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This paper describes the development and implementation of

a distributed job execution environment for highly iterative

jobs. An iterative job is defined here as a binary code that

is run multiple times with incremental changes in the input

values for each run. An execution environment is a set of

resources on a computing platform that can be made available

to run the job and hold the output until it is collected. The

goal is to design a complete, object-oriented execution sys-

tem that runs a variety of jobs with minimal changes. Areas

of code that are unique to a specific type of job are decou-

pled from the rest. The system allows for fine-grained job

control, timely status notification and dynamic registration

and deregistration of execution platforms depending on re-

sources available. Several objected-oriented technologies are

employed: Java, CORBA, UML, and software design pat-

terns. The environment has been tested using a simulation

code, INS2D.

Keywords: Problem-solving environment, Object-oriented

design patterns, Java, CORBA

1. Introduction

The current trend in data processing is a 3-tier so-

lution. Lightweight clients communicate with middle

tier application servers. These, in turn, communicate

with the backend databases or execution engines. Ad-

vances in platform independent languages and frame-

works have eased the process of porting and executing

code based on different platforms. Java is a platform

independent language that has gained widespread ac-
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ceptance in the developer community. The Common
Object Request Broker Architecture (CORBA) [15] is

a distributed object request broker that removes the de-

tails of remote object communication and provides ser-

vices that are needed in distributed applications. With
CORBA, remote object methods and data are accessed

via local proxy objects. This allows the programmer to

write code as if the remote objects were local.

There has been an increased interest in a specific
class of environments called Problem Solving Environ-

ments (PSEs). A PSE is defined as a computer system

that provides facilities and services needed to solve a

class of problems [11]. Many PSEs have been devel-
oped to help users solve problems in different areas.

These environments differ in many aspects such as the

type of the problems they solve, the features they pro-

vide, the platforms they support as well as their archi-
tecture and their design. They can be divided broadly

into two main categories.

The first category is concerned with the develop-

ment of advanced solution methods, the automatic and

semiautomatic selection of these methods, and the in-
tegration of these methods to solve computational sci-

ences applications. Examples of this category include

products that are commercially available such as: Mat-

lab, an interactive system for numerical linear alge-
bra, and Diffpack, an object-oriented problem solv-

ing environment for multi-physics simulation [12]. In-

cluded in this category are experimental systems de-

signed to solve more complex problems such as EDSS
and PELLPACK. The Environmental Decision Support

System (EDSS) [5] is a PSE developed by North Car-

olina Supercomputing Center to couple models based

on knowledge from several disciplines in environmen-
tal science and decision support systems. It includes

components and tools to build air quality models from

interchangeable components. The Parallel (//) ELL-

PACK [10] is a PSE for partial differential equations
based applications developed at Purdue University.

The main goal of the second category of PSEs is to

provide an efficient,easy to use environment for solving

problems using distributed computational resources.
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Examples of this category include: Globus, Legion,

NetSolve, DIAS, IceT, PRE, and Arcade. Globus [6],

developed at Argonne National Lab and University of

Southern California, is a set of services that provides

basic capabilities and interfaces in areas such as com-

munication, information, resource location, schedul-

ing, security, and data access to geographically dis-

tributed resources. Legion [13], developed at the Uni-

versity of Virginia, is an object-oriented system de-

signed to integrate a large number of machines and

resources and provides the illusion of a single virtual

machine to users. NetSolve [2], developed by Oak

Ridge National Lab and University of Tennessee at

Knoxville, is a system that allows users to access com-

putational resources distributed across a network. The

Dynamic Information Architecture System (DIAS) [1]

is an object-oriented simulation system designed to pro-

vide an integrating framework for legacy applications

at Argonne National Lab. IceT [9] is a framework for

collaborative and high performance distributed com-

puting based on Java developed at Emory University.

The Production Realization Environment (PRE) [22],

developed at Sandia National Labs, is a CORBA-based

framework for the integration of a variety of applica-

tions such as legacy applications, databases, in-house

tools, and commercial products. Finally, Arcade [3],

developed by ICASE and Old Dominion University,

is a web-based environment for designing, executing,

monitoring, and controlling distributed applications.

