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ABSTRACT 

This report presents the findings of its investigation into deployment sequences to better 

understand the paths that could be taken from today’s driving environment to vehicle-highway 

automation. One of the most vexing problems has always been that of determining how to 

advance from the present-day manually-controlled vehicles to the future fully automated 

vehicles. Considerable research attention has been devoted to defining the architecture and 

operating protocols, as well as the technology, of automated highway systems. Rather less 

attention has been devoted to defining the steps by which we can get there.  

 

Initially, targets of opportunity were identified for accelerating progress toward highway 

automation, taking account of the operational constraints. Next, after reviewing existing 

literature on automated highway systems deployment, a set of principles to govern the design of 

deployment strategies is suggested followed by proposed deployment sequences for automated 

highway systems, beginning with adaptive cruise control and then adding elements of vehicle-

vehicle cooperation and lane protection to build toward automated highway systems capabilities 

within constraints of technological, human factors and economic feasibility. A general 

deployment staging sequence is then presented along with example deployment “roadmaps” 

shown for transit buses, heavy trucks and light-duty passenger vehicles. 

 

Finally, we discuss the findings of our modeling and evaluation work for the beginning stages of 

a specific deployment sequence for light-duty passenger vehicles in the setting of a single 

highway lane. This sequence incorporates the use of cooperative adaptive cruise control along 

with conventional or autonomous adaptive cruise control and manual-driven vehicles. The 

evaluation assesses the impact of each of these three operational driving modes on traffic flow 

dynamics and highway capacity as well as of increasing proportions of both autonomous and 

cooperative adaptive cruise control vehicles relative to manually driven vehicles. Such effects 

are difficult to estimate from field tests on highways because of their necessarily low market 

penetration of these vehicles. Our approach uses Monte Carlo simulations based on detailed 

modeling work to estimate the quantitative effects of varying proportions of vehicle control types 

on lane capacity and on queue lengths and wait times at on-ramps. 
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The results of this study can help to provide realistic estimates of the likely effects of the 

introduction of adaptive cruise control to the vehicle fleet, so that transportation system 

managers can recognize that the autonomous adaptive cruise control systems now entering the 

market are unlikely to have significant positive or negative effects on traffic flow. An additional 

value of studying such systems in this way is that these scenarios can represent the first steps in a 

deployment sequence leading to an automated highway system. Benefits gained at early stages in 

this sequence, particularly through the introduction of cooperative adaptive cruise control with 

priority access to designated (but not necessarily dedicated) lanes can help to provide support for 

further investment in and development of automated highway systems. 
 

Key Words: progressive deployment sequences, automated highway systems, adaptive cruise 

control, cooperative adaptive cruise control, highway capacity, traffic flow, modeling, evaluation  
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EXECUTIVE SUMMARY 

This report constitutes the final deliverable for PATH Project MOU 366   “Development and 

Performance Evaluation of AVCSS Deployment Sequences to Advance from Today’s Driving 

Environment to Full Automation”. The project has investigated the need for deployment 

sequences to better understand the paths that could be taken from today’s driving environment to 

vehicle-highway automation. Throughout the history of thinking about highway automation, one 

of the most vexing problems has always been that of determining how to advance from the 

present-day manually-controlled vehicles to the future fully automated vehicles. Considerable 

research attention has been devoted to defining the architecture and operating protocols, as well 

as the technology, of automated highway systems. Rather less attention has been devoted to 

defining the steps by which we can get there.  

 

Initially, targets of opportunity are identified for accelerating progress toward highway 

automation, taking account of the operational constraints that must be addressed. Next, we build 

upon such opportunity targets and address the most serious challenge to the credibility of 

highway automation as a potential solution to transportation problems, that is, the lack of 

convincing deployment strategies. Such a strategy is needed to show how to advance, step by 

step, from today’s transportation system to a future system that includes automated highway 

systems. After reviewing existing literature on automated highway systems deployment we 

suggest a set of principles to govern the design of such deployment strategies. A deployment 

sequence is proposed for automated highway systems, beginning with adaptive cruise control 

and then adding elements of vehicle-vehicle cooperation and lane protection to build toward 

automated highway systems capabilities within constraints of technological, human factors and 

economic feasibility. Finally, some example deployment “roadmaps” are shown for transit buses, 

heavy trucks and light-duty passenger vehicles.  

 

While vehicle type-specific deployment staging sequences for transit buses, trucks, and light-

duty passenger vehicles have differences from each other because the economics and needs of 

these vehicle classes, they possess many commonalities and these are captured in the general 

deployment staging sequence “roadmap” shown in Figure ES-1. In each case, certain enabling 

technologies and AVCSS services may be available now or in the foreseeable future and can 
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serve as the foundations for introducing additional capabilities. Most of these are being 

developed as private industrial initiatives, although some additional developments are likely as a 

product of publicly sponsored programs. Based on the current philosophies and plans of the 

private industry and USDOT in particular, those building blocks are likely to be very heavily 

vehicle based rather than infrastructure based. Additional public investments should be targeted 

at key cooperative system technologies and infrastructure needs that fill the remaining gaps. 

