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Collision warning/collision avoidance (CW/CA) systems must be designed to work seamlessly with
a human driver, providing warning or control actions when the driver’s response (or lack of) is deemed
inappropriate. The effectiveness of CW/CA systems working with a human driver needs to be evalu-
ated thoroughly because of legal/liability and other (e.g. traffic flow) concerns. CW/CA systems tuned
only under open-loop manoeuvres were frequently found to work unsatisfactorily with human-in-the-
loop. However, tuning CW/CA systems with human drivers co-existing is slow and non-repeatable.
Driver models, if constructed and used properly, can capture human/control interactions and accel-
erate the CW/CA development process. Design and evaluation methods for CW/CA algorithms can
be categorised into three approaches, scenario-based, performance-based and human-centred. The
strength and weakness of these approaches were discussed in this paper and a humanised errable
driver model was introduced to improve the developing process. The errable driver model used in this
paper is a model that emulates human driver’s functions and can generate both nominal (error-free) and
devious (with error) behaviours. The car-following data used for developing and validating the model
were obtained from a large-scale naturalistic driving database. Three error-inducing behaviours were
introduced: human perceptual limitation, time delay and distraction. By including these error-inducing
behaviours, rear-end collisions with a lead vehicle were found to occur at a probability similar to traffic
accident statistics in the USA. This driver model is then used to evaluate the performance of several
existing CW/CA algorithms. Finally, a new CW/CA algorithm was developed based on this errable
driver model.
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1. Introduction

Driver errors are known to be responsible for a large number of traffic accidents. Among all the
accidents, collision with another motor vehicle was the most common first harmful event for
crashes [1]. As early as the 1950s, collision warning algorithms and devices were developed
for aviation applications [2,3]. Ground vehicle CW/CA problems were discussed by Gibson
and Crooks [4]. In his paper, Gibson described the concept of safe travel. In the 1980s, the
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Ministry of Construction in Japan organised a committee to focus on the study of advanced
vehicle technologies, including obstacle detecting and collision avoidance [5]. Early collision
warning algorithms were developed and introduced in [6,7]. In the early 1990s, as part of
the push for intelligent vehicle highway system, collision warning/avoidance systems were
widely studied [8–10].

In the 1990s, Burgett et al. [11] proposed a rear-end collision warning algorithm. The driv-
ing situations were divided into three zones. The boundary between the zones and warning
criteria were defined accordingly. Kiefer et al. [12] reported minimum elements required for
the development of forward collision warning systems. Crash alert timing was studied by
conducting human factor analysis. Doi et al. [13] developed an algorithm based on kine-
matic relationship between two vehicles and addressed collision problem in both straight
and curved roads. Brunson et al. [14] refined the algorithm developed by Burgett et al. at
NHTSA. Their algorithm used current vehicle states and assumed driver reaction time to cal-
culate a range which they named ‘miss-distance’. When the miss-distance is smaller than a
threshold, an alert would be issued. Zhang and Antonsson [15] gave another interpretation
of Brunson and NHTSA’s algorithm. Instead of calculating the miss-distance, they used the
vehicle range to calculate a reaction time and called it the ‘time to last second braking’. They
claimed that this new approach has better agreement with human judgement and directly quan-
tifies the threat level of the driving situation. All the above algorithms are based on assumed
kinematic equations. By measuring engineering variables such as range, speed and accel-
eration, the severity of collision threats is assessed and is used as the basis for warning or
control.

An alternative approach was using time to collision (TTC) as the warning criteria. As sug-
gested by Gibson [16] and Lee [17], human drivers rely more on the TTC for collision
judgement than other signals such as range or time headway. Lee and Peng [18] provided
a systematic method for evaluating collision warning algorithms and they claimed that TTC
is a better metric for collision threat than other kinematic variables. Using TTC and lead vehi-
cle acceleration would further improve the performance in terms of warning precision and
true positive rate. Hirst and Graham [19] suggested a TTC algorithm with speed dependency.
Miler and Huang [20] added an extra term to the TTC algorithm. This extra term includes
human reaction time, reduced speed and estimated road friction coefficient. The reaction time
modelled human’s time delay and the reduced speed and the estimated road coefficient can be
adjusted depending on the severity of the situation.

