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Abstract: The monitoring of a membrane bioreactor (MBR) requires the assessment of both biological
and membrane performance. Additionally, the development of membrane fouling and the require-
ments for frequent membrane cleaning are still major concerns during MBR operation, requiring tight
monitoring and system characterization. Transmembrane pressure is usually monitored online and
allows following the evolution of membrane performance. However, it does not allow distinguishing
the fouling mechanisms occurring in the system or predicting the future behavior of the membrane.
The assessment of the biological medium requires manual sampling, and the analyses involve sev-
eral steps that are labor-intensive, with low temporal resolution, preventing real-time monitoring.
Two-dimensional fluorescence spectroscopy is a comprehensive technique, able to assess the system
status at real-time without disturbing the biological system. It provides large sets of data (system
fingerprints) from which meaningful information can be extracted. Nevertheless, mathematical data
analysis (such as machine learning) is essential to properly extract the information contained in
fluorescence spectra and correlate it with operating and performance parameters. The potential of
2D fluorescence spectroscopy as a process monitoring tool for MBRs is, therefore, discussed in the
present work in view of the actual knowledge and the authors” own experience in this field.
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1. Monitoring of Membrane Bioreactors

Membrane bioreactors (MBRs) couple a biological reactor with a membrane, allow-
ing the retention of solids and macromolecules (depending on membrane characteristics)
during the biological reaction, while the fluid is permeated through the membrane, allow-
ing for continuous use of the biological catalyst and retention of compounds according
with their size. Due to the direct contact between the membrane and the highly com-
plex biological media, MBRs are particularly vulnerable to the development of fouling
caused by the adsorption of colloidal and soluble material at the membrane surface and
pores, as well as to the adhesion/deposition of biomass (composed by cells, organic and
inorganic compounds).

Despite the large applicability of MBRs in different processes, they are mostly known
and studied for wastewater treatment, offering several advantages, such as high effluent
quality and stability (with potential for water reuse), retention of microbial species inde-
pendent of hydraulic retention time, and reduced footprint. However, the application of
MBRs is still conditioned by the inevitable membrane fouling, high costs associated with
aeration, and complex control systems required. In fact, the mitigation of membrane fouling
requires the use of operating strategies to limit fouling development (such as intermittent
permeation and use of larger coarse bubbles to scour the membrane surface) and frequent
membrane cleaning (with or without the use of chemicals).
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In MBRs for wastewater treatment, monitoring is also essential to ensure the quality
and stability of the permeated effluent and meet legal requirements for discharge. Monitor-
ing the biological reaction is essential to characterize the influent and effluent streams, the
biological media inside the reactor, and the biological activity. Additionally, the organic
compounds present in the biological media, deriving both from the incoming wastewater
and from the microbial activity, are generally grouped under the term of extracellular
polymeric substances (EPS) and can be classified into bound EPS, when they are attached
to cells to form biomass aggregates, and soluble EPS (also called soluble microbial products,
SMP), when freely suspended in the media. EPS are generally assumed to be the major
cause of fouling in MBRs [1]; therefore, monitoring their concentration and composition is
considered essential.

Biological activity can be characterized by common parameters usually assessed in
bioreactors, such as the amount of biosolids in the bioreactor (total suspended solids (TSS)
and volatile suspended solids (VSS)), and the composition of feed, mixed liquor, and
permeate. This characterization usually involves assessing the organic carbon (chemical
oxygen demand—COD; biochemical oxygen demand—BOD (in 5 days: BODs); total
organic carbon—TOC), the presence of ionic species (nitrogen (ammonia, nitrite, nitrate,
organic N, total N); phosphorus (total P, orthophosphate)), and other specific compounds,
such as toxic compounds that may be present in wastewaters. Additionally, the dissolved
oxygen, pH, and temperature are usually monitored, and then controlled if required.
While some parameters are easily assessed online with probes (dissolved oxygen, pH,
and temperature), and the presence of solids is actually becoming common to assess
with specific online probes, the assessment of carbon, nitrogen, and phosphorus usually
requires sampling and different preprocessing steps, e.g., filtration and digestion, prior to
be analyzed (according with standard methods [2]).

Microbiologic assessments are also relevant, especially when applying mixed microbial
cultures. In the biological treatment of wastewaters, it is essential to monitor the presence
of both beneficial and hazardous microorganisms. In addition to the presence of virus and
other pathogens in the effluent water, the analysis of specific groups of microorganisms
(identification and abundance analysis of the microbial communities), able to degrade or
accumulate compounds (e.g., toxic compounds, phosphorus), is often performed to assess
the ability of the biomass to remove such compounds. However, the methods used for these
assessments also rely on sample collection, and they often require microbial cultivation or
DNA /RNA analysis, which are time-consuming and require specialized analysts.