 

In Figure ES-1, we begin on the left with the autonomous safety warning and control assistance 

systems that are already under active development by the motor vehicle industry and its suppliers 

throughout the world. These systems will come to the market within the next few years, 

regardless of whether any public sector or coordinated public-private activities occur. However, 

advancing beyond these systems will require the active participation of public agencies, working 

in concert with the industrial developers of the vehicle-based technologies. The shaded blocks in 

the figure indicate the enabling elements that will in particular need public sponsorship and/or 

coordination. 

 

Note that there are two parallel development paths near the start, and it is possible that different 

localities may choose to follow the separate paths. In some locations, vehicle-vehicle 

communication may be combined with ACC to provide cooperative ACC service anywhere in 

the highway network before the first protected lane is provided. In other locations, where the 

infrastructure providers are more proactive, a protected HOV (or truck-only) lane could be 

provided first, to provide a higher level of HOV (truck) service before vehicle-vehicle 

communication is available. Regardless of which sequence is followed, these represent important 

steps toward the first AHS service. If the cooperative ACC and protected lane are augmented 

with vehicle steering actuation (combined with the lane-tracking sensing function already 

developed for lane departure warning), there is a possibility for getting close to the first really 

automated operations on a protected lane. Adding some more intensive vehicle-roadside 

communication (VRC-2) for condition checking at entry, the means for automatically 

coordinating entering traffic with the traffic already in the lane, and some enhanced traffic 

management capabilities for integrating operations with the rest of the traffic system (ATMS+), 

we have the makings of the first single-lane automated highway system.  
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FIGURE ES-1  Generic AHS Deployment “Roadmap” 

 

Reaching that first single-lane AHS is really the challenging milestone. Once that has been 

reached, the public and their political leaders should be able to see and experience the AHS 

benefits directly, which should stimulate the support needed to extend from that to a 

comprehensive AHS. That extension needs the addition of capabilities for automatic lane-

changing control and control at the link and network levels. As the market penetration of AHS-

capable vehicles increases and the utilization of the initial single AHS lane approaches capacity, 

it should become politically feasible to convert pre-existing mixed-flow lane(s) to AHS, 

providing the civil infrastructure for the complete multiple-lane AHS at modest incremental cost. 

 

The next step in our investigation of AVCSS deployment sequences involved the modeling and 

evaluation of these sequences. Due to the significant amount of modeling and simulation work 

necessary, especially for the case of manually-driven vehicles, we were constrained to focus on 

only initial steps immediately beyond adaptive cruise control and analyzed the impacts of 
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cooperative adaptive cruise control in a mixed-lane traffic setting, i.e., with manually-driven 

vehicles and vehicles under AACC control in a single lane. We used light-duty passenger 

vehicles as the vehicle type for this analysis.   

 

A set of mathematical models are defined to predict the effects that emerging driver control 

assistance systems such as adaptive cruise control can have on traffic flow dynamics and 

capacity. It is important to understand these effects in order to ensure that adaptive cruise control 

systems are implemented in ways that improve, rather than degrade, traffic conditions. Existing 

traffic models were not designed for, and are not suitable for, this purpose, so it has been 

necessary to develop a new family of simulation models incorporating the key elements of driver 

behavior and control system design that will affect traffic flow dynamics and capacity.  

 

Initially we conducted a review of the literature in the area of adaptive cruise control that have 

attempted to predict the effects that the introduction of adaptive cruise control vehicles into the 

traffic stream would have on overall traffic behavior including congestion, safety, emissions, and 

fuel consumption. Past work has been based on analytical models and simulations since there are 

not yet sufficient adaptive cruise control vehicles in use on the roadway to perform direct 

experimental evaluations. Much of this past literature has been deficient in its attempts to 

completely and accurately describe the impacts of adaptive cruise control on traffic, for reasons  

including 1. a lack of a realistic model for human car-following behavior and thus no evaluation 

of the dynamic interactions between adaptive cruise control and manually-driven vehicles, 2. 

dynamics of human responses not fully understood or explained, 3. results specific to non-U.S. 

highways, driving behavior, and traffic laws and so may not be totally applicable to the U.S. 

case, 4. simulation unrepresentative of real traffic with its variety of disturbances, and 5. no 

prediction of traffic flow volume achievable with adaptive cruise control.   

 

Models were developed, validated, and then used to assess the impact on traffic flow volumes. 

Such models included 1. vehicle-following logic for each operational mode, i.e., human driving, 

autonomous adaptive cruise control, and cooperative adaptive cruise control, 2. merging of 

vehicles entering a limited-access highway from an on-ramp, 3. “free-driving” of a vehicle in 
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uncongested traffic or with no immediately preceding vehicle to follow, and 4. vehicle dynamic 

responses to speed change commands.  

 

These models were tested initially for simple vehicle pairs, then for sequences of 20 vehicles 

with the same type of vehicle-following controller, and finally more complicated cases involving 

mixtures of controller types and larger numbers of vehicles, with vehicles entering and leaving 

the flow at on- and off-ramps, respectively. Testing for model validation consisted of showing 

how a group of 20 vehicles each with the same controller (human, ACC or CACC) responds to 

severe disturbances. The disturbances are generated by a lead vehicle that follows a velocity 

trajectory taken from severely congested stop-and-go traffic on I-880 in the San Francisco Bay 

Area. We allow the following vehicles to follow each other stably before injecting the 

disturbance. For the human driver model, we see the kind of shock wave disturbance expected in 

normal traffic with larger disturbances at later times for vehicles further behind the lead vehicle. 