We designed a simple but a powerful environment to

execute highly iterative jobs. These jobs need to run

several times to produce similar results based on incre-

mental changes in the input values for each run. They

are quite common in many simulation codes used to

solve scientific and engineering problems. An exam-

ple of these codes is the highly iterative Computational

Fluid Dynamics (CFD) codes. These CFD codes (also

called flow solvers) are numerically intensive applica-

tions that model airflow over wings or airframes. Our

designed system has many features and capabilities of

the above environments but it is unique in many ways.

First it is solely based on object-oriented design and

analysis, which make it quite flexible and easy to up-

grade and maintain. Second, it is quite portable since

it uses Java and CORBA with their inherent platform

independence. Third, it has a scheduling capability that

many other systems lack. And forth, it has been tested

using a real simulation code, INS2D.

One of the driving forces behind this research was

to find a clean, effective way to acquire the processing

power of clusters of distributed machines. As machines

capable of hosting an execution environment free up

the resources to do so, they will register with and be

assigned work from a dispatching object. Other ma-

chines might register based on the time of day. Dur-

ing the evening hours, they register and process jobs.

During the day, they deregister and free up resources

for other duties. The idea is to quickly maximize the

available computing resources that would otherwise sit

idle. By taking advantage of solid object-oriented de-

sign idioms, platform independent languages and in-

dustry standard broker architectures, a flexible, cost ef-

fective and dynamic problem solving environment can

be achieved.

Our system architecture is designed with maximum

reuse in mind. One of the goals is to develop a solution

that enables different simulation codes to be “plugged

in” with minimal code having to be rewritten. The ar-

chitecture has been tested using the INS2D code, which

solves the incompressible Navier-Stokes equations for

steady state and time varying flow. In our design, we

use the Unified Modeling Language (UML) to map out

the architecture. We use Java as an implementation

language and CORBA for communication and control

between the tiers [16].

CORBA was chosen because of the flexibility it of-

fers in the choice of programming languages. With the

exception of having to acquire the Interoperable Object

References (IORs) of different objects, the Java code is

written as if all the pieces were running on the same vir-

tual machine. There is no need to call socket libraries

and create communication ports. All of these compli-

cated details are abstracted out. This vastly simplifies

the complexity of the code.

In this paper, we present the architecture, implemen-

tation, and design issues of applying object-oriented

techniques to develop a distributed job execution en-

vironment. Several technologies are employed in our

approach: Java, CORBA, UML, and software design

patterns. First the architecture is introduced as a three-

tier system. Then the objects in each tier are described

in details. This is followed by an operational overview

of the whole system. More details of the framework

and design patterns are given afterward. Finally, test-

ing results and some conclusions are drawn. Some of

the environment features are discussed in more than

one place for completeness. Throughout the paper,

we focus on the implementation aspect of our system

highlighting its main features and capabilities.
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2. Java/CORBA architecture

2.1. Client/Server architecture

The design of this system is a batch-orientedand falls

roughly along the lines of classic three-tier architec-

ture. Within these three tiers are three broad categories

of objects: CORBA objects, worker objects and utility

objects. The design falls along well-defined bound-

aries for each type of object. Only the CORBA objects

have knowledge of their workers and then only through

their interface types. The worker objects are a loosely

coupled set of Java interfaces, abstract adapter classes,

base classes and, usually, specialization classes. Each

worker object implements or extends the one above it

(in the layers of responsibility described later). This

allows workers to be “unplugged” and replaced with-

out code changes to CORBA objects. Workers have no

knowledge of each other. Utility objects streamline the

code by providing static methods for common opera-

tions such as acquiring a reference to the CORBA nam-

ing service or getting a formatted timestamp. Other

utility objects are worker creation factories. Facto-

ries themselves can be swapped in or out just like the

workers.

CORBA provides the means for abstracting out the

details of the underlying communication bus. Once a

remote reference to a CORBA object is obtained via

the CORBA naming service, the reference is treated as

if the remote object is local to the current Java virtual

machine. This vastly simplifies the problems of deal-

ing with disparate computer platforms and operation

systems.

