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ABSTRACT 

 

Chicken is the primary natural host of Campylobacter, the leading bacterial cause 

of human enteritis in the US and other developed countries. Thus, mitigation of 

Campylobacter in chicken using innovative approaches, such as vaccination, will have a 

significant impact on food safety and public health. Our previous studies have 

demonstrated that the two outer membrane proteins, CmeC (the essential component of 

the CmeABC multi-drug efflux pump) and CfrA (a ferric enterobactin receptor), are 

feasible candidates for immune intervention against Campylobacter. DNA vaccine has 

appeared to offer various advantages for poultry, particularly when combined with in ovo 

vaccination. Chitosan-encapsulated subunit vaccines have also been demonstrated to 

induce both systemic and mucosal immune response via intranasal vaccination. To 

further develop effective vaccines to mitigate Campylobacter in poultry, two vaccination 

strategies that may have potential for mass vaccination on poultry farms were developed 

and evaluated in this project. To develop effective DNA vaccines for in ovo vaccination, 

cmeC or cfrA genes were cloned into eukaryotic expression vector pCAGGS with 

introduction of Kozak sequence to further enhance the production level of inserted genes 

in eukaryotic cells. Large quantities of DNA vaccines were prepared and used for two 

independent in ovo vaccination trials to evaluate the immune response and protective 

efficacy of the validated DNA vaccines. However, in ovo injection of the DNA vaccines 

at 18th day of embryonation, regardless using neutral lipid-protected vectors or not, failed 

to trigger significant immune response in broilers. To develop chitosan encapsulated 

subunit vaccines for intranasal vaccination, the conditions for preparation of 



iv 
 

nanoparticles using chitosan were optimized. In addition to the pCAGGS-CmeC and 

pCAGGS-CfrA DNA vaccines, large quantities of recombinant CmeC and CfrA proteins 

were purified and used for preparing chitosan encapsulated subunit vaccines. A chicken 

experiment (6 treatment groups with 20 chickens per group) was performed to evaluate 

immune response and protective efficacy of intranasal immunization with four chitosan 

encapsulated subunit vaccines. Nevertheless, the intranasal subunit vaccines failed to 

induce immune response and protection against Campylobacter in chickens. 

 

Key Words: Campylobacter, poultry, DNA vaccine, CmeC, CfrA, in ovo vaccination, 

intranasal, chitosan 
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CHAPTER 1: Review of Literature 

 

1.1. General features of Campylobacter 

Campylobacter, a genus of Gram-negative microaerophilic bacteria, was first 

observed in the colons of infants who died of ‘cholera infantum’ in 1886 (Samie et al., 

2007) and then successfully isolated from human feces in 1972 (Dekeyser et al., 1972).  

Ever since the discovery, Campylobacter has been recognized as an important human 

enteric pathogen worldwide. According to the Foodborne Illness Risk Ranking Model 

(FIRRM) generated by the Emerging Pathogens Institute, Campylobacter remains the 

most common foodborne pathogen causing the greatest burden to the public health in the 

United States (Batz et al., 2011; Batz et al., 2014). Among a large and diverse group of 

species, C. jejuni causes most of the cases, while C. coli causes 1–25% of the 

Campylobacter-related diseases (Kaakoush et al., 2015; Man, 2011; Sahin et al., 2015). 

The susceptible populations of Campylobacter were reported to be concentrated in the 

United States and European countries, likely due to infrequent exposure to this pathogen 

(Friedman, 2000). The seasonality of campylobacteriosis has also been observed with a 

peak during the summer months, which might be related to the increase of flies and other 

vectors (Gölz et al., 2014; Nichols, 2005).  

The majority of human infections are caused by the consumption of undercooked, 

contaminated animal products, such as meat and milk, especially chicken meat (Gölz et 

al., 2014). Nonetheless, people can also be infected by consumption of contaminated 

water, contact of animals and other environmental sources (Gölz et al., 2014). The typical 
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clinical symptom of campylobacteriosis is an acute diarrhea, often accompanied with 

abdominal cramping, headache and fever (Blaser, 1997). Considered a self-limiting 

disease, the latent period of campylobacteriosis is usually 2–5 days while the disease can 

last for up to 2 weeks (Young et al., 2007). Nevertheless, the symptom may still last for 

several weeks and medical intervention is required for 10% of reported cases (Lee and 

Newell, 2006). C. jejuni infection is also associated with Guillain-Barre’ syndrome 

(GBS), a life-threatening autoimmune disease which leads to peripheral nervous damage 

with a mortality of 2-7% and bad prognosis (Mawla et al., 2014). 

In 2013, FoodNet identified 6,621 cases of infection, 1,010 hospitalizations, and 

12 deaths caused by C. jejuni (Crim et al., 2014). However, it has been widely considered 

that C. jejuni leads to 400-500 million cases annually (Ruiz-Palacios, 2007). About 11% 

of the population acquires the infection each year in the US (Ruiz-Palacios, 2007). 

Moreover, C. jejuni has been estimated to cause 200 deaths per year in the United States 

(Ruiz-Palacios, 2007). The annual cost correlated to this disease is estimated to be 

between $1.2 to 4 billion per year in the U.S (Batz et al., 2014; Frenzen, 2008). 

One study showed that a mere 400 colony forming units (CFU) of C. jejuni can 

result in human illness (Black et al., 1988). Serum IgA, IgG, and IgM antibodies can be 

detected in people who are infected by Campylobacter in one week (Herbrink et al., 

1988), while intestinal secretory IgA (sIgA) can be detected 2-3 weeks post infection 

(Lane et al., 1987). In a study in 1988, the volunteers who have been infected with 

C.jejuni were re-challenged with Campylobacter but the typical campylobacterioisis  

symptoms failed to appear in these volunteers (Black et al., 1988), indicating that humans 

can be protected against Campylobacter through immunity. 
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1.2. Epidemiology of Campylobacter in poultry 

The Campylobacter-poultry combination is the leading pathogen-food 

combination responsible for the food-related human illness, according to FIRRM (Batz et 

al., 2011). Molecular epidemiologic studies have suggested that chicken is the primary 

source of human campylobacteriosis worldwide (Agunos et al., 2014; Sheppard et al., 

2009; Wilson et al., 2008). Meanwhile, poultry is one of the world’s most important 

animal protein resources, due to the higher feeding efficiency and faster growth rate 

compared to pork and beef (Smil, 2002). It is expected that chicken will become the 

largest meat product worldwide in 2020s, as a result of changing food preferences, 

increasing household income and population growth (OECD/FAO, 2012).  

Campylobacter is considered a commensal organism within the intestinal tracts of 

poultry (Sahin et al., 2002). Once the first bird in a flock becomes colonized, infection 

spreads to the entire flock in just a few days (Gölz et al., 2014; Katsma et al., 2005). This 

rapid spread of Campylobacter throughout the flock is likely a result of fecal-oral 

transmission, compounded by communal water and feed (Lee and Newell, 2006). Based 

on the visualization of the confocal scanning laser microscopy, C. jejuni can also survive 

in feather follicles and the pores on chicken skin at a depth of 20–30 µm upon contacting 

its poultry host, which provides C. jejuni with a microenvironment with little exposure to 

oxygen, appropriate humidity, and temperature to survive stress conditions 

(Chantarapanont et al., 2003). Colonization of C. jejuni can persist for the lifetime of the 

broilers, consequently leading to carcass contamination at the slaughter facility. Although 

Campylobacter can be isolated from most intestinal sites of broiler chickens, it is mainly 

found in the cecal and cloacal crypts where it does not adhere to epithelial cells but is 
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found in the mucous layer (Lee and Newell, 2006). Broiler chicken can carry C. jejuni as 

high as 106 to 1010 CFU per gram of feces (Lee and Newell, 2006; Rice et al., 1997). The 

detection of C. jejuni in tissues other than the intestinal tract, such as the spleen, lung, 

heart and liver, suggests that this pathogen can translocate intestinal epithelial cells and 

become systemic (Knudsen et al., 2006).  

Epidemiological simulation has shown that the reduction of C. jejuni 

contamination in poultry carcasses by two log units can result in a reduction in the 

incidence of human infection by 30-fold (Rosenquist et al., 2003). This further indicates 

that on-farm control of C. jejuni would make significant impact on the reduction of 

campylobacteriosis in human. 

 

1.3. Chicken host immune response to Campylobacter infections 

For decades, Campylobacter has been considered to be commensal to chicken, as 

no clear phenotypic difference between infected birds and normal birds can be observed 

(Shane, 2000; Van de Giessen et al., 1992). Nevertheless, recent research has shown that 

there was a prolonged inflammatory response as well as gut mucosa damage and diarrhea 

in some breeds of chicken (Humphrey et al., 2014). Awad et al. (2014) also showed that 

C. jejuni infection can affect the structure of chicken intestinal epithelium. These may 

infer that C. jejuni cannot be considered as a commensal bacterium; C. jejuni may cause 

infection in chickens. 

Many studies have reported that C. jejuni infection could lead to both mucosal 

and systemic immune response in chickens (Cawthraw et al., 1994; de Zoete et al., 2007; 
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Widders et al., 1998). Cawthraw and colleagues (1994) have shown that C. jejuni-specific 

serum IgG, IgM and IgA rose 2 weeks after infection with a peak at 5-7 weeks after 

infection, and then declined. Intestinal mucosal IgA against C. jejuni also rose 3-4 weeks 

after challenge (Cawthraw et al., 1994). Furthermore, the elevated levels of C. jejuni -

specific antibodies are associated with the reduction of C. jejuni colonization level, 

suggesting an important role of the humoral immunity in controlling C. jejuni infection in 

chicken (Lin, 2009). C. jejuni-specific maternal antibodies can also be vertically 

transferred from layers to the offspring (Sahin et al., 2001), which contributes to the 

delay of Campylobacter infection in young chickens during the first 2 weeks after 

hatching (Sahin et al., 2003). Together, these findings indicate that C. jejuni-specific 

antibodies may reduce Campylobacter colonization in birds, providing us a strong 

rationale to utilize immune intervention to reduce C. jejuni load in poultry as investigated 

in this project. C. jejuni has been demonstrated to be recognized by Toll-like receptor 4 

(TLR4) as well as TLR21 in chickens, which then leads to the innate immune responses 

in the intestinal tract that cause an influx of inflammatory cells, such as heterophils, a 

functional equivalent of neutrophil (de Zoete et al., 2010; Meade et al., 2009; Smith et al., 

2008).  