Membrane performance is assessed primarily through flux and transmembrane pres-
sure. To achieve a continuous flow in MBRs, they are usually operated with imposed
permeate flux while the transmembrane pressure (TMP) is monitored online [3]. This on-
line measurement is essential and allows following the evolution of membrane permeance.
However, through the evolution of transmembrane pressure (or of permeance), it is not
possible to distinguish the fouling mechanisms occurring in the system or predict the future
behavior of the membrane. In MBRs operated under controlled permeate flux, a two-step
phenomenon is always noticed with a first stable or slow TMP increment followed by a
sudden and sharp increase (called “TMP jump”). This behavior is related to the concept of
critical flux, but is hard to predict, due to the several factors affecting fouling evolution, e.g.,
media composition, biomass characteristics, and activity. Critical flux is a concept defined
as the flux at which there is a balance between the scour forces at the membrane surface
(promoted by agitation, crossflow, or air bubbles) and the filtration forces, and it depends
greatly on media characteristics and filtration setup and operation. MBR systems are
usually operated at a sustainable flux, defined as a flux bellow the critical flux [4], to avoid
the deposition of solids at the membrane surface due to pressure. This strategy increases
the time of operation with a stable TMP; however, it does not fully prevent the TMP jump,
due to the complexity of interactions between different compounds/microorganisms and
the membrane surface. Therefore, various methods and techniques have been used for the
characterization of foulants and monitoring fouling development.
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One of the most studied characteristics of biological media in MBRs for wastewater
treatment is the concentration of biomass (suspended solids or mixed liquor suspended
solids (MLSS)). The effect of suspended solids in permeance and fouling development
is highly relevant as they directly impact the filtration process through deposition or
adherence at membrane surface. However, the correlation between fouling and MLSS
concentration can change for different biomass concentrations and filtration conditions
(e.g., for MLSS < 6 g/L, fouling development was found to be inversely correlated with
biomass concentration, but directly correlated for MLSS > 15 g /L [5]). Therefore, facing
MLSS changes, an MBR may require adjustments of the permeate flux (i.e., control of
flux to prevent sudden TMP rise) and application of different filtration strategies (e.g.,
intermittent permeation or backflush) to reduce the formation of a cake layer and maintain
a sustainable flux [4,6].

Additionally, the presence and composition of EPS in media also affects the filtra-
tion and fouling formation in different ways according with the compounds’ size and
physicochemical properties. Proteins and polysaccharides are the most abundant EPS
components in wastewater treatment systems and are usually assumed to be the major
contributors for fouling [3]; therefore, the evaluation of EPS concentration in MBRs relies
mostly on the measurement of these two classes of compounds in the media (soluble EPS)
or after extraction (from cells or from the membrane), through colorimetric methods (e.g.,
Lowry [7] and Dubois [8]). For the characterization of fouling agents, chromatographic
methods have also been applied after a previous separation step (usually centrifugation
and/or filtration). Size exclusion chromatography (SEC) is used to characterize EPS using
the molecular size corresponding to polysaccharides, some proteins, colloids, and humic
compounds (e.g., [9-11]). However, despite the detailed information that can be obtained
about specific compounds in the MBR, such characterization techniques are not able to be
used for real-time monitoring due to their technical requirements and limitations.

One of the most common ways to assess the fouling potential of the biological media
is to perform filterability tests on the media (e.g., [12,13]) and/or use TMP to calculate
membrane fouling rates and membrane resistances (e.g., [14-16]). Filterability tests can be
performed by directly filtering the samples of media or filtering different extracts obtained
from raw samples (e.g., using a dead-end module [12]). The data obtained from these tests
and correlated with the fouling ability of media can be the permeance data of samples or
the water permeance of the fouled filter after filtering a sample (through calculation of
resistance). Capillary suction time (CST) is also used to assess sludge filterability (through
dewaterability) and is easier to perform in a reproducible way using commercial equip-
ment already available. One study compared the two methods using samples collected
frequently from a MBR for wastewater treatment and concluded that the results are similar
for both techniques, although CST is easier to perform for intensive monitoring, due to its
simplicity [13]. This study also verified that the filterability of the biological media changes
significantly during long-term operation, affecting fouling evolution.

Although the results from these analytical methods are not enough to predict a TMP
jump, they are a good source of information about the media composition and character-
istics, and filterability tests indicate the risk of a TMP jump occurring (when filterability
is low).

In fact, three basic fouling factors were previously indicated for MBRs in wastewater
treatment: (i) the nature of the biological media, (ii) the membrane properties, and (iii) the
hydrodynamic environment experienced by the membrane [6]. Therefore, since membrane
properties are set previously, monitoring an MBR requires not only the characterization
of the biological media in contact with the membrane, but also the characterization of the
chemical and physical events occurring at membrane surface.