The architecture has three interoperation pieces: Ad-

min, Dispatcher and Solver, as shown in Fig. 1. Each

of these high level objects has a set of worker objects

that perform the low level tasks. The Admin object

selects the jobs to be run. Its workers check each job’s

runtime requirements and repackage data into generic

containers for transport. The collection of jobs is then

moved to the Dispatcher object, where workers parse

input files, record status and queue the jobs up for dis-

tribution. Solver objects come on-line and register with

Dispatcher. Once a Solver object is registered, it asks

for work. This Solver object then pulls a subset of jobs

from the queue, and, via its worker objects, builds the

needed execution environment and executes the jobs.

Abstraction and delegation allow the individual com-

ponents to be only aware of the objects with which they

have to communicate. Worker objects only interact

with the high level objects that created them. Any num-

ber of Solver objects can request jobs from the same

Dispatcher. Solver objects can be added or removed

during the processing of the jobs in the queue. Solver

objects can dynamically register with a Dispatcher ob-

ject depending if resource loads on their host machines

drop to sufficient levels and un-register if loads are too

high (theoretically since that this feature has not been

implemented yet, but the design of the feature may fol-

low host monitored presented in [14]). Solver objects

could also be time-based. They may only ask for work

during a given time frame (such as midnight to six o’-

clock am). How much work a Solver object can handle

at any given time is dependent of the machine on which

it is running.

2.2. IDL files and interfaces

There are two Interface Definition Language (IDL)

files that define the interfaces and structures for this

system [15]. Though one file could have been used, the

overriding design goal in this system is functional de-

composition. These files are core.idl, which describes

the CORBA interfaces that all types of jobs use, and

simulation.idl, which defines a CORBA structure that

is specific to a simulation code such as INS2D (in this

case it is called ins2d.idl). The core.idl file defines

three interfaces: Admin, Dispatcher and Solver. Their

operations are defined below. The simulation.idl file

defines an Environment structure that holds all the in-

formation needed to run a single job. Each job has

a corresponding Environment object, which is passed

from the dispatcher to the solvers. At the lower levels,

data transfer is done via a CORBA Any (CORBA Any

is a data type that can hold any primitive or user-defined

CORBA type). This allows the simulation specific En-

vironment object to be passed inside a more generic

Any.

2.3. Object definitions

The three object categories – CORBA, worker, and

utilities – are defined below:

2.3.1. CORBA objects

– Admin – (1st tier) connects with the user interface.

It is represented by the AdminImpl object and col-

lects job information and populates data structures

that can be passed along the Object Request Bro-

ker (ORB). Data transfers from the console to Ad-

min as Java objects and from Admin to Dispatcher

as CORBA Any.
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Fig. 1. Architecture framework.

– Dispatcher – (2nd tier) contains the schedul-

ing logic, performs parsing, queuing and routing

functions. It is represented by the Dispatcher-

Impl object. Jobs are unpacked from their ini-

tial data structures and repacked into Environment

structures. Initial values for worker objects are

obtained by reading a properties file, BaseDis-

patcherProps.txt, at startup. Data is transferred to

Solver and back as CORBA Any.

– Solver – (3rd tier) requests collections of jobs from

Dispatcher, builds the pads, transports the input

and data files and either runs the job itself or passes

it on to a sub scheduler. It is represented by the

SolverImpl object. Initial values for the worker

objects are obtained by reading a properties file,

BaseSolverProps.txt, at startup.

2.3.2. Worker objects

Worker objects perform the mechanics of data struc-

ture loading and job manipulation. The workers are

composed of a pair of classes. Each one contains an ab-

stract class and a concrete implementation (base) class.

Dividing the responsibilities of these objects into two

classes decouples the generic tasks from the specific

ones. For example, all jobs must be checked to see if

they have all the required attributes, but for each type

of job those attributes will be different. By moving the

details of requirements checking into the base class, the

abstract adapter does not need to be changed with each

new type of job.

There are three groups of worker objects: Admin

workers (at the 1st tier, Fig. 2), Dispatcher workers (at

the 2nd tier, Fig. 3), and Solver workers (at the 3rd tier,

Fig. 4). They are described below:

2.3.2.1. Admin workers

– Translator – acts as the bridge between the exist-
ing GUI and the CORBA AdminImpl Object. It
collects GUI values and input and data file loca-
tions. These values are wrapped in a generic Java
object and passed to AdminImpl.