 

1.4. Immune intervention to reduce Campylobacter load in poultry 

Multiple approaches have been developed to control Campylobacter on the broiler 

farm level. Those approaches include 1) reduction of environmental exposure, e.g. 

biosecurity measures; 2) antimicrobial alternatives, such as bacteriophage therapy and 

bacteriocin treatment; and 3) increase of host resistance, such as host genetics selection 
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(Lin, 2009). However, many of these proposed intervention strategies still have 

significant disadvantages and are still not practically available (Lin, 2009). An early 

study by Stern et al (1990) showed the C. jeuni dose needed for chicken colonization 

increased by 50% if chickens were pre-incubated with Campylobacter-specific 

immunoglobulins. This suggests that immune intervention, either vaccination or passive 

immunity, can be an effective strategy to reduce Campylobacter colonization in chickens.  

This hypothesis was also supported by evidence described in the above section. 

An effective chicken Campylobacter vaccine should meet the following standards: 

1) the vaccine should prevent colonization or reduce bacteria numbers for more than 2 

log units in chicken; 2) the vaccine must induce a quick immune response as chicken 

usually contact with Campylobacter a couple of days post-hatch; 3) immunity should be 

cross-protective against different Campylobacter isolates; 4) the vaccine should be cost-

effective and easy to deliver; and 5) the vaccines should be safe for both chicken and 

human (de Zoete et al., 2007). Various vaccines have been developed and evaluated for 

protection against Campylobacter in avians, including live attenuated vaccines, killed 

whole-cell vaccines (WCV), live attenuated Salmonella-vectored vaccines, and subunit 

vaccines. 

Killed WCV have been the most widely studied for various pathogens and have 

been demonstrated to be effective in controlling intestinal pathogens (Pace et al., 1998).  

In chickens, several WCV against Campylobacter have also been tested. In one study, 

birds were administered with 109 formalin-killed C. jejuni through oral route multiple 

times within 16 days before challenge. The cecal C. jejuni level in the vaccine groups 

were ∼1.5 log units lower than the control (Rice et al., 1997). However, in another 
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formalin-killed C. jejuni trial, no serum or mucosal immunoglobulins could be detected 

and the mean cecal colonization level was only 1 log unit lower than the control 

(Cawthraw et al., 1998). 

Outer membrane proteins (OMPs) are attractive antigens for immune intervention 

in Gram-negative bacteria (Lin et al., 2002a) and various recombinant subunit vaccines as 

well as live attenuated Salmonella-vectored vaccines expressing Campylobacter OMPs 

were exploited. These vaccines include the flagellum vaccines (Meeusen et al., 2007; 

Widders et al., 1996; Widders et al., 1998),  a CmeC subunit vaccine (Zeng et al., 2010), 

a CadF-FlaA-FlpA fusion vaccine (Neal-McKinney et al., 2014), an attenuated 

Salmonella-vectored CjaA vaccine (Wyszyńska et al., 2004), an attenuated Salmonella-

vectored Peb1 vaccine (Sizemore et al., 2006), and a live Salmonella vaccines expressing 

Cj0113 (Omp18/CjaD), Cj0982c (CjaA), and Cj0420 (ACE393) (Layton et al., 2011). 

As the major component of the flagellum, Fla is one of the best-studied antigenic 

proteins in Campylobacter. In two flagellin vaccine trials, birds were vaccinated with 

flagellin alone or in combination with heat-killed bacteria intraperitoneally (IP), followed 

by an IP or oral booster. The vaccine with the flagellin/whole-cell combination 

administered IP/IP provided higher serum and mucosal antibody levels and resulted in a 

10-100 folds reduction of cecal CFU level after challenge (Widders et al., 1996; Widders 

et al., 1998). Another flagellum vaccine developed by Meeusen also induced partial 

protection (2007). The reason for the partial success might be that flagellin is not surface 

exposed in the flagellar structure and it might be modified by glycosylation which leads 

to antigenic variation (Doig et al., 1996; Widders et al., 1998). In the CmeC subunit 

vaccination trial, the vaccine triggered systemic immune responses while the intestinal 
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secretory IgA response was not significantly stimulated (Zeng et al., 2010). Therefore, 

this CmeC vaccine did not confer protection of broilers against C. jejuni colonization 

with that specific vaccination regimen. The CadF, FlaA, and FlpA peptides vaccine has 

been reported to reduce cecal C. jejuni colonization by three log units after challenge 

recently  (Neal-McKinney et al., 2014). 

Attenuated Salmonella-based vaccine is another attractive approach for C. jejuni 

control in poultry. In one study, an attenuated Salmonella CjaA vaccine triggered C. 

jejuni-specific serum IgG and intestinal IgA and reduced wild type C. jejuni infection in 

the chicken cecum (Wyszyńska et al., 2004). However, the attenuated Salmonella strain 

expressing Peb1 failed to induce protection against C. jejuni in chicken (Sizemore et al., 

2006). Recently, Layton and colleagues (2011) developed live Salmonella vaccines 

expressing Cj0113 (Omp18/CjaD), Cj0982c (CjaA), or Cj0420 (ACE393) and 

administered them to chickens orally on the first day post-hatching. All three candidates 

induced serum and intestinal mucosal immune responses and decreased C. jejuni 

recovery from the ileum, with the best response (4.8 log unit reduction) from the Cj0113 

group. 

Passive immunization has also been studied to reduce C. jejuni colonization in 

broilers. In a study by Al-Adwani et al. (2013), specific-pathogen-free laying hens were 

hyper-immunized with one of the five C. jejuni colonization-associated proteins or CAPs 

(CadF, FlaA, MOMP, FlpA, or CmeC) and egg-yolk-derived antibodies (IgY) were then 

obtained from egg-yolk powder (EYP). Indirect enzyme-linked immunosorbent assays 

(ELISA) showed that C. jejuni CAP-specific IgY levels were significantly (P<0.05) 

higher in both serum and EYP obtained from immunized hens as compared with the non-
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immunized hens. The study also showed that CadF-, MOMP-, and CmeC-specific IgY 

greatly reduced C. jejuni colonization in the chicken hepatocellular carcinoma cells. In a 

follow-up study, laying hens were immunized with seven C. jejuni CAPs (CadF, FlaA, 

MOMP, FlpA, CmeC, Peb1A, and JlpA) respectively or as a cocktail containing equal 

parts of each EYP. Nevertheless, no significant differences in the cecal colonization of C. 

jejuni were observed between the treated chickens and the control (Paul et al., 2014). In 

another study, laying hens were immunized with either a whole-cell lysate or the 

hydrophobic protein fraction of C. jejuni (Hermans et al., 2014). Results showed that 

preventive administration of hyper-immune egg yolk significantly reduced C. jejuni level 

in chickens about four log units. Western blot analysis in combination with mass 

spectrometry also revealed that the immunodominant antigens (AtpA, EF-Tu, GroEL, 

CtpA et al.) are highly conserved and were involved in a variety of cell functions of C. 

jejuni. 

In summary, these studies suggest that vaccination and passive immunization are 

partially successful in reducing C. jejuni colonization in poultry. However, the findings 

from some trials need to be confirmed and the vaccination regimens need to be further 

optimized to enhance local mucosal immune responses for effective protection against C. 

jejuni colonization in the chicken intestine. 

 

1.5. DNA vaccine and in ovo vaccination 

In 1990, the plasmid DNA encoding luciferase was reported to transfect muscle 

cells in vivo after an intramuscular injection (Wolff et al., 1990). The luciferase activity 

was present in the muscle for over 2 months. This finding led to the development of the 
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first DNA vaccine reported in Science in 1993 (Ulmer et al.). Since then, various DNA 

vaccines have been developed against infectious diseases, cancer, autoimmunity and 

allergies in human and animals (Liu, 2011; Restifo and Rosenberg, 1999). The principle 

of DNA vaccine is straightforward: the gene encoding foreign antigen is cloned into an 

appropriate eukaryotic expression plasmid that can be replicated in a bacterial host; then 

the purified recombinant plasmid can be directly used as a vaccine with or without 

adjuvant (Shah et al., 2014). DNA vaccination has a variety of advantages, including the 

ability to induce both cellular and humoral immune response, lack of risk for infection, 

long-term persistence of immunogen and the ability to be easily manufactured by 

standard molecular biology techniques (Restifo and Rosenberg, 1999; Wahren and Liu, 

2014). DNA vaccines are also more stable for storage and shipping because of the 

structural and chemical characteristics when compared to traditional vaccines (Shah et al., 

2014). 

Many veterinary DNA vaccines have been licensed, including an equine vaccine 

against West Nile Virus, a fish vaccine against infectious hematopoietic necrosis virus, a 

pig vaccine expressing Growth Hormone Releasing Hormone, and a therapeutic canine 

vaccine for melanoma (Redding and Weiner, 2009; Wahren and Liu, 2014). In chickens, 

several DNA vaccines also have been developed, most of which are viral vaccines. A 

recombinant plasmid encoding the VP2 gene fragment of Infectious Bursal Disease Virus 

was tested in chickens through the intramuscular route and the pVP2 vaccine group 

developed a higher titre of anti-VP2 antibodies than the control (Pradhan et al., 2014). 

Moreover, splenocytes from the vaccine group showed a significantly higher proliferation 

to the whole viral and recombinant antigen, which implies that the DNA vaccine elicited 
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both B and T cell responses. In another trial, the DNA vaccine encoding chicken 

infectious anaemia virus (CIAV) VP1/VP2 genes were co-administered with truncated 

chicken high mobility group box 1 (HMGB1ΔC) as adjuvant in chicken with a booster 

and a strong immunity for CIAV was observed (Sawant et al., 2015). Recently, scientists 

have also studied different DNA vaccines against coccidiosis in poultry. In one study by 

Shah et al. (2011), five different DNA vaccines were tested in chickens intramuscularly. 

The result indicates that vaccination groups greatly (P < 0.05) alleviated intestinal lesions, 

body weight loss and oocyst count. Similarly, in another DNA vaccination study by Xu 

and colleagues (2008), the vaccinated chickens also showed significant (P < 0.05) lower 

weight gain loss and higher oocyst decrease ratio, imparting partial protection against 

homologous challenge. 

DNA vaccines against Campylobacter have also been developed recently (Huang 

et al., 2010; Liu et al., 2014). Intranasal vaccination of chickens with a DNA vaccine 

expressing the flagellin gene flaA induced C. jejuni-specific serum IgG and intestinal IgA 

and reduced C. jejuni colonization by 2-3 log units within the cecum (Huang et al., 2010). 

In a mice study for evaluating a DNA vaccine expressing C. jejuni PEB1 permease, the 

stimulation index of lymphocytes, serum IgG, IL-4, IFN-γ, and intestinal IgA were 

significantly higher in the mice immunized with DNA vaccines with a protein boost via 

the intranasal route (Huang et al., 2010; Liu et al., 2014).  