The assessment of membrane rejection behavior also requires the characterization of
the permeate and of the biological media. Variations of membrane selectivity along time
are also an indicator of the membrane performance and may indicate the development of a
fouling layer, membrane clogging, or membrane deterioration.
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Despite the numerous methods already studied and applied to characterize MBR
systems, characterization is not the same as monitoring, as monitoring implies following
the process development and performance over time. Monitoring (and control) requires
methods that are able not only to characterize the systems, but also to find correlations
between the analytical results and the process performance and/or fouling development.
Therefore, several studies investigated the development of correlations and models (either
mechanistic or based on artificial intelligence) for prediction of fouling development,
membrane performance, and cleaning requirements (e.g., [17-20]). Independently of the
mathematical methods used, all rely on accurate data from the MBR system, which is
highly vulnerable to feed and biological variations. However, most of the characterization
methods require sampling and analytical reagents, and they are time-consuming (it may
take more than 1 day to know the results). Additionally, membrane cleaning with chemicals
requires to stop the filtration process and take out or isolate the membrane module, which
should be minimized.

Therefore, the development of novel monitoring and measurement approaches that are
online and/or real-time are required for the optimization and control of the MBR process,
in order to anticipate the upcoming of process anomalies and support decision making.
This is especially important to support decisions about membrane cleaning and, eventually,
the right moment for their replacement.

In this context, different spectroscopic methods have been explored not only for MBR
monitoring, but also to monitor other biological and membrane processes, due to their
noninvasive and reagent-free properties. The application of 2D fluorescence spectroscopy
as a monitoring tool is derived from the possibility of using fluorescence in large ranges
of excitation and emission wavelengths to simultaneously detect the presence of several
natural fluorophores in biological media and cells. In fact, the first use of an entire fluo-
rescence spectrum obtained by 2D fluorescence spectroscopy, without band selection, was
proposed in 2001 to monitor an extractive MBR [21]. However, the use of the information
contained in such fluorescence spectra is far from trivial, and different approaches can
be used according to the monitoring objectives. According to the actual knowledge and
the authors’ own experience in this field, the next sections provide an overview of 2D
fluorescence spectroscopy’s applicability to characterize and monitor different aspects
of MBRs, the methods used to extract information from fluorescence spectra, and future
perspectives for monitoring and control based on 2D fluorescence spectroscopy.

2. Two-Dimensional Fluorescence Spectroscopy
2.1. Use of 2D Fluorescence Spectroscopy to Characterize MBR Systems

In MBR systems, particularly for wastewater treatment, the culture media have a
complex composition, requiring the assessment of several compounds simultaneously.
Additionally, noninvasive and nondestructive measuring systems are preferable to avoid
disturbing the biological system and allow frequent assessment. Furthermore, despite the
development of new sensors able to monitor various compounds, the increase in the number
of monitoring parameters raises the costs of monitoring. Therefore, multivariate methods
able to simultaneously detect several compounds/parameters become cost-effective. If
those methods are applied online, they may also allow for real-time monitoring and control,
including the ability to detect “accidents” such as the appearance of undesirable byproducts
or the presence of toxic compounds.

In view of such requirements, spectroscopic methods are good candidates to mon-
itor the biological process in MBRs. Within several spectroscopic techniques available,
fluorescence spectroscopy is able to detect fluorescent compounds naturally present in bio-
logical systems and in wastewater (e.g., NADH, some vitamins and cofactors, and organic
compounds with delocalized electrons), regardless of being intra- or extracellular, most sig-
nificantly the presence of potential fouling agents (proteins and humic acids). Additionally,
the simultaneous scan of several excitation and emission wavelengths (two-dimensional
(2D) fluorescence spectroscopy) allows assessing various fluorophores within one spectrum
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and can be performed online, directly in the media or at membrane surfaces, with an
optical probe, without requiring sampling or disturbance of the MBR system (Figure 1).
This fluorescence technique can then be used as a multiparameter monitoring tool in MBRs.
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Figure 1. Acquisition of 2D fluorescence scans at membrane surface in submerged membrane
bioreactors (left) and in bulk solution of bioreactors (right) using optical probes.

When using 2D fluorescence spectroscopy, the samples are assessed by scanning a
range of selected excitation/emission wavelengths, covering a wide spectral region. These
fluorescence scans result in large matrices (excitation/emission matrices, EEMs), where the
intensity of fluorescence emission is recorded for each pair of excitation (Aex) and emission
(Aem) wavelengths. Such matrices can be plotted as contour plots, as shown in Figure 2,
and they reflect the presence of (and interferences between) several compounds.

