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ABSTRACT

Introduction: The Canagliflozin and Renal

Endpoints in Diabetes with Established

Nephropathy Clinical Evaluation (CREDENCE)

study showed that compared with placebo,

canagliflozin 100 mg significantly reduced the

risk of major cardiovascular events and adverse

renal outcomes in patients with diabetic kidney

disease (DKD). We developed a simulation

model that can be used to estimate the long-

term health and economic consequences of

DKD treatment interventions for patients

matching the CREDENCE study population.

Methods: The CREDENCE Economic Model of

DKD (CREDEM-DKD) was developed using

patient-level data from CREDENCE (which

recruited patients with estimated glomerular

filtration rate 30 to\90 mL/min/1.73 m2, uri-

nary albumin to creatinine ratio[ 300–5000 -

mg/g, and taking the maximum tolerated dose

of a renin–angiotensin–aldosterone system

inhibitor). Risk prediction equations were fit for

start of maintenance dialysis, doubling of serum

creatinine, hospitalization for heart failure,

nonfatal myocardial infarction, nonfatal stroke,

and all-cause mortality. A micro-simulation

model was constructed using these risk equa-

tions combined with user-definable kidney

transplant event risks. Internal validation was

performed by loading the model to replicate the

CREDENCE study and comparing predictions

with trial Kaplan–Meier estimate curves. Exter-

nal validation was performed by loading the

model to replicate a subgroup of the CANagli-

flozin cardioVascular Assessment Study (CAN-

VAS) Program with patient characteristics that

would have qualified for inclusion in

CREDENCE.

Results: Risk prediction equations generally fit

well and exhibited good concordance, espe-

cially for the placebo arm. In the canagliflozin

arm, modest underprediction was observed for

myocardial infarction, along with overpredic-

tion of dialysis, doubling of serum creatinine,

and all-cause mortality. Discrimination was

strong (0.85) for the renal outcomes, but weaker
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for the macrovascular outcomes and all-cause

mortality (0.60–0.68). The model performed

well in internal and external validation

exercises.

Conclusion: CREDEM-DKD is an important

new tool in the evaluation of treatment inter-

ventions in the DKD population.

Trial Registration: ClinicalTrials.gov identifier,

NCT02065791.

Keywords: Canagliflozin; Diabetic kidney

disease; Economic simulation model; Renal;

Risk prediction; Type 2 diabetes mellitus

Key Summary Points

Why carry out this study?

Currently available economic models are

not suitable for predicting outcomes with

treatments with cardio and renal

protection like the sodium glucose co-

transporter 2 (SGLT2) inhibitor class for

patients with type 2 diabetes and diabetic

kidney disease (DKD).

This study used patient-level data from

the CREDENCE trial of canagliflozin to

develop an economic simulation model

suitable for estimating the health and

economic consequences of DKD

treatment interventions for patients

matching the CREDENCE patient

population.

What was learned from the study?

The CREDENCE Economic Model of DKD

(CREDEM-DKD) was designed,

constructed, populated with patient-level

data, and validated in accordance with

current guidelines.

Risk prediction equations for renal and

cardiovascular events were fit using

patient-level data from the CREDENCE

trial, and an economic micro-simulation

model was constructed to evaluate the

impact of long-term treatment in

individuals with type 2 diabetes and DKD.

CREDEM-DKD is an important new tool in the
evaluation of treatment interventions in the DKD
population.

DIGITAL FEATURES

This article is published with digital features to

facilitate understanding of the article. To view

digital features for this article go to https://doi.

org/10.6084/m9.figshare.12888458.

INTRODUCTION

Chronic kidney disease (CKD) is characterized

by gradual and permanent loss of kidney func-

tion and the most common cause is diabetes [1].

CKD affects some 750 million individuals

worldwide [2], including 40 million individuals

in the USA alone [3]. When CKD is unchecked,

dialysis or kidney transplant may ultimately be

required to maintain life. CKD is also an

important risk modifier for cardiovascular (CV)

disease and patients with estimated glomerular

filtration rate (eGFR)\15 mL/min/1.73 m2

have almost triple the risk [4]. The resulting

economic burden of CKD is substantial [5–7].

High-income countries spend around 2–3% of

their healthcare budgets treating just end-stage

kidney disease (ESKD), even though individuals

with ESKD represent less than 0.03% of the

population [8]. Adding the costs of treating the

much larger group of individuals with less sev-

ere CKD adds to this burden considerably (e.g.,

from $34 billion to $100 billion in 2015 in the

USA [8]). The impact of CKD on health-related

quality of life is likewise significant, especially at

later stages and for patients treated with dialysis

[9, 10].

The Canagliflozin and Renal Endpoints in

Diabetes with Established Nephropathy Clinical

Evaluation (CREDENCE) study (ClinicalTrials.-

gov identifier, NCT02065791) was the first

dedicated renal outcomes study to report results

for a sodium glucose co-transporter 2 (SGLT2)

inhibitor in individuals with diabetic kidney

disease (DKD), comparing canagliflozin 100 mg

versus placebo on top of standard of care (SoC),
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including the maximal tolerated dose of a

renin–angiotensin–aldosterone system inhi-

bitor. The CREDENCE trial was stopped early at

the recommendation of the Independent Data

Monitoring Committee because pre-specified

efficacy criteria had been satisfied. Canagliflozin

100 mg reduced the risk of the primary end-

point (composite of doubling of serum crea-

tinine [DoSCr], ESKD, or renal death, or CV

death) by 30% versus placebo, and the results

were statistically significant (hazard ratio [HR]

0.70 [95% confidence interval (CI) 0.59–0.82];

P = 0.00001). The results were also favorable for

secondary and exploratory endpoints, including

a 20% risk reduction in 3-point major adverse

cardiac events (CV death, nonfatal myocardial

infarction [MI], or nonfatal stroke; HR 0.80

[95% CI 0.67–0.95]; P = 0.01) and a 39% risk

reduction in hospitalization for heart failure

(HHF; HR 0.61 [95% CI 0.47–0.80]; P\ 0.001)

[11]. There were no imbalances between cana-

gliflozin 100 mg and placebo in rates of renal-

related adverse events (AEs), acute kidney

injury, elevations in serum potassium levels,

amputations, or fractures [11, 12]. On the basis

of the results from the CREDENCE study, a new

efficacy indication was added to the canagli-

flozin US prescribing information to reduce the

risk of ESKD, DoSCr, CV death, and HHF in

adults with type 2 diabetes mellitus (T2DM) and

diabetic nephropathy with albumin-

uria[ 300 mg/day [12].