For the adaptive cruise control case, disturbances are reduced the further out we get from the 

lead vehicle. While responses are delayed in time, the amplification of disturbances experienced 

with the human driver control law is not encountered here. Thus reduction in shock wave 

propagation illustrates one potential improvement to traffic dynamics from use of adaptive cruise 

control. For the cooperative adaptive cruise control case, the tighter control of this controller 

manifests itself with a closer match to the velocity trajectory of the lead vehicle from following 

vehicles as well as a reduction in response delay from one vehicle to another. Therefore, all 

simulation model validation test cases produced reasonable results. 

 

Results have been shown for the validation cases used to test the models individually, for the 

capacity estimates for the 100% market penetration cases for each of the three modes of 

operation:  manually driven vehicles, AACC, and CACC, and for the capacity impacts of 

different combination of market penetrations for AACC and CACC mixed with manually-driven 

vehicles. For the three 100% market penetration cases, nominal capacity estimates for the 

manual driving, AACC, and CACC cases were, respectively: 2,050, 2,200, and 4,550 vehicles 

per hour. The estimate for manually driven vehicles is consistent with current estimates for such 

driving. Even under the most favorable conditions, with ideal ACC system design and 

performance, it appears that autonomous ACC can only have a small impact on highway 
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capacity. Assuming that average ACC users choose a mid-range time gap of 1.4 seconds, 

highway capacity can be increased by at most 9.5% when the market penetration of autonomous 

ACC is in the 40% to 80% range. Moreover, diminishing returns set in quickly with respect to 

the capacity increases from introducing AACC into the traffic stream. Increases in the market 

penetration of autonomous ACC above 80% can lead to a modest loss of highway capacity, 

based on ACC users choosing an average time gap for ACC that is somewhat longer than the 

time gap they use when driving manually. Because of the modest effects of AACC on highway 

capacity, there does not appear to be any justification for providing AACC vehicles with priority 

access to special lanes such as HOV lanes. Cooperative ACC systems, using vehicle-vehicle 

communications to enable closer vehicle following (down to a time gap of 0.5 second), have the 

potential to produce significant highway capacity increases. Cooperative ACC can represent an 

important step in a progressive deployment strategy to lead toward highway automation, because 

it can potentially double the capacity of a highway lane at a high market penetration. The 

capacity effect is very sensitive to market penetration, which means that it is important to gather 

as high a proportion as possible of CACC vehicles into the same lane. This provides a strong 

justification for giving priority access to a special lane for CACC vehicles.  

 

Much more work remains to be done before this can be turned into an action plan. More 

quantitative studies of the costs and benefits associated with the different stages are needed. The 

results of this and further analysis will then need to be explored with representatives of the 

relevant stakeholder groups for verification or refutation. The real action can come only after the 

stakeholders have been convinced of the genuine benefits that they will gain from each 

significant step on the road toward AHS. 
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1.0 INTRODUCTION 

This report constitutes the final deliverable for PATH Project MOU 366   “Development and 

Performance Evaluation of AVCSS Deployment Sequences to Advance from Today’s Driving 

Environment to Full Automation”. This report consists of our investigation into the need for 

deployment sequences to better understand the paths that could be taken from today’s driving 

environment to vehicle-highway automation and the modeling and evaluation of such sequences. 

 

The need or a progressive deployment strategy for AHS was recognized by the National 

Automated Highway System Consortium (NAHSC), but the NAHSC was not able to satisfy that 

need by the time its work was prematurely terminated by the USDOT. The NAHSC struggled 

with attempts to define a roadmap toward deployment of automated highway systems (AHS) 

incorporating a diverse collection of feasible and infeasible elements, and the limitations of its 

deployment plans were among the primary targets for criticism by the Transportation Research 

Board (TRB) study committee that reviewed its program (1). This shortcoming of the NAHSC 

work was one of the principal criticisms by the special TRB committee. Strategies for AHS 

deployment have been addressed in a variety of papers published in recent years, the limitations 

of which will be discussed later in this report. 

 

In Japan, under the leadership of the Ministry of Construction, AHSRA has defined a very 

general framework for the deployment staging of its AHS (“Advanced Cruise-Assist Highway 

System”) program, with successive stages called AHS-i (information), AHS-c (control 

assistance) and AHS-a (automation) (2). However, this framework does not appear to have been 

specified in much depth, with no indication of the extent to which these three stages of advanced 

vehicle control and safety systems (AVCSS) may overlap in time or differ in their application to 

the different classes of road vehicles. 

 

Research conducted over the past decade has provided strong indications that automated 

highway systems (AHS) can offer very significant benefits to transportation system operations 

(3). Principal among these is the potentially very large capacity increase per lane that can be 

gained when all vehicles in that lane are fully automated. Many of the technical impediments to 

highway automation have been addressed successfully, and many more are continuing to receive 
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active research attention. However, one major impediment has remained largely intractable – the 

absence of a clear strategy or strategies for advancing from today’s manually-controlled road 

vehicle system to the future system in which traffic on some portions of the road network could 

be fully automated.  