In ovo delivery, an attractive vaccination route for chickens (de Zoete et al., 2007), 

offers various advantages when combined with DNA vaccine (Haygreen et al., 2005). In 

1997, a plasmid encoding β-galactosidase delivered into the breast muscle via in ovo 

route achieved successful gene transfer and expression, which showed the potential for 
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the development of in ovo DNA vaccines (Johnston et al.). The immune system of 

chickens is well developed by day 18 of inoculation, indicating the feasibility for 

stimulating immune response via in ovo vaccination (Ricks et al., 1999). In addition, in 

ovo vaccination is a fully automatic method to vaccinate massive numbers of eggs 

(20,000 to 30,000 per hour), and has been applied to various vaccines for viral, bacterial 

and protozoal diseases in broilers, without compromising embryo viability (Johnston et 

al., 1997; Ricks et al., 1999). This method also reduces eggs handling, improves hatchery 

manageability, and reduces cost and labor (Johnston et al., 1997).To date, many poultry 

vaccines have been approved by the USDA for in ovo administration (Johnston et al., 

1997).  

 

1.6. Chitosan and its application in subunit vaccine development 

Chitosan, a family of natural linear polysaccharides consisting of β-(1-4)-linked 

glucosamine and N-acetylglucosamine, is commercially obtained by partial de-

acetylation of α-chitin produced from the exoskeletons of crustacea or the cell walls of 

fungi (Kang et al., 2009; Smith et al., 2014). Chitosan is positively charged and soluble in 

an acidic solution with a charge density depending on pH and the degree of deacetylation. 

Based on its chemical properties, chitosan, particularly chitosan salts, has been widely 

applied in drug and vaccine delivery systems for the controlled release of subunit 

vaccines due to the ease of preparation, bioavailability, biocompatibility, and low toxicity 

(Alpar et al., 2005; Illum et al., 2001; Kang et al., 2006). In addition, chitosan can 

stimulate immune responses and serve as an appropriate adjuvant for the subunit vaccine 

(Kang et al., 2006). In clinical use, chitosan is often chemically modified through their 
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composition with hyaluronan (Lim et al., 2001) or Pluronic F127® (F127) (Kang et al., 

2009) to enhance the bioavailability and membrane permeability. It has been 

demonstrated that the positively charged chitosan can form tight junctions with the 

negatively charged mucin layer and facilitate the paracellular transport of hydrophilic 

macromolecules through the nasal route (Ilium, 1998; Kang et al., 2009). Moreover, due 

to its positive charge in a weak acidic environment, chitosan associates easily to the 

negatively charged DNA, which enhances the possibility of a chitosan-encapsulated 

DNA vaccine (Roy et al., 1999). 

Nasal delivery is an attractive vaccination route because it can elicit both systemic 

and mucosal immune responses (Jabbal-Gill et al., 2012; Smith et al., 2014) and avoid 

destruction of the drugs or vaccines in harsh the gastrointestinal environment (Costantino 

et al., 2007). In particular, nasal delivery can protect the vaccines from enzymatic 

degradation because of relatively low enzymatic activity in the nasal cavities (Sarkar, 

1992), enabling a low dose of vaccine to be used for triggering the desired immune 

response. It has been demonstrated that the dose for intranasal vaccination can be reduced 

four-fold compared with the oral route without affecting the efficacy of the vaccine 

(Rudin et al., 1998). 

A number of human vaccines coadministered with chitosan have been published. 

A chitosan-encapsulated inactivated mutant diphtheria toxoid vaccine was reported to 

generate significantly stronger neutralizing antitoxin serum antibodies as well as Th2 

type of cell responses (McNeela et al., 2004; Mills et al., 2003). In another vaccination 

trial of chitosan-encapsulated vaccines for Neisseria meningitidis serogroup C 

polysaccharide, the mean titre of serum bactericidal antibody (SBA) rose 24-fold after 
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two nasal immunizations comparable to intraparenteral immunization (Huo et al., 2005). 

In a study for tetanus toxoid (TT) vaccine, mice were immunized intraperitoneally with 

TT in the presence of chitosan/ F127 and boosted intranasally with the same vaccine, 

leading to a significant enhancement in the systemic anti-TT antibody level (Westerink et 

al., 2001).  

In chicken, the Newcastle disease virus (NDV) F gene plasmid (pFDNA)-

CS/PLGA-NPs encapsulated with chitosan-coated poly lacticco-glycolic acid 

nanoparticles induced stronger cellular, humoral, and mucosal immune responses 

compared to the plasmid DNA vaccine alone (Zhao et al., 2014). Moreover, research by 

Huang et al. (2010) mentioned above also demonstrated that the chitosan-encapsulated 

DNA vaccine is a feasible approach to induce an effective immune response against C. 

jejuni in chickens.  
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CHAPTER 2: Introduction 

 

Campylobacter is the leading bacterial cause of foodborne human illnesses in the 

US (Batz et al., 2011). This pathogenic organism causes watery diarrhea, fever, and 

abdominal cramping in patients and is associated with Guillain-Barre Syndrome, an acute 

flaccid muscular paralysis that may result in respiratory muscle compromise and death 

(Blaser, 1997; Lee and Newell, 2006; Mawla et al., 2014). There are more than 2 million 

estimated cases of campylobacteriosis every year in the US (Friedman, 2000); over 8,000 

of which result in hospitalization, and 76 of which result in death. Therefore, it was 

estimated that the annual medical and productivity costs resulting from Campylobacter 

infection were more than 1 billion dollars in costs in the US (Batz et al., 2011). Poultry is 

considered the major reservoir of Campylobacter and therefore the main source of human 

campylobacteriosis (Sahin et al., 2002). On-farm control of Campylobacter in poultry 

would reduce the risk of human campylobacteriosis and have a significant impact on food 

safety and public health. Of various approaches, vaccination appears to be a promising 

strategy to reduce Campylobacter load in poultry (Lin, 2009).  However, to date, there is 

still no vaccine available to control Campylobacter infections in poultry primarily due to 

a lack of understanding of pathogenicity, the antigenic complexity of this organism, and 

the challenges to induce strong mucosal immune response for Campylobacter vaccines 

(Jagusztyn-Krynicka et al., 2009; Lin, 2009). 

Previous studies have shown that prior infection with C. jejuni could induce 

protective immunity against Campylobacter colonization and shedding level in poultry, 

strongly supporting the feasibility of developing vaccines for Campylobacter control in 
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poultry (reviewed in Chapter 1 above). A successful chicken vaccine is expected to 

prevent colonization or cause a strong reduction of Campylobacter numbers in chickens 

of more than 2 log units (de Zoete et al., 2007). To achieve the goal of developing novel, 

safe, and inexpensive vaccination strategies that could be conveniently and practically 

used to control C. jejuni in the chicken industry, our laboratory has made significant 

progress in the past years to identify conserved protective antigens in C. jejuni, a 

paramount and critical step towards the design of effective vaccines against 

Campylobacter. Specifically, our previous studies have discovered two attractive 

candidates, CmeC and CfrA, for developing Campylobacter vaccines (Jones, 2013; Lin et 

al., 2005; Lin et al., 2002b; Lin et al., 2003; Zeng et al., 2009, 2010). CmeC, the outer 

membrane component of the CmeABC multi-drug efflux pump, is highly conserved 

across C. jejuni strains (Zeng et al., 2010). More important, CmeC, which is significantly 

induced by intestinal bile salts, plays an essential role in bile resistance and consequently 

plays a critical role in C. jejuni colonization in the intestinal environment (Lin et al., 

2003). Another candidate, CfrA, is an outer membrane protein associated with iron 

acquisition in the intestinal tract and is also essential for C. jejuni colonization in the 

chicken intestine (Palyada et al., 2004).  Our laboratory has shown that CfrA is also 

prevalent and highly conserved in C. jejuni strains and its expression is also induced in 

the intestine (Zeng et al., 2009). This evidence indicated that CmeC and CfrA are feasible 

vaccine candidates for developing effective vaccines against C. jejuni in poultry.   

Recently, by targeting CmeC and CfrA, development of various vaccines (e.g. 

DNA vaccine, Salmonella-vectored vaccine) for different vaccination strategies have 

been initiated and explored in our laboratory (Jones, 2013). This preliminary work 
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provides us a solid foundation to further develop and evaluate different vaccination 

regimens for effective mitigation of Campylobacter in poultry as described in this project. 

Three specific objectives were pursued in this project:  

1. Optimize DNA vaccines and evaluate immune response and protective efficacy 

of in ovo DNA vaccination to control Campylobacter colonization in poultry.  

2.  Optimize and prepare large quantities of chitosan-encapsulated subunit 

vaccines (CmeC/CfrA-based DNA vaccines as well as purified recombinant 

proteins). 

3. Evaluate immune response and protective efficacy of intranasal vaccination 

with chitosan-encapsulated subunit vaccines in broilers.  
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CHAPTER 3: Materials and Methods 

 

3.1. Bacterial strains and their growth conditions 

All the bacterial strains and plasmids used in this project, as well as their sources, 

are listed in Table 1. The E. coli strains JL894, JL1185 and JL1118 were used to produce 

pCAGGS, pCmeC-K, and pCfrA-K, respectively. The E. coli strains JL243 and JL275 

were used for the purification of His-tagged recombinant protein CmeC and CfrA, 

respectively.  The E. coli strains were grown on Luria-Bertani (LB, BD Difco) plates 

containing 50 μg/mL of ampicillin or in LB broth containing 50 μg/mL of ampicillin with 

shaking (250 rpm) at 37°C overnight. 

The standard C. jejuni strain NCTC 11168 (JL241) was cultured on in Mueller 

Hinton (MH) broth (BD Difco, Sparks, MD) or on MH agar (BD Difco) plates at 42°C 

under microaerophilic conditions (5% O2, 10% CO2, 85% N2), which were generated 

using nitrogen and carbon dioxide gas packs (Airgas®, PA) in an Heracell™ 150i Tri-Gas 

Incubator (Thermo Scientific). MH agar plates supplemented with Campylobacter 

Growth and Preston Campylobacter Supplements (Oxoid, Bashingstoke, Hampshire, 

England) were used for selective growth of Campylobacter from cloacal swabs for the 

chicken trials.  

