-based SOC control strategies (e.g., [6]) have

emerged, where the optimal SOC curves are pre-calculated

using historical data and stored in the form of look-up tables

for real-time implementation. A common drawback for all

these strategies is that accurate trip duration information is

required in an either deterministic or probabilistic way. In real-

ity, however, such information is hard to be known ahead of

time or may vary significantly due to the uncertainties in traffic

conditions. To ensure the practicality of our proposed EMS

for PHEVs, we employ a self-adaptive SOC control strategy

in this study which does not require any information about the

trip duration (or length).

Fig. 3. Flow chart of the proposed on-line EMS.

Fig. 4. Time horizons of prediction and control.

III. PROBLEM FORMULATION

A. Proposed On-Line EMS Framework for PHEVs

In this paper, we propose an on-line EMS framework

for PHEVs, using the receding horizon control structure

(see Fig. 3). The proposed EMS framework consists of infor-

mation acquisition (from external sources), prediction, opti-

mization, and power split control. With the receding horizon

control, the entire trip is divided into segments or time hori-

zons. As shown in Fig. 4, the prediction horizon (N sampling

time steps) needs to be longer than the control horizon

(M sampling time steps). Both horizons keep moving for-

ward (in a rolling horizon style) while the system is operating.

More specifically, the prediction model is used to predict the

power demand at each sampling step (i.e., each second) in the

prediction horizon. Then, the optimal ICE power supply for

each second during the prediction horizon is calculated with

this predicted information.

In each control horizon, the pre-calculated optimal control

decisions are inputted into the powertrain control system

(e.g., electronic control unit (ECU)) at the required sampling

frequency. In this study, we focus on the on-line energy

optimization, assuming that the short-term prediction model

is available (which is one of our future research topics).
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B. Optimal Power-Split Control Formulation

Mathematically, the optimal (in terms of fuel economy)

energy management for PHEVs can be formulated as a

nonlinear constrained optimization problem. The objective is

to minimize the total fuel consumption by ICE along the entire

trip.
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min
{

∫ T

0 h (ωe, qe, t) dt
}

subject to :

˙SOC = f (SOC, ωMG1, qMG1, ωMG2, qMG2)

(ωe, qe) = g (ωMG1, qMG1, ωMG2, qMG2)

SOCmin ≤ SOC ≤ SOCmax

ωmin ≤ ωe ≤ ωmax

qmin ≤ qe ≤ qmax

(1)

where T is the trip duration; ωe, qe are the engine’s

angular velocity and engine’s torque, respectively;

h
(

ωe, T qe

)

is ICE fuel consumption model; ωMG1, qMG1

are the first motor/generator’s angular velocity and

torque, respectively; ωMG2, qMG2 are the second

motor/generator’s angular velocity and torque, respectively;

f (SOC, ωMG1, qMG1, ωMG2, qMG2) is the battery power

consumption model; For more details about the model

derivations and equations, please refer to [2].

Such formulation is quite suitable for traditional mathemat-

ical optimization methods [11] with high computational com-

plexity. In order to facilitate on-line optimization, we herein

discretize the engine power and reformulate the optimization

problem represented by (1) as follows:

min
∑T

k=1

∑N

i=1
x (k,i) P

eng

i

/

η
eng

i (2)

subject to:

∑ j

k=1
f

(

Pk−
∑N

i=1
x (k,i) P

eng
i

)

≤ C∀ j= 1, . . . ,T (3)

∑N

i=1
x (k,i) = 1∀k (4)

x (k,i) = {0, 1} ∀k,i (5)

where N is the number of discretized power level for the

engine; k is the time step index; i is the engine power level

index; C is the gap of the battery pack’s SOC between the

initial and the minimum; P
eng
i is the i -th discretized level for

the engine power and η
eng
i is the associated engine efficiency;

and Pk is the driving power demand at time step k.

Furthermore, if the change in SOC ( �SOC ) for each

possible engine power level at each time step is pre-calculated

given the (predicted) power demand, then constraint (3) can

be replaced by

SOC ini −SOCmax ≤
∑ j

k=1
x (k,i)�SOC (k,i)

≤ SOC ini −SOCmin

∀ j = 1, . . . , T (6)

where SOC ini is the initial SOC; and SOCmin and

SOCmax are the minimum and maximum SOC, respectively.

Fig. 5. Example solutions of power-split control.