Efficient allocation of scarce healthcare

resources requires that treatments be not only

safe and effective but also provide good ‘‘value

for money’’ (i.e., are cost-effective). For chronic

and progressive diseases such as DKD, economic

evidence is routinely generated using economic

modeling methods that extrapolate trial out-

comes to longer time horizons (thus, capturing

the full long-term costs and benefits of inter-

vention). When properly constructed and vali-

dated, economic models can provide a more

complete accounting of the relevant cost and

health trade-offs of alternative treatments than

economic analyses of individual clinical trials

[13–15].

A recent literature review identified 101

models that included CKD [16]. Unfortunately,

none of the models were suitable for simulating

the full clinical and economic outcomes in the

CREDENCE trial. In particular, 33 of the models

were limited to ESKD and did not capture the

full CKD disease spectrum. An additional 48

models considered diabetes broadly, but con-

tained only limited renal sub-models. The rest

were not limited to subjects with diabetes,

excluded CV disease, or did not capture eco-

nomic outcomes.

The objective of this study was to use

patient-level CREDENCE trial data to develop

an economic simulation model suitable for

estimating the health and economic conse-

quences of DKD treatment interventions for

patients matching the CREDENCE patient

population.

METHODS

An economic model of DKD treatment was

designed, constructed, populated with patient-

level data, and validated in accordance with the

recommendations of the International Society

of Pharmacoeconomic and Outcomes Research-

Society of Medical Decision Making (ISPOR-

SMDM) Modeling Good Research Practices Task

Force-2 [17], starting with a literature review of

economic models of CKD and consultations

with clinical experts. The model is intended for

applications in different treatment settings, so a

flexible modeling approach was adopted to

ensure that the needs of different stakeholders

could be satisfied (e.g., numeric parameters are

user-definable).

Study Data

We used patient-level data from the CREDENCE

trial—4401 subjects randomized to canagli-

flozin or placebo and followed for a median of

2.62 years [11, 18]—to fit risk prediction equa-

tions for renal and CV outcomes relevant to

patients and economic stakeholders. Briefly,

CREDENCE recruited patients with T2DM and

DKD, defined as eGFR of 30–90 mL/min/

1.73 m2 and urinary albumin to creatinine ratio

(UACR) of[300 to 5000 mg/g, and taking a

maximum dose of either an angiotensin-con-

verting enzyme (ACE) inhibitor or angiotensin-

Diabetes Ther (2020) 11:2657–2676 2659



receptor blocker (ARB). After randomization,

trial visits were conducted at weeks 3, 13, and

26 followed by alternating telephone calls and

in-clinic visits at 13-week intervals. Biomarker

values for eGFR and UACR were collected every

26 weeks up to week 234. All renal and CV

components included in the primary and sec-

ondary composite endpoints were adjudicated.

A thorough description of the CREDENCE trial

can be found in Perkovic et al. [11] and baseline

patient characteristics are presented in Table S1

in electronic supplementary material (ESM) 1.

All analyses were performed using the inten-

tion-to-treat patient-level study data.

Health Outcomes

Risk prediction equations were fit for the indi-

vidual components of the primary and sec-

ondary renal and CV outcomes in the

CREDENCE trial, which included start of

maintenance dialysis, DoSCr, HHF, nonfatal MI,

nonfatal stroke, and all-cause mortality. Only

the first events that occurred during the trial

were considered (few subjects experienced

multiple events of the same type). We also fit an

equation to predict whether mortality events

had CV disease as a cause. Trial definitions in

CREDENCE were used [11].

Note that estimation of a risk equation for

kidney transplant was planned but could not be

fit because there were too few events. However,

the model was constructed to support the

inclusion of outcome via state-specific proba-

bilities from other sources. An equation for

attributing death to renal causes was also plan-

ned but could not be fit.

Retinopathy and neuropathy are also clini-

cally and economically important outcomes for

individuals with T2DM and are commonly

included in economic models of the broader

T2DM population [19–23]. However, they were

not pre-specified outcomes in CREDENCE, and

were excluded from the model to minimize

uncertainty associated with including data from

other sources.

Composite trial endpoints were not selected

for the model because the individual compo-

nents often have substantially different

economic and prognostic consequences. Unlike

these individual components, however, com-

posite trial endpoints were pre-defined and

powered in the trial. To provide a benchmark by

which to evaluate the validity of the individual

component risk equations, a risk equation was

also fit for composite ESKD (consisting of

eGFR\ 15 mL/min/1.73 m2, start of mainte-

nance dialysis, or kidney transplant), though it

was not included in the economic model.

Estimation and Validation of Risk

Prediction Equations

Post hoc risk prediction equations were fit

individually for start of maintenance dialysis,

DoSCr, HHF, nonfatal MI, nonfatal stroke, all-

cause mortality, and ESKD. Three parametric

forms were considered—exponential, Weibull,

and Gompertz—and the functional form with

best goodness-of-fit was selected. The time scale

for nonfatal events was disease duration (days)

and the time scale for mortality was age (days).

Equations were fit using data from the placebo

study arm.

The risk equations were parsimonious to

avoid overfitting. This included limiting the

equations to crucial explanatory covariates,

excluding biomarkers except for markers of

kidney functioning (eGFR) and kidney damage

(UACR), and limiting time-varying covariates to

cases where ignoring a temporal relationship

could not reasonably be avoided to minimize

the risk of confounding with unobserved factors

over the study follow-up. The covariates inclu-

ded in each risk equation are presented in

Table S2 in ESM1, by event.

Age at diagnosis, sex, and smoking status at

baseline were included in the covariate specifi-

cations for each outcome. Similarly, history at

baseline of MI, stroke, and HF was included as

an explanatory covariate for each outcome, as

prior CV disease has been shown to be a pre-

dictor of renal and CV disease as well as mor-

tality [24]. Although the minimum eGFR

required at study entry was 30 mL/min/1.73 m2

and the minimum UACR required at study

entry was 300 mg/g, some patients may have

experienced reductions in eGFR or UACR to

2660 Diabetes Ther (2020) 11:2657–2676



below required thresholds between recruitment

and randomization; thus, coefficients for eGFR

and UACR used values at randomization. Con-

tinuous values of baseline eGFR and ln(UACR)

were included for the renal outcomes given

their anticipated strong association. For the

other outcomes, categorical baseline eGFR and

ln(UACR) specifications were found to provide

more stable fits. All-cause mortality could not

be adequately modeled using only baseline

patient characteristics, so time-varying covari-

ates were included for start of dialysis, MI,

stroke, HF, and an indicator for eGFR\15 mL/

min/1.73 m2. There were almost no renal out-

comes for the first year of CREDENCE (at base-

line, subjects were not at immediate risk for

dialysis based on eGFR recruitment criteria and

DoSCr naturally requires times for creatinine

levels to double), which required inclusion of

an indicator variable for the 1st study year.