 

3.2. Modification and validation of constructed DNA vaccines 

 Full length fragments of cmeC and cfrA with the Kozak sequence were PCR 

amplified from C. jejuni NCTC 11168 with primer pairs of 
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pCAGGS_CmeC_F2/pCAGGS_CmeC_R and pCAGGS_CfrA_F2/pCAGGS_CfrA_R, 

respectively (Table 2). The truncated fragments of cmeC and cfrA with the Kozak 

sequence were PCR amplified from C. jejuni NCTC 11168 with primer pairs of 

pCAGGS_CmeC_TM2_F/ pCAGGS_CmeC_TM3_R and 

pCAGGS_CfrA_F2/pCAGGS_CfrA_B1_R, respectively (Table 2). Those amplified 

cmeC and cfrA fragments were digested with XhoI and ligated into the XhoI-digested 

expression vector pCAGGS. The ligation mixture was introduced into E. coli Top10 cells 

via electroporation for 4-5 ms at 2.5 kV. Transformants were selected on LB agar plates 

containing 50 µg/mL of ampicillin and the plasmids were extracted from randomly 

selected transformants and analyzed by agarose gel electrophoresis. The identified 

constructs with insertion of desired gene fragments (pCmeC-K, ptCmeC-K, pCfrA-K, 

and ptCfrA-K) were finally subjected to sequence analysis to confirm the orientation and 

integrity of the inserted fragment and the presence of the Kozak sequence adjacent to the 

start codon of cloned gene. The primer pCAGGS_F and pCAGGS_R (Table 2) were used 

for sequencing.  

 To validate the production of target cmeC or cfrA gene in eukaryotic cells, 

transfection was subsequently performed using the modified DNA vaccine vectors and 

HEK-293 cells. Approximately 4 μg of the specific vectors were transfected into 50-70% 

confluent HEK-293 cells in a 6-well dish (Corning) using the Lipofectamine 2000 kit 

(Invitrogen Life Technologies) according to the manufacturer’s instructions. Cells 

transfected with the empty pCAGGS vector served as controls. After 5-6 hours of 

incubation, Lipofectamine was removed and replaced with complete media (1X DMEM 

plus Glutamax, 10% heat-inactivated fetal calf serum, 1% Penicillin/Streptomycin 
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[Gibco]). After 24-48 hours incubation at 37°C in 5% CO2, cells from each well were 

trypsinized, centrifuged, and resuspended in 100 μL of 2× sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer (2.5% SDS, 25% 

glycerol, 125 mM Tris-Cl [pH 6.8], 0.01% bromophenol blue and 100 mM 

dithiothreitol). The samples were subjected to SDS-PAGE and immunoblotting analyses 

as detailed below.  

 

3.3. SDS-PAGE and Immunoblotting 

Five μL of the above whole cell lysate suspension or purified protein sample was 

loaded in each lane and separated by SDS-PAGE with a 12% (w/v) polyacrylamide gel at 

80V for 25 minutes followed by 160V for 40 minutes by electrophoresis. Following SDS-

PAGE, proteins in gels were electrophoretically transferred to a nitrocellulose membrane 

(Bio-Rad) in transfer buffer at 90V for 1 hour. The membrane was then incubated in 

blocking buffer (5% Nestle skim milk powder in PBS) for 1 hour at room temperature 

with shaking followed by overnight incubation at 4°C. Then the membrane was incubated 

with primary antibodies (1:1000 diluted rabbit anti-rCmeC or -CfrA sera in blocking 

buffer) for one hour at room temperature. Following incubation, the membrane was 

washed with wash buffer (PBS containing 0.05% Tween 20) for three times. Next, the 

washed membrane was incubated with a secondary antibody (goat anti-rabbit IgG-

horseradish peroxidase, diluted 1:5000) for one hour at room temperature and 

subsequently washed as described above. The SuperSignal® West Dura Extended 

Duration Substrate (Thermo Scientific) was used to develop the nitrocellulose membrane. 
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3.4. Mass production of the DNA vaccines 

The control plasmid pCAGGS and the two modified DNA vaccine vectors that 

produced full-length target protein (pCmeC-K and pCfrA-K) were extracted from the E. 

coli JL894, JL1185, and JL1118 culture using a QIAGEN Plasmid Maxi Kit (Qiagen, 

Hilden, Germany). Briefly, a single bacterial colony was inoculated into 200 mL of LB 

medium with 50 µg/mL ampicillin and grown at 37oC for 12–16 h with vigorous shaking 

(approx. 300 rpm). The bacteria cells were harvested by centrifugation at 6000 × g for 15 

min at 4°C. The bacterial pellet was resuspended in 10 mL Buffer P1. Buffer P2 was 

added and the mixture was incubated at room temperature for 5 min. Chilled Buffer P3 

was then added to enhance precipitation of proteins and the mixture was incubated on ice 

for 20 min. The supernatant containing plasmid DNA was finally obtained by centrifuge 

at 20,000 × g twice at 4°C. Meanwhile, the QIAGEN-tip 500 was equilibrated with 

Buffer QBT. The supernatant was then applied to the QIAGEN-tip and allowed to enter 

the resin by gravity flow. The column was washed by 2 × 30 ml Buffer QC and the DNA 

was subsequently eluted by 15 mL Buffer QF. The eluted plasmids were precipitated by 

adding 10.5 mL (0.7 volumes) isopropanol and washed by 70% ethanol. DNA pellets 

were air dried for one hour and redissolved in sterile water. DNA concentration was 

determined by both UV spectrophotometry at 260 nm as well as agarose gel analysis.  

 

3.5. Mass production of high-purity rCmeC and rCfrA 

The E. coli constructs for producing N-terminal Histidine-tagged rCmeC (JL243) 

and rCfrA (JL275) were obtained from our recent studies (Zeng et al., 2009, 2010). The 

full-length Histidine-tagged rCmeC and rCfrA were purified from E. coli culture using 



22 
 

Ni2+-NTA affinity chromatography as described previously with modifications (Zeng et 

al., 2009, 2010). In brief, the JL243 or JL275 strain was inoculated into one liter LB with 

50 µg/ml ampicillin and the production of the proteins was induced in the log phase cells 

(OD600= 0.5) by IPTG for 3 hours. The bacterial cells were obtained by centrifugation 

and subsequently lysed for protein purification. Three mL Ni2+-NTA agarose resin 

(Qiagen, Hilden, Germany) were equilibrated with lysis buffer (50 mM sodium 

phosphate [pH 8.0], 300 mM NaCl and 10 mM imidazole). The lysate was mixed with 

the equilibrated Ni-NTA resin on a rotator for 2 hours at 4°C. The lysate-resin mixture 

was then loaded into a 15 mL plastic column and the flow through was collected. The 

column was washed with 10 mL of wash buffer (50 mM sodium phosphate, 300 mM 

NaCl, 60mM imidazole, 10% glycerol, pH 7.0 supplemented with 2mM β-mercapthanol, 

5 mM of ATP, and 5mM of MgCl2) four times. The rCmeC or rCfrA bound to Ni-NTA 

were eluted with 10 volumes of elution buffer (50mM sodium phosphate, 300mM NaCl 

and 300mM imidazole, pH 7.0) to ten 1.5 mL microcentrifuge tubes. The samples were 

analyzed by SDS-PAGE to determine the quantity and purity. The rCmeC or rCfrA 

elution with high quantity and purity were further dialyzed against PBS buffer and then 

stored at -80°C for the preparation of subunit vaccines. The concentration of the 

recombinant proteins was measured using the bicinchoninic acid (BCA) protein assay kit 

(Pierce).  

 

3.6. Preparation of chitosan-DNA and chitosan-protein nanoparticles  

The chitosan/pCmeC-K and chitosan/pCfrA-K nanoparticles were prepared using 

the method described previously with slight modifications (Huang et al., 2010). Briefly, 
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equal volume of chitosan (Sigma, prod. No: 448869, low molecular weight) solution (200 

μg/mL in 5mM sodium acetate buffer, pH 5.5) and specific DNA vaccine vector (100 

μg/mL in 5mM sodium sulfate solution) were both preheated to 50◦C and then mixed and 

incubated at 25◦C for two hours. The corresponding chitosan microsphere (CM) 

nanoparticles containing pCemC-K and pCfrA-K henceforth are called CM-pCmeC and 

CM-pCfrA, respectively.   

The chitosan/rCfrA and chitosan/rCmeC were synthesized by the procedure 

described by Kang et al. (2006) with modification. First, a 0.25% chitosan solution (2% 

aqueous acetic acid) with 1.25% Pluronic F127 (Sigma) was prepared by continuous 

stirring. Pluronic-F127 is a hydrophilic copolymer of polyethylene oxide and 

polypropylene oxide which is able to decrease the aggregation of CMs (Kang et al., 2007). 

Twenty-five mL of the chitosan/F127 solution was then extruded dropwise through a 

needle into one mL of 15% tripolyphosphate (TPP) which can crosslink chitosan fibers 

through electrostatic forces to stabilize CMs (Aral and Akbuğa, 1998; Desai and Park, 

2005). CMs were obtained by sonicating the chitosan/F127-TPP mixture followed by 

centrifugation. The homogenous chitosan/protein solution were obtained by mixing CMs 

with recombinant proteins in a 3:1 concentration ration (CM: protein) and incubated 

overnight at 37°C with continuous shaking at 250 rpm. The corresponding CM 

nanoparticles with rCmeC and rCfrA henceforth are called CM-CmeC and CM-CfrA, 

respectively. 

To test the association efficiency of encapsulation, the chitosan-plasmid or 

chitosan-protein complexes were centrifuged and the supernatant was collected for 
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measuring the concentration of unloaded DNA or protein. The association efficiency was 

calculated as follows: 

Association efficiency (%) 
=

Total amount DNA (pCfrA-K/pCmeC-K) – unloaded DNA
Total DNA

× 100(%) 

Or 

Association efficiency (%) 
=

Total amount protein (CfrA/CmeC)– unloaded protein
Total protein

× 100(%) 

The freshly prepared chitosan-DNA or chitosan-protein particles were also 

morphologically examined under a transmission electron microscopy (TEM, Zeiss Libra 

200 MC) or a scanning electron microscopy (SEM, Zeiss Auriga) at the Advanced 

Microscopy and Imaging Center at the University of Tennessee, Knoxville, TN. 

 

3.7. in ovo DNA vaccination experiments 

Preliminary trial  

A pilot experiment was conducted out to determine the hatchability of eggs 

following in ovo injection. At day 18 of embryonation, thirty eggs were randomly divided 

into two groups, with 20 eggs in the treatment group and the remaining in the control 

group that were not subject to in ovo injection. For the treatment group, each of 20 

embryonated eggs was injected with 100 µL of sterile ddH2O on approximately day 18 of 

incubation. The 23 gauge needle with 1 inch in length was used for injection and 
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transparent scotch tape was used to seal the injection site. The treated eggs were put back 

into the incubator together with the eggs in the control group for an additional three days 

of incubation until chicks were hatched.  