Fig. 6. Estimation and sampling process of EA.

Therefore, the problem is turned into a combinatory opti-

mization problem whose objective is to select the optimal

ICE power level for each time step given the predicted

information in order to achieve the highest fuel efficiency for

the entire trip. Fig.5 gives three example ICE power output

solutions. The solution represented by the blue line has a lower

total ICE power consumption (i.e., 40 units) than the red line

(i.e., 90 units), while the green line represents an infeasible

solution due to the SOC constraint.

C. Evolutionary Algorithm (EA) Based On-Line Optimization

The motivations for applying EA are: 1) compared to the

traditional derivative or gradient-based optimization methods,

EAs are easier to implement and require less complex mathe-

matical models; 2) EAs are very good at solving non-convex

optimization problems where there are multiple local optima;

and 3) it is very flexible to address multi-objective optimiza-

tion problems using EAs.

Theoretically, in the proposed framework, any EAs can be

used to solve the optimization problem for each prediction

horizon described in Fig. 4. A typical EA is a population-based

and iterative algorithm which starts searching for the optimal

solution with a random initial population. Then, the initial

population undergoes an iterative process that includes mul-

tiple operations, such as fitness evaluation, selection, and

reproduction until certain stopping criteria are satisfied. The

flow chart of an EA is provided in Fig. 6.

Among many EAs, the estimation distribution

algorithm (EDA) is very powerful in solving high-dimensional

optimization problems and has been successfully applied

to many different engineering domains [20]. In this study,

we choose EDA as the major EA kernel in the proposed

framework due to the high-dimensionality nature of the
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TABLE II

REPRESENTATION OF ONE EXAMPLE INDIVIDUAL

PHEV energy management problem. This selection is

justified by experimental results in the following sections.

In the problem representation of EDA, each individ-

ual (encoded as a row vector) of the population defined in

the algorithm is a candidate solution. For the PHEV energy

management problem, the size of the individual (vector) is the

number of time steps within the trip segment. The value of the

i-th element of the vector is the ICE power level chosen for that

time step. In the example individual in Table II, the ICE power

level is 3 (or 3 kW) for the 1st time step, 0 kW (i.e., only

battery pack supplies power) for the 2nd time step, 1 for the

3rd time step, and so forth.

It is very flexible to define a fitness function for EAs. Since

the objective is to minimize fuel consumption, the fitness

function herein can be defined as the summation of total ICE

fuel consumption for the trip segment defined by Eq. (5) and

a penalty term

f (s) = C f uel + P (7)

where s is a candidate solution; C f uel is fuel consumption;

and P is imposed penalty that is the largest possible amount

of energy that can be consumed in this trip segment. The

penalty is introduced to guarantee the feasibility of solution,

satisfying Constraint (3) which means that the SOC should

always fall within the required range at each time step. Then,

all the individuals in the population are evaluated by the fitness

function and ranked by their fitness values in an ascending

order since this is a minimization problem. A good evaluation

and ranking process is crucial in guiding the evolution towards

good solutions until the global optima (or near optima) is

located.

Furthermore, EDA assumes that the value of each element

in a good individual of the population follows a univariate

Gaussian distribution. This assumption has been proven to

be effective in many engineering applications [21], although

there could be other options [22]. For each generation, the top

individuals (candidate solutions) with least fuel consumption

values are selected as the parents for producing the next

generation by an estimation and sampling process [26].

The flow chart of the proposed EDA-based on-line EMS

is presented in Fig. 7. t0 is the current time; N is the length

of the prediction time horizon and M is length of the control

time horizon. The block highlighted by the red dashed box is

the core component of the system and more details about this

block is given in section IV.

D. Optimality and Complexity

Evolutionary algorithms are stochastic search algorithms

which do not guarantee to find the global optima. Hence, in the

proposed on-line EMS, the optimal power control for each trip

Fig. 7. EDA-based on-line energy management system.

segment is not guaranteed to be found. Moreover, EAs are also

population-based iterative algorithms which are usually criti-

cized due to their heavy computational loads [23], especially

for real-time applications. Theoretically, time complexity of

EAs is worse than θ(m2 ∗ log(m)) where m is the size of

the problem [24]. However, we apply the receding horizon

control technique in this study, where the entire trip is divided

into small segments. Therefore, the computational load can

be significantly reduced since the EA-based optimization is

applied only for each small segment rather than the entire trip.