Goodness-of-fit was assessed on the basis of

discrimination (C statistic) and calibration (ra-

tio of predicted to observed cases at the study

level, accounting for censoring on predictions

using last outcome carried forward), separately

by study arm as well as overall. Calibration for

the canagliflozin study arm was adjusted to

account for the trial-reported HRs. Kaplan–Me-

ier curves for the observed cumulative incidence

rates were also plotted against Kaplan–Meier

curves based on predicted sample outcomes

(assuming last outcome carried forward for

subjects leaving the study) for each outcome,

separately by study arm and adjusted by trial-

reported HRs for the canagliflozin study arm.

To attribute death events to CV and non-CV

causes, a logistic regression conditional on

occurrence of death was fit. As an odds ratio for

canagliflozin has not previously been estimated

using CREDENCE study data, both the canagli-

flozin and placebo treatment arms were used.

Goodness-of-fit for the CV death mortality

equation was assessed by calculating the per-

centage correctly classified for the overall data

set and for each study arm separately.

Model fitting was performed in Stata Statis-

tical Software 14 (StataCorp LLC, College Sta-

tion, TX, USA) and goodness-of-fit analysis was

performed using R version 3.5.1 (The R Project,

www.r-project.org).

The Economic Model

The CREDENCE Economic Model of DKD

(CREDEM-DKD) model was implemented as a

discrete event simulation (DES) micro-simula-

tion model, which enables the model to capture

important sources of heterogeneity in the DKD

population as well as 1st and 2nd order uncer-

tainty. The DES approach lends itself well to

situations where there are a set of competing

events, accelerating risks, and an availability of

time-to-event risk prediction equations esti-

mated using data with relatively long durations,

as is the case with DKD and the CREDENCE

trial. Time horizon is user-defined, with no

maximum. CREDEM-DKD was implemented in

Microsoft� Excel (Microsoft Corporation, Red-

mond, WA, USA) and Visual Basic for Applica-

tions (VBA). The model structure is presented in

Fig. 1.

At simulation baseline cohorts of hypothet-

ical patients are drawn at random from user-

assigned distributions of patient characteristics,

including age, sex, smoking status, diabetes

duration, eGFR, UACR, MI history, stroke his-

tory, and heart failure (HF) history. Because

these patient characteristics are not indepen-

dent of each other, values are sampled with

user-defined correlation to support risk factor

clustering [25]. The distributions and correla-

tion matrices from the CREDENCE trial are

included as default values. eGFR and UACR are

combined and discretized into National Kidney

Foundation–Kidney Disease Outcomes Quality

Initiative (NKF-KDOQI) disease states [25, 26].

While CREDENCE limited patient recruitment

to stages 2 to 3B, all stages (1 to 5) were included

for completeness and to enable the modeling of

regression.

Because eGFR and UACR together are used to

classify DKD stages [26, 27] and because they are

important determinants of mortality, the model

includes the Perkovic et al. [11] linear mixed

model for eGFR and for ln(UACR) evolution

equations to track their values at each point in

time. The eGFR equation included acute (first

3 weeks) and chronic phases (thereafter) and

treatment effects for canagliflozin are

supported.

Diabetes Ther (2020) 11:2657–2676 2661
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eGFR and UACR are updated every 26 weeks

(the frequency of data collection in CREDENCE)

on the basis of the linear mixed model evolu-

tion equations and CKD status is recalculated.

The risk equations are used to calculate expec-

ted time-to-event for each model outcome

individually for each patient (on the basis of

their personal health history), using common

random numbers to avoid confusing true dif-

ferences between simulated treatment arms

with artificial uncertainty resulting from ran-

dom number generation [28]. The event with

the shortest expected time until occurrence is

applied and the model jumps to that time. Risks

are recomputed on the basis of the updated

patient history and the process is repeated until

the time horizon is reached or the hypothetical

patient dies.

Separation for outcomes was limited during

the first year of the CREDENCE trial, so the user

can optionally assign different treatment effects

for the first year and the user can optionally set

a maximum duration of treatment effects. Renal

and cardiovascular health states are modelled

independently. The mutually exclusive and

exhaustive renal health states include tradi-

tional DKD stages (1, 2, 3A, 3B, 4, or 5 pre-

dialysis [26, 27]), dialysis, and post-kidney

Fig. 1 CREDEM-DKD model structure. AE adverse
event, CV cardiovascular, CVD cardiovascular disease,
CREDEM-DKD CREDENCE Economic Model of
DKD, CREDENCE Canagliflozin and Renal Endpoints
in Diabetes with Established Nephropathy Clinical Eval-
uation, DoSCr doubling of serum creatinine, eGFR
estimated glomerular filtration rate, HF heart failure,

HHF hospitalization for heart failure, Hx history, ICER
incremental cost-effectiveness ratio, MI myocardial infarc-
tion, LY life-year, RRT renal replacement therapy, UACR
urine albumin to creatinine ratio

2662 Diabetes Ther (2020) 11:2657–2676



transplant. DKD status is classified using bio-

marker evolution curves reflecting current val-

ues of eGFR and UACR (in logarithmic form).

Timing of start of maintenance dialysis is

modeled using the CREDENCE risk prediction

equation and is determined largely by eGFR and

UACR at baseline but can optionally be initiated

automatically at a user-defined eGFR threshold.

Patients with at least stage 3B DKD or on dial-

ysis are assigned user-defined state-specific risks

for kidney transplant. Transplant survival (i.e.,

durability of the transplanted kidney) can

optionally be defined by the user. DoSCr is

simulated with the CREDENCE risk equation.

However, clinical effects are captured directly

via eGFR and UACR, and DoSCr is not

prognostic.