 

in ovo DNA Vaccination Trial 1 

In the first chicken trial (Table 3), 70 embryonated eggs were obtained from 

Pilgrim’s Pride Corporation (Chattanooga, TN) and incubated for 18 days in an incubator 

and candled to select fertile eggs. At day 18, all the eggs were randomly divided into four 

treatment groups (17-18 eggs per group) and injected with 100 µL of sterile water (Group 

1), pCAGGS empty plasmid (Group 2), 50 µg pCmeC-K in 100 uL sterile water (Group 3) 

or 50 µg pCfrA-K in 100 µL sterile water (Group 4) into the amniotic fluid as described 

in other publications (Ding et al., 2005; Ding et al., 2004; Guo et al., 2008). After hatch, 

there were 16, 15, 17 and 12 birds in Group 1, 2, 3 and 4 respectively. The hatchability of 

each group were 89%, 83%, 94% and 67%, respectively. All chicks were kept in clean 

wire-floor cages and provided with water and antibiotic-free feed ad libitum. The room 

temperature was maintained at 32°C in the first week and at 25°C afterwards. At day 14 

post-hatch, all the chickens were challenged orally with C. jejuni NCTC 11168 with a 

dose of 104 CFU per chicken. Cloacal swabs from each bird were collected every 2~3 

days from day 14 to day 28 post-hatch and suspended in 100 µL of MH broth. The 

samples were then spread on MH plates with a dilution of 1:1, 1:100 and 1:104 and 

incubated at 42°C under microaerophilic condition for 48 hours for C. jejuni CFU 

enumeration. Blood samples were also collected via wing vein from each chicken at day 
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14, 21 and 28 post-hatching and analyzed by ELISA for CmeC- and CfrA-specific IgG 

and IgA as described below. 

 

in ovo DNA Vaccination Trial 2 

The design of the second trial is shown in Table 4. There were several significant 

modifications of this trial when compared to Trial 1 above. First, the DNA vaccines were 

specifically emulsified with equal volume of neutral lipid (incomplete Freund’s adjuvant, 

MP Biomedicals) prior to in ovo injection. The neutral lipid is expected to protect DNA 

vectors against degradation by DNase in the amniotic fluid (Oshop et al., 2003). Second, 

rCmeC and rCfrA proteins (50 µg per egg) were included as controls to determine 

whether these protein antigens could induce an immune response. Third, blunt-ended 

needles (Lab Std. LL Pipetting Needle 20RW×1.5”, Lab Express Management) were 

used for in ovo injection in this trial to minimize potential damage to the embryos. Finally, 

the challenge date was delayed from 14 day post-hatching (Trial 1) to 21 day post-

hatching in order to provide chickens enough time for immune response and antibody 

production. At day 18 of embryonation, eggs were randomly divided into 6 treatment 

groups with 15-17 eggs per group and treated as described in Table 3. After hatch, there 

were 14 birds in sterile water group, 11 birds in pCAGGS/IFA group, 13 birds in pCfrA-

K/IFA group, 14 birds in pCmeC-K/IFA group, 14 birds in CfrA/IFA group and 9 birds 

in CmeC/IFA group. The hatchability of each group were 93%, 73%, 76%, 82%, 82% 

and 60%, respectively. Chicken management, C. jejuni challenge, blood and cloacal 

sampling were the same as Trial 1. In this trial, intestinal samples were also collected at 

the last day and suspended in lavage extraction buffer (PBS containing 0.05% Tween 20, 
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0.05g/mL of EDTA, and complete mini protease inhibitor [Roche, prod. No: 

04693159001]), by a ratio of 1:10 (1g sample: 10mL lavage extraction buffer) and were 

used for determining specific mucosal immune response using ELISA as detailed below. 

The procedure for chicken management and C. jejuni challenge and cloacal swabbing are 

the same as those described for Trial 1. 

 

3.8. Intranasal immunization with chitosan encapsulated subunit vaccines (Trial 3) 

This trial was to comprehensively evaluate the immune response and protective 

efficacy of intranasal immunization of broiler chickens with four chitosan encapsulated 

subunit vaccines (CM-pCmeC, CM-pCfrA, CM-CmeC, and CM-CfrA). A total of 120 

one-day-old broilers were obtained from the Hubbard Hatchery and assigned into six 

groups with 20 chicks per group (Table 5). Chickens were managed in sanitized wire-

floor cages at 32°C in the first week and at 25°C thereafter. Clean water and antibiotic-

free feed (prepared by Johnson Animal Research and Teaching Unit) were provided. For 

the primary immunization at 7 days of age, the CM-CmeC or CM-CfrA was inoculated 

intranasally with a dose of 100 µg per bird (100 µL per nostril for both nostrils), CM-

pCmeC or CM-pCfrA was inoculated intranasally with a dose of 50 µg per bird (100 µL 

per nostril for both nostrils). The PBS or CM was inoculated as control. The same 

vaccination regimen was performed at day 21 as a booster immunization. Chickens were 

challenged with 104 CFU of C. jejuni NCTC 11168 at day 35. Serum samples were 

gained from the chickens in each group at day 7, 21, 35 and 44 and used for ELISA assay. 

On day 21 and 44, intestinal lavages were collected from 5 representative chickens in 
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each group for monitoring mucosal IgA against CmeC and CfrA. Fecal swabs were also 

collected every 2~3 days for two weeks after C. jejuni challenging. 

 

3.9. Enzyme-linked immunosorbent assay (ELISA) 

An anzyme-linked immunosorbent assay was used to analyze serum and intestinal 

immunoglobulins against CmeC and CfrA in this study. In general, microtiter plates 

(Nunc-Immuno Plate, Thermo Fisher Scientific) were coated with 100 µL high-purity 

rCmeC or rCfrA per well with an optimal concentration of 300 ng/mL in coating buffer 

(0.01 M Ammonium acetate/ammonium carbonate, pH= 8.2) and incubated at room 

temperature for approximately 18 hours. Plates were washed with 200 µL washing 

solution (0.5% Tween 20 in PBS) using a plate washer and blotted dry. Plates were then 

coated with 100 µL of blocking buffer (PBS with 1% BSA and 0.1% Tween) to each well 

and incubated at 37°C for one hour, and washed again. Serum samples diluted 1:100 or 

intestinal samples diluted 1:50 in blocking buffer were added to each well and the plates 

were incubated at 37°C for one hour followed by washing of the plates. A 98-well plate 

was coated with 100 µL of anti-chicken IgG/IgA conjugated AP antibody (KPL) diluted 

1:2000 in blocking buffer. After incubation at 37°C for one hour, plates were washed and 

ABTS peroxidase substrate (KPL) was added to each well. For serum IgG assays, plates 

were incubated at room temperature for 10 minutes. For serum and intestinal IgA assays, 

plates were incubated for 20 minutes. Stopping solution (1% SDS) was added to each 

plate prior to read of absorbance under OD405nm by a plate reader. 

Statistical analysis was performed using SAS software (v9.4, SAS Institute Inc., 

Cary, NC). Specifically, differences in serum or intestinal sample OD405 nm readings 
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among different groups were analyzed using least squares analysis of covariance with 

date as the covariant; main effects were date and treatment. Comparison of OD405nm 

readings within all the groups across time was tested by analysis of variance (ANOVA). 

Levels of significance for P-value were 5% (0.05). 
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CHAPTER 4: Results 

 

4.1. Modification and production of DNA vaccines  

The DNA vaccines containing CmeC gene (pCAGGS_CmeC) and CfrA gene 

(pCAGGS_CfrA) have been successfully constructed in previous studies (Jones, 2013). 

Despite that no frameshift or mutation in the coding sequences of cmeC and cfrA were 

detected, immunoblotting using specific antibodies failed to detect CmeC and CfrA from 

the cells transfected with pCAGGS_CmeC and pCAGGS_CfrA, respectively (Jones, 

2013), indicating that the production of cloned bacterial gene is low, likely due to the 

lack of Kozak consensus sequence that plays a major role in the initiation of the 

translation process. To address this issue, in this project, the previously constructed DNA 

vaccine vectors, pCAGGS_CmeC and pCAGGS_CfrA, were modified by introducing 

Kozak consensus sequence (gccRccATGG) immediately upstream of the cloned gene. 

Two CmeC DNA vaccines, pCmeC-K and ptCmeC-K, were successfully constructed and 

were expected to produce a full-length and truncated CmeC, respectively (Table 1). Two 

CfrA DNA vaccines, pCfrA-K and ptCfrA-K, were also successfully constructed and 

were expected to produce a full-length and truncated CfrA, respectively (Table 1). Figure 

1 shows the electrophoresis pattern of the four modified DNA vaccine vectors as well as 

parent vector pCAGGS.  

To confirm the expression efficacy of the newly constructed DNA vaccine vectors 

in eukaryotic cells, SDS-PAGE and immunoblotting were subsequently performed to 

determine the production of rCmeC and rCfrA in the transfected HEK-293 cells. As 

shown in Figures 2A and 2B, both truncated and full length target proteins (rCmeC and 
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rCfrA) were detected, which clearly demonstrated that introduction of the Kozak 

sequence plays a critical role in success expression of bacterial genes in eukaryotic cells. 

After the production efficacy of the DNA vaccines was confirmed, large 

quantities of high-purity pCmeC-K, pCfrA-K and pCAGGS were extracted from E. coli 

culture using QIAGEN Plasmid Maxi Kit for preparation of DNA vaccines. The yields of 

high-purity pCmeC-K, pCfrA-K and pCAGGS were 250~400 µg, 100~150 µg and 

300~500 µg per 200 mL E.coli culture respectively, based on spectrophotometry at 260 

nm. Overall, approximately 11 mg of pCmeC-K, 8 mg of pCfrA-K and 5 mg of control 

pCAGGS vectors were obtained in this project. 

Large amounts of recombinant proteins rCmeC and rCfrA were produced from 

JL243 and JL275 strains using Ni2+-NTA affinity chromatography matrix for preparation 

of subunit vaccines and ELISA tests in this project. After 3 hours of induction with IPTG, 

the concentrations of N-terminal Histidine-tagged rCmeC and rCfrA were greatly 

increased (Figures 3A and 3B). Figures 4A and 4B show that both rCmeC and rCfrA 

were successfully obtained after one-step Ni2+-NTA chromatography purification. Every 

liter of IPTG-induced culture yielded ~5 mg of rCmeC or ~3 mg of rCfrA. In total, 30 mg 

of rCmeC and 20 mg of rCfrA were obtained in this study. 