2D Fluorescence Spectra Contour Plot Fluorescence Excitation-Emission Matrix
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Figure 2. Two-dimensional fluorescence spectra represented as a contour plot (left) and as a numerical
matrix (right).

Fluorescence spectroscopy is sensitive to fluorophores present in MBR systems and to
mutual interferences of these compounds with their surrounding media [22]. Therefore,
fluorescence spectra obtained from complex systems capture extensive information from the
media, not only regarding the natural fluorophores present, but also related to the optical
characteristics of the media (such as turbidity or color) that impact the path of the light,
due to quenching effects promoted by the presence of interfering compounds (which can
be either fluorescent or nonfluorescent). In fact, destructive interferences are quite common
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in complex systems and can be caused by a large diversity of phenomena, such as the
superimposition of emission spectra from different fluorescent species, quenching effects,
and inner filter effects (including the re-absorbance of the light emitted by fluorophores
and light scattering due to the presence of suspended solids or turbidity) [22,23].

The presence of interferences in fluorescence spectra from complex media is usually
overcome by using different mathematical methodologies to deconvolute spectral peaks
and extract the meaningful information from the fluorescence spectra. Actually, interfer-
ences can also represent an advantage over other analytical methodologies, since they
are also a source of information about the status of the system (as discussed below in
Sections 2.2 and 2.3).

Two-dimensional fluorescence spectroscopy has been studied for monitoring wastew-
ater treatment plants (industrial and domestic, conventional, and MBR plants), to monitor
the presence of dissolved organic matter in rivers and water supply, and to monitor organic
fouling in membrane processes.

In MBRs, 2D fluorescence spectroscopy is used to characterize organic matter and
foulants, mostly to detect the nature of compounds, or to perform some semi-quantitative
analysis through comparison of spectra peaks. Due to the presence of several interferences,
2D fluorescence spectroscopy has only been applied directly to characterize fractions
collected from MBRs, which were filtered and/or diluted [12,24-28]. In fact, although
the spectra obtained by 2D fluorescence spectroscopy are useful to identify the presence
of some natural fluorophores (e.g., proteins and humic-like substances), the direct use
of fluorescence intensity in one region of excitation/emission wavelengths cannot be
correlated directly with the concentration of fluorophores in standard solutions, due to
the several fluorescence interferences in the biological media. Therefore, to extract reliable
information (both qualitative and quantitative) from fluorescence EEMs, different strategies
have been applied on the basis of sample preparation and/or mathematical methods for
spectral deconvolution.

Some strategies commonly applied to overcome fluorescence interferences in MBRs
usually involve dilution and acidification of samples [29] and the use of inner-filter correc-
tions based on absorbance spectroscopy [30]. Some studies assessed ratios between peaks
and compared them across different MBRs or streams to assess the changes in composi-
tion [31], as well as calculate removal percentages related to identifiable peaks (protein-like,
humic-like, and microbial-derived peaks) [12]. Other studies involved more calculations,
such as the estimation of fluorescence regional integration (FRI), and used 2D fluores-
cence to quantify differences of dissolved organic matter within different samples [32-36].
EEMs with FRI were used to characterize different EPS extracts obtained from membrane
backwash (using different solutions) when characterizing MBRs for the treatment of an
industrial wastewater [35].

Parallel factor analysis (PARAFAC), a mathematical algorithm based on principal
component analysis (PCA), was developed to deconvolute spectral data such as exci-
tation/emission matrices [37], and it is increasingly being applied to characterize the
fluorescence properties of dissolved organic matter [38]. In fact, the utilization of fluores-
cence spectroscopy was previously reviewed as a monitoring tool for wastewaters [39].
In this review, the use of fluorescence for characterization of dissolved organic matter in
wastewaters is detailed, and more information about the use of PARAFAC is given for the
deconvolution of fluorescence peaks and identification of fluorophores.

In MBRs, Xue et al. used fluorescence EEMs to assess dissolved organic matter
and compare the performance of different bioreactors [40]. In this study fluorescence
spectra were analyzed both through FRI and PARAFAC. Although PARAFAC allowed
qualitatively characterizing the streams, the authors used FRI to calculate and compare
removal rates relative to five different spectral regions. The impact of online chemical

cleaning in MBRs was also previously assessed by 2D fluorescence spectroscopy combined
with PARAFAC [41].
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As also noted by Stedmon and Bro, even after application of a mathematical tool such
as PARAFAC, the interpretation of fluorescence EEMs cannot be achieved directly [38].
Differences in fluorescence intensity between different compounds do not mean that one
compound is present in a higher concentration than the other, since the fluorescence
signal results from compound concentration, molar absorptivity, and quantum efficiency.
Therefore, the use of ratios is most appropriate to characterize quantitative differences
between samples.