The macrovascular health states (not mutu-

ally exclusive) include no history and history of

MI, no history and history of stroke, and no

history and history of HF. Macrovascular events

are modeled with the CREDENCE risk predic-

tion equations. All patients are at risk for CV

events, including those with baseline history of

that complication.

Death is the final health state. By default, the

timing of death is simulated using the CRE-

DENCE all-cause mortality risk equation.

Optionally, the user can also specify a maxi-

mum age after which death will be applied

automatically, a risk of procedural mortality

associated with kidney transplantation, and/or

a minimum eGFR consistent with human life.

Alternatively, user-defined life tables can be

applied for hypothetical patients undergoing

dialysis or after a kidney transplant (separately

by sex and different age categories). Conditional

on mortality, CV or other causes of death are

assigned using the CREDENCE cause of death

logistic regression equation.

Two treatment arms are supported. The

model allows for both comparison versus SoC

and an active comparator. Treatment effects for

eGFR and ln(UACR) are entered as initial mean

change while treatment effects for DKD,

macrovascular endpoints, and mortality are

entered as HRs. AEs can be modeled via user-

defined event rates (which can be different for

male and female subjects) for up to 10 different

events. The model supports inclusion of

acquisition and administration costs, separately

by treatment arm, as well as event and state

costs for the renal and macrovascular compli-

cations and by cause of death. Treatment-re-

lated AEs can be assigned fixed event costs and

per day costs. A user-defined discount rate can

be applied. Final model outcomes include event

rates, numbers needed to treat, life years,

incremental costs, incremental cost-effective-

ness ratios, cost-effectiveness scatter plots, and

measures of model convergence to ensure ade-

quate sample sizes.

Model Validation

The conceptual model was designed and struc-

tured following a literature review of economic

models of CKD, and best practices were identi-

fied and borrowed. A thorough model specifi-

cation was prepared and then updated on the

basis of comments from expert health econo-

mists and clinicians. The final model has been

presented to the CREDENCE Steering Commit-

tee and to an expert nephrologist and many of

their comments have been incorporated.

CREDEM-DKD was then thoroughly debug-

ged and tested to ensure correct implementa-

tion, which consisted of more than 50 artificial

simulations designed to reveal errors in both

logic and programming (i.e., ‘‘stress testing’’).

Idiosyncratic results were thoroughly investi-

gated and any identified errors in programming

or logic were corrected and documented. Inter-

nal validation of CREDEM-DKD was then per-

formed by loading the model to replicate the

CREDENCE study (patient populations, treat-

ment effects, and time horizon) and comparing

model predictions of the cumulative incidence

of the outcomes with the Kaplan–Meier curves

from the CREDENCE trial.1 External validation

of CREDEM-DKD was performed by loading the

model to replicate a subgroup of the CANVAS

Program [29] with patient characteristics

matching those of the CREDENCE study and

comparing model predictions of the cumulative

incidence of the outcomes with the Kaplan–-

Meier curves. The subgroup included a total of

567 patients and the baseline patient charac-

teristics for the CANVAS Program subgroup
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with characteristics matching the CREDENCE

trial are presented in Table S14 in ESM1 and the

treatment effects are presented in Table S15 in

ESM1. The mean (standard error [SE]) Kaplan–-

Meier follow-up times for this subgroup were

46.2 (1.67) months and the median follow-up

time was 48.8 months. Note that as the CAN-

VAS Program was designed to evaluate cardio-

vascular outcomes, the start of maintenance

dialysis was not recorded.

We completed an Assessment of the Valida-

tion Status of Health-Economic Decision Mod-

els evaluation [30], which is included in ESM2.

Compliance with Ethics Guidelines

This article is based on previously conducted

studies and does not contain any studies with

human participants or animals performed by

any of the authors.

RESULTS

CREDENCE Risk Prediction Equations

CREDENCE patient characteristics at baseline

have been described previously [11, 18] and are

reproduced along with correlation coefficients

in Tables S2 and S3 of ESM1. There were 2199

subjects in the placebo arm and 2202 patients in

the canagliflozin arm followed for a median

follow-up of 2.62 years. Numbers of events

during follow-up are presented in Table S4 in

ESM1. In the placebo arm for which most

analyses were performed, 100 subjects started

maintenance dialysis, 186 subjects experienced

a DoSCr, and 81, 65, 129, and 201 subjects

experienced nonfatal MI, nonfatal stroke, HHF,

and all-cause mortality events, respectively. Of

the 201 deaths, 140 were attributed to CV

causes.

Parametric forms and the regression coeffi-

cients are presented in Tables 1, 2, and 3 for the

renal, CV, and all-cause mortality outcomes,

respectively. To promote model reproducibility,

the covariance matrices for the coefficient esti-

mates are presented in Tables S5 to S11 in ESM1

(enabling modeling of 2nd order uncertainty).

The Weibull parametric form provided the

best fit for start of maintenance dialysis (the

Gompertz functional form failed to converge),

as determined by Akaike information criterion

(AIC). Baseline values of eGFR and ln(UACR)

were statistically significant (P\0.001) and

strong predictors of dialysis and age at T2DM

diagnosis was statistically protective

(P = 0.001). The other covariates were not sta-

tistically significant, but collectively improved

the predictive accuracy of the risk equation.

Except for stroke, these covariates had HRs less

than 1. Because there were almost no events in

the first year of the trial, an indicator for the

first year was required to achieve satisfactory fit.

The resulting C statistics were 0.86 for the pla-

cebo study arm and 0.84 for the canagliflozin

study arm, values widely considered good. Cal-

ibration for the placebo study arm was 0.998.

Calibration was 1.065 for the canagliflozin

study arm after adjustment for the trial-reported

HR, indicating that the approach tends to

underpredict the canagliflozin treatment effect.

Graphically, predicted starts of dialysis matched

observed trial starts well for both treatment

arms (Fig. 2a), at least until about 3.5 years

when the sample size was low (only approx.

30% of participants had more than 3 years of

follow-up). A description of the results for

ESKD, which was intended for assessing the

robustness of the dialysis equation, is presented

in Table S12 in ESM1. The results are in line

with the equation for start of maintenance

dialysis with the exception that stroke had a

protective effect for the risk of ESKD.