Collision warning/collision avoidance (CW/CA) systems are driver-assistant systems for
situations when the driver is not able to avoid or mitigate a crash; in other words, when
the driver is either making a mistake or is not able to handle the situation. Therefore, to
evaluate CW/CA algorithms, models that achieve driving tasks perfectly are not very useful.
On the contrary, a model that makes mistakes similar to human drivers is more useful for the
development of CW/CA systems. In the following sections, an errable driver model will be
introduced. A stochastic driver model developed based on a large quantity of realistic driving
data is used as the basis of this errable driver model. Three error mechanisms are used to create
an ‘errable’ model (i.e. the model makes mistakes in a manipulated fashion). Subsequently,
several conventional evaluation methods for CW/CA algorithms are reviewed and the errable
driver model is used to improve those evaluation methods. Moreover, a new evaluation method
that fully utilises the strength of the errable driver model is introduced. This method evaluates
the timing of CW/CA algorithms by comparing them with probabilities of crash predicted
by the errable driver model (Figure 1). Finally, a new CW/CA algorithm is developed by
utilising the probability of crash as the criteria for issue warning. This algorithm is adaptive
and provides different levels of warning. A simple example was shown and comparisons with
other CW/CA algorithms were presented.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ic
hi

ga
n]

 a
t 1

3:
24

 2
9 

Ja
nu

ar
y 

20
14

 



Vehicle System Dynamics 527

Figure 1. CW/CA evaluation with errable driver model.

2. Errable driver model

An errable driver model is a model that normally executes driving tasks (e.g. car-following)
properly and could be made to produce devious behaviour (just like human), which could
result in accidents or near-accidents that are of interest to designers of active safety systems.
Driver errors can be viewed as a recurring event which, in combination with events from
surrounding vehicles, could result in an accident. For example, a driver may be distracted or
engaged in alternative control tasks and thus fails to adjust vehicle speed at the regular cadence.
If the leading vehicle happens to decelerate at the wrong moment, a rear-end collision could
occur. The human behaviour (distraction) and lead vehicle deceleration can be described by
stochastic processes. If proper human cognition/error mechanisms are included and proper
probability functions (from human driving data) are used to introduce human errors, it is
possible to reproduce accident/incident behaviour that is statistically similar to field-testing
results – which is a major goal of our research. The field-testing database used is from the
road-departure crash-warning (RDCW) system field operational test [21]. The RDCW system
was designed to analyse road departure behaviour, which was installed on 10 test vehicles.
Large quantity of naturalistic field-driving data was collected, which are used for our driver
model development.

An errable driver model was developed in a previous work [22] and used here for the
evaluation and development of CW/CA algorithms (Figure 2). This model emphasises the
stochastic nature of a driver instead of considering driving as a deterministic process. The
errable driver model was constructed based on the assumption that a driver normally has
a desired target acceleration which can be calculated by a deterministic process, like many
other car-following driver models [23–28]. However, the target acceleration will be achieved
with some stochastic deviations. The randomness is due to driver imperfection in perception,
decision and execution and can be described by a probability distribution function (PDF). The
analysis of the RDCW data shows that the mean of this PDF is proportional to the range rate in a
function of third-order polynomial and the deviation is a second-order polynomial function of
range (1)–(3). Second term in Equation (1) was applied to approximate the human’s feedback
action for regulating time headway. This additional term is proportional to the difference
between the actual range and the desired range.
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σ σ

Figure 2. Errable driver model diagram.

The resulting model (1)–(5) is able to simulate the normal driver behaviour and occasional
deviations from realistic driving data

ad(t) = P(R(t)) · Ṙ(t) + C · (R(t) − Th · VF(t)) (1)

P(R (t)) = P3 · R3(t) + P2 · R2(t) + P1 · R(t) + P0 (2)

σ(R (t)) = P̄2 · R2(t) + P̄1 · R(t) + P̄0 (3)

a(t) = f (ad, σ ) (4)

f (a|ad, σ ) = σ−1 · exp

(
x − ad

σ

)
· exp

(
− exp

(
x − ad

σ

))
(5)

where R is the range between two vehicles, Pi’s the polynomial coefficients, Th the headway
time, ad the desired acceleration of vehicle, a the implemented acceleration of vehicle and
f a random number generator (Table. 1).