In this sense, the proposed framework can be implemented in

“real-time”, as long as the optimization for the next prediction

horizon can be completed in the current control horizon

(see Fig. 4). As previously discussed, the rule-based EMS can

run in real-time but the results may be far from being optimal

while most of the optimization-based EMS have to operate

off-line. Therefore, the proposed on-line EMS would be a

well-balanced solution between the real-time performance and

optimality.

IV. SOC CONTROL STRATEGIES

An appropriate SOC control strategy is critical in achieving

the optimal fuel economy for PHEVs [25]. In the previ-

ously presented problem formulation, the major constraint

for SOC is defined by Eq.(6), which means that at any

time step the SOC should be within the predefined range

(e.g., between 0.2 and 0.8) to avoid damage to the battery

pack. However, this constraint only may not be enough

to accelerate the search for the optimal solution. Hence,

additional constraint(s) on battery use (e.g., reference bound

of SOC) should be introduced to improve the on-line EMS.

To investigate the effectiveness of different SOC control strate-

gies within the proposed framework, two types of SOC control

strategies, i.e., reference control and self-adaptive control, are

designed and evaluated in this study.

A. SOC Reference Control (Known Trip Duration)

When the trip duration is known, a SOC curve can be pre-

calculated and used as a reference to control the use of battery
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Fig. 8. SOC reference control bound examples.

power along the trip to achieve optimal fuel consumption.

We propose three heuristic SOC references (i.e., lower bounds)

in this study (see Fig. 8 for example): 1) concave downward;

2) straight line; and 3) concave upward. These SOC minimum

bounds are generated based on the given trip duration infor-

mation by the following equations, respectively:

• Concave downward control: (lower bound 1)

SOCmin
i =

(SOC init − SOCmin)

T − (i ∗ M)
∗ N + SOC init (8)

• Straight line control :( lower bound 2)

SOCmin
i =

−(SOCmin
i − SOCmin)

T
· ((i − 1) · M + N)

+ SOC init (9)

• Concave upward control :( lower bound 3)

SOCmin
i =

−(SOCend
i−1−SOCmin)

T −(i ∗ M)
∗ N +SOC end

i−1 (10)

where i is the segment index; SOCmin
i is the minimum SOC

at the end of i -th segment; and SOCend
i−1 is the SOC at the

end of last control horizon. It is self-evident that the concave

downward bound (i.e., lower bound 1) is much more restrictive

than a concave upward bound (i.e., lower bound 3) in terms

of battery energy use at the beginning of the trip.

A major drawback for these reference control strategies is

that they assume that the trip duration (i.e., T ) is given, or at

least can be well estimated beforehand. As mentioned earlier,

this assumption may not hold true for many real-world appli-

cations. Therefore, a new SOC control strategy without relying

on the knowledge of trip duration would be more attractive.

B. SOC Self-Adaptive Control (Unknown Trip Duration)

In this study, we also propose a novel self-adaptive SOC

control strategy for real-time optimal charge-depleting control,

where trip duration information is not required. Unlike those

SOC reference control strategies which control the use of

battery by explicit reference curves, the self-adaptive control

strategy controls the battery power utilization implicitly by

adopting a new fitness function in place of the one in Eq. (7):

f (s) = R f uel + Rsoc + P
′

(11)

where R f uel and Rsoc are the ranks (in an ascending order)

of ICE fuel consumption and SOC decrease, respectively,

of an individual candidate solution s in the current population;

TABLE III

EXAMPEL FITNESS EVALUATION BY DIFFERENT FITNESS FUNCTIONS

TABLE IV

ABBREVIATIONS OF DIFFERENT SOC CONTROL STRATEGIES

COMPARED IN THIS STUDY

and P
′

is the added penalty when the individual s violates the

constraints given in Eq.(6). The penalty value is selected to be

greater than the population size in order to guarantee that an

infeasible solution always has a lower rank (i.e., larger fitness

value) than a feasible solution in the ascending order by fitness

value. Compared to the fitness function adopted for SOC

reference control (see Eq. (7)), this new fitness function tries

to achieve a good balance between two conflicting objectives:

least fuel consumption and least SOC decrease. For a better

understanding of the differences between these two fitness

functions, Table III provides an example of fitness evaluation

of the same population. In this case, the population size is 100.