The Weibull parametric form also provided

the best fit for DoSCr. Baseline values of eGFR,

ln(UACR), and age at T2DM diagnosis were

statistically significant (P\ 0.001) and strong

predictors of DoSCr. The other covariates were

not statistically significant, but collectively

improved the predictive accuracy of the risk

equation. Like dialysis, an indicator for the first

year was required to achieve satisfactory fit. The

resulting C statistics were 0.85 for both study

1 Note: this differs from validation of the risk prediction
equations in two important ways: (1) the analysis used
randomly sampled hypothetical patients (as opposed to
actual CREDENCE subjects) and (2) risk prediction
equations are evaluated collectively as a system (rather
than individually).
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arms, which is widely considered good. Cali-

bration for the placebo study arm was 0.998.

Calibration was 1.048 for the canagliflozin

study arm after adjustment for the trial-reported

HR, indicating that the approach tends to

modestly underpredict modestly the canagli-

flozin treatment effect. Graphically, predicted

DoSCr incidence matched observed trial cases

reasonably well for both treatment arms

(Fig. 2b) for the first 3 years, though the

predictions do not exhibit the stair step of

observed incidence (caused by the periodicity of

laboratory testing).

The exponential parametric form provided

the best fits for nonfatal MI and nonfatal stroke

as judged by AIC, while Weibull provided the

best fit for HHF. Categorical baseline eGFR

covariates were not statistically different from

the reference category (eGFR\ 30 mL/min/

1.73 m2) for any of the outcomes, but the HRs

Table 1 Risk equations: start of dialysis and doubling of serum creatinine

Parameter Start of maintenance dialysis Doubling of serum creatinine

Weibull Weibull

N = 2012 N = 2013

100 events 186 events

HR (SE) P HR (SE) P

Intercept 0.001 (0.003) 0.013 6.48E-06 (1.33E-05) \0.001

q 0.371 (0.182) \0.001 0.664 (0.145) \0.001

Age at T2DM diagnosis 0.969 (0.009) 0.001 0.974 (0.007) \0.001

Female 0.707 (0.158) 0.121 0.920 (0.142) 0.589

Smoking 0.463 (0.186) 0.056 0.777 (0.187) 0.295

MI Hx 0.693 (0264) 0.355 0.847 (0.212) 0.506

Stroke Hx 1.193 (0.350) 0.549 0.741 (0.199) 0.265

HF Hx 0.903 (0.266) 0.728 0.752 (0.168) 0.203

eGFR 0.938 (0.009) \0.001 0.970 (0.005) \0.001

ln (UACR) 3.327 (0.508) \0.001 3.719 (0.438) \0.001

First-year indicator 0.206 (0.050) \0.001 0.254 (0.042) \0.001

AIC 190.025 183.129

C statistic

Placebo 0.861 0.846

Canagliflozin 0.837 0.847

Calibration

Placebo 0.998 0.998

Canagliflozina 1.065 1.048

AIC Akaike information criterion, eGFR estimated glomerular filtration rate, HR hazard ratio, Hx history, MI myocardial
infarction, SE standard error, UACR urine albumin to creatinine ratio
a Adjusted for trial-reported HR for canagliflozin
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were numerically most protective for

eGFR[ 60 mL/min/1.73 m2 and the degree of

protection decreased generally with decreasing

eGFR values. Patients with UACR exceeding

300 mg/g at baseline had numerically greater

event risks than the reference category

Table 2 Risk equations: nonfatal MI, nonfatal stroke, and HHF

Parameter Nonfatal MI Nonfatal stroke HHF

Exponential Exponential Weibull

N = 2199 N = 2199 N = 2199

81 events 65 events 129 events

HR (SE) P HR (SE) P HR (SE) P

Intercept 2.97E-05

(2.36E-05)

\0.001 2.95E-05

(2.77E-05)

\0.001 1.45E-07

(3.37E-07)

\0.001

q 1.424 (0.204) \0.001

Age at T2DM

diagnosis

1.003 (0.010) 0.761 0.995 (0.011) 0.654 1.023 (0.010) 0.027

Female 1.276 (0.304) 0.306 0.662 (0.193) 0.157 0.996 (0.192) 0.985

Smoking 1.932 (0.538) 0.018 0.520 (0.243) 0.162 1.416 (0.343) 0.150

MI Hx 3.584 (0.904) \0.001 2.028 (0.623) 0.021 2.161 (0.464) \0.001

Stroke Hx 1.124 (0.382) 0.73 2.733 (0.793) 0.001 1.064 (0.286) 0.819

HF Hx 0.732 (0.250) 0.362 1.372 (0.433) 0.317 2.253 (0.448) \0.001

eGFR C 60 0.512 (0.252) 0.174 0.682 (0.422) 0.536 0.756 (0.332) 0.525

eGFR\ 60, C 45 0.564 (0.283) 0.254 0.880 (0.544) 0.836 0.799 (0.356) 0.613

eGFR\ 45, C 30 0.981 (0.476) 0.969 0.762 (0.478) 0.665 1.137 (0.496) 0.768

eGFR\ 30 Reference Reference Reference

UACR[ 300 1.213 (0.456) 0.607 1.648 (0.771) 0.286 2.347 (0.917) 0.029

UACR B 300 Reference Reference Reference

AIC 391.205 340.738 480.995

C statistic

Placebo 0.661 0.662 0.656

Canagliflozin 0.597 0.600 0.693

Calibration

Placebo 1.000 1.000 1.003

Canagliflozina 0.944a 1.003 0.964

AIC Akaike information criterion, eGFR estimated glomerular filtration rate, HF heart failure, HHF hospitalization for
heart failure, HR hazard ratio, Hx history, MI myocardial infarction, SE standard error, UACR urine albumin to creatinine
ratio
a Adjusted for trial-reported HR for canagliflozin
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Table 3 Risk equations: all-cause mortality and CV cause of death

Parameter All-cause mortality CV cause of death

Exponential Logistic

N = 2199 140 CV deaths

201 events

HR (SE) P Maximum likelihood
estimates

Standard
error

P

Intercept 2.23E-05

(7.52E-06)