In an earlier paper by the authors [22], three types of error-inducing behaviours were
included: perceptual limitation, time delay and distraction. As explained in [22], these three

Table 1. List of symbols

Symbol Name

ad Driver-desired acceleration
VF Following vehicle velocity
aL, VL Lead vehicle acceleration, velocity
R, Ṙ Range, range rate
C Desired acceleration gain of range
P Desired acceleration gain of range rate
P0, P1, P2, P3 Desired acceleration gain coefficient
σ Deviation
P̄0, P̄1, P̄2 Deviation gain coefficient
a Implemented acceleration
Th Time headway
t Time
tpreview Preview time
acrash Acceleration that leads to a crash
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Vehicle System Dynamics 529

error mechanisms can be added to the driver model, and by identifying proper values or PDFs
of these error mechanisms, these error-inducing functions could create stochastic behaviours
similar to human drivers. The velocity perception limit is a deterministic mechanism and
a threshold of 0.1 is used. Time delay of a driver is time-varying and is approximated by
a stochastic function. It is approximated as a renewal process, and the PDF of the renewal
process is identified through a recursive least square optimisation procedure, by finding the
optimal delay time among 20 parallel dynamic processes.

The third and perhaps the most important error-inducing mechanism is driver distraction.
Driver is a multi-tasking intelligent subject and needs to or wants to attend to other tasks
such as cell phone usage, gawking of traffic incidents or simply day-dreaming. The effect of
distraction is modelled as increased standard deviation in control performance (Equation (5)).
We analysed the RDCW data and again found the PDF of the alternative renewal process with
two independent identical distributions (IID). The IIDs will be used to generate the duration
of the normal phase of driving, when the original deviation level in the driver model is used.
And then the distracted phase of driving starts, the duration of which is generated from that
IID and a higher deviation level will be used. The driver state will then be switched to the
normal phase, and the process is repeated until the end of the simulation.

All the three error-inducing behaviours discussed above were implemented, and leading
vehicle velocity profiles from actual driving were used as a simulation input. A total of
8,846,976 miles of driving was simulated and 25 crashes happened (282.6/100M VMT).
The probability of rear-end crashes was compared with crash data from NHTSA [1], which
has a reported crash rate of 120/100M VMT. Our simulation crash rate is 133% higher. Owing
to the fact that not all minor crashes are reported and drivers might be alerted by passengers
or engage unusually high brake actions, i.e. behaviours not adequately captured in the data we
used to train the driver model, we think this higher predicted collision rate is reasonable. The
fact that the developed driver model is more conservative (result in more crashes), we believe,
is beneficial for the evaluation of collision warning/collision avoidance systems.

3. Evaluating CW/CA algorithms

CW/CA algorithms have been studied for more than 50 years. Most of them were designed and
evaluated by using a scenario-based method. In this approach, a test matrix was first defined.
Then, CW/CA algorithms are exposed to the scenarios within the test matrix and their per-
formance is evaluated. The design and evaluation procedure is illustrated in Figure 3. An
example of well-defined test matrices for CW/CA systems can be found in [29–31].
An alternative, a performance-based approach, was proposed byYang andYang [32] (Figure 4).
A performance boundary was first defined, and then the test matrix was used to search
for parameters of the CW/CA algorithm that can satisfy the performance requirement. The
resulting CW/CA algorithm will have guaranteed performance throughout the scenarios
covered in the test matrix.

The performance-based design approach still needs pre-determined test scenarios which
might not be rich enough. A human-centred approach was developed to compensate for this
disadvantage [18]. Significant amount of naturalistic human driving data were analysed and
a set of threatening situations were identified. Then, the threatening scenarios were used to
test the CW/CA algorithms. This human-centred approach benchmarks CW/CA algorithm
performance by realistic human driving behaviours and provides an optimisation method for
obtaining algorithm parameters. Nevertheless, the evaluating data were collected from human
driving database without any real crash. In other words, the defined threatening situations may
not be severe enough. The errable driver model presented earlier in this paper can address

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ic
hi

ga
n]

 a
t 1

3:
24

 2
9 

Ja
nu

ar
y 

20
14

 



530 H.-H. Yang and H. Peng

Figure 3. Scenario-test approach design diagram.