 

4.2. Preparation of chitosan-DNA and chitosan-protein nanoparticles 

Uniform particles were obtained by coacervation between chitosan and DNA. The 

association efficiency of CM-pCmeC and CM-pCfrA was 50% and 70%, respectively. 

The morphology of the CM-pCmeC is shown in Figure 4. TEM observation confirmed 
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that freshly synthesized CM-pCmeC complexes were 50~100nm in size and nearly 

spherical. 

For CM-protein encapsulation, Pluronic F127 was added to the chitosan solution 

to decrease the aggregation of CMs and tripolyphosphate (TPP) was used to enhance the 

stability of CM. After the CM/Pluronic F127-TPP was prepared, it was incubated with 

rCmeC or rCfrA overnight at 37°C. The average association efficiencies of CM-CmeC 

and CM-CfrA were both 50%. Morphology of the CM-CmeC was shown in Figures 5B 

and 5C. Based on SEM images, the nanoparticles appeared to aggregate. Furthermore, 

large amounts of crystallization were observed on the surface of both CM control and 

CM-CmeC, likely due to the use of PBS as diluent. 

 

4.3. in ovo DNA vaccination experiments 

In the in ovo injection pilot experiment, the hatchability of eggs in the treatment 

group was 95% (19 eggs hatched and 1 died) which is the same as that in control group (9 

eggs hatched out of 10), suggesting that in ovo injection did not affect the hatchability of 

the eggs. 

After demonstration of hatchability, the pCmeC-K and pCfrA-K DNA vaccines 

were used in Trial 1 for in ovo vaccination at day 18 of embryonation. As shown in 

Figure 6, the pCmeC-K and pCfrA-K vaccines failed to enhance serum IgG titre in 

chickens compared to the two negative controls at different days post-immunization. 

Chickens in ddH2O control had higher level of CfrA-specific antibodies at day 21 and 

day 28, which was likely caused by individual variations in this group. Two days after 
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challenge, all chickens were colonized by NCTC 11168 and the colonization level peaked 

at 7 days post-challenge, with an average shedding level of ~107 CFU/g feces (Figure 7). 

However, no significantly (P > 0.05) lower colonization of C. jejuni was observed in the 

two vaccination groups. 

In Trial 2, the in ovo vaccination strategy was modified by adding two positive 

controls (rCmeC and rCfrA), emulsifying and protect DNA vaccines with neutral lipid 

and delaying the challenge date from day 14 to day 21 post-hatching. Based on Figures 8 

and 9, systemic and mucosal immunoglobulins specific for C. jejuni increased in all 

groups after challenge, indicating immune responses against Campylobacter in all birds. 

CmeC- and CfrA- specific systemic IgG and IgA were significantly (P < 0.05) elevated 7 

days after infection of NCTC 11168 in all groups, indicating that immunity for C. jejuni 

was successfully induced (Figures 8 and 9). Furthermore, birds in the pCfrA-K vaccine 

group had significantly (P < 0.05) higher levels of serum CfrA-specific IgG, while birds 

in the CfrA protein group showed significantly (P < 0.05) higher levels of serum IgA for 

CfrA. ELISA analysis failed to show a significant (P > 0.05) difference in intestinal 

mucosal IgA titre in different groups (Figure 10). However, mucosal IgA levels in the 

two DNA vaccine groups (pCmeC-K and pCfrA-K) were moderately elevated compared 

to the other groups. Consistent with the patterns of immune responses, challenge of 

chickens with NCTC 11168 at day 21 post-hatching did not show a significant difference 

of colonization among groups (Figure 11). All chickens were colonized by C. jejuni at 

day 2 post-challenge. Shedding levels peaked at day 4 with an average of 108 CFU/g 

feces 4 days after challenge. During the chicken trial, we observed that the birds grew 
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much slower than normal. Furthermore, the chickens developed curled-toes and could not 

stand very well. 

 

4.5. Intranasal immunization of chitosan encapsulated subunit vaccines in chickens 

Trial 3 was carried out to determine the efficacy of the chitosan-encapsulated 

subunit vaccines (CM-pCmeC, CM-pCfrA, CM-CmeC and CM-CfrA) via the intranasal 

route. One hundred and twenty chickens were immunized at the age of 7 days with a 

booster of the same vaccines at day 21. After 14 days, all the chickens were challenged 

with NCTC 11168.  

Intranasal vaccines failed to enhance serum IgG and IgA levels at different days 

post-immunization (Figures 12 and 13), although serum IgG and IgA levels were higher 

in all groups 9 days post-challenge. Consistently, level of IgA in intestinal lavages were 

not significantly (P > 0.05) different among groups (Figure 14). As shown in Figure 15, 

no significant difference was observed on shedding levels of C. jejuni between the 

vaccine groups and the controls (P > 0.05). 

In this trial, we observed that chickens in all groups displayed poor growth 

performance and grew slowly. In the beginning, the toes were flexed and chickens tended 

to stand on their hocks. Later on, the toes were completely curled downward and inward 

and complete weakness of legs was present in many chickens. A large number of 

chickens died within the first three weeks of the trial. At the last stage of the trial, we had 

only four chickens left in the PBS control group and three in the CM-CmeC vaccine 

group. In the other four groups (CM, CM-pCmeC, CM-CfrA and CM-pCfrA), we had 

8~9 chickens left in each group. The reduction of sample size definitely greatly 
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undermined the power of the statistical analysis. After the symptoms occurred, 

veterinarians from the College of Veterinary Medline at University of Tennessee 

collected blood samples from two sick chickens to investigate whether the birds were 

infected by pathogens. The infectious disease testing (Avian Encephalomyelitis, Avian 

Influenza, Newcastle Disease and Marek's Disease) were all negative. After discussions, 

we found feed might be the cause of the problem and checked the formulation for feed 

from the farm. Based on the formulation, vitamin/mineral combined mix product should 

be added to the feed. Nevertheless, when we checked the records of feed processing, we 

found only a new mineral mix (942 Poultry Trace Mineral premix NB-8608, Nutra Blend) 

with a high level of Selenium (Se) was added using the old formulation. No vitamin mix 

was added in the feed. Based on a Selenium level test by the veterinarians, serum Se 

levels of the sick control chickens were elevated at 0.22 ppm, while normal is 0.085-

0.150. The lack of vitamin mix and high titre of Se in the chicken feed caused the poor 

growth rate and high death rate. To solve the problem, we changed the premix feed to the 

AN Chick Starter/Groper complete feed (Tennessee Farmers Cooperative) and the birds 

recuperated their health and stopped dying gradually.  
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CHAPTER 5: Discussion 

 

DNA vaccine, the so-called ‘third generation vaccine,’ is a safe and stable 

technology that can induce both humoral and cell mediated immunity. Ever since the first 

DNA vaccine was developed in humans in 1993 (Ulmer et al., 1993), a variety of DNA 

vaccines have been tested and licensed, including those designed to prevent and control  

cancer, allergies, and infectious diseases (Liu, 2011; Wahren and Liu, 2014). In chicken, 

various DNA vaccines have been developed, most of which were against viruses 

(Pradhan et al., 2014; Sawant et al., 2015). Furthermore, a number of DNA vaccines 

against coccidiosis in poultry have also been reported (Shah et al., 2014).  

The Kozak sequence is the sequence adjacent to the translational start site (AUG) 

on eukaryote mRNA molecules, which can be recognized by the ribosome. The Kozak 

sequence varies in different species and different mRNA molecules. The amount of 

synthesized protein is often dependent on the specific Kozak sequence, which determines 

the affinity between the eukaryotic ribosome and mRNA. The consensus sequence of 

Kozak sequences in vertebrates is gccRccATGG (Kozak, 1987), where upper case letters 

denote a high level of conservation while lower case letters denote a relatively low level 

conservation. In our previous study (Jones, 2013), the pCAGGS vector (Hitoshi et al., 

1991), a eukaryotic expression vector containing the chicken β-actin promoter, the CMV 

immediately early enhancer (CMV-IE) and the SV40 origin of replication (SV40 OriC), 

was used for the construction of DNA vaccines pCAGGS_CmeC and pCAGGS_CfrA. 

Although research suggested that pCAGGS has a high expression efficiency and is 

widely applied for expression of viral antigens in animals (Bu et al., 2003a; Bu et al., 
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2003b; Hitoshi et al., 1991), the DNA vaccine vectors did not display the desired 

expression level of target Campylobacter genes in eukaryotic cells in our previous study 

(Jones, 2013), likely due to the lack of the Kozak sequence of the cloned bacterial genes. 

In this study, two CmeC DNA vaccines (pCmeC-K and ptCmeC-K) and two CfrA DNA 

vaccines (pCfrA-K and ptCfrA-K) were successfully constructed by the introduction of 

the Kozak consensus sequence to the upstream of the cmeC or cfrA genes. The 

production of these newly-constructed DNA vaccines in eukaryotic cells was confirmed 

by immunoblotting analysis in this study. This modification was also successfully used in 

other DNA vaccine construction with purpose of expressing bacterial genes. In one study, 

Brucella abortus lumazine synthase gene including the Kozak consensus sequence was 

cloned in pcDNA3 plasmid (Velikovsky et al., 2002). Expression of the cloned gene was 

confirmed in vitro by transient transfection of COS-7 cells and the vaccine was 

demonstrated to elicit high levels of protection against smooth and rough species of 

Brucella in mice via the intramuscular route. In another study by Cassataro et al. (2005), 

a pCIOmp31 DNA vaccine vector containing the Kozak sequence was also demonstrated 

to express the Omp31 gene and induce a good immune response against B. melitensis and 

B. ovis for BALB/c mice intramuscularly. Similarly, the plasmids expressing wapA, il-5 

or ctb gene were constructed by incorporating the Kozak sequence into all the genes in a 

vaccination study of Streptococcus mutans in mice (Han and Dao, 2007). The expression 

of the transfected genes was also assayed by immunoblotting. Although the recombinant 

plasmids without the Kozak sequence were not set as controls in these three studies, the 

results indicated that it is critically important to consider the modification of the Kozak 
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sequence for success expression of cloned prokaryotic gene, when constructing DNA 

vaccine for expressing bacterial gene target. 

The full-length DNA vaccines (pCmeC-K and pCfrA-K) were evaluated in two in 

ovo vaccination trials. However, neither of the two DNA vaccines were able to 

successfully induce an efficient immune response and good protection in broiler chickens. 

There are many factors that can determine the success of a DNA vaccination strategy. 

The dosage of the DNA vaccine is believed to be a critical factor (Leitner et al., 1999). 