\0.001 0.615 0.683 0.368

Age at T2DM diagnosis 1.020 (0.006) 0.002 0.005 0.011 0.663

Female 1.046 (0.166) 0.778

Smoking 1.137 (0.233) 0.53

Diabetes duration – - 0.006 0.011 0.602

Sex (female) – 0.093 0.270 0.731

MI Hx 1.111 (0.216) 0.587

Stroke Hx 1.414 (0.280) 0.081

HF Hx 1.374 (0.243) 0.072

MI Hxa 3.580 (0.873) \0.001 0.513 0.291 0.078

Start of maintenance

dialysisa
5.987 (1.850) \0.001 - 1.028 0.418 0.014

HF Hxa 2.792 (0.642) \0.001 0.550 0.276 0.046

eGFR\ 15a 1.317 (0.415) 0.382

Stroke Hxa 7.656 (1.693) \0.001 0.357 0.300 0.234

eGFR\ 60, C 45a - 0.180 0.374 0.630

eGFR\ 45, C 30a - 0.382 0.321 0.234

eGFR\ 30a 0.788 0.428 0.066

UACR[ 300a 0.287 0.300 0.339

Canagliflozin - 0.084 0.123 0.491

AIC 133.5836

C statistic AUC

Placebo 0.671 Placebo 0.714

Canagliflozin 0.670 Canagliflozin 0.651

Calibration Concordance (%)

Placebo 1.001 Placebo 71.2
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(UACR\ 300 mg/g), which was statistically

significant only for HHF. The strongest driver of

CV risk was CV history. Baseline history of each

event type was a statistically and numerically

significant determinant for that outcome.

Baseline history of MI was also a statistically and

numerically significant determinant of risk for

nonfatal stroke and HHF. C statistics for each

CV outcome were about 0.65 for the placebo

study arm and ranged between 0.60 and 0.68 for

the canagliflozin study arm, which are generally

considered borderline discrimination. Calibra-

tion was 1.00 for all three outcomes in the

placebo study arm (for which the prediction

equations were fit). Adjusted for the trial-re-

ported HRs, calibration in the canagliflozin

study arm was 0.94, 1.00, and 0.96 for nonfatal

MI, nonfatal stroke, and HHF, respectively,

indicating underprediction of MI risk for cana-

gliflozin-treated patients. Graphically, the pre-

dicted cumulative incidence of nonfatal MI

matched observed trial outcomes well for both

treatment arms (Fig. 2c) for the first 3 years,

though some benefit associated with canagli-

flozin during the first year was not captured.

The prediction equations for nonfatal stroke fit

the observed placebo arm and the observed

canagliflozin arm after 1.5 years closely

(Fig. 2d), though it underpredicted the observed

canagliflozin data early on (i.e., the canagli-

flozin treatment effect emerged first after 1 year

in the CREDENCE trial). The prediction equa-

tions for HHF fit the observed placebo arm and

the observed canagliflozin arm after 1.5 years

(Fig. 2e), though both arms were underpre-

dicted during the initial period.

The Weibull parametric form narrowly pro-

vided the best fit, as judged by AIC, for all-cause

mortality. The intercept term was extremely

small, however, which when logged as required

led to model instability and poor internal vali-

dation. The exponential parameter was selected

instead as the default risk equation on the basis

of best replication of the CREDENCE trial sur-

vival curve. Time-varying occurrences of MI,

stroke, HF, and start of maintenance dialysis

were statistically significant (P\0.001) and

numerically large predictors of mortality risk.

Age at diagnosis of T2DM was associated with

increased mortality risk (P = 0.02). Reaching

eGFR\ 15 mL/min/1.73 m2 was associated with

a 32% increased risk of death, though this was

not statistically significant in the final specifi-

cation. The C statistic was 0.67 for the placebo

study arm and the canagliflozin study arm,

which are generally considered borderline.

Calibration was 1.00 for the placebo study arm

(for which the prediction equation was fit) and

Table 3 continued

Parameter All-cause mortality CV cause of death

Exponential Logistic

N = 2199 140 CV deaths

201 events

HR (SE) P Maximum likelihood
estimates

Standard
error

P

Canagliflozinb 1.080 Canagliflozin 65.0

AIC Akaike information criterion, AUC area under the curve, CV cardiovascular, eGFR estimated glomerular filtration rate,
HF heart failure, HR hazard ratio, Hx history, MI myocardial infarction, SE standard error, UACR urine albumin to
creatinine ratio
a Time-varying
b Adjusted for trial-reported HR for canagliflozin
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Fig. 2 Kaplan–Meier cumulative incidence curves for risk
equation predictions and observed CREDENCE values, by
outcome. CREDENCE Canagliflozin and Renal End-
points in Diabetes with Established Nephropathy Clinical

Evaluation, HHF hospitalization for heart failure, HR
hazard ratio, MI, myocardial infarction
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1.08 for the canagliflozin study arm, thus

understating risk of death in the placebo arm

and overstating it in the canagliflozin arm (and

thus underpredicting the treatment effect).

Graphically, the predicted cumulative inci-

dence of death matched observed trial out-

comes well for both treatment arms (Fig. 2f) for

the first 3 years, though it showed some over-

prediction for the placebo arm during the first

year.

For the subset of patients with a death event,

only start of maintenance dialysis (protective)

and HF history (promotive) were statistically

significant determinants of CV as a cause of

death. MI history and stroke were also promo-

tive, but not statistically significant (P = 0.078

and P = 0.234, respectively). Canagliflozin is

associated with a log-odds ratio of - 0.084,

which corresponds to a 15.5% reduction in the

odds ratio (i.e., it is less likely that a mortality

event for canagliflozin-treated patients is CV

related). Area under the curve (AUC) was 0.71

and 0.65 for the placebo and canagliflozin study

arms, respectively, and 64.3% and 68.4% of

subjects were correctly classified.

Validation of CREDEM-DKD

Model testing and debugging included 67 arti-

ficial simulations designed to reveal errors in

logic and programming. The tests included

extreme value testing of all model compart-

ments. All baseline characteristics, treatment

inputs, and risk calculations were tested indi-

vidually. Stress-test results are presented in

Table S13 in ESM1. Two minor bugs were iden-

tified and fixed. The results of each of the 67

scenarios were generally consistent with expec-

tations when the simulations were rerun.

Kaplan–Meier cumulative incidence curves

describing internal model validation (i.e.,

replication of the CREDENCE trial) are pre-

sented in Fig. 3. The model tended to overpre-

dict the start of maintenance dialysis over the

duration of the CREDENCE trial for both study

arms, but the difference between arms was

similar to that in the trial. By year 3, however,

model predictions matched closely with the

CREDENCE cumulative incidence. The model

prediction of DoSCr was visually better, though

the stair step pattern, which was an artifact

related to the frequency of laboratory measure-

ments, and a sharp jump for the placebo arm

after 2.5 years could not be replicated. The fit

for the macrovascular and mortality outcomes

were visually generally good, with the greatest

discrepancy being overestimation of the posi-

tive treatment effect for HHF during the first

year.