Figure 4. Performance-based scenario-test approach design diagram.

this deficiency. By introducing proper human cognition/error mechanisms, it is possible to
generate realistic accidents/incidents. Therefore, the evaluation is human centred and harsh
enough to be useful.

The errable driver model can improve the evaluations of CW/CA algorithms in several ways.
In a scenario-based approach, the driving behaviour of the target vehicle can be replaced by a
humanised errable driver model. The errable driver model could generate more realistic driving
behaviour than randomly selected scenarios. For a human-centred approach, the errable driver
model can be used to generate near-crash or crash manoeuvres. It should be noted that crashes
do not happen frequently. Even for large-scale driving database such as [18] with more than
82,000 miles of driving, all the identified threatening situations did not result in actual crash.
With the errable driver model, actual crashes can be simulated and used for evaluating CW/CA
algorithms.

Even though the errable driver model can be used to generate driving behaviour under pre-
scribed test matrices, an alternative is proposed to fully utilise the advantage of the errable
driver model and not limited to prescribed test matrices. The errable driver model was devel-
oped based on a stochastic driver model and all error-inducing behaviours were imposed as
stochastic processes. Given any initial conditions (vehicle velocity, range rate, range and lead
vehicle acceleration), the probability of future manoeuvres can be calculated. Hence, the prob-
ability of crash can be predicted without exhaustive simulations. A simple example was done
by using only the stochastic driver model without any error mechanisms. To demonstrate this
concept, a one-step prediction was done. For any given range, range rate and following vehicle
speed, the distribution of the acceleration of the following vehicle can be calculated by the
stochastic driver model. With the leading vehicle velocity or even acceleration available, the
crash accelerations that would end up with a crash in a preview time can be calculated from

R ≤ (VL − VF) · t + 1

2
· (aL − aF) · t2

preview =⇒ acrash ≥ R − Ṙ · tpreview

1/2 · t2
preview

+ aL (6)
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Vehicle System Dynamics 531

Figure 5. An example of the probability of crash (lead vehicle velocity = 30 m/s, range rate = −4 m/s, lead vehicle
acceleration = −0.22 g).

After obtaining the crash accelerations, the probability that the driver will actually accelerate
at or beyond those crash accelerations can be calculated by replacing ad in Equation (5) with
acrash. A one-dimensional example is shown in Figure 5. Initial conditions were lead vehicle
velocity = 30 m/s, range rate = −4 m/s, lead vehicle acceleration = −0.22 g and preview
time = 2 s. The initial range was varied from 0 to 20 m and their corresponding probability of
crash can be calculated (Figure 5).

Figure 5 can be interpreted as: for the given conditions, whenever the range is smaller
than 7.0 m, the target vehicle will have a crash within the next 2 s. And, if the range is large
than 12 m, the probability of crash within the next 2 s is zero. This approach can be further
extended to multi-dimensions and compared with the existing CW/CA algorithms. Several
algorithms (Table 2) were compared in Figure 6. Some preliminary conclusions can be drawn
from Figure 6. For example, Doi’s algorithm issues earlier than EDM prediction and Fujita’s
algorithms are generally late. Those conclusions were consistent with the human-approach
evaluation results [34]. All four algorithms are agreed more with EDM prediction in small
range rate and differed in large range rate.

Table 2. CW/CA algorithms selected for evaluation.

Algorithms

Fujita Warning [33] Rwarning = −τ · Ṙ + Rmin

Fujita Braking [33] Rbraking =

⎧⎪⎨
⎪⎩

−τ2 · Ṙ + τ1 · τ2 · α1 − 0.5α1 · τ 2
1

τ2 · VF − 0.5α1 · (τ2 − τ1)
2 − V 2

L

2α2

Doi et al. [13] Rwarning = 0.5 ·
(

V 2
F

α1
− V 2

L
α2

)
+ VF · τ1 − Ṙ · τ2 + Rmin

Lee [34]

{
TTI ≤ TTIcriterion

aL ≤ aLcriterion
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532 H.-H. Yang and H. Peng

0

Figure 6. EDM probability of crash compared with other algorithms.