The use of fluorescence EEMs for characterization of dissolved organic matter in MBRs
was also reviewed in 2020, and the same interference effects were pointed out as limiting the
application of 2D fluorescence spectroscopy, especially when linear addition or linear de-
pendence based on fluorescence peaks is used for quantification purposes [42]. In one study,
the volumes of fluorescence (similar to FRI calculation) were used in linear correlational
models with the results of size-exclusion liquid chromatography combined with organic
carbon and organic nitrogen detection (LC-OCD/OND) [43]. Although tendencies were
found between these data, no correlations were found with proteins and polysaccharides
assessed by colorimetric methods, and different organic matter composition had different
correlations with the fluorescence data; thus, new calibrations should be performed before
using the technique as a pseudo-quantitative method.

As mentioned before, fluorescence spectroscopy captures several characteristics from
the media, not only regarding the natural fluorophores present, but also related to the
optical characteristics of the media (such as turbidity or color) that impact the path of the
light, and due to quenching effects promoted by the presence of interfering compounds.
Despite the difficulty in overcoming these interferences, they are also a source of infor-
mation about the complex media; thus, the fluorescence spectra (EEMs) can be seen as
fingerprints reflecting the status of the system. The matrices obtained by 2D fluorescence
spectroscopy encode information concerning not only the presence of natural fluorophores
in the system [44], but also their interactions with the involving media [45]. Additionally,
since the fluorescence response is sensitive to the environmental conditions (pH, ionic
strength, and salt composition), fluorescence EEMs can also capture information about the
performance of biological systems operated under specific process environments. This abil-
ity represents an advantage over other analytical methodologies that have been applied so
far for MBR monitoring. Nevertheless, such information must be disclosed using adequate
mathematic tools.

2.2. Extraction of Information from Fluorescence Data

To rapidly extract the full contextual information contained in spectroscopic data,
through the last years, several authors have suggested different non-mechanistic ap-
proaches [21,37,46-48]. Non-mechanistic models, based on machine learning, can correlate
large sets of data (including 2D fluorescence spectra and other parameters) extracting
hidden information and disclosing nonobvious relationships between different parameters.

As summarized in Table 1, the extraction of information from 2D fluorescence spec-
troscopy and its first use as an online multiparameter monitoring tool for biological pro-
cesses was proposed in the late 1990s, through the mathematical selection of different
excitation/emission wavelengths that mostly correlated with different process parame-
ters [44,49-51]. At the same time, specific user-friendly mathematical tools able to decon-
volute large spectroscopic data were also developed, such as PARAFAC [37], enabling
an easier use of 2D fluorescence spectroscopy and a better understanding of fluorescence
regions (where different fluorophores are present). However, the first use of entire EEMs,
without fractionation of the spectra, was proposed later (2001) for applied to the monitor-
ing of an extractive membrane bioreactor [21,52]. Instead of removing interferences from
fluorescence EEMs and correlate peaks with the concentration of specific compounds, these
studies used an approach based on pattern recognition, (artificial neural networks (ANN))
to deconvolute entire fluorescence matrices from an MBR using a mixed microbial culture.
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Table 1. Summary of studies using 2D fluorescence spectroscopy deconvoluted with mathematical

methods for process characterization and monitoring.

Part of

Sample

Data

Process Spectra Preparation  Interpretation Inputs Outputs Year Ref
Selection of Several performance
. . Ex/Em pairs . parameters (cell
Mlcroprga.msm Selgcted No combined with Selected pairs of concentration, 1996 to 1998 [44,49-51]
cultivation regions .. Ex/Em . e
multivariate medium composition,
data analysis turbidity)
Outlet concentration
Extractive . . of 1,2-dichloroethane
MBR Entire EEM No ANN Entire EEMs (pollutant); ammonia; 2001 [21]
chloride
Operational
Extractive . parameters Seven performance
MBR Entire EEM No ANN (present and past) + parameters 2005 (521
entire EEMs
Process
Extractive performance data + Seven performance
Entire EEM No PCA + ANN principal p 2007 [53]
MBR parameters
components of
EEMs
Principal
MBR Entire EEM No PCA + I.DLS components of COD in permeate 2011 [45]
regression EEMS
MBR Entire EEM No PLS regression Entire EEMs COD in feed; COD in 2011 [54]
permeate
Principal
components of
MBR Entire EEM No PCA+PLS+  peyie: additional  O¢ven performance 2012 [46]
input selection S parameters
monitoring
parameters
Mechanistic Characterization
modeling + parameters + MLSS; COD in
MBR Entire EEM No PLS regression principal permeate; NO, + 2013 [55]
with PCA of components of NOj3 in permeate
EEMs EEMs
. Operating data +
Directly at . C Pressure drop; stack
Reve.rse . Entire EEM membrane PCA + l.jLS principal electric resistance; net 2015 [56]
electrodialysis regression components of -
surface power density
EEMs
Reverse Directly at Principal Qualitative analysis
. . Entire EEM membrane PCA components of of membranes 2016 [571]
electrodialysis
surface EEMs surface
i Qualitative analysis
MBR Specific No PARAFAC PARAFAC of PARAFAC 2017 [41]
peaks components
components
Volume of Protein-like and
MBR Regions Dilution FRI fluorescence from humic-like 2017 [43]
EEMs regions substances
L ) Qualitative analysis
MBR and other ~ Re8IONS; No FRI; PARAFAC of PARAFAC 2022 [40]
peaks PARAFAC components
components
Anion- Directly at Principal Qualitative analysis
exchange Entire EEM membrane PCA components of of membranes 2022 [58]
MBR surface EEMs surface
Directly at Principal Qualitative analysis
Nanofiltration Entire EEM membrane PCA components of of membranes 2023 [59]
surface EEMs surface