– Packaging – checks required job attributes and
repackages the GUI data into job transportation
structures, which are packed into CORBA Any for
transport across the ORB.

2.3.2.2. Dispatcher workers

– Parser – parses the required and optional attributes
and populates the Environment object.

– Queue – initializes and maintains the job queue. It
sorts and loads the environments onto the queue.
It also dispatches jobs to Solver objects if job re-
quirements and Solver runtime values match. It
may build a script files if required to do so.

– DispatcherStatus – records and returns Dispatcher
and job status.

2.3.2.3. Solver workers

– Receiver – accepts collections of incoming jobs
and builds the execution pad, which is a unique set
of directories that holds the input, data and output
files.

– Transport – handles the details of moving files
from one platform to another.

– Engine – executes the jobs or passes them to a
secondary scheduler (ex: Unix commands at and
cron).

– Post – handles job post-processing.
– SolverStatus – records and returns Solver and job

status.
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Fig. 2. The 1st tier.

Fig. 3. The 2nd tier.

2.3.3. Utility objects

Utility objects fall into three categories:

– Data Holders – storage objects for groups of re-

lated data.
– Tools – an object composed of static routines

for getting hostnames, ORB references, formatted
times, etc.

– Factories – dynamically loaded classes that build

Dispatcher and Solver workers.

2.4. Layers of responsibility

The architecture for Admin, Dispatcher and Solver

interfaces is designed around four layers, as shown in

Fig. 5:

– Specification

– Manipulation
– Initialization

– Specialization

Specification is the interface level. All CORBA and

worker objects implement interfaces. This is where the

mechanics of the system are defined. All objects that

interact with each other are referenced through their

interface type. Manipulation, on the other hand, is the

abstract adapter level. The generic functions common

to all types of jobs are implemented in the abstract

classes. Timing and lifecycle issues such as how long

a Solver object will wait for jobs before shutting down

completely are defined here.

Initialization is the base class level. The base classes

provide default values for the queue and status maps.

They also provide the implementation of operations

specific to each type of job such as pad creation. Fi-

nally, specialization is used when a programmer wants

to override the default values and operations provided

in the initialization level.

3. Operational overview

3.1. Job definition

A job is defined to be a process that operates on a

collection of attributes. Attributes are divided into two

categories: required and optional. Unlike the required



32 R. Fatoohi and L. Smith / Development and implementation of a distributed-object job-execution environment

Fig. 4. The 3rd tier.

Fig. 5. Layers of responsibility.

attributes, the optional attributes may be present and

may affect the way a job is run. Examples for required

attributes are input and data files and for optional at-

tributes are restart flag files, alert level, run level, and

status level. The alert level helps the user in specifying

how to be notified when the job status changes – by

email, log, or pager. The job priority can be speci-

fied in run levels – using five levels. The status level

defines how the user wants to be notified of changes

in the job status – three levels are defined here: low

(when the job starts and finishes only), medium (when

the job moves from one CORBA object to another),

and high (when the job moves from one method to an-

other). The combination of required and optional data

is contained in a data structure called Environment. A

single Environment represents a job.

3.2. Acquiring jobs

Collections of jobs are acquired via a user console. A

graphical user interface called the Basic Visual Frame

(BVF) has been developed. It allows the user to select

jobs, tag them with marker data (such as run level) and

send the collection to the Admin object as a generic

Java Object, as shown in Fig. 1. The Admin object,

along with its workers, performs the following tasks:

a) unpack the jobs, b) check the validity of these jobs

(required files), c) repackage the required and optional

data into an IDL defined data structure, JobContainer,

d) push jobs onto JobList, a CORBA sequence of Job-

Containers, and e) pack JobList into a CORBA Any to

be sent to Dispatcher.
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3.3. Parsing jobs

The Dispatcher object accepts a collection of jobs, as

a JobList object, and transforms them into a collection

of Environment objects. Each Environment object is

populated with the required and optional attributes. The

array of Environment objects are packed into a CORBA

Any object.

3.4. Queuing jobs

Jobs are queued onto a job queue using a JobList

object. The job queue has the following features: syn-

chronized access, efficient sorting, discarding duplicate

jobs, and automatic expansion. The queue is synchro-

nized so that only one Solver at a time can access it.