The Kaplan–Meier results of the limited

external validation using the subgroup of 567

patients in the CANVAS Program that met

CREDENCE eligibility criteria are presented in

Fig. 4. CREDEM-DKD overpredicted the inci-

dence of DoSCr in the CANVAS Program. Pre-

dictions for nonfatal MI and HHF visually

matched CANVAS Program outcomes closely,

however, at least until the sample of at-risk

patients was diminished because of trial-related

factors. The cumulative incidence of nonfatal

stroke in this CANVAS Program subgroup was

sparse, with curves crossing after 3 years of fol-

low-up, and the model generally underpre-

dicted absolute events and treatment effects in

the first 2 years but overpredicted treatment

effects thereafter. The model also underpre-

dicted all-cause mortality, especially after

1.5 years, and underpredicted the treatment

effect.

DISCUSSION

We fit a set of pragmatic and parsimonious risk

prediction equations for renal and CV events

using patient-level data from the CREDENCE

trial, the first dedicated renal outcomes study

for any agent in the class of SGLT2 inhibitors,

and constructed an economic micro-simulation

model for evaluating the cost-effectiveness of

long-term treatment in individuals with T2DM

and DKD following best economic modeling

practices [17, 31–33]. The risk prediction equa-

tions generally fit well and exhibited good

concordance, excellent for the placebo study

arm from which they were estimated and with

modest underprediction (MI) or overprediction

(dialysis, DoSCr, and all-cause mortality) for the

canagliflozin study arm. Discrimination was
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Fig. 3 Kaplan–Meier cumulative incidence curves for
predicted and observed CREDENCE trial values, by
outcome. CREDENCE Canagliflozin and Renal End-
points in Diabetes with Established Nephropathy Clinical

Evaluation, HHF hospitalization for heart failure, HR
hazard ratio, MI myocardial infarction
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strong (0.85) for the renal outcomes, but weaker

for the macrovascular outcomes and all-cause

mortality (0.60–0.68). Lower discrimination is

common to macrovascular risk prediction

equations and several important recent studies

have reported discrimination between 0.6 and

0.7 [34–36]. Planned estimation of risk equa-

tions for kidney transplant and renal death

could not be generated because of small event

counts. We illustrate the intended usage of the

risk prediction equations in a numerical exam-

ple in ESM1.

Most of the risk equations fit the CREDENCE

study well, providing evidence of internal

validity. Start of dialysis was overpredicted

compared with CREDENCE cumulative inci-

dence over the first 2.5 years for both study

arms, though predictions and observed values

converged for both study arms by year 3. Unlike

the other outcomes, start of dialysis is proce-

dural (as opposed to clinical), which may

explain part of the difficulties in fitting. DoSCr

was visually the most discordant, but this can

likely be explained by the periodicity of labo-

ratory samples and by the special nature of the

outcome (i.e., the magnitude of increase needed

to qualify as a doubling is determined by the

starting value).

A parsimonious DES micro-simulation model

was constructed using these risk equations (with

an option for combination with user-definable

kidney transplant event risks) in order to fill an

important gap in the CKD literature and enable

a robust economic analysis of canagliflozin in

the treatment of DKD. CREDEM-DKD was sub-

jected to internal validation, in which the

model performed well for the CREDENCE trial

with a certain degree of overestimation for start

of dialysis, associated presumably with the

absence of dialysis events in the first year in

CREDENCE. Ideally, the external validation

would have been conducted comparing versus a

renal outcomes trial, but none are available at

this time. Several trials will report in the

upcoming years. Therefore, an external valida-

tion exercise was conducted using the results of

a subgroup of patients from the CANVAS Pro-

gram that would have been eligible for CRE-

DENCE and the model performed reasonably

well. While the DoSCr prediction equation,

likely for reasons noted above, was unable to

predict the CANVAS Program closely, predic-

tion equations for the other outcomes were not

excessively discordant and fit closely for non-

fatal MI and HHF, providing additional confi-

dence that the risk equations are robust.

Model strengths include use of risk predic-

tion equations estimated with patient-level data

from a landmark renal outcomes trial [11, 18] in

individuals with DKD (large sample size, rela-

tively long follow-up, and comprehensive

prospectively collected data on patient- and

payor-relevant DKD and CV outcomes),

enabling modeling of features that were found

absent in most existing models of CKD [16].

As with other studies, estimating risk pre-

diction equations with randomized controlled

trial (RCT) data risks incorporation of bias as

study recruitment criteria frequently lead to

nonrepresentative samples and protocols steer-

ing treatment (e.g., glycemic equipoise) can

affect outcomes. In particular, causality is diffi-

cult to ensure (baseline smoking status, for

example, was found protective for stroke).

Analyses with post-baseline (time-varying)

covariates, for example, can suffer from endo-

geneity bias, which affects extrapolation to

patient groups that are quite different, so time-

varying covariates were avoided where possible.

By design, the model includes only renal and

CV outcomes, so it does not capture the full set

of outcomes relevant for all patients with

T2DM. Future enhancements to this model

could include incorporation of a treatment

algorithm.

CONCLUSIONS

We used patient-level data from the first dedi-

cated renal outcomes trial of an SGLT2 inhibitor

to report renal and CV protection for an SGLT2

inhibitor to construct an economic simulation

bFig. 4 Kaplan–Meier cumulative incidence curves for
predicted and observed CANVAS Program subgroup
values, by outcome. CANVAS CANagliflozin cardioVas-
cular Assessment Study, HHF hospitalization for heart
failure, HR hazard ratio, MI, myocardial infarction
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model. The underlying risk equations and the

model were subjected to extensive internal val-

idation and the model underwent an external

validation exercise. Therefore, the CREDEM-

DKD model represents an important advance

for the evaluation of treatment interventions in

the DKD population.
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10. Pagels AA, Söderkvist BK, Medin C, Hylander B,
Heiwe S. Health-related quality of life in different
stages of chronic kidney disease and at initiation of
dialysis treatment. Health Qual Life Outcomes.
2012;10:71.

11. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin
and renal outcomes in type 2 diabetes and
nephropathy. N Engl J Med. 2019;380(24):
2295–306.

12. INVOKANA� (canagliflozin) tablets, for oral use
[package insert]. Titusville, NJ: Janssen Pharma-
ceuticals; September 2019.