Normally, a higher dose of the vaccine triggers a stronger immune response, although 

they are not linearly correlated. An appropriate amount of DNA may effectively induce 

an immune response regardless of the body size of the animal (Cox et al., 1993; Davis et 

al., 1996). For in ovo vaccination, injection of 60 µg DNA could lead to an 80% 

expression rate in chicken embryos, significantly higher than the expression rates of 45% 

for 30 µg plasmids and 50% for 100 µg plasmids (Oshop et al., 2003). In an intranasal 

DNA vaccination mice trial, Wang and colleagues (2004) have shown that the 

administration of 20 µg of liposome-emulsified DNA vaccine in one nostril followed by 

the administration of 40 μg of the same DNA vaccine in both nostrils resulted in higher 

systemic IgG and IgA titres. In another intranasal vaccination trial, 10 μg HIV DNA 

vaccine also led to significantly higher antibody titre in mice compared to the controls 

(Okada et al., 1997). In conclusion, 50 µg of DNA vaccines should be an appropriate 

dose to induce good immunity and protection against Campylobacter for chickens via in 

ovo or intranasal routes. 

 However, in ovo vaccination of rCmeC and rCfrA proteins failed to stimulate 

high levels of systemic and intestinal mucosal immune response in Trial 2. This finding 
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raises a concern for triggering sufficient immune response via in ovo vaccination in our 

system. Since the first in ovo delivery of a Marek’s disease vaccine in the 1982 (Sharma 

and Burmester, 1982), a variety of exogenous materials have been administered into eggs 

during incubation, including vaccines, vitamins, amino acids, and drugs (Gore and 

Qureshi, 1997; Kadam et al., 2013). As a result, the in ovo regimen should be a 

straightforward process for vaccine delivery. To optimize in ovo vaccination, attention 

has been placed on several factors including the embryonic stage of development, the 

target site and the protocol for injection. It has been proposed that the immune system of 

chicken has been well developed at day 18 of embryo development (Ricks et al., 1999) 

and this is the best timing for in ovo injection (Salahi et al., 2011). Study also showed that 

pre-hatching chicks naturally consume the amniotic fluids until hatching (Nace, 1961). 

As for the needles used for in ovo vaccination, 18-25 gauge needles at the depth of one 

inch are widely used to inoculate materials into the amniotic cavity (Barjesteh et al., 2015; 

Ge et al., 2014; Makanya et al., 2015; Salahi et al., 2011). For our chicken Trials 1 and 2, 

we are confident that the vaccines were injected successfully into the amniotic fluid and 

taken up by the bird embryos.  

 Intranasal vaccination stimulates immunity in the nasopharynx-associated 

lymphoid tissue (NALT) and vaccination via intranasal route has been demonstrated to 

induce systemic immunity as well as mucosal immune responses in other mucosa sites, 

such as gastric mucosa, respiratory tracts and genital tracts (Brandtzaeg, 2011; Jabbal-

Gill, 2010; Pasetti et al., 2011; Tribble et al., 2010). Moreover, intranasal vaccination 

requires a lower antigen and adjuvant doses compared with oral vaccination (Lycke, 

2012). Intranasal vaccines can be protective only if they were delivered with components 
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that enable the effective uptake of the antigens across the mucosal membrane. Chitosan, 

which has both mucoadhesive and adjuvant properties, has been found to enhance the 

recognition of antigens by the innate immune system and the induction of mucosal 

immune responses (Lycke, 2012; Van der Lubben et al., 2001). In chickens, a chitosan-

coated F gene plasmid DNA vaccine triggered stronger cellular, humoral, and mucosal 

immune responses against Newcastle disease virus (NDV) compared to the plasmid DNA 

vaccine alone when administered via the intranasal route (Zhao et al., 2014). Moreover, a 

chitosan-encapsulated flaA vaccine induced C. jejuni-specific serum IgG and intestinal 

IgA in chickens (Huang et al., 2010). It also reduced C. jejuni colonization by 2-3 log in 

the cecum (Huang et al., 2010). All of the above results showed that chitosan-

encapsulated vaccines can induce excellent protection against Campylobacter when 

inoculated intranasally. However, there are some limitations for chitosan encapsulation 

such as aggregation (Kang et al., 2007). To address this concern, when preparing the 

chitosan-protein nanoparticles, Pluronic-F127, a hydrophilic copolymer was included to 

decrease the aggregation of CMs. Furthermore, Pluronic-F127 has also been shown to 

enable immune response and function as a synergist with chitosan (Westerink et al., 

2001). To date, significant challenges still exist for the development of effective mucosal 

vaccines. Since the vaccines are given directly on mucosal surfaces, they face the same 

hurdles as pathogens do: 1) they are diluted and entrapped by mucosal secretions; 2) the 

vaccines might be excluded by epithelial barriers and 3) recombinant protein vaccines 

might be degraded by proteases while DNA vaccines might be cleared by nucleases 

(Neutra and Kozlowski, 2006). 
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 As reviewed by Zoete and colleagues (2007), an effective vaccine should be not 

only cost-effective, but also easy to produce and administer in larger quantities. The 

yields of recombinant CmeC and CfrA that were purified using the one-step Ni2+-NTA 

chromatography purification were ~5 mg/L culture and ~3 mg/L culture, respectively. 

This yield level is still low from mass production standpoint. In addition, the cost of the 

protein production using Ni2+-NTA chromatography is still high at this stage. Preparation 

of the proteins is also lengthy using the methods and systems described in this project. As 

a result, the recombinant strains and production procedures still need to be modified and 

optimized in the future. The yields of the plasmids are also very low (250~400 µg/200mL 

culture for pCmeC-K and 100~150 µg/200 mL culture for pCfrA-K). In addition, DNA 

extraction using QIAGEN Plasmid Maxi Kit is expensive. In the study of DNA 

vaccination against chicken IBDV (Pradhan et al. (2014), the yield of DNA vaccine 

vector pVAXVP252–417 was only 0.4 mg/1 L culture using endotoxin-free plasmid 

gigaprep kit (Qiagen, Hilden, Germany). In order to improve the yields of the DNA 

vaccines and decrease the expenses, it is very important to develop and choose high-copy 

expression plasmid.  

The on-site prepared chicken feeds used for our vaccination trials did not contain 

the required vitamin mix. Vitamins are organic compounds and vital nutrients that an 

organism requires in limited amounts but cannot synthesize in sufficient quantities 

(Lieberman and Bruning, 1997). Vitamins must be obtained through the diet. As a result, 

vitamin deficiencies have a variety of negative influences on host such as chickens. The 

chickens with vitamin A avitaminosis develop clinical signs such as lack of growth, 

ruffled feathers, weakness and ophthalmia (Aydelotte, 1963; Elvehjem and Neu, 1932). 
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Vitamin A deficiency can also significantly depress the host immune response and lower 

resistance to some poultry diseases by compromising the mucosal epithelial barriers and 

impairing Th2-mediated systemic or mucosal antibody responses to antigens in parasitic, 

viral and bacterial infections (Carman et al., 1992; Chun et al., 1992; Gangopadhyay et 

al., 1996; Ross and Hammerling, 1994; Sklan et al., 1994; Stephensen, 2001; 

Wiedermann et al., 1993).  The clinical signs of riboflavin (vitamin B-2) deficiency in 

chickens include retarded growth rate, curled toe paralysis and reluctance to move 

(Jortner et al., 1987; Wyatt et al., 1973), which were also observed for the chickens in our 

vaccination trials. Moreover, a study by Pinkerton and Bessey (1939) has shown that 

riboflavin deficiency greatly lowered the resistance to endemic typhus and resulted in a 

fatal disease in rats. Vitamin E also plays an important role in normal immunity 

development as well as production and function of antibodies in different animals (Erf et 

al., 1998; Finch and Turner, 1996). Marsh et al. (1986) has reported that, deficiency of 

vitamin E significantly impaired bursal growth and reduced the lymphocytes in the bursa 

in Single Comb White Leghorn chickens. For our vaccination trial, we also found that the 

selenium level in the chicken feed was high. Selenium is an important trace nutrient 

possessing immune-stimulating properties (Hatfield et al., 2011). However, excess Se in 

the diet is toxic and impairs immune functions. Green and Albers (1997) reported that 

mallards which died from more than 20 mg/kg of selenomethionine showed lymphocytic 

necrosis and atrophy of lymphoid organs (spleen, gut-associated lymphoid tissue and 

lumbar lymph nodes) and other histologic lesions. Another study has shown that high 

levels of dietary selenomethionine resulted in splenocyte proliferation, reduced B cell 

numbers, IL-4, and IL-12 secretion in C57BL/6N female mice (Vega et al., 2007). Excess 
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dietary sodium selenite has also been demonstrated to cause apoptosis of bursa of 

Fabricius, lesions of thymus and decreased percentages of the peripheral blood T-cell 

subsets in chickens (Peng et al., 2011; Peng et al., 2009). Overall, lack of vitamins and 

high doses of Se in chicken feed led to the poor growth and immunity of birds in our 

vaccination trial. Therefore, the chicken vaccination experiments need to be repeated in 

the future with specific emphasis on the quality control of chicken feed.  
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Table 1. Bacterial plasmids and strains used in this study. 

Plasmids or 

strains 

Description Source or Reference 

Plasmids     

pCAGGS SV40 ori, β-actin promoter, CMV 
IE, ampr 

(Hitoshi et al., 1991) 

pCAGGS_CmeC Full-length cmeC in pCAGGS 
vector, ampr 

Jones (2013) 

pCAGGS_CfrA Full-length cfrA in pCAGGS vector, 
ampr 

Jones (2013) 

pCmeC-K Full-length cmeC with Kozak 
sequence, ampr 

This study 

pCfrA-K Full-length cfrA with Kozak 
sequence, ampr 

This study 

ptCmeC-K Truncated cmeC with Kozak 
sequence, ampr 

This study 

ptCfrA-K Truncated cfrA with Kozak 
sequence, ampr 

This study 

Strains   

JL894 E. coli Top10 containing pCAGGS Dr. Miyazaki (University of 
Tokyo, Japan) 

JL1102 E. coli Top10 containing 
pCAGGS_CmeC 

Jones. (2013) 

JL1103 E. coli Top10 containing 
pCAGGS_CfrA 

Jones. (2013) 

JL1187 E. coli Top10 containing ptCmeC-K  This study 

JL1186 E. coli Top10 containing ptCfrA-K This study 

JL1185 E. coli Top10 containing pCmeC-K This study 

JL1118 E. coli Top10 containing pCfrA-K This study 

JL243 E. coli JM109 containing pCmeC-
NHIS 

(Zeng et al., 2010) 

JL275 E.coli JM109 containing pCfrA-
NHIS 

(Zeng et al., 2009) 
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Table 2: Primers used in construction of the DNA vaccines. 