ANN-—artificial neural networks; COD—chemical oxygen demand; FRI—fluorescence regional integration;
MLSS—mixed liquor suspended solids; PARAFAC—parallel factor analysis; PCA—principal component analysis;
PLS—projection to latent structures.
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Principal component analysis (PCA), including PARAFAC (discussed in the previous
section), is often used to deconvolute the peak resolution of spectra or as a compression
tool to reduce the dimension and data redundancy of fluorescence EEMs, and eliminate
noise, prior to projection to latent structures (PLS) modeling [46] or to feed ANN [53]. In
fact, principal component analysis (PCA), projection to latent structures (PLS) regression,
and artificial neural networks (ANNSs) are among the mostly used data-mining techniques
used for spectral deconvolution [47].

PCA algorithms are unsupervised machine learning tools that replace the representa-
tion of objects from their initial space into a new coordinate space (principal components)
with reduced noise and lower dimensionality. PCA allows obtaining the score matrix,
where the initial data are represented in the new reduced coordinate system, and the
loading matrix, which describe the ‘distance’” between the initial coordinate system and
principal component coordinate system. Therefore, PCA can be used as a qualitative
tool through the analysis of scores and loadings plots, where differences and similarities
between samples (or observations) and between variables can be assessed visually. Ad-
ditionally, PCA can be used to compress the number of parameters needed to describe
spectroscopic data while eliminating noise (the score matrix). The score matrix includes the
most relevant information from original data with reduced dimension; thus, it can be more
easily correlated with analytic and process data. Scores can be correlated with analytic
and performance data via either univariate correlations or multivariate modeling, where
compressed fluorescence data can be combined with process data to monitor one or several
parameters simultaneously.

Multilinear regression can be achieved through projection to latent structures (PLS) to
reveal relationships between datasets. PLS modeling maximizes the covariance between
the input matrix X and the output Y, aiming at the prediction of dependent variables by
iteratively decomposing the X and Y matrices into reduced orthogonal factors. PLS is a
simple but powerful predictive multilinear modeling technique due to its ability to handle
collinearity among variables, noise, and missing data [60]. Using multilinear regression, it
is possible to correlate the information contained in fluorescence EEMs, directly or after
PCA compression, with a quantitative output parameter. After a first stage of calibration,
where the correlation between the datasets is stablished, it is possible to extract quantitative
information from the fluorescence spectra (Figure 3). Furthermore, to account for nonlinear
interactions, quadratic and interaction terms of input data parameters can be incorporated
in PLS modeling [46,55], as shown in Figure 3.

In the situations where the nonlinearity between input fluorescence data and the
output is accentuated, nonlinear techniques such as artificial neural networks (ANNs) have
been employed to correlate fluorescence data with process parameters [21]. Artificial neural
networks are, as multivariate regressions, supervised mathematical tools, meaning that
they can ‘learn” how the inputs are related to the outputs. ANN mimics the processing of
information of the human brain, based on pattern recognition, and it can correlate data
through linear or nonlinear weighted functions. As in PLS modeling, the network is first
trained (calibrated) with both input and output data of the training set, before it can be used.
The reduction in input nodes to the ANN can also be achieved using PCA to compress
fluorescence data [53].

While ANNSs can disclose more complex interactions among data, through complex
nonlinear correlations, PLS models result in mathematical equations (either linear or
nonlinear) that are simpler and easier to apply and interpret (through the weight of inputs).