 

Adaptive cruise control (ACC) systems are the first driver control assistance systems to enter the 

passenger car and heavy-duty truck marketplace having the potential to influence traffic flow 

characteristics. Such systems can also be viewed as a first step toward future automation of the 

complete driving function and are thus essential as part of the overall deployment equation and it 

is important to understand how ACC system designs and operating concepts can be developed to 

best support such future advances. To evaluate interactions between ACC vehicles and 

conventionally driven vehicles, it is necessary to use sophisticated and sensitive models of each 

having sufficient fidelity to capture their sometimes subtle interactions. While it is not practical 

now to evaluate these interactions in full-scale experiments because of the need for a large ACC 

vehicle fleet, in the longer term, it would, however, be valuable to perform these experiments. As 

a first step in developing and evaluating deployment sequences leading toward AHS, this report 

describes a new set of models for evaluating large-scale interactions occurring when varying 

proportions of ACC vehicles are mixed with conventionally driven vehicles in a limited-access 

highway operating environment. To address the longer-term advances in ACC capabilities, 

models are developed for higher-capability cooperative ACC systems (CACC) as well as the 

first-generation autonomous ACC. 

 

2.0 DEPLOYMENT OF VEHICLE-HIGHWAY AUTOMATION SYSTEMS:  
OPPORTUNITIES AND CONSTRAINTS 

The central challenge for AHS deployment staging remains the “chicken and egg” problem of 

which comes first – the vehicle technology or the roadway infrastructure technology? Of course, 

the real answer is neither, because they need to come in coordination with each other rather than 

in sequence, and the stakeholders on both the vehicle and infrastructure sides need 

to work together to coordinate their development work and investments. The technical and 

institutional considerations, which tend to strongly favor opposing approaches to deployment 

staging, need to be balanced with each other in seeking a feasible deployment strategy. 
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2.1 Evolution or Revolution? 

In recent years, the deployment staging discussion has often been framed in contrasting terms of 

“evolution or revolution”(4,5). This false dichotomy forces people to choose between two 

extreme solutions, neither of which is likely to be successful. The “evolutionary” approach 

assumes that all the needed technologies will gradually be added to vehicles, which will have 

steadily increasing degrees of automation until eventually they will be fully automated. This 

approach cannot work because of the insuperable technical problems associated with automating 

vehicles that must coexist freely with manually driven vehicles and the human factors constraints 

that preclude drivers from being effective supervisory controllers of “mostly automated” vehicles 

(6). The “revolutionary” approach assumes that a completely new and large-scale transportation 

system will be implemented alongside today’s system within a short period of time. Although 

this approach is easier to accomplish technologically, it faces difficult economic, political and 

social challenges. In all likelihood, a hybrid approach combining elements of both the 

“evolutionary” and “revolutionary” approaches will be needed. The underlying technologies in 

sensors, communications and actuators will gradually be increasing on vehicles, for reasons 

largely unrelated to the needs of vehicle automation. These can provide some of the building 

blocks for automation, and can significantly reduce the incremental costs associated with 

automation, but they are far from sufficient. At the same time, roadway infrastructure 

modernizations, expansions and additions will continue to be made, even if not at the rate they 

were made in the 1960s. With technological enhancements of modest cost, these can provide the 

infrastructure building blocks to help advance toward some automated lanes of limited scope. 

The core of the deployment staging planning process is identifying the targets of opportunity for 

combining these vehicle and infrastructure improvements in ways that are mutually 

supportive. 

 

2.2 Deployment Targets Of Opportunity 

Progress toward an automated highway system is not likely to “just happen”, but has to be based 

on deliberately capitalizing on the targets of opportunity that may be available. These may be 

based on the needs of specialized fleets of vehicles, geographic locations with specific 

transportation problems and needs, or unique political or technological opportunities, such as:  
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• Applications where the vehicles and roadway infrastructure are under common ownership 

and operation (HOV lanes for buses and vanpools, freight movements at terminals and 

ports, highway maintenance vehicles, public service fleets); 

• Special bottlenecks where conventional infrastructure expansions would be particularly 

costly and difficult (bridges, tunnels); 

• Commute corridors with high congestion and some available right of way; 

• Specialized vehicle fleets where there is an opportunity to subsidize some incremental 

vehicle costs (vanpools, public service fleets); 

• Public officials interested in promoting transportation and high technology issues; 

• Applications where substantial transportation infrastructure investments are already 

planned and the incremental costs of adding AHS capabilities are therefore modest; 

• Locations where the roadway design permits sufficiently tight access controls that it may 

be possible to carefully limit the interactions between automated vehicles and vehicles 

that are manually driven or partially automated. 

 
In each case, it is necessary for the vehicle and infrastructure stakeholders to be interested in 

gaining the benefits of highway automation, willing and able to work with each other, and able to 

perceive tangible rewards that exceed their risks. The risks can be minimized if the deployment 

can be staged in steps, each of which clearly has positive net benefits for each decision maker, so 

that they do not need to be worried about whether they can achieve a more uncertain later step in 

order to recover their investments. 