Primer DNA Sequence (5’-3’)a 
Product  

Size 
Target gene 

pCAGGS_F 

pCAGGS_R 

 

 

 

 

pCAGGS_CmeC_F2 

 

PCAGGS_CmeC_R 

 

 

PCAGGS_CmeC_TM2_F 

  

PCAGGS_CmeC_TM3_R 

 

GAGCCTCTGCTAACCATGTTC 
TTTTGGCAGAGGGAAAAAGA 
 
 
 
 
CCGCTCGAGACCATGGATAAAATAAT
TTCAATTAGTGCTATAGC  
CCGCTCGAGCTATTCTCTAAAAGACA
TATCTAAATTTTTTGA 
 
CCGCTCGAGACCATGGCTTATGAAAA
TGAAAATGCTCTT 
CCGCTCGAGTTACTTGGCTAAATTTA
CATTTTGGTAAA 
 

N/A 
 
 
 
 
 
1500 bp 
 
 
 
 
562 bp 

The sequence 
upstream and 
downstream of 
multiple cloning 
site 
 

Full-length 
cmeC 

 

 

 

Truncated cmeC 

pCAGGS_CfrA_F2 

 

pCAGGS_CfrA_R 

 

pCAGGS_CfrA-B1-R 

CCGCTCGAGACCATGGAAAAAATAT
GTCTATCAGTTTGC 
CCGCTCGAGTTAAAAGTTACCATTGA
TAGAAATATACATTC 
CCGCTCGAGTTACCATTTATCACTTA
CTTTTTTGGTAATG 

2112 bp 
or 513 pb 

Full-length or 
truncated cfrA 

 

a The restriction enzyme site was underlined. The Kozak sequence (ACCATGG) was 

highlighted with bold and italic letters.  
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Table 3. Evaluation of in ovo DNA vaccination (Trial 1). 

Group 

Number of 

hatched 

chicksa 

Immunization at 18d of 

embryonation 

Sample 

collection 

C. jejuni 

challenge on 

day 14 

1 16 100 μL ddH2O 
Blood: 14d, 
21d, 28d;  
 
Cloacal swabs: 
14d, 17d, 21d, 
24d, 28d 

Yes 

2 15 50 μg pCAGGS 
Yes 

3 17 50 μg pCmeC-K 
Yes 

4 12 50 μg pCfrA-K 
Yes 

 

a To ensure the number of hatched chicks in each group, 17-18 eggs in each group were 

subjected to in ovo vaccination. 
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Table 4. Evaluation of in ovo DNA vaccination (Trial 2). 

 

a To ensure the number of hatched chicks in each group, 15-17 eggs were subjected to in 

ovo vaccination. 

 

 

 

 

 

 

Group 

Number 

of 

hatched 

chicksa 

Immunization at 18d of 

embryonation 

Sample 

collection 

C. jejuni 

challenge 

on 

day 21 

1 14 
100 μL ddH2O 

+ 100 μL neutral lipid 

Blood: 14d, 21d, 
30d; 
 
Intestinal 

lavage: 30d; 
 
Cloacal swabs: 
14d, 17d, 21d, 
24d, 30d 

Yes 

2 11 
50 μg pCAGGS 

+ 100 μL neutral lipid 
Yes 

3 13 
50 μg pCmeC-K 

+ 100 μL neutral lipid 
Yes 

4 14 
50 μg pCfrA-K 

+ 100 μL neutral lipid 
Yes 

5 14 
100 μg rCmeC 

+ 100 μL neutral lipid 
Yes 

6 9 
100 μg rCfrA 

+ 100 μL neutral lipid 
Yes 
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Table 5. Evaluation of intranasal immunization of chitosan-encapsulated subunit 

vaccines in chickens (Trial 3). 

Group 

Number 

of 

Chickens 

Day 7 

Primary 

Immunization 

Day 21 

Booster 

Immunization 

Sample 

collections 

C. jejuni 

challenge 

on day 35 

1 20 PBS 

Blood: 21d, 
35d, 44d; 
 
Intestinal 

lavage: 21d, 
44d; 
 
Cloacal swabs: 
35d, 37d, 40d, 
42d, 44d  

Yes 

2 20 CM Yes 

3 20 CM-rCmeC(100 μg) Yes 

4 20 
CM-pCmeC-K 

(50 μg) Yes 

5 20 CM-rCfrA(100 μg) Yes 

6 20 
CM-pCfrA-K 

(200 μg) Yes 
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Figure 1. Construction of modified DNA vaccine vectors.  

The plasmids were analyzed by 0.8% agarose gel electrophoresis. Lane 1: standard 1 kb 

ladder; Lane 2: pCAGGS; Lane 3: pCmeC-K; Lane 4: ptCmeC; Lane 5: pCfrA-K; Lane 6: 

ptCfrA-K 
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Figure 2. Expression of target gene by the modified DNA vaccine vectors in 

transfected eukaryotic cells. 

A). Immunoblot analysis of CmeC expression by the modified DNA vaccine vectors in 

HEK-293 cells. Lane 1: the HEK-293 cells transfected with ptCmeC-K; Lane 2: the 

HEK-293 cells transfected with pCmeC-K; Lane 3: the HEK-293 cells transfected with 

pCAGGS (negative control); Lane 4: purified recombinant CmeC (positive control). B). 

Immunoblot analysis of CfrA expression by modified DNA vaccine vectors in HEK-293 

cells. Lane 1: the HEK-293 cells transfected with pCAGGS (negative control); Lane 2: 

the HEK-293 cells transfected with pCfrA-K; Lane 3: the HEK-293 cells transfected with 

ptCfrA-K; Lane 4: purified recombinant CfrA (positive control).  The inserted gene 

products are highlighted by circles.  
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Figure 3. SDS-PAGE analysis of purified recombinant proteins. 

A). IPTG induction of CmeC. The whole cell lysate of E. coli JL243 after 1 hr (lane 1), 2 

hr (lane 2), and 3 hr (lane 3) of IPTG induction.  B). IPTG induction of CfrA. The whole 

cell lysate of E. coli JL275 after 1 hr (lane 1), 2 hr (lane 2), and 3 hr (lane 3) of IPTG 

induction. C). Purification of His-tagged rCmeC using Ni-NTA affinity chromatography. 

Lane 1: Elution 1; Lane 2: Elution 2; Lane 3: Elution 3. D). Purification of His-tagged 

rCfrA using Ni-NTA affinity chromatography. Lane 1: Elution 1; Lane 2: Elution 2; Lane 

3: Elution 3.   



65 
 

 

 

 

 

Figure 4. Transmission electron microscopy image of CM-pCmeC. 

Scale bar represents 200 nm. Freshly prepared CM-pCmeC nanoparticles were 

approximately 50~100 nm in size and nearly spherical under TEM. 
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Figure 5. Scanning electron microscopy of Chitosan/Pluronic-F127-proteins with 

tripolyphosphate (TPP). 

A). Chitosan/Pluronic-F127-PBS control. B). 3:1 Chitosan/Pluronic-F127-CmeC. C). 3:1 

Chitosan/Pluronic-F127-CmeC diluted ten times in ddH2O.   
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(A) 

 

(B) 

 

Figure 6. Systemic IgG response following in ovo vaccination (Trial 1). 

Indirect ELISA analysis of systemic IgG level to CmeC (A) or CfrA (B). Serum samples 

were collected at day 14 (prior to challenge), day 21 and day 28. Error bars represent 

standard deviation.   



68 
 

 

 

 

 

Figure 7. Shedding levels of C. jejuni in different vaccination groups (Trial 1). 

Colonization levels of C. jejuni in different vaccination groups at day 0, day 2, day 5, day 

7 and day 12 after chickens were challenged with C. jejuni NCTC 11168. Error bars 

represent standard deviation. 
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(A) 

 

(B) 

 

Figure 8. Systemic IgG response following in ovo vaccination (Trial 2). 

Indirect ELISA analysis of systemic IgG level to CmeC (A) or CfrA (B). Serum samples 

were collected at day 14, day 21(prior to challenge), and day 30. Error bars represent 

standard deviation. 
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(A) 

 

(B) 

 

Figure 9. Systemic IgA response following in ovo vaccination (Trial 2). 

Indirect ELISA analysis of systemic IgA level to CmeC (A) or CfrA (B). Serum samples 

were collected at day 14, day 21(prior to challenge), and day 30. Error bars represent 

standard deviation. 
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(A) 

 

(B) 

 

Figure 10. Intestinal mucosal IgA response following in ovo vaccination (Trial 2). 

Indirect ELISA analysis of intestinal mucosal IgA level to CmeC (A) or CfrA (B). 

Intestinal lavages were collected at day 30. Error bars represent standard deviation. 
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Figure 11. Shedding levels of C. jejuni in different vaccination groups (Trial 2). 

Colonization levels of C. jejuni in different vaccination groups at day 0, day 2, day 4, day 

7 and day 9 after chickens were challenged with C. jejuni NCTC 11168. Error bars 

represent standard deviation.  
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(A) 

 

(B) 

 

Figure 12. Systemic IgG response following intranasal vaccination with chitosan-

encapsulated subunit vaccines (Trial 3). 

Indirect ELISA analysis of systemic IgG level to CmeC (A) or CfrA (B). Serum samples 

were collected at day7, day 21 (prior to challenge), day 35 and day 44. Error bars 

represent standard deviation. 
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(A) 

 

(B) 

 

Figure 13. Systemic IgA response following intranasal vaccination with chitosan-

encapsulated subunit vaccines (Trial 3). 

Indirect ELISA analysis of systemic IgA level to CmeC (A) or CfrA (B). Serum samples 

were collected at day7, day 21(prior to challenge), day 35 and day 44. Error bars 

represent standard deviation. 
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(A) 

 

(B) 

 

Figure 14. Intestinal mucosal IgA response following intranasal vaccination with 

chitosan-encapsulated subunit vaccines (Trial 3). 

Indirect ELISA analysis of intestinal mucosal IgA level to CmeC (A) or CfrA (B). 

Intestinal lavages were collected at day 21(prior to challenge) and day 44. Error bars 

represent standard deviation.  
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Figure 15. Shedding levels of C. jejuni in different vaccination groups (Trial 3). 

Colonization levels of C. jejuni in different vaccination groups at day 0, day 2, day 5, day 

7 and day 9 after chickens were challenged with C. jejuni NCTC 11168. Error bars 

represent standard deviation. 
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