Models based on operating conditions, streams characteristics, and biological reactions
are essential to translate the data into the performance parameters that are used for monitor-
ing MBR systems [61]. In particular, these machine learning tools allow achieving process
monitoring based on available data and can incorporate different types of data in the same
tool (e.g., operating conditions, spectroscopic data, monitoring parameters), increasing the
quality of the models achieved and allowing the development of control tools [62].
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Figure 3. Schematic representation of PLS modeling methodology applied to MBR monitoring.

2.3. Machine Learning and 2D Fluorescence Spectroscopy for MBR Monitoring

Fluorescence EEMs and an ANN algorithm were used to estimate the concentration
of 1,2-dichloroethane, ammonia, and chloride in the medium of an extractive MBR used
for the degradation of chlorinated organic compounds [21]. In this study, the fluorescence
spectra were collected in various places of the membrane surface, where a biofilm was
developing, and a previous assessment based on spectral subtraction concluded that
a nonlinear technique (as ANN) would be required to extract the useful information
they contained.

In another study, PLS modeling was used to correlate 2D fluorescence data with
the wastewater treatment performance data of an MBR operated for the treatment of
domestic wastewater [54]. In this study, EEMs obtained from the influent and from the
permeate streams were correlated with influent and effluent total chemical oxygen demand
(COD), respectively. Despite the good results obtained for COD, this approach was still
not sufficient to assess other performance parameters of the MBR system, such as influent
and effluent ammonia and phosphorus. The entire excitation/emission matrices (EEM)
were used directly in PLS modeling, allowing the examination of the regression coefficients
of the PLS models obtained; thus, the 2D fluorescence spectral regions that were strongly
correlated with the COD contents were identified. In addition to humic-like and protein-
like regions, this study showed that light scattering (which is often due to media turbidity,
suspended solids, and high solute concentrations) was also determinant in COD prediction,
for both the influent wastewater and the permeate. These results suggest that a pretreatment
of fluorescence data that removes scatter would not be appropriate. The information in
fluorescence EEMs resulting from light interference can carry additional information about
the system status and, thus, be essential to predict performance parameters in an MBR. On
the other hand, other mathematic pretreatments, such as PCA, can be helpful, not only to
reduce data dimension prior to feed a correlation model, but also to select spectral regions
of higher variability.

The application of PCA to fluorescence EEMs prior to ANN modeling was performed
for monitoring an extractive MBR, resulting in a reduction in the number of inputs (i.e.,
fewer input nodes in the ANN algorithm) and, thus, reducing the computational effort (i.e.,
less time for required for model learning) [53].
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The relationships between operating parameters and performance variables in MBRs
are complex and interdependent; therefore, a combined approach using fluorescence data
and process parameters as inputs was also explored for MBR monitoring [46,52]. To
improve prediction and allow control of the process, fluorescence EEMs obtained from
an extractive MBR were also combined with a current and historic process operation
using ANN modeling to predict seven different process parameters [52]. This study
showed that current and past operating conditions are highly relevant for the overall
performance of the system, enabling better prediction of the performance and facilitating
further implementation of the control tools.

In an MBR for wastewater treatment, fluorescence EEMs, after compression with
PCA, operating and analytical data were modeled through PLS to describe transmembrane
pressure (TMP), effluent quality (total COD, soluble COD, nitrite plus nitrate concentration,
total nitrogen and total phosphorus in the permeate) and the biomass concentration in
the bioreactor (MLSS). In this study, the correlations between inputs and outputs were
obtained not only through multilinear PLS modeling (TMP, and soluble and total COD)
but also through the incorporation of quadratic and interaction terms of the compressed
fluorescence matrices in PLS modeling (nitrite and nitrate concentration, total nitrogen,
total phosphorus, and MLSS). The predictive potential of these models is illustrated in
Figure 4, depicting the fitting of the PLS models developed to predict total COD and total
nitrogen in the permeate of an MBR. The model for estimation of COD uses information
extracted from fluorescence EEMs combined with the TMP assessed online, while the
estimation of nitrogen is achieved with fluorescence EEMs combined with temperature.

COD in permeate Total nitrogen in permeate
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Figure 4. Fitting plots of experimental versus modeled COD and nitrogen concentrations in the
permeate of an MBR. The training dataset is represented as gray circles, and the validation dataset
used in PLS modeling is represented as open circles.

In addition to the correlational tools, the mathematical selection of the most useful
inputs is highly relevant for the extraction of information from fluorescence EEMs, and
when combining different types of parameters as inputs. The selection of inputs is essential
in the optimization of PLS models resulting in better prediction, lower errors, and simpler
equations with fewer inputs [46]. Therefore, it is possible to obtain more information about
the correlations between the output and the inputs.

The applicability of 2D fluorescence spectroscopy and machine learning to simultane-
ously monitor multiple key MBR performance parameters with minimal analytical effort
has, thus, been fully demonstrated in the literature.

