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ORIGINAL RESEARCH

Development and functional demonstration of a wireless intraoral inductive
tongue computer interface for severely disabled persons
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Morten Enemark Lunda , Henrik Schioelerd and Bo Bentsena

aDepartment of Health Science and Technology, Center for Sensory Motor Interaction, Aalborg University, Aalborg, Denmark; bDepartment of
Otolaryngology, Head and Neck Surgery, Aalborg University Hospital, Denmark and Department of Clinical Medicine, Aalborg University,
Denmark; cCertec, Deptartment of Design Sciences, Lund University, Lund, Sweden; dDepartment of Electronic Systems, Aalborg University,
Aalborg, Denmark

ABSTRACT

Purpose: Individuals with tetraplegia depend on alternative interfaces in order to control computers and
other electronic equipment. Current interfaces are often limited in the number of available control com-
mands, and may compromise the social identity of an individual due to their undesirable appearance. The
purpose of this study was to implement an alternative computer interface, which was fully embedded
into the oral cavity and which provided multiple control commands.
Methods: The development of a wireless, intraoral, inductive tongue computer was described. The inter-
face encompassed a 10-key keypad area and a mouse pad area. This system was embedded wirelessly
into the oral cavity of the user. The functionality of the system was demonstrated in two tetraplegic indi-
viduals and two able-bodied individuals
Results: The system was invisible during use and allowed the user to type on a computer using either
the keypad area or the mouse pad. The maximal typing rate was 1.8 s for repetitively typing a correct
character with the keypad area and 1.4 s for repetitively typing a correct character with the mouse pad
area.
Conclusion: The results suggest that this inductive tongue computer interface provides an esthetically
acceptable and functionally efficient environmental control for a severely disabled user.

� IMPLICATIONS FOR REHABILITATION

� New Design, Implementation and detection methods for intra oral assistive devices.
� Demonstration of wireless, powering and encapsulation techniques suitable for intra oral embedment

of assistive devices.
� Demonstration of the functionality of a rechargeable and fully embedded intra oral tongue controlled

computer input device.
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Background

Persons suffering from tetraplegia caused by, e.g., a spinal cord

injury (SCI) experience exceptional challenges in their everyday

activities, which often result in severe deterioration of their quality

of life.[1] Even though these individuals are cognitively well-func-

tioning, their disability significantly degrades their possibility of

attending social and vocational activities, and their need for 24-h

daily assistance may deplete them of any kind of privacy.

Current technological advances have virtualized and automat-

ized daily social and vocational activities to a degree never seen

before. Vocational and social activities are now greatly taking

place through the Internet, and a wide range of the electrical

equipment in homes and in assistive devices can now be con-

trolled remotely. This technological development is potentially

invaluable for tetraplegic individuals,[2,3] but the advantages of

the technology may be compromised by the lack of accessibility

for severely disabled persons. Therefore, the development of

alternative control systems to interface to these technologies is

crucial. For tetraplegic persons, the current control possibilities are

to use, e.g., eye signals,[4–6] brain signals,[3,7,8] head move-

ments,[9] voice control [10,11] and tongue/oral control.[12–16]

Some challenges exist for all these systems, e.g., induced neck

pain in the case of head control and issues related to invasiveness

in the case of brain computer interfaces. Tongue-based control

systems seem attractive due to the high flexibility of the tongue

and the large area of its cortical representation suggesting a high

capacity for selective manipulation of interfacing sensors. Further,

a study by Lau [15] suggested that tongue control was preferable

as compared with, e.g., head control. Recently, several tongue

control systems have been suggested,[12–14,16] including a new

inductive approach for tongue interfacing,[12] and in addition a

magnetic approach was introduced.[13] The inductive system has

been further developed to comprise up to 24 sensors in a partly

intraoral version [17] while the magnetic system has up to six vir-

tually active areas/sensors.[18] These systems do not require
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physical contact between the tongue and the sensors and, there-

fore, may compensate for the drawbacks of using force

sensitive sensors in the interface as in the system used by Lau

et al.[15]

Still there are issues to be addressed in order to develop effi-

cient and acceptable tongue computer interfaces (TCI). The two

systems suggested in references [12,13,17,18] require a metal unit

attached to the tongue and external electronics to power and

process the sensor system. Further, the systems based on force

sensitive sensors and magnetic sensors are either configured for

key-like activation or for directional mouse/joystick-like use while

general computer input devices facilitate combined use of a key-

board and a mouse/joystick. The combined use of key and point-

ing devices is often lacking in assistive devices, further limiting

the activity of a disabled computer user as compared with abled-

bodied users. Another issue is that many existing assistive devices

only have single or very few modalities, which means that they

can interface only to one type of electrical equipment, such as

either a computer or a wheelchair. This results in cumbersome

changes of control devices for each desirable activity; e.g., a

mouth-operated table-mounted joystick used for typing on a com-

puter has to be exchanged with a chin-controlled body-mounted

joystick for wheelchair control.