As we can see in the table, Individual 2 which has a better

balance between fuel consumption and SOC decrease is more

favorable than Individual 3 in the ranking by Eq. (11) than

that by Eq.(7).

C. EDA-Based On-Line EMS Algorithm With SOC Control

Details of the proposed EDA-based on-line EMS algorithm

with SOC control are summarized in the Algorithm 1 below.

This algorithm is implemented on each prediction horizon

(N time steps) within the framework presented in Fig. 8 (see

the box with red dashed line).

In the following section, we compare the performance of the

proposed self-adaptive SOC control with other SOC control

strategies. For convenience, we list the abbreviations of all

the involved strategies in Table IV.

V. CASE STUDY

A. Synthesized Trip Information

To validate the proposed EMS for PHEVs, we use

real-world data collected on January 17th, 2012, along I-210

between I-605 and Day Creek Blvd in San Bernardino,

California, as a case study (see Fig. 9). Please refer to [2] for

more detailed description of data collection and specifications

of the power-split PHEV model if interested.
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Algorithm 1 Algorithm 1 EDA-Based on-Line EMS With

SOC Control
1: Initialize a random output solution Ibest (N time steps)

2: Pcurrent <= Generate initial population randomly

3: While iteration_number ≤ Max_iterations, do

4: For each individual s in Pcurrent

5: Calculate fuel consume C f uel using eq. (1).

6: Calculate SOC decrease using eq. (5)

7: Obtain the rank index of s: R f uel

8: Obtain the rank index of s:Rsoc

9: If SOC reference control is adopted

10: Calculate the lower bound using eqs.(8)(9)(10)

11: If individual s violates eq.(6)

12: P = P0;//largest fuel consumption in

N steps

13: Else

14: P=0;

15: End If

16: Calculate the fitness value for susing eq.(7)

17: Else If SOC self-adaptive control is adopted

18: If individual s violates eq.(6)

19: P
′
= S

20: Else

21: P
′
=0;

22: End If

23: Calculate the fitness value for susing

eq.(11)

24: End If

25: End For

26: Rank Pcurrent in ascending order based on fitness

27: Ptop<= Select topα individuals from Pcurrent

28: E <= Estimate a new distribution from Ptop

29: Pnew <= Sample N individuals from built model E

30: Evaluate each individual in Pnew using line 5 to 14

31: Mix Pcurrent and Pnew to form 2N individuals

32: Rank 2N individuals in ascending order by fitness

33: Pcurrent <= Select top N individuals

34: Update Ibest if a better one is identified.

35: Iteration_number ++

36: End While

37: Output Ibest

Based on the collected traffic data along with road grade

information, second-by-second vehicle velocity trajectory and

power demand have been synthesized as described in [2].

As pointed out earlier, it is impractical to have a priori

knowledge of the exact vehicle velocity trajectory. In this

study, we focus on the development of the optimal power-split

control, assuming perfect prediction of vehicle velocity trajec-

tory. Research on improving the prediction of vehicle velocity

trajectory in real time is part of our future work.

B. Off-Line Optimization for Validation

To justify the selection of EDA as the kernel of the proposed

framework, we first test EDA on the full-trip off-line optimiza-

tion. The results are compared with those obtained from two

Fig. 9. Example trip along I-210 in Southern California used for evaluation.

other popular evolutionary algorithms: genetic algorithm (GA)

and particle swarm optimization (PSO). The fitness (i.e., total

ICE energy consumption) of EDA-based off-line optimization

obtains better fuel economy (0.346 gallons) than the other

two (0.364 gallons for GA and 0.377 for PSO, respectively),

at the same computational expense (i.e., same population size

and same number of iterations) [26]. In addition, the result

from EDA is much closer to the global optimum (0.345 gallons

in this case) with the difference being less than 1%.

C. Real-Time Performance Analysis and Parameter Tuning

As aforementioned, a necessary condition for on-line imple-

mentation of the proposed EMS is that the optimization for

the next prediction horizon has to be finished within the

current control horizon (see Fig.4). In our study, for example,

the optimization for a prediction horizon of 50 seconds can

be completed within 1.1 seconds (with Intel Core i7 3.4GHz,

RAM 4G, and 64bit-Matlab 2012). In addition, one of our

previous work [26] has shown that the lengths of predic-

tion horizon and control horizon may significantly affect the

algorithm performance. The best combination of these two

parameters is found to be N = 250 and M = 10 in this case.