 

2.3 Operational Constraints To Deployment Of AVCSS/AHS 
Capabilities 

The three key operational issues that determine the difficulty of implementing automation 

capabilities on vehicles and that must be considered carefully when designing automation 

deployment sequences are: 

 

a. Physical protection of the driving environment 

b. Minimum capabilities of vehicles that are permitted to coexist with automated vehicles in 

that environment 

c. Driver role(s) in control of the automated or partially automated vehicles. 
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If these characteristics are most severely constrained, the technical problems of implementing 

automation become simpler, but if these characteristics are left relatively unconstrained those 

technical problems can become insuperable. However, the most constrained cases also present 

challenges in the economic, operational and political domains, which must be traded off against 

the technical challenges. 

 

2.3.1 Physical Protection Of The Driving Environment 

Beginning with the simplest case, and then proceeding to more complicated cases, we have: 

 

1. Single lane, protected by barriers and fences – This represents the highest level of protection 

for the automated vehicles, preventing the intrusion of foreign objects, unequipped vehicles, 

animals and pedestrians. It also prevents other vehicles from passing or cutting in front of the 

automated vehicles. With this level of protection, automated operations could be based on use of 

vehicle-follower longitudinal control and lane-following lateral control, without the need for 

special obstacle detection capabilities.  

2. Single lane plus shoulder, protected by barriers and fences – This provides almost as much as 

protection as the previous case, but the shoulder could provide an opportunity for an aggressive 

driver to “weave” between automated vehicles, introducing the possibility of side-swipe or cut-in 

hazards. This would impose significantly increased sensing requirements on the automated 

vehicles, but in compensation would provide better access to failed vehicles by emergency 

response crews as well as an opportunity for bypassing a failed vehicle without halting all traffic. 

3. Multiple lanes, protected by barriers and fences – This introduces the need to implement lane-

changing automation, as well as protection against more frequent sideswipe or cut-in hazard 

conditions. 

4. Elimination of fences on the barriers – In any of the above cases, eliminating the fences from 

the top of the barriers substantially reduces the protection from road debris and animal and 

pedestrian intrusions. This would impose significant obstacle detection capabilities on the 

automated vehicles, which appear to substantially exceed the state of the art in sensing 

technology. 

5. No physical protection – This imposes the least infrastructure constraint, but represents 
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the maximum complexity of operating environment for the technology. 

 

2.3.2 Minimum Capabilities Of Vehicles That Can Coexist With Automated Vehicles 

Beginning once again with the simplest case and proceeding to the more complicated cases: 

 

1. Other fully automated vehicles – This is the easiest to achieve technically, because all 

vehicles would then have comparable, predictable, performance and full communication 

capabilities. 

2. Vehicles with two-way data communications – These vehicles can exchange information 

about their current behavior and possibly also their future intentions, whether they be manually 

or automatically driven. This facilitates coordination and anticipation of problems, but leaves the 

unpredictability of driver behavior as a remaining challenge. 

3. Vehicles with transponders or tags – There are several possible levels of capability here, but 

the key element is that they can respond to sensors or communication devices on the automated 

vehicle in a distinctive fashion (identifying themselves as vehicles, perhaps also by type or 

performance class, and at higher levels with some information about current behaviors such as 

speed, acceleration, or failure condition flags). The information that they are able to provide 

reduces the uncertainties about the driving environment for the equipped vehicle. 

4. Vehicles with adaptive cruise control (ACC) – These vehicles can provide a somewhat more 

predictable longitudinal behavior than unequipped manually-driven vehicles. That improvement 

is relatively small, but it could be increased in the case of vehicles with cooperative ACC, 

combining the basic ACC with inter-vehicle communications for coordination of maneuvering. 

5. Any vehicle – This is the most difficult case because it provides no assistance to the automated 

vehicle and leaves the driving environment as unstructured and unpredictable as any public road 

today. This is also the easiest case from the political and institutional perspective because it 

requires no limitations on the movements of any vehicles.  

 

A promising approach for unlocking the vehicle/infrastructure “chicken/egg” conundrum is to 

focus on combinations of driving environment restrictions and vehicle capability-based access 

restrictions that minimize safety concerns. Both of these restrictions are intended to reduce the 

complexity of the driving environment encountered by the automated systems. As the driving 
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environment becomes more complex, it becomes increasingly difficult to design and implement 

the automation system, which also means that less of the driving tasks can be transferred from 

the driver to the system without jeopardizing safety.  

 

For example, since it is likely to be politically difficult to restrict a protected lane to fully 

automated vehicles when the population of such vehicles is extremely small, those lanes could 

perhaps also be made available for use by manually-driven vehicles equipped with suitable 

communication devices so that the automated vehicles would be able to communicate with them. 

Similarly, if a fully protected lane is not initially achievable in some locations, perhaps usage of 

the partly protected lane(s) would be restricted to vehicles having intermediate capabilities, but 

neither fully automated nor totally unequipped. The feasibility of these intermediate solutions 

must be considered on the basis of the third key characteristic, the role(s) that the driver plays in 

control of the vehicle. 