In addition to the mentioned functional challenges in develop-

ing TCIs, esthetics also plays an important role in the acceptability

of assistive devices since these devices are prone to become part

of the user’s self-identity.[3] In a study comparing four different

assistive devices used by four tetraplegic users, the users preferred

the most invisible device which was based on tongue control [15]

even though it was far from being the most efficient one.

Therefore, this paper describes the design and the functionality

of a tongue-based control system, which is invisible during use

and thus esthetically acceptable. Further, this system provides a

large number of control signals including both a mouse/joystick

function and a 10-key keyboard function, that is, a fully intraoral

Inductive Tongue Computer Interface (ITCI) for individuals with

tetraplegia.

Methods

System overview

A fully intraoral tongue computer interface based on the variable

inductance sensor technology described by Struijk [12] was devel-

oped and tested in four subjects.

To obtain a user-desirable assistive device, six overall require-

ments for the system were defined based on the issues of esthet-

ics and functionality stated in the introduction and on general

desires of computer users with tetraplegia previously obtained by

the authors using a survey.[19] The six overall requirements were

defined as:

The system must be:

� Invisible/discrete

� Hands off: controllable using the tongue only

� Wireless

� Mobile

� All-round: compatible with general electric equipment that

has to be controlled.

� Used without interference with other user activities, e.g.,

the user should be able to speak and look around while

wearing the system.

The overall diagram of the inductive tongue computer inter-

face is shown in Figure 1, and the system can be divided into

three main parts:

I: The inductive tongue interface (ITI), which is placed intraor-

ally and wirelessly transmits sensor data to an external central

unit (CU). The tongue interface is thus invisible during normal use

with a closed mouth.

II: The CU, which processes the data from the mouth piece and

further wirelessly transmits the data to the PC Unit (PCU).

III: The PCU, which is implemented as a USB stick simulating

keyboard and mouse function.

During use, the ITI was placed in the mouth, and the sensors

of the ITI were activated by a ferromagnetic metal unit glued or

Figure 1. Overview of the Inductive Tongue Computer Interface. The Inductive
Tongue Interface transmits the 18 sensor signals wirelessly out of the mouth to
the central unit, which processes the signals and transmits the processed infor-
mation to the PC unit, which emulates a mouse/keyboard function. The board
used for the PC unit includes a microcontroller and radio chip.[24]

Figure 2. Overview of the ITI parts. Top: The Two 10-layer PCB constituting the
key pad (left) and the mouse pad (right), the battery and the PCB for the elec-
tronics. The scale is in centimeters. Middle: Top middle: The assembled ITI parts,
showing the charger coil and the sensor PCB. Bottom middle: The battery and
one of the flex prints used to connect the parts. Bottom: The fully embedded ITI
dental appliance.
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pierced to the user’s tongue. When the user moved the tongue

with the metal unit close to a desired sensor, the resulting change

in the sensor signal was detected, processed and transmitted to

the CU for further processing, and from here it was wirelessly

transmitted to the PCU, which emulated the function of a normal

keyboard or computer mouse. Since the PCU was based on a USB

stick, it could be attached to any standard windows-based per-

sonal computer in the same manner as a standard computer key-

board/mouse without the need for additional software/hardware.

The ITI

The ITI is shown in Figure 2 and consists of:

1. Two 10-layer sensor PCBs with inductive sensors allowing for

separate keyboard and mouse/joystick functionalities

2. A signal processing system

3. A wireless transmitter

4. A rechargeable battery

5. A coil for charging the battery

6. Two connecting flexible PCBs

7. Encapsulation in removable dental appliance

8. Activation unit on the tongue

The different parts were connected with two flex prints and

embedded in a removable dental appliance comparable with a

removable partial denture or orthodontic appliance (Figure 2). All

parts were optimized in size in order to keep the mouthpiece

small and to allow for speaking and eating during use.