13. Farahani P. A perspective on principles of compar-
ative cost-effectiveness studies for pharmacother-
apy of chronic diseases. Clin Diabetes. 2012;30(2):
54.

14. Weinstein MC, O’Brien B, Hornberger J, et al.
Principles of good practice for decision analytic
modeling in health-care evaluation: report of the
ISPOR Task Force on Good Research Practices-
Modeling Studies. Value Health. 2003;6(1):9–17.

15. Briggs A, Claxton K, Sculpher M. Decision mod-
elling for health economic evaluation (handbooks

in health economic evaluation). 1st ed. New York:
Oxford University Press; 2006.

16. Sugrue DM, Ward T, Rai S, McEwan P, van Haalen
HGM. Economic modelling of chronic kidney dis-
ease: a systematic literature review to inform con-
ceptual model design. Pharmacoeconomics.
2019;37(12):1451–68.

17. Roberts M, Russell LB, Paltiel AD, Chambers M,
McEwan P, Krahn M. Conceptualizing a model: a
report of the ISPOR-SMDM Modeling Good
Research Practices Task Force-2. Med Decis Making.
2012;32(5):678–89.

18. Mahaffey KW, Jardine MJ, Bompoint S, et al.
Canagliflozin and cardiovascular and renal out-
comes in type 2 diabetes and chronic kidney disease
in primary and secondary cardiovascular preven-
tion groups: results from the randomized CRE-
DENCE trial. Circulation. 2019;140(9):739–50.

19. McEwan P, Foos V, Palmer JL, Lamotte M, Lloyd A,
Grant D. Validation of the IMS CORE diabetes
model. Value Health. 2014;17(6):714–24.

20. McEwan P, Ward T, Bennett H, Bergenheim K.
Validation of the UKPDS 82 risk equations within
the Cardiff Diabetes Model. Cost Eff Resour Alloc.
2015;13:12.

21. Willis M, Johansen P, Nilsson A, Asseburg C. Vali-
dation of the Economic and Health Outcomes
Model of Type 2 Diabetes Mellitus (ECHO-T2DM).
Pharmacoeconomics. 2017;35(3):375–96.

22. Lundqvist A, Steen Carlsson K, Johansen P, Ander-
sson E, Willis M. Validation of the IHE Cohort
Model of type 2 diabetes and the impact of choice
of macrovascular risk equations. PLoS One.
2014;9(10):e110235.

23. Shao H, Fonseca V, Stoecker C, Liu S, Shi L. Novel
risk engine for diabetes progression and mortality
in USA: building, Relating, Assessing, and Validat-
ing Outcomes (BRAVO). Pharmacoeconomics.
2018;36(9):1125–34.

24. American Diabetes Association. Standards of medi-
cal care in diabetes—2020. Diabetes Care.
2020;43(Suppl 1):S1–212.

25. Brown JB, Russell A, Chan W, Pedula K, Aickin M.
The global diabetes model: user friendly version 3.
0. Diabetes Res Clin Pract. 2000;50(Suppl 3):S15–46.

26. National Kidney Foundation. 2018. https://www.
kidney.org/professionals/guidelines/guidelines_
commentaries. Accessed 14 Apr 2020.

27. National Kidney Foundation. K/DOQI clinical
practice guidelines for chronic kidney disease:

Diabetes Ther (2020) 11:2657–2676 2675

https://www.kidney.org/professionals/guidelines/guidelines_commentaries
https://www.kidney.org/professionals/guidelines/guidelines_commentaries
https://www.kidney.org/professionals/guidelines/guidelines_commentaries


evaluation, classification, and stratification. Am J
Kidney Dis. 2002;39(2 Suppl 1):S1–266.

28. Murphy DR, Klein RW, Smolen LJ, Klein TM,
Roberts SD. Using common random numbers in
health care cost-effectiveness simulation modeling.
Health Serv Res. 2013;48(4):1508–25.

29. Neal B, Perkovic V, Mahaffey KW, et al. Canagli-
flozin and cardiovascular and renal events in type 2
diabetes. N Engl J Med. 2017;377(7):644–57.

30. Vemer P, Corro Ramos I, van Voorn GA, Al MJ,
Feenstra TL. AdViSHE: a validation-assessment tool
of health-economic models for decision makers and
model users. Pharmacoeconomics. 2016;34(4):
349–61.

31. Caro JJ, Briggs AH, Siebert U, Kuntz KM. Modeling
good research practices-overview: a report of the
ISPOR-SMDM Modeling Good Research Practices
Task Force-1. Value Health. 2012;15(6):796–803.

32. Eddy DM, Hollingworth W, Caro JJ, Tsevat J,
McDonald KM, Wong JB. Model transparency and
validation: a report of the ISPOR-SMDM Modeling

Good Research Practices Task Force–7. Value
Health. 2012;15(6):843–50.

33. Karnon J, Stahl J, Brennan A, Caro JJ, Mar J, Moller
J. Modeling using discrete event simulation: a
report of the ISPOR-SMDM Modeling Good
Research Practices Task Force–4. Value Health.
2012;15(6):821–7.

34. Zethelius B, Eliasson B, Eeg-Olofsson K, Svensson
AM, Gudbjornsdottir S, Cederholm J. A new model
for 5-year risk of cardiovascular disease in type 2
diabetes, from the Swedish National Diabetes
Register (NDR). Diabetes Res Clin Pract. 2011;93(2):
276–84.

35. Kengne AP, Patel A, Marre M, et al. Contemporary
model for cardiovascular risk prediction in people
with type 2 diabetes. Eur J Cardiovasc Prev Rehabil.
2011;18(3):393–8.

36. McEwan P, Bennett H, Ward T, Bergenheim K.
Refitting of the UKPDS 68 risk equations to con-
temporary routine clinical practice data in the UK.
Pharmacoeconomics. 2015;33(2):149–61.

2676 Diabetes Ther (2020) 11:2657–2676


	Development and Internal Validation of a Discrete Event Simulation Model of Diabetic Kidney Disease Using CREDENCE Trial Data
	Abstract
	Introduction
	Methods
	Results
	Conclusion
	Trial Registration

	Digital Features
	Introduction
	Methods
	Study Data
	Health Outcomes
	Estimation and Validation of Risk Prediction Equations
	The Economic Model
	Model Validation
	Compliance with Ethics Guidelines

	Results
	CREDENCE Risk Prediction Equations
	Validation of CREDEM-DKD

	Discussion
	Conclusions
	Acknowledgements
	References