 

2.3.3 Driver Role(s) In Control of the Automated or Partially Automated Vehicles 

Considerations of human factors limit the range of feasible driver roles. The roles of the driver 

and the automation system will need to be defined so that, when combined, all of the essential 

safety-critical functions are performed at least as well as they are today. The roles of the driver 

and the automation system would then be the complements of each other. Obviously, the current 

condition of the driver maintaining complete responsibility for the control of the vehicle remains 

as a viable alternative. However, in addition to this, it is also possible to have: 

 

1. Adaptive Cruise Control – Automatic control of vehicle speed and spacing to forward 

vehicle(s) in well-structured traffic flow, while driver retains steering control, hazard 

detection and response and stop-and-go control responsibilities. 

2. Driver control assisted with hazard warnings – A variety of hazard warning systems 

currently under development could give the driver auditory, haptic, kinesthetic, or 

possibly visual cues about hazards in the driving environment, and the driver would retain 

responsibility for taking corrective actions. 

3. Automated driving with driver responding only to take-over warnings – Under normal 
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conditions, the vehicle would be driven automatically. However, when the automated system 

encountered a failure or a driving condition beyond its capabilities, it would alert the driver to 

the need to intervene and would then cede control of the vehicle to the driver as soon as he 

interacts with the steering wheel or pedals. (The inverse case of a system intervening to protect 

the driver when he is controlling the vehicle [a kind of automated “guardian angel”] poses such 

daunting technical challenges that it should not be regarded as a realistic precursor to completely 

automated driving.) 

4. Completely automated driving – The system would be designed with sufficient fault detection 

and malfunction management to handle all driving conditions, including bringing the vehicle to a 

safe stop as the ultimate fall-back condition. In this case, the driver would have no role and 

would not need to remain conscious during vehicle operations. This is certainly the most 

technically challenging to implement, while providing the maximum of task relief to the driver.  

 

Note that this listing does not include any “partial” or “shared” control cases between ACC and 

fully automated driving. That is because of concerns about the difficulty of designing such 

systems to be easy to learn and safe to implement. These intermediate cases encounter two 

fundamental problems: 

 

• Not being able to ensure that the driver has a correct mental model of the system’s 

capabilities and limitations; 

• Not leaving the driver with a sufficient workload to retain the attentiveness necessary to 

quickly detect any and all hazardous conditions that the system is not designed to handle 

(5). 

 

2.4 Deployment Staging “Roadmap” 

Based on the considerations that have been discussed already, hypothetical deployment 

staging sequences have been developed for transit buses, freight vehicles (primarily trucks) and 

light-duty passenger vehicles. These sequences are somewhat different from each other because 

the economics and needs of these classes of vehicles differ considerably, but their common 

essence is captured in the general “roadmap” of Figure 1 (Vehicle-specific sequences are 

presented in Chapter 3). In each case, certain enabling technologies and AVCSS services may be 
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available now or in the foreseeable future and can serve as the foundations for introducing 

additional capabilities. Most of these are being developed as private industrial initiatives, 

although some additional developments are likely as a product of publicly sponsored programs 

such as the USDOT’s Intelligent Vehicle Initiative (IVI) in the United States or the ASV or 

AHSRA programs in Japan. Based on the current philosophies and plans of the private industry 

and USDOT in particular, those building blocks are likely to be very heavily vehicle based rather 

than infrastructure based. Additional public investments should be targeted at key cooperative 

system technologies and infrastructure needs that fill the remaining gaps. 

 

At the left of Figure 1, we begin with the autonomous safety warning and control assistance 

systems that are already under active development by the motor vehicle industry and its suppliers 

throughout the world. These systems will come to the market within the next few years, 

regardless of whether any public sector or coordinated public-private activities occur. 

 

However, advancing beyond these systems will require the active participation of public 

agencies, working in concert with the industrial developers of the vehicle-based technologies. 

The shaded blocks in Figure 1 indicate the enabling elements that will in particular need public 

sponsorship and/or coordination. 

 

Note that there are two parallel development paths near the start, and it is possible that different 

localities may choose to follow the separate paths. In some locations, vehicle-vehicle 

communication may be combined with ACC to provide cooperative ACC service anywhere in 

the highway network before the first protected lane is provided. In other locations, where the 

infrastructure providers are more proactive, a protected HOV (or truck-only) lane could be 

provided first, to provide a higher level of HOV (truck) service before vehicle-vehicle 

communication is available. Regardless of which sequence is followed, these represent important 

steps toward the first AHS service. If the cooperative ACC and protected lane are augmented 

with vehicle steering actuation (combined with the lane-tracking sensing function already 

developed for lane departure warning), there is a possibility for getting close to the first really 

automated operations on a protected lane. Adding some more intensive vehicle-roadside 
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FIGURE 1  Generic AHS deployment “Roadmap” 

 

communication (VRC-2) for condition checking at entry, the means for automatically 

coordinating entering traffic with the traffic already in the lane, and some enhanced traffic 

management capabilities for integrating operations with the rest of the traffic system (ATMS+), 

we have the makings of the first single-lane automated highway system.  