Concurrent access during job dispatching could result

in having the same job being sent to multiple Solvers.

Sorting functions are needed to propagate the queue ac-

cording to some user-defined criteria. Due to the high-

level of calls to the queue, a fast and efficient sorting

algorithm is needed. Duplicate jobs cannot be allowed;

therefore, jobs are referenced by a unique, randomly

generated ID. Finally, the queue needs to expand au-

tomatically when new jobs are presented and parsed.

After all jobs are pushed onto the queue, the queue is

sorted according to a run level (provided as an optional

attribute).

3.5. Dispatching jobs

Registration and deregistration of Solver objects are

performed by Dispatcher. The Solver objects poll Dis-

patcher and continually ask for work as long as there

are jobs to do. The Dispatcher object looks up the re-

quested Solver runtime values and passes specific val-

ues to the Queue worker object, which checks each job

against the Solver runtime values. If the job does not

match the Solver values, it remains on the queue. If a

job meets the Solver requirements, a script file is built

to run the job, provided that the script option is enabled.

After the script is generated, it is transformed into a

byte array and placed in an Environment structure.

3.6. Running jobs

The process of running the jobs has four steps: build-

ing pads, transporting data and input files, executing

the jobs, and post-processing.

3.6.1. Building pads

For each job, the Receiver worker object builds a

pad, which is a set of temporary subdirectories where

the job’s data, input and output files are residing during

job execution. The job ID is used as the name of the

top-level directory in the pad. If a script file is used

to run the job, the file is recreated from the byte array.

The Receiver object builds a Map object that contains

the job ID, the names of the pad directories, and files

to be transported. The Map object is used by both the

Transport and Engine worker objects.

3.6.2. Transporting files

The Transport object moves data and input files from

Dispatcher to Solver. Transport takes a Map object and

builds a set of download strings by combining down-

load directories with filenames. Currently we are us-

ing the Trivial File Transfer Protocol (TFTP) to do the

actual transport since TFTP does not require login or

validation procedures.

3.6.3. Executing jobs

Jobs have two possible execution paths: direct ex-

ecution or sub-scheduler execution. In direct execu-

tion, the Engine object runs the executable binary in

a runtime process while in sub-scheduler execution, a

Unix command (such as at) executes the shell script in

a run time process. A run time process is created by

getting an instance of the java.lang.runtime object and

creating a new process via its exec() method. This pro-

cess exists outside the Java virtual machine. An output

stream is created from the process object to capture any

characters that would normally go to System.out.

3.6.4. Post-processing

Post-processing involves manipulating the output

files and/or transport off the Solver machine. Post-

processing is not part of this research. An interface,

abstract class and a base class have been provided as

shells for future development. These empty classes

are instantiated with the rest of the Solver worker ob-

jects. When this project moves to a production phase,

post-processing will be fully implemented.

4. Frameworks and design patterns

The framework has been designed with a visual mod-

eling tool, Rational Rose [17], using the Unified Mod-

eling Language (UML). By using UML to define the

architecture, the software engineer is forced to have a
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solid design before code writing can begin. This ul-

timately speeds up the development cycle by finding

problems with the methodology before they become

difficult to fix.

We used several software design patterns throughout

the design process [7,21]. Design patterns, which are

a collection of well-known idioms, offer reusable so-

lutions to software problems. CORBA offers some of

these design patterns in its architecture such as delega-

tion, proxy and broker [16]. In addition, we used the

template method pattern and the factory pattern. In the

following we describe some of these patterns.

4.1. Template method pattern

The template method is a behavioral pattern. It is

used in designs where the class will be used in multi-

ple programs but the overall responsibility of the class

remains the same [8]. The class is implemented as

an abstract class. Only the methods that provide the

generic class function are implemented. The special-

ization logic is contained in the abstract methods. This

requires programmers to implement the class specific

logic in the base class that extends the abstract one.

Our design takes the template method and extends

it. All the worker objects implement this pattern. The

abstract class implements an interface and the base class

is usually, but not always, overridden. The interface

requires the abstract class to only accept and return

well known data types. The class that extends the

base class accepts these types but casts them to the

specific types that it needs. The workers have one

class for each specification level. The real power of

this method comes when there are several operations

that are performed inside some kind of a loop. The

abstract class controls the loop logic and calls sequence

of abstract methods. These methods accept and return

generic data types (in this case, Sets and Anys) and are

implemented in the base class.