In another study, a different approach was used to maximize the potential of using 2D
fluorescence spectroscopy for MBR monitoring using hybrid models, developed through
the integration of mechanistic and PLS models [55]. In this modeling approach, a parametric
model used to predict biological performance of wastewater treatment systems (activated



Membranes 2022, 12,1218

12 0f 15

sludge model number 3—ASM3) was complemented by PLS modeling to predict the
residuals of the mechanistic model. This modelling strategy was used to improve the
prediction ability of an easy-to-implement mechanistic model, with minimal additional
monitoring effort, taking advantage of the ability of PLS to combine different types of
parameters. Hybrid models were developed to predict three MBR performance parameters:
MLSS, COD in the permeate, and nitrite and nitrate concentration in the permeate.

Through all studies developed so far, 2D fluorescence spectroscopy was shown to
be a powerful monitoring tool for application not only in MBRs for domestic wastewater
treatment, but also for other biological systems and other membrane processes involv-
ing organic compounds, since fluorescence matrices proved to be well related to these
compounds through adequate mathematical tools.

Other studies in membrane processes involving biological and/or organic compounds
showed that fluorescence spectroscopy also has great potential for monitoring fouling
development [56-59]. In these studies, fluorescence EEMs obtained on membrane surfaces
were used to assess not only fouling but also the effect of cleaning at the membrane surface.

3. Conclusions and Future Perspectives

Most studies using 2D fluorescence spectroscopy in MBRs focused on the character-
ization of organic matter, while only a few of them studied the use of fluorescence as a
multiparametric monitoring tool to be applied in real time. Nevertheless, different strate-
gies have already been developed and applied to use the information from fluorescence
EEMs for characterization and monitoring purposes in MBRs.

While the applicability of 2D fluorescence spectroscopy as a monitoring and charac-
terizing tool in MBRs is still limited, the use of fluorescence EEMs is being successfully
studied for monitoring other biological and membrane processes, e.g., for monitoring
specific compounds and characterization of fouled membrane surfaces. Therefore, in view
of the specific needs of MBRs in terms of monitoring and control, there is still a large
range of possibilities of application of fluorescence and machine learning tools that can be
explored for MBRs to achieve a multiparameter monitoring and control tool.

The use of 2D fluorescence spectroscopy as a monitoring tool in MBRs was proven to
have several advantages:

e Using an optical probe, it is possible to collect fluorescence EEMs either from liquid
media or from membrane surfaces.

e It does not consume reagents, and it can be applied online and without disturbing
the system.

e  Asafingerprinting technique, the use of EEMs enables characterizing the status of the
system and can be used as a multiparameter tool with reduced analytical effort.

e  After the initial establishment of the multivariate statistical models for a given process,
the application of machine learning to fluorescence enables the continuous update and
improvement of models with new process data (extending the domain of applicability).

Despite the high potential of fluorescence spectroscopy to monitor MBRs, more work
is still needed to increase the number of monitoring parameters and to develop software
(mathematical tools or machine learning) for data interpretation and usage.

e  The mathematical multivariate approaches followed so far can be used to explore further in-
formation contained in fluorescence spectra to predict additional performance parameters.

e  The acquisition of fluorescence spectra at the membrane surface, in situ, should also
be considered in future research work.

e  Machine learning can be used to integrate different monitoring and operating param-
eters in user-friendly monitoring systems (which translate the monitoring data into
performance parameters that can be designed to support operating decisions) and
implement automatic control.

e  The implementation of such a monitoring (and control) tool requires a simple, robust,
and economic spectrofluorometer equipped with optical probes and the use of an
optical switchbox for monitoring at multiple locations of the system.
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e Above all, the development of a dedicated and user-friendly software is essential to in-
tegrate the acquisition of fluorescence data, other data sources, and mathematical tools.

After implementation of data acquisition and software for data interpretation, the use
of 2D fluorescence spectroscopy requires neither reagents nor other equipment, outside of
a spectrofluorometer equipped with an optical probe and a computer. Furthermore, even
when a large EEM is acquired, the spectral acquisition can be performed in less than 15 min,
providing results with high frequency when installed in situ. Therefore, by using 2D
fluorescence spectroscopy as a multiparametric monitoring tool, the costs for monitoring
can be reduced while the frequency of monitoring can be increased (when compared with
conventional, offline analysis), thereby providing information for process control and
performance optimization (leading to improved process efficiency and stability).

In view of all the work so far using 2D fluorescence spectroscopy, this method is
without any doubt highly relevant for the characterization and online monitoring of MBR
systems. However, the potential of the application of machine learning to extract mean-
ingful information and correlate it with performance parameters (as well as to develop
warning systems and automatic control tools) is still far from fully explored.
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