 

Reaching that first single-lane AHS is really the challenging milestone. Once that has been 

reached, the public and their political leaders should be able to see and experience the AHS 

benefits directly, which should stimulate the support needed to extend from that to a 

comprehensive AHS. That extension needs the addition of capabilities for automatic lane-

changing control and control at the link and network levels. As the market penetration of AHS-

capable vehicles increases and the utilization of the initial single AHS lane approaches capacity, 



 

 

11

it should become politically feasible to convert pre-existing mixed-flow lane(s) to AHS, 

providing the civil infrastructure for the complete multiple-lane AHS at modest incremental cost. 

 

3.0 PROGRESSIVE DEPLOYMENT STRATEGIES LEADING TOWARD AN  
AUTOMATED HIGHWAY SYSTEM (AHS) 

This chapter builds on the foundation established in chapter 2, and extends that work in more 

depth and detail. Following a review of the existing literature on AHS deployment, the first focus 

is on definition of some basic principles that should be applied to the synthesis of deployment 

strategies. Next, the three operational constraints on deployment of AHS that were previously 

introduced are used as the basis for synthesizing operational concepts for some “pre-AHS” 

(intermediate-term) systems. The incremental benefits that can be gained at each step are then 

explored, to try to ensure that they are sufficient to justify the investments needed to attain that 

step. Finally, deployment “roadmaps” are hypothesized for transit buses, heavy trucks and 

passenger cars to provide some tangible examples to illustrate the similarities and differences in 

how the use of automation technology can progress for each of these types of road vehicles. 

 

3.1 Prior Literature on AHS Deployment 

In the early literature on AHS, little attention was devoted to defining a sequence of steps by 

which one could advance to AHS. This should not be too surprising, because until the 1960s, and 

in most cases the 1970s, it was still relatively easy to build entirely new highways. That was the 

era of major Interstate highway construction in the United States, and in that environment it was 

easy to conceptualize the construction of another completely new (automated) highway. 

However, in subsequent years the economic, political and environmental landscape has changed 

to the extent that construction of a completely new highway would be difficult to envision in 

virtually any major urban area in the U.S. Attention, instead, needs to be focused on expansions 

of existing highways that can be accomplished largely within existing rights of way. 

 

Given the difficulty of constructing completely new highways for AHS, some investigators 

became interested in the concept of operating automated vehicles freely mixed within the 

conventional traffic flow on existing highways (7,8). If this concept were technically feasible, the 

infrastructure deployment challenges could be ignored and all attention could be focused on the 

vehicle. However, the technical challenges that must be surmounted in order to make such a 
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concept safer than today’s highway travel are so overwhelming that this is probably not a 

realistic target within the dawning century. 

 

The amount of research attention focused on AHS in the U.S. began to increase substantially in 

1993, motivated by the USDOT sponsorship of the AHS “Precursor Systems Analysis” projects. 

These projects, combined with the already-existing PATH program of AHS research, and the 

subsequent work of the NAHSC, led to the publication of several papers addressing AHS 

deployment staging. Tsao (4,9) identified a set of challenges to AHS deployment and then 

proposed a detailed sequence of stages toward AHS, beginning with an automated shuttle van 

service that would operate in mixed traffic under the supervision of a driver, who would be 

responsible for handling failures or conditions that exceed the capabilities of the automation 

system. Unfortunately, even this initial stage is unlikely to be feasible because of the severely 

limited ability of humans to execute this type of supervisory control (5). Several additional 

treatments of the deployment issues appeared in the book about AHS edited by Ioannou (3), 

which either fell prey to the same misconception about human capabilities or else blithely 

assumed away the technical challenges to automating driving in the extremely complicated 

mixed traffic environment. 

 

Two different systematic frameworks for thinking about AHS deployment problems were 

proposed by Tsao (10) and Koopman and Bayouth (11). Tsao (10) chose an “axiomatic” 

approach based on explicitly stating assumptions and then deriving inferences and requirements 

from those assumptions. The difficulty here was in the lack of a sufficiently robust, universally 

applicable, set of assumptions that could provide a solid enough foundation for the subsequent 

conclusions. Koopman and Bayouth (11), in contrast, defined a set of four “capability building 

blocks” that they considered to be orthogonal to each other and then defined the 16 combinations 

of these as the map of possible deployment options. However, the building blocks that they 

selected were not comprehensive (not spanning the full range of useful alternatives), nor were 

they truly orthogonal and independent of each other. Both of these papers showed the limitations 

of trying to distill the AHS deployment problem down to an equivalent logical or mathematical 

problem for which an algorithmic solution can be found. 
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In a later paper, Bayouth and Koopman (12) approached the deployment problem from a 

functional perspective, defining the technical capabilities that could be combined to lead to ever-

increasing levels of vehicle capabilities. This provided some useful insights into deployment 

issues, although the authors unfortunately chose to assign priority to autonomous in-vehicle 

functions, treating inter-vehicle communications and infrastructure support as later additions 

rather than integral elements in the improvement of system capabilities. Coming from a different 

direction, McKendree (13) tried to estimate the time-scales for development and growth of AHS 

and for an alternative concept in which automated vehicles would mix freely in the conventional 

highway traffic stream. This used simple system dynamic models to represent many assumptions 

about conscious deployment decisions for AHS and about the general advance of technology for 

the automated mixed traffic vehicles. With different choices of numerical values to represent 

those largely arbitrary assumptions, substantially different results could have been derived. 