In the base class or the class that extends it, these

methods cast the incoming arguments to implementa-

tion specific data types, perform the detail logic and

then return an implementation specific type wrapped in

an Any. The abstract class has no previous knowledge

of the type that has been returned to it. Any is then

routed to other worker objects or to another CORBA

object. By combining the template method pattern with

the functional separation of control and detail logic,

we develop a powerful, flexible base for the worker

objects.

4.2. Factory pattern

In the factory design pattern [20], factories create

methods to dynamically create new objects. We used

this pattern in the DispatcherImpl and SolverImpl ob-

jects. Overall, there are two factories and eight work-

ers, as shown in Fig. 6. To make the code more flexible

and easy to maintain, SolverImpl uses a factory pattern

to decouple the instantiation of the concrete class from

SolverImpl. This pattern requires the use of a delegate

object, called a factory, which creates the Engine object

for SolverImpl.

The factory, BaseSolverFactory, has a getEngine()

method that creates a new BaseEngine object and re-

turns a reference to it. SolverImpl instantiates a fac-

tory and then calls the factory’s getEngine() method.

SolverImpl now has access to a BaseEngine object that

it references through the Engine interface. It has been

decoupled from the concrete details of BaseEngine.

The factory method pattern provides an application-

independent object (SolverImpl) with an application-

specific object (BaseSolverFactory) to which it can del-

egate the creation of other application specific objects

(BaseEngine and other workers).

The down side to this pattern is that SolverImpl needs

to have prior knowledge of the factory’s concrete type.

Unfortunately, this has the effect of substituting one

maintenance problem for another. SolverImpl still has

to have knowledge about the BaseSolverFactory class.

This problem can be overcome by making SolverImpl

reference the factory’s interface, SolverFactory, instead

of the concrete base class. The base class is then loaded

at run time using dynamic class loading.

4.3. Dynamic class loading

The Java language and virtual machine support the

ability to load classes dynamically at runtime. For each

class or type, the Java Runtime Environment (JRE)

maintains an immutable Class object that contains in-

formation about the class. A Class object represents,

or reflects, the class. Calling the newInstance() method

of Class creates a new instance of the class. All that is

needed is the fully qualified name of the class that you

need to create. The combination of the factory pattern

with dynamic loading is a powerful combination. It

provides all the advantages of the factory pattern with-

out its inherent limitations.
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Fig. 6. Factory design pattern.

5. Testing and observations

5.1. Testing

Initial code development was done on a Windows NT
platform and tested on a workgroup of NT machines.
The whole environment was tested successfully on two
SUN Solaris workstations using one of the INS2D test
cases. Also, an early version of the environment was
tested on an SGI workstation. The largest test run to
date has one client and 12 servers processing 500 jobs.

Our environment is designed to replace the current
environment used to run simulation codes as INS2D.
The INS2D code typifies simulation codes running at
NASA Ames Research Center, Moffett Field, Califor-
nia, and is the first code used for testing our environ-
ment. It solves the incompressible Navier-Stokes equa-
tions in two-dimensional generalized coordinates for
both steady state and time varying flow [18]. These
codes, mostly written in FORTRAN, are currently run
using a complex collection of shell scripts that per-
forms remote launching (batching), pre-processing and
post-processing of data files. These steps include pars-
ing input data files, moving them to the machine host-
ing the execution environment, executing the job, post-
processing of the output files and moving these to a
flat-file database. Job scheduling is performed through
a specialized job scheduler. These scripts, of several
thousand lines of code, are “boxed” inside one another.
Post-processing is run from remote execution, which is
run from pre-processing.

Part of the complexity of the scripts is due to having

to run hundreds of jobs without operator intervention.

Each job consists of a single grid with 1 to N angles of

attack (alphas). For example, ten grids with ten alphas

each means that INS2D must be run one hundred times.

For each run, input files have to be created and/or moved

to the target machine.