Unlike the conventional MPC whose optimization has to

be implemented along each prediction horizon, our proposed

EA based online EMS (see Fig.7) can take advantage of

the optimal results from previous prediction horizons, which

avoids a new optimization starting from scratch and there-

fore saves a lot of computational overhead. As can be seen

in Fig. 10, part of the optimal decisions from previous

prediction optimization horizon is adopted as the seed for

initial population of current prediction horizon optimization.

For example, when the control horizon is 3s and predic-

tion/optimization horizon is N, only 3 control decisions need

to be randomly initialized and optimized in the second

prediction/optimization horizon. This allows the optimiza-

tion or search to be much more efficient, compared to the

same process over entire prediction horizon. To further validate

this computational performance, we designed an EA based

MPC (EAMPC) which activates a complete new optimiza-

tion for each prediction/optimization horizon and compared

it with our proposed model. The computation time track

in Fig.11 shows that for a 50-seconds prediction horizon,

the conventional MPC takes around 1.1 seconds for each

optimization horizon but our proposed model can take only

less than 0.1s to finish the optimization from the second

prediction horizon.
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Fig. 10. Population initialization from the second prediction horizon
(i.e., t≥ 2).

Fig. 11. Comparison on computation time.

D. On-Line Optimization Performance Comparison

To fully evaluate the performance of the proposed on-line

EMS strategies, we compare them to the conventional binary

control (implementable in real-time) strategy as well as the

off-line global optimal control strategy (with the use of

dynamic programming [9]). The comparisons are carried out

on both the single trip scenario and multiple trips scenario.

When tested on a single (westbound) trip, the fuel consump-

tion and SOC profiles by different strategies are illustrated

in Fig. 12. It is shown that the proposed S-A algorithm

achieves the lowest fuel consumption (0.3515 gallons) which

is only 1.56% worse than that of global optima obtained

by the off-line optimization (0.3460 gallons). These results

can be explained by the shape of the resultant SOC pro-

files. For instance, SOC decreases very quickly in the B-I

strategy, and reaches the lower bound (i.e., 0.2) at around

1,200 seconds because the use of battery power is always

prioritized whenever available. Therefore, ICE has to supply

most of the demanded power after 1,200 seconds. This is

very similar to the cases of the B-A and C-U strategies

where the battery power is also consumed aggressively at

the beginning of the trip with very loose constraints. On the

other hand, the S-L and C-D strategies perform better since

their battery power is used more cautiously along the trip.

These findings are consistent with the conclusions of many

other studies [19], [25] in that a smoother distribution of

battery power usage along the trip would result in higher fuel

efficiency.

In order to know the statistical significance of the differ-

ent EMS strategies, we test them on 30 randomly selected

trip profile data extracted from the same road segment on

12 different days. The results are also compared to the binary

control and dynamic programming (D-P) strategies. For the

purpose of comparison, we set the fuel consumption obtained

by the binary control strategy as the baseline and calculate

Fig. 12. SOC trajectories resulted from different control strategies.

Fig. 13. Box-plot of fuel savings on 30 trips.

the percentage of fuel savings achieved by the other EMS

strategies. As we can see in Fig. 13, the D-P strategy achieves

the best fuel savings with an average of 19.4% and the least

variance simply because it is an off-line optimization strategy.

The proposed S-A strategy achieves an average of 10.7% fuel

savings which is higher than all other on-line strategies and

consistent with the result of the single trip test. An interesting

observation is that the S-L strategy has better average fuel

savings (i.e., 9.3%) than the C-D and C-U strategies which

is not consistent with the test result of the single trip test.

A possible reason is that the C-D strategy performs better on

some trips in which the power demand is higher in later stages

of the trip but the C-U strategy performs better on the trips

in which the power demand is higher in earlier stages. On the

other hand, the S-L strategy balances the SOC control between

these two types of trip pattern, and therefore has better average

performance.

For further validation, the proposed S-A strategy with the

best performance is compared with other existing PHEV EMS

strategies that employ short-term prediction. Although these

strategies were proposed to handle powertrain models with

different fidelity as well as different data set for validation,

they all used the binary control strategy as a benchmark (the

same as in this work). This provides us a chance to compare

all models in a relatively fair manner. The comparison results

are listed in table V, which proves that our model achieves

the largest improvement of fuel efficiency (with regard to the

binary control strategy) but requires less trip information.