 

3.2 Principles to Govern AHS Deployment Strategies 

Successful AHS deployment will require a set of favorable decisions by a host of stakeholders in 

both the public and private sectors. Because AHS deployment requires investments in both 

roadway infrastructure and vehicles, the essential stakeholders include a wide range of players, 

beginning with state, regional and local governments, then crossing over to vehicle OEMs and 

their suppliers, and finally to the purchasers and users of vehicles (not only automobiles, but also 

buses and trucks), as well as various other special interests such as the insurance industry, 

environmentalists, and the legal community. Given this complexity, a successful AHS 

deployment strategy is likely to need to adhere to principles such as these: 

 

a. Define a deployment staging “roadmap” in which each development stage produces 

benefits that will exceed its costs for all of the key decision-makers so that they will have 

continuing positive interest in investing in the program. 

b. Seek targets of opportunity to combine vehicle and infrastructure elements and services 

to produce added value that would not otherwise be achievable. 

c. Seek synergies across “vehicle platforms”, particularly in cases in which services for one 

platform can be used to establish an infrastructure framework and elements that can 

facilitate the advance of services on other platforms having larger vehicle populations. 
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d. Build on the work that has been and is still being done on pieces of the system (industry 

AVCSS product developments, prior PATH and NAHSC research, ATMS and ATIS 

services, IVI, etc.) and avoid duplicating those efforts, so that resources are used most 

efficiently. 

e. Encourage commercial spin-off products at every stage, to sustain the interest of private 

sector participants. 

f. Apply a systems approach, so that all systems and services can fit together compatibly 

within an architectural framework that should be developed as early as possible, but 

should also be sufficiently flexible to adapt as technologies mature.  

g. Maintain the visibility of the goal of developing a truly automated highway system on 

dedicated lanes (in order to be able to gain the capacity benefits), and try to ensure that 

activities contribute toward reaching that goal rather than diverging on tangents.  

 

The first two of these principles are particularly influential in the design of a deployment staging 

sequence. The dominant consideration for the staging sequence must be that the incremental 

benefits at each stage must exceed the perceived costs and risks required to reach that stage. If 

this does not hold, then some or all of the stakeholders are likely to hesitate to move forward to 

that stage, because they cannot base their plans on uncertain benefits further in the future.  

 

Although not explicitly stated in the above list, it is also essential that each stage be feasible in 

technical and human factors terms. Some of the deployment-staging ideas that have been 

proposed in the past have been based on some very dubious assumptions about human and 

technological capabilities. The feasibility considerations need to be based on proper treatment of 

the three key operational issues that were described in Chapter 2: 

 

i. Physical protection of the driving environment from intrusions of debris, animals, 

pedestrians or other vehicles. 

ii. Minimum capabilities of the “other” vehicles that are permitted to coexist with the 

automated vehicles. 

iii. Driver role(s) in control of the automated or partially automated vehicles. 

 



 

 

15

3.3 Operational Concepts for “Pre-AHS” Systems and Their Benefits 

Although much research attention has been devoted to the definition of operational concepts for 

(fully automated) AHS, rather less attention has been devoted to the definition of the systems 

that might precede it in deployment. The U.S. National Architecture for ITS identifies a series of 

advanced vehicle control and safety system (AVCSS) user services (14). Similarly, the AHSRA 

program in Japan has defined its set of analogous user services (15). Under the auspices of the 

NAHSC, an exhaustive listing of possible “pre-AHS” and AHS user services was also defined 

(16). While these listings of possible services can serve as a useful starting point, they fall short 

of identifying the crucial sequencing by which we can advance from today’s entirely manual 

driving to the future fully automated driving (AHS). 

 

The first steps toward AHS are relatively easy to identify, because these are autonomous systems 

that are already under development by vehicle OEMs and their suppliers throughout the world: 

adaptive cruise control (ACC), forward collision warning, and road (lane) departure warning 

systems. All of these will be on the market within the next few years, regardless of any action or 

inaction on the part of public authorities. The ACC will enhance driving comfort and 

convenience, while the two warning systems should provide some safety benefits. These systems 

may later be joined by side collision (“blind spot”) warning systems as well. The warning 

systems could possibly be extended from audible or visual warning to haptic feedback to drivers 

(through pressure on pedals or torques applied to the steering wheel). 

 

The steps that might follow these initial systems are not so easy to define. Some have suggested 

that lane departure warning might be extended to lane tracking control, but this seems to be an 

extremely dubious step because of its implications for driver alertness. If the driver is relieved of 

responsibility for steering to track the lane, there is a serious likelihood of the driver losing 

overall attentiveness to the driving task and to the hazards that could arise (5). Moreover, the 

availability of automatic steering control would likely tempt drivers to combine that with 

conventional or adaptive cruise control, for a simulacrum of fully automated driving. The safety 

implications of this could be devastating, because the seemingly automated vehicle would in fact 

have no capability to deal with driving hazards such as obstacles in the roadway, aggressive 

maneuvering by other vehicles, poorly marked roads, etc., etc. One cannot expect the typical 



 

 

16

driver to appreciate all the limitations of the new technologies on his vehicle, particularly in the 

context of his own limitations of attentiveness when relieved of