The sensor PCBs The sensor method was based on the variable

inductance principle as described by Struijk.[12]

The inductive sensors consisted of “air cored” electrical coils in

which the inductance was changed during activation by moving a

small cylindrical piece of ferromagnetic material close to the core

of the coil. The positioning of the sensors at the palate made spe-

cial requirements on the size of the coils used as sensors. Further,

the appropriate positioning of the sensors to facilitate accessibility

by the tongue had to be considered. Different types of coil

designs were studied [20] to optimize the signal size. The max-

imum available number of layers in the PCB was 10 layers (Figure 2).

Each layer carried 10 coil turns for each coil and the turns of each

layer were connected using plated thru-holes. This resulted in

coils with an outer diameter of 6.2mm and an inner diameter of

4.3mm and a total number of turns of 100. The total thickness of

the coil PCB was 1mm.

To allow for quick and direct typing on, e.g., a PC and to allow

for direct joystick-like control of a wheelchair,[21] it was decided

to introduce both a keypad area and a mouse pad area on the

sensor (Figure 2). In the mouse pad area, some coils were oval-

shaped to allow for a more continuous and direct mouse/joystick

function (Figure 2) as used in an earlier partly oral version of the

system.[27]

Previous studies have analyzed how many sensors could realis-

tically be placed in the hard palate, and further, the ability of

humans to learn selecting a large number of sensors with the

tongue has been analyzed.[17,22] In a tongue interface with exter-

nal sensor electronics, these results showed that up to 22 induct-

ive sensors could be placed and controlled in the human palate.

In addition, the most effective relative positioning of keypad and

mouse pad areas has been studied [17] to obtain knowledge

about which functionality should be placed more anterior in the

Figure 3. Overview of the main parts of the ITI signal processing and detection system. (a) The steps in the signal processing system. (b) The ideal principle of meas-
urement: a band-pass filter was created by connecting a capacitor to each sensor coil. (c) During activation the impedance of the LC band-pass filter changed, and the
activation was detected at the frequency, fmeas, indicated by the vertical punctured line. (d) The real frequency characteristics of the detection LC band pass filter with
and without sensor activation.
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palate. These studies showed that the more central and the more

anterior the sensors are placed, the more accessible they are.

Based on these results, and the fact that the keypad sensors

require more precise activation than the sensors of the mouse

pad, the 10 sensors in the keypad area were placed in the frontal

part of the palate, and an 8-sensor mouse pad area was placed in

the more posterior part of the palate resulting in a total number

of sensors of 18. The choice of having less than 22 inductive sen-

sors in the device was based on the need for sufficient space to

integrate the required electronic circuits in the device.

The signal processing system An overview of the signal detection

and processing in the ITI is given in Figure 3. The current

through the sensor coils was implemented as �50 kHz square

wave signal, f0, generated by the microprocessor in the ITI

(Figure 3). The amplitude of f0 was 63 lA in order to obtain

sufficiently large signal amplitude for detection of sensor activa-

tions while avoiding electrical safety issues. Each sensor coil

was coupled with a capacitor to create a band pass filter

(Figure 3(c)). When the channel was selected by the multiplexor

(Figure 3(a)), the square wave signal, f0, was applied to the

band pass filter through the resistor R. The output voltage, Vo,

was proportional to the impedance of the LC band pass filter,

which was determined by the inductance of the coil, the cap-

acitance of the capacitor, C, and the frequency of f0. When acti-

vated, the inductance of the coils increased, and thus the

impedance of the band pass filter changed and thereby the

output voltage changed too. Having a 25 lH coil, L, changing

to 30 lH during activation, and a 100 nF capacitor, C (Figure

3(c)), the frequency characteristics of the LC band-pass filter

was as shown in Figure 3(d). The resulting amplitude of Vo.

was in the range 1–1.5mV. The series resistance internally in

the coils was in the range of 20X, and caused a detection

(Figure 3(d)), which differed from the ideal detection principle

shown in Figure 3(b).

The sensor signals were multiplexed every 33ms, and the ana-

log sensor signal was amplified, rectified, passed through a peak

detector and low pass filtered. The microprocessor then sampled

the signal and fed the resulting amplitude information from each

sensor into the transmitter (Figure 3). The circuit was imple-

mented as a two-layer PCB (Figure 2).

The transmitter The transmitter transmitted the signal within the

2.4 GHz Industrial Scientific and Medical (ISM) band, and transmis-

sion was made every 0.033 sec. The transmitter was based on the

small low power radio chip nRF24L01 from Nordic Semiconductor.

The signal transmitted included amplitude and sensor identity

information for each of the 18 sensor coils.

The battery The ITCI was powered by a 3.7 V, 20 mAh recharge-

able lithium polymer battery able to supply the system for 15 h of

use before recharging (Figure 2, Top). This low-power battery was

chosen in order to limit electrical risks. The dimensions of the bat-

tery were 12� 19.5� 3mm (Figure 2, Top).

The charger coil A coil for charging the battery was handmade to

fit the circumference of the mouse pad area. This assured a tactile

guide/border for the tongue while sliding on the mouse pad area

(Figure 2).

The connecting flex-PCB To allow for the great variability in the

dimensions and shape of the human palate, which may easily

vary more than one centimeter in both width and height in

adults, two flexible PCBs were used to connect the sensor PCBs,

the electronics PCB and the battery (Figure 2).

Encapsulation The system was encapsulated in a removable den-

tal appliance comparable with a removable partial denture or

orthodontic appliance using standard dental materials (Figure 2,

Bottom). Firstly, epoxy was used to encapsulate the electronics,

next dental acrylic was used to create a plane surface and finally

the embedded electronics was laminated with two sheets of den-

tal, thermoplastic material, make DuranTM. The encapsulation was

completely sealed by melting the borders of the two DuranTM

sheets together and finally mounted in a frame made of stainless

steel. The frame allowed for mounting of the mouth piece at the

teeth by clamps attached to the frame, and further, the frame sta-

bilized the more flexible encapsulation materials during, e.g.,

mounting and chewing (Figure 4).

The activation unit Two different types of activation units were

developed using the ferromagnetic dental stainless steel alloy

Dyna# in order to test the system in both users with and without

tongue piercings. One type of the activation unit was shaped as a

cylinder with a height of 2mm and a diameter of 4.5mm. This

was designed to be glued to the tongue (Figure 4). The latter

type was shaped like a soft cone and attached to a titanium rod

for use in a tongue piercing. The height of the cone was 5.2mm

and the diameter at the base was 4.5mm. The height of the pierc-

ing-based activation unit exceeded the height of the glue-based

unit in order to compensate for the deeper embedment in the

tongue due to the weight of the ball at the end of the piercing

stick, which would otherwise compromise the ability of the user

to reach sensors far from the central part of the palate.

The CU

The CU processed the raw data transmitted from the mouth piece.

The signals from the sensors were processed (filtered) to adap-

tively remove individual sensor offset and drift using a filter with

adjustable weights as shown in Figure 5. The method for weight

adjustment is shown in Figure 6, it ensures that active sensor sig-

nals are not included in the calculation of the weights for the

removal of the baseline signal. The microcontroller then moni-

tored the processed signals to decode the user’s actions and

change the control mode accordingly. The user could switch the

control mode between, mouse mode, keyboard mode, wheelchair

mode and standby mode by activating sensor number 10 for

10 sec. The signals were then further processed depending on the

current control mode. Finally, the control commands were trans-

mitted to the target device to be controlled; in this case the USB-

based mouse/keyboard emulator. The CU applied fuzzy logic to

the output of the mouse pad sensors in order to interpolate the

eight mouse movement directions defined by the eight mouse

pad sensors (Figure 7). This was done to obtain a joystick-like out-

put from the mouse pad with multiple directions for the mouse

cursor motions. In addition, radial interpolation was performed

from the centre of the mouse pad in order to obtain velocity

Figure 4. Left: The stainless steel frame forming the base of the encapsulation of
the electronic parts. Right: The activation unit glued to the tongue.
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control of the mouse cursor in such a manner that the further the

activation unit was placed radially from the centre of the mouse

pad, the faster the cursor would move on the computer screen.

The fuzzy logic implementation was adapted from Caltenco et al.

[23] The central unit was implemented in a separate box, which

was �7 cm wide, 7 cm deep and 2,5 cm high, which could be

mounted on the user or on e.g. a wheelchair.

Figure 5. The filter structure used for removal of the baseline from the sensor signals.

Figure 6. The method for adjustment of the filter weights for the filter (Figure 5) for removal of the sensor offset and drift.

Figure 7. The sensors and the related typing functionality in mouse mode (left sensor layout) and keyboard mode for full alphabet text input (right sensor layout).
Switching between keyboard and mouse modes was performed by activating sensor number 10 for 10 sec. Adapted from Lontis et al. [29]
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The PCU

The PCU received information about the sensor being activated

on the keypad area during Keyboard mode and about the fuzzy

output of the mouse pad area during Mouse mode. It was imple-

mented as a keyboard/mouse emulator using a composite USB

device and was responsible for mapping sensor activation to spe-

cific USB commands such as keyboard key codes, mouse button

status, and mouse movement. Details on the USB implementation

can be found in Lund et al. and USB Implementers’ Forum.[24,25]

The board used for the PCU print had a USB connector so that

the whole unit could be regarded as a USB stick ready to be

plugged into a standard PC (Figure 1). The PCU was implemented

as a state machine, which was adapted from Lund et al.[24] A

group of characters were related to each sensor of the key pad in

a manner resembling a key-based mobile phone (Figure 7). The

PCU was implemented in such a manner that a character related

to an activated sensor would appear at the cursor on the PC

screen as soon as the activation unit was placed at that sensor in

order to provide a visual feedback for the user. If the user

removed the activation unit or moved it to another sensor within

short time, the displayed character was deleted, and instead a

character related to the new sensor was shown at the cursor of

the PC. In order to actually type a character, a sensor was to be

activated for a certain amount of time called dwell time (Figure 8).

This method was chosen in order to embed the software for the

visual feedback in the USB stick requiring no additional software on

the PC, thus allowing the use of the ITCI at any PC.

General system functionality

The user could toggle between two ITCI modes: a keyboard mode

and a mouse mode. Mode switching between keyboard mode

and mouse mode was facilitated by continuous activation of sen-

sor 10 for 10 seconds (Figure 7). In the keyboard mode, the 10

sensors on the keypad were associated with characters in a

mobile phone-like manner, and some additional functions were

associated with the mouse pad sensors (Figure 7).

System functionality – mouse emulation

In the mouse mode, the mouse pad sensors were used in a joy-

stick-like manner to control a cursor on the PC screen, and some

of the keypad sensors were used for mouse clicks (Figure 7). The

speed of the mouse cursor increased as the activation unit was

moved radially from the centre of the mouse pad, and the cursor

stopped as soon as the mouse pad area was deactivated by

removing the activation unit from the mouse pad area.

System functionality – typing with the keypad area

Typing using the keypad area was performed by sliding the acti-

vation unit on the sensor PCB activating the sensors for a short

time D1 (Figure 8). This resulted in a display of the first character

in the character group related to the activated sensor. As long as

the activation time D1 was not exceeded, the displayed character

served as a temporary visual feedback for the user. If the activa-

tion time D1 was exceeded, a new dwell time period, D2, began

during which the character was still displayed but was typed if

the sensor was deactivated. If the activation persisted for longer

than D2, the next character in the character group related to the

activated sensor was displayed and was typed in case of sensor

deactivation. This would continue in a circular manner until

deactivation occurred and a character was typed (Figure 8). In this

study, D1 was pre-set to 0.9 s and D2 to 1 s, but these values were

adjustable.

System functionality – typing with the mouse pad area

In addition to the keypad typing, characters could also be typed

with the mouse pad area using an on-screen keyboard. The on-

screen keyboard, Click-N-Type, was used. When the cursor was

successfully placed on a character on the on-screen keyboard, the

character was typed by activation of the sensors on the on key-

pad area related to a mouse click function (Figure 7).

Experimental software

For experimental use, a real-time Matlab# interface was imple-

mented to provide a graphical visual feedback of the position

of the activation unit when sliding over the sensors and for dis-

playing the association between characters and sensors. Further,

it displayed a character string to be typed and, in addition,

the character string that was actually typed by the subject

(Figure 9). The Matlab# interface received data about sensor

activation through a dedicated COM port from the PCU; these

data were saved on the hard disk. In addition, the raw sensor

data from the ITI were saved by the CU. For typing in Word#,

the TongueWise software developed for use with the ITCI was

used.[26]

Experimental procedure and materials

The experimental protocol was approved by the local ethical

committee. Two female spinal cord injured subjects, S1 and S2,

with tetraplegia performed typing with the key pad. In addition,

two able-bodied females, S3 and S4, with long term, jewellery

tongue piercings performed keypad area typing and on-screen

typing with the mouse pad. The subjects were 57, 48, 27 and

35 years old, respectively. The experiment was a one-day

experiment for the tetraplegic subjects and a two-day experi-

ment for the able bodied subjects. During the experiment, the

subjects were trained in using the ITCI. Training tasks included

typing using the Matlab# interface and typing in Word# using

either the custom-made graphical interface software

Figure 8. Typing procedure: when a sensor on the keypad area was activated, in
this case sensor 2, the first character related to that sensor was displayed as a
visual feedback for the user. If the sensor was still activated after a time period,
called dwell time 1 (D1), it could be typed during the following time period,
dwell time two (D2), during which deactivation of the sensor would result in typ-
ing of an “a”. If the sensor was activated beyond D2, the next character related
to sensor 2 which was “b” was displayed, and deactivation of the sensor would
then cause a “b” to be typed. If the sensor was still not deactivated, the next
character related to the sensor would appear, and this procedure would continue
in a circular manner until the sensor was deactivated. If the sensor was deacti-
vated during D1, the “a” would be deleted and no character would be typed.
This gave the user a time period, D1, to slide on the keypad area, with visual
feedback, without typing undesired characters.
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TongueWise [26] or using an on-screen keyboard. In addition,

games were performed for 5–10min sequences (Table 1). The

games were: a modified version of “Whack-A-Mole” [27] for key-

pad training and “Born to Be Big” [28] for mouse pad training.

The tetraplegic subjects used the keypad area for typing while

the able-bodied subjects additionally did on-screen keyboard

typing with the mouse pad area after completing typing with

the keypad area. The typing tasks were similar for typing with

the keypad area and the mouse pad area.

The trial sequences are shown in Table 1. The character typing

sequences typed using the Matlab# interface was used as experi-

mental results and is displayed in the results section.

Custom-made ITCIs were produced for each subject. In the

case of the tetraplegic subjects, the activation unit was glued to

the tongue during the trials using the tissue glue Histoacryl#. In

the case of the able bodied subjects, their own piercing jewellery

was exchanged with an activation unit, designed as a piece of

piercing jewellery during the trials. One subject, S2, was using a

dental prosthesis and in this case the ITCI was integrated in a full

upper denture.

During the trials, the subjects were seated comfortably in a

chair or a wheelchair and were instructed to perform the trials

shown in Table 1. Each trial lasted for 30–60 sec.

Results

The inductance of the sensor coils in the PCB were measured to

15–16 lH for the keypad coils and 25–27lH and 34–36 lH for the

round and oval coils of the mouse pad, respectively. The resistan-

ces of the coils were measured to 12–13 X for the keypad coils,

and 15–17 X and 20–21 X for the round and oval mouse pad

coils, respectively. The resulting sensor signal amplitudes were in

the range of 1mV, and the activation of the coils resulted in an

amplitude change of up to 10–15%.

The time required to type a correct character depended on the

dwell times D1 and D2 together with the search time. Typing the

first character related to a sensor required a minimum activation

time longer than 0.9 s (D1) and shorter than 1.9 s (D2). The least

average time required to repeatedly find and type a character was

1.8 s for repeatedly typing the character “a” on day 2 for subject

S4, suggesting that less than 1 s was needed to search for and

find that character (Table 2). The total number of correct activa-

tions within 30 s is shown in Figure 10 for the healthy subjects

and in Figure 11 for the tetraplegic subjects. For the tetraplegic

subjects, S1 and S2, the mean time required to type a correct

character was 6.5 s and 8.1 s, respectively.

For the healthy subjects, S3 and S4, the mean time required to

type a correct character was 5.9 s and 10.0 s on the first day of

training, and 5.3 s and 3.3 s, respectively, on second day, indicating

that significant learning was taking place as suggested in

Boudreau et al. and Caltenco et al.[22,27] This increase in typing

ability form the first training day to the second training day indi-

cates that significant learning is taking place, confirming the

results of a neuroplasticity study of an inductive tongue inter-

face.[22] Despite having as many as nine sensors for selective acti-

vation of characters, the users in that study rated the difficulty of

typing to be between 3 and 6 on a 10-cm numerical rating scale

after two-days experiments, where they were still in a learning

phase

The results of keypad area typing for day 1 and 2 are shown in

Figure 10 for the healthy subjects and in Figure 11 for the tetra-

plegic subjects across the trials. The maximum number of cor-

rectly typed characters in one trial was 16 for the tetraplegic

subjects and 17 for the able-bodied subjects on day 2.

Figure 9. The Matlab# based visual feedback used in the experiments. The
given character string to be typed is shown with the currently desired character
in capital. In the text field above, the characters typed by the subject are dis-
played. Correctly typed characters are shown in capital. A figure below the text
field shows the position of the characters on the keypad area of the ITCI. As
default, all sensors were marked with a green circle. When the activation unit
was placed at a sensor/character for less than the time D1, the circle around the
character turned yellow, and the character was temporarily typed at the cursor in
the text field. When D1 was exceeded, the colour turned from yellow to red and
deactivation of the sensor resulted in sustained typing of the character in the
text field after which the cursor moved one step forward to provide feedback for
the next character to be activated by the subject. If no deactivation occurred
within the time D2, the next character related to the activated sensor was
displayed.

Table 1. Tasks for typing with the Matlab interface.

Trials of 30–60 s
1 .,?” ()@abcæådefghijkl
2 Mnopqrstuvwxyz
3 heprjå(lb, sagpd
4 repqg.åfb)usdt8æ

“Wack-A-Mole” or “Born to Be Big”: 5–10 min
Trials of 30–60 s

5 Aaaaaaaaa
6a abababab
7 Abcæå
8 .,?!”()@
9 Def
10 Ghi
11 Jkl
12 Mnoø
13 Pqrs
14 Tuv
15 Wxyz
15b Space
16 .ad.ad.ad
17 Gjmgjmgjm
18 ptw
19 type a character and delete

Trial running–max 5min
20 jeg er færdig! (use Delete)
21 jeg er færdig! –(use delete and easy write)

Trials of 30–60 s
22 .,?()@abcæådefghijkl
23 Mnopqrstuvwxyz
24 heprjå(lb, sagpd
25 repqg.åfb)usdt8æ

aOnly performed by S1 and S2,
bnot used for data analyses, Trial 17–25 were only performed by
S3 and S4.
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The results for on-screen keyboard typing are shown in

Figure 12. S3 had 60 s keyboard typing trials on day one.

Discussion

The ITCI is based on the change of the inductance of the induct-

ive sensors by changing the core material of the inductor. In order

to create a fully implantable and biologically acceptable interface,

several compromises that could result in insufficient signal size

were made. Firstly, in order to increase the number of possible

commands, a relatively large number of sensors were desirable,

but at the same time the small available space at the human pal-

ate in the oral cavity restricted the possible number and size of

the sensors. Therefore, the size, including the number of turns on

the coils of the sensors, was restricted and thus challenging the

signal amplitude. Secondly, to reduce the size of the sensors and

facilitate a uniform sensor design, the sensor coils were imple-

mented as PCBs. This restricted the activation of the coil as the

activation unit could not enter the core of the inductor, thus

obtaining less than optimal activation. Nevertheless, a change of

inductance of �10–15% was obtained during activation, and the

subjects could successfully type characters and words with the

system.

The minimum time required to type a correct character was

1.8 s with the keypad area and 1.4 s with the mouse pad area.

Even though these high rates were obtained only in repetitive

typing, they may suggest the possibility of obtaining a high typ-

ing rate after practice since a considerable amount of learning

seems to take place. The fastest subject went from a maximum

typing rate of 7.5 s per character on day 1 to 1.4 s/character on

day 2. There is a limit of the maximum achievable typing rate due

to the dwell times of the system. These may be reduced as the

user becomes more familiar with the system.

Current available systems allowing users with tetraplegia to

control computer cursors generally rely on joystick-based function-

ality due to the restricted mobility of the user. This may introduce

a slower control as compared to an actual mouse control. Other

tongue control systems, such as the TDS [13] and the system from

new abilities,[15] provides discrete control comparable to using

the 4 arrows on a keyboard to move the cursor. The control pro-

vided by the ITCI is a discrete cursor control providing eight dis-

crete directions instead of four and in addition fuzzy logic

combining the signals from adjacent sensors facilitates a more

continuous directional movement pattern. Further, the velocity of

the cursor increases with the radial position of the activation unit

on the mouse pad.

The design of the ITCI showed to be flexible in such manner

that it could be adapted to the four subjects despite the great vari-

ability in the size and form of their hard palate and despite the

need for integration of the ITCI in a full upper denture. For the

Table 2. Mean and average typing times for all subjects in trials of 30 sec.

Keypad correct characters mean/
max/min [No.]

Keypad time/correct character
mean/max/min [s]

Mouse pad correct characters
mean/max/min [No.]

Mouse pad time/correct
character mean/max/min [s]

S1, Day 1 4.6/16/0 (SD 4.0) 6.5/–/1.9
S2, Day 2 3.7/7/1 (SD 1.9) 8.1/30/4.3
S3, Day 1 5.1/14/0 (SD 3.8) 5.9/–/2.1 5.4/13/1 (SD 3.24) 11.1/60/4.6
Day 2 5.7/15/1(SD 3.5) 5.3/30/2 4.8/12/1 (SD 2,6) 6.25/60/2.5

S4, Day 1 3/11/0 (SD 2.7) 10/–/2.7 1.4/4/0 (SD 1.3) 21.4/30/7.5
Day 2 9.2/17/4 (SD 3.8) 3.3/7.5/1.8 5.3/21/2 (SD 4.2) 5.715/1.4

Figure 10. The number of correctly typed characters in trials of 30 sec duration.
Trials for the healthy subjects S3 and S4 using the keypad area. The results are
for trial 1 to 17 in Table 1.

Figure 11. The number of correctly typed characters in trials of 30 sec. for the
individuals with tetraplegia, S1 and S2 using the keypad area. The shown results
are for trial 1 to 16 in Table 1.

Figure 12. The number of correctly typed characters for S3 and S4 using the on-
screen keyboard with the ITCI mouse pad area. The trial number refers to the
numbers in Table 1þ 24, e.g., the characters typed in Trial 29 are “aaa”. Trial
durations of the trials are shown in the figure.
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three subjects who were not using a dental prosthesis the speech

seemed affected when wearing the ITCI, but it was improving

throughout the experiment. For the subject with a denture, the

speech was not notably affected, and the subject claimed that her

speech was comparable to her speech while wearing her own pros-

thesis without the ITCI. This suggests that speech can be improved

when wearing the ITCI for long periods. However, further studies

have to be made on this issue. A drawback of the system is the

demand of a tongue piercing for long-term use. At the same time,

the tongue piercing facilitates a higher selectivity by restricting the

sensor-activator contact area as compared with systems using pres-

sure sensors [15] and the TTD system with more virtual activation

areas,[13] thus facilitating a large number of sensors and com-

mands. Whether a piercing is worthwhile for a user in order to

obtain an ITCI, is an individual decision, but studies on acceptability

and pain related to such piercings [18,29,30] in tetraplegic subjects

suggest that the insertion of the piercing itself may not induce

unacceptably high discomfort.

Conclusion

This study describes a method for a full and safe integration of a

battery-powered, wireless inductive tongue computer interface

into the human oral cavity. Compared with other TCI systems, this

system incorporates the largest number of sensors for environ-

mental control completely embedded into the human oral cavity.

The aim was to obtain an esthetically acceptable and empowering

interface for severely disabled individuals facilitating a wide range

of commands for environmental control.

The experiments showed that the ITCI fulfilled the six require-

ments listed for such a system in the methods section.

The experiments demonstrated that the system can be safely

embedded into the oral cavity and further interfaced to various

Windows-based computers using a USB stick only. Typing exer-

cises showed that two able-bodied and two tetraplegic subjects

were able to perform typing with the system. The able-bodied

subjects obtained an average typing rate of 3.3 s per character –

5.3 s per character on the second day of the experiment, which is

higher than for the system using pressure sensors.[15] The two-

day trials indicated that a large amount of learning was taking

place indicating that a higher typing speed of up to 1.4 s per char-

acter may be expected after long-term use. Studies on more sim-

ple and not fully intraoral ITCI systems have indicated that long-

term training results in typing speeds of 1.1 s per character.[27]

This study focused on the design and demonstration of the

ITCI and thus the participating tetraplegic individuals did not have

their tongue pierced which is required for long-term use of the

system. Preliminary studies have suggested that a piercing is

acceptable when required for tongue computer interfa-

ces.[18,29,30,31] However, more detailed clinical studies of the

ITCI, including more subjects, are desirable for a clinical evaluation

of the efficiency of this intraoral system.

During use, the ITCI was fully embedded into the oral cavity

and thus invisible avoiding compromising the self-identity of the

user. Both the tetraplegic subjects evaluated the system positively

and expressed willingness to undergo a tongue piercing in order

to use the system. In the current study, the ITCI was used for

computer interfacing but may also be used for control of other

applications such as active movement-assistive devices [32] and

for control of hand prosthesis.[33] Future studies will consider

evaluation of text typing in generally available computer applica-

tions such as Word#, including comparison with other existing

computer interfaces for severely disabled individuals. Further, the

general use of the system such as speaking and eating while

wearing the system will be evaluated.
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