Under the current scripting system, all data assigned

to a shell variable on a given machine must be written

to a file before the job moves over. The file is trans-

ferred and must be re-parsed upon its arrival. Under the

scripting system, sections of code are marked as “be-

longing” to a specific solver. Under our object-oriented

system, any hard coded values needed by a given solver

are listed in a Properties file. This keeps machine spe-

cific data on that machine. The values become known

to the dispatcher when the solver registers. There is

no a similar registration process with the scripts. All

values are hard coded.

However, the job parameters and requirements are

similar for both environments. The original FORTRAN

binaries require that a job be started in the directory that

contains the data and input files. All output files will be

generated in that directory. After the jobs are done, the

output files are moved to a storage location. If another

job had to be run, the user would have to move to an-

other sub-directory, copy over the data files, and change

the parameters on the input files. This requirement nat-

urally leads to a scripting system that automates this

process. In this respect, the sub-directory system of
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the execution environment has remained very similar

to the shell scripts. A nested set of sub-directory (pad)

is built on the machine hosting a solver.

5.2. Portability and performance

While all UNIX machines have shell programs, dif-

ferent shells have different commands. By using Java

as the implementation language, our system is more

portable than a shell system. By using CORBA as the

communications layer, both platform and language in-

dependence are achieved. The components themselves

are independent units. The CORBA objects can be

written in any language that supports a CORBA IDL

mapping, the worker objects can be pulled out and

popped back in without recompiling the Java code of

the other objects. Worker objects that have to commu-

nicate with each other do so through Java events. They

are completely decoupled from each other. The binary

that the solver runs is itself a property. As long as the

nested subdirectory structure of the pad is compatible

with a different binary, the code would not have to be

recompiled; only the value of the property needs to be

changed.

By working from a layered abstraction model, this

system has several places where a future developer

might “take over” an object. The given object classes

could be extended. Because of using CORBA for

the communication and control, the language indepen-

dent CORBA IDL contract could be implemented in

C, C++, or Smalltalk. By using Java as the main

implementation language, platform independence is

achieved.

One possible drawback of our approach is using Java

due to low performance relative to a machine-level

compiled code. In our applications, the time it takes to

run a job is a function of the number of data points in

the grid file. The vast majority of the run time is taken

up by the number crunching done by the legacy flow

solver binary.

Another performance factor is CORBA. There have

been several studies of performance of CORBA. One

of the early studies was the work by Schmidt et al. [19]

where they compared the performance of two imple-

mentations of CORBA (Orbix from IONA Technolo-

gies and ORBeline from Post Modern Computing) with

BSD Sockets. Their study shows that the overhead of

early CORBA implementations is significant on high-

speed networks like ATM or FDDI but less significant

on low-speed networks like Ethernet and Token Ring.

Another study by Fatoohi [4] shows that performance

of an early CORBA implementation (Orbix 1.3) lacks

behind BSD Sockets but it is comparable to other com-

munication packages such as PVM. In addition, Orfali

and Harkey [16] compared the performance of CORBA

VisiBroker for Java 3.1 with Java Sockets, Java RMI,

Java Servlets, HTTP/CGI, and Microsoft DCOM us-

ing a simple Ping program written in Java (as well as

in C++). Their results show that among these tech-

nologies only Java Sockets, using buffered data stream,

outperforms CORBA in their test.

In summary, these results – which are quite de-

pendent on many factors including hardware plat-

forms, communication networks, and implementation

languages – show that there is a penalty in using a high-

level programming model like CORBA compared to a

lower-level model like BSD Sockets and Java Sockets.

But we believe that CORBA and Java overheads are

insignificant in the total execution time of simulation

codes that our environment is designed for.

6. Concluding remarks

We are currently in the process of applying our envi-

ronment to a 3-D CFD code provided by NASA Ames.

We do not anticipate major problems in dealing with

other codes since our approach fits well with any type of

processing where the job can be broken up into smaller

units and then reassembled. We are also investigat-

ing the security aspect of our environment by focusing

on two main components: access control and authen-

tication. Among our options is incorporating security

components from CORBA and Java.

In summary, we have designed and implemented an

object-oriented approach for a job execution environ-

ment to run highly iterative jobs. Several technologies

are employed: Java, CORBA, UML and software de-

sign patterns. Early results are quite promising. Our

object-oriented environment is simple, flexible, and

easy to upgrade and maintain.
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