E. Analysis of Trip Duration

In this section, we analyze and compare the effectiveness of

the proposed on-line EMS for longer trips. These longer trips

are constructed by concatenating multiple trip profiles and the
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TABLE V

COMPARISONS WITH EXISTING MODELS

Fig. 14. Fuel savings for trips with different duration, compared to B-I.

Fig. 15. Resultant SOC curve when trip duration is 5,000 seconds.

results are shown in Fig. 14. As can be observed, the B-I

strategy has the best fuel economy when the trip duration is

shorter than 1,500 seconds. For these short trips, the PHEV can

mostly rely on battery energy. However, as the trip duration

becomes longer, especially when longer than 2,500 seconds,

the S-A strategy outperforms all the others.

To further explain this finding, the resultant fuel con-

sumption and the corresponding SOC profiles for the longest

trip (5,000 seconds) are provided in Fig. 15. According to the

figure, the S-A strategy has the lowest fuel consumption and

its SOC profile is a combination of the CD mode (defined

in Fig. 1) before 2,000 seconds and the CS mode after

2,000 seconds. This contradicts with most of the existing

studies, which report that an optimal fuel economy for the

trip can be achieved by operating solely in the CD mode [20].

Here, we present evidence that it is not always the case,

Fig. 16. SOC track with known or unknown charging opportunity.

and that the CD+CS operation can result in optimal fuel

efficiency for long trips. Furthermore, this finding also implies

the potential for the proposed S-A strategy to adapt to different

trip durations.

F. Performance With Charging Opportunity

Considering the plug-in capability of PHEVs, we evaluate

the performance of the proposed strategies at the tour level.

More specifically, we consider the commute trips of the case

study as a tour and assume that there is a charging oppor-

tunity (to a full charge) between the end of the westbound

trip and the beginning of the eastbound trip. We then com-

pare the different SOC control strategies under the following

two scenarios:
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TABLE VI

INCREASED FUEL CONSUMPTION

1) Scenario I: The proposed EMS with a priori knowledge

of the charging opportunity;

2) Scenario II: The proposed EMS without a priori knowl-

edge of the charging opportunity. In this case, a conser-

vative strategy is applied by assuming that there is no

charging station available in between the trips.

The results are illustrated in Fig.16. They show that the

knowledge of the charging opportunity information has great

influence on the resultant SOC profiles for the deterministic

SOC reference control strategies but no influence on the

SOC self-adaptive control strategy. Table VI presents the

increased fuel consumption due to the lack of knowledge of

the charging opportunity prior to the tour. As shown in the

table, the C-D, S-L, and C-U strategies all have 13% or more

increase in fuel consumption if the charging opportunity

information is unknown, while the B-I and S-A strategies are

not affected because the trip duration is not considered in their

decision-making process. But S-A strategy is able to achieve

31.5% fuel savings comparing to B-I strategy when consider-

ing charging opportunities. These findings further emphasize

the advantage of the proposed SOC self-adaptive control

strategy in terms of robustness to the level of knowledge about

charging availability.

VI. CONCLUSIONS

In this study, we develop the framework of an on-line energy

management system for plug-in hybrid electric vehicles. The

framework applies the self-adaptive strategy to control the

vehicle’s state-of-charge (SOC) in a rolling horizon manner

for the purpose of real-time implementation. The control of

the vehicle’s SOC is formulated as a combinatory optimization

problem that can be efficiently solved by the estimation dis-

tribution algorithm (EDA). The proposed energy management

system is comprehensively evaluated using a number of trip

profiles extracted from real-world traffic data. The results show

that the self-adaptive control strategy used in the proposed

system statistically outperforms the conventional binary con-

trol strategy with an average of 10.7% fuel savings without

considering charging opportunity and 31.5% fuel savings when

considering charging opportunity.

The real-time performance analysis shows that the proposed

mode is very computationally efficient and can be imple-

mented in real-time by taking the advantage of evolutionary

optimization.

Another important advantage of the proposed energy

management system is that, unlike other existing systems,

it does not require a priori knowledge about the trip dura-

tion. This allows the proposed system to be robust against

real-world uncertainties, such as unexpected traffic congestion

that increases the trip duration significantly, and changes in

inter-trip charging availability.
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