4. A humanised CW/CA algorithm

In the previous section, the errable driver model is used to evaluate the CW/CA algorithms
by comparing the warning timing with the probability of crash. This probability of crash can
also be used as the warning criteria. If the predicted probability of crash exceeds a threshold,
a warning can be issued. The prediction method provided in the previous section estimates
the maximum acceleration which would cause a crash and calculates the probability of crash
backwards. This method is computation-efficient but not accurate because it assumes a constant
acceleration throughout the whole prediction horizon. A forward multi-step prediction can be
used to achieve a higher accuracy. Using current vehicle states as the starting point, the vehicle’s
possible future states can be predicted with their probability. A simplified example is shown
in Figure 7.

The prediction started as state 00. The next three possible states 10, 11 and 12 can be
calculated with their probability P00,10, P00,11 and P00,12, respectively. The prediction can keep
going until the preview time tpreview or when the state becomes absorbing. A state is absorbing
if the following vehicle speed VF and/or range rate reaches zero (states 20), i.e. when the
vehicle is fully stopped or is slower than the lead vehicle. Meanwhile, the state can also become

Figure 7. Multi-step prediction.
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Vehicle System Dynamics 533

Figure 8. Cumulative probability of vehicle range at the end of the 2 s preview time.

absorbing if the range is smaller than zero (states 28), which represents a crash. The probability
of crash can be calculated by summing up probabilities of all the states that result in crashes.
A MATLAB example is shown in Figure 7. The simulation started a black dot (range 20 m
and range rate −4 m/s). Three possible future vehicle positions are blue dots and final vehicle
positions are in red. Two larger red dots represent crashes and a large green dot represents a
safe condition that the range rate is equal to zero. Therefore, the possibility that would end
up in crashes can be calculated. One simulation result is shown in Figure 8. Initial conditions
were VF = 30 m/s, range rate = −4 m/s, range = 20 m, aF = −0.6 g, preview time = 2 s,
prediction states = 12 and prediction steps = 4. The probability of a crash in the next 2 s
is 18% which may be high enough to issue a warning. Figure 9 shows the probabilities of
crash for different initial conditions. With error-inducing behaviours and multi-step prediction,
probabilities of crash are slightly different from the prediction made in the previous section.
The vehicle starts to have a probability of crash earlier because of error-inducing behaviours.
However, the probability of crash increases slowly because of the multi-step prediction. The
physical interpretation of multi-step prediction means that the model has more steps to correct
its behaviour.

This probability of crash distribution (Figure 9) can be used to construct a warning map. One
benefit of this algorithm is that the probability of crash can be selected to set different levels of
warning. Algorithm developers can select appropriate warning levels and they can be driver-
adjustable. Another strength of using EDM as a CW/CA algorithm is its ability to adapt
to different drivers’ behaviours. When calibrating errable driver model, model coefficients
(P and P in Equations (2) and (3)) are obtained by fitting a set of driving data, which can be
customised with individual driving data. Therefore, the errable driver model can be updated
in real time for better customisation to the driver. Conventional CW/CA systems tuned under

Figure 9. EDM warning map based on the behaviour of two different drivers.
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534 H.-H. Yang and H. Peng

open-loop were frequently found to work unsatisfactorily with human-in-the-loop. If updated
in real time, the obtained CW/CA algorithm has the potential to achieve a much higher level
of false positives and false negatives, which are critical deficiencies for the commercialisation
of CW/CA algorithms.

5. Conclusion

A humanised errable car-following driver model was used to evaluate the performance of
several CW/CA algorithms. This errable driver model emulates human driver and can generate
both nominal (error-free) and devious (with error) behaviours.A large-scale naturalistic driving
database was used for developing and validating this errable car-following driver model. Three
error-inducing behaviours were implemented in this model, human perceptual limitation, time
delay and distraction due to non-driving tasks. By combining three error-inducing behaviours,
rear-end collision with the lead vehicle occur and at a probability similar to what was reported
in traffic accident statistics. This ability of emulating rear-end collision behaviour was useful
to evaluate the performance of CW/CA algorithms – several of which were shown in this
paper and the evaluation results are summarised in this paper.

Subsequently, a new CW/CA algorithm is suggested based on the errable driver model.
The driver was used to predict the probability of crash, based on which warning or brak-
ing action can be issued. This algorithm was tuned with realistic human driving data. The
developed CW/CA algorithm has the potential to be tuned in real time to adapt to individual
drivers. Efficient computation and actual performance of this CW/CA algorithm have not
been demonstrated and they are our current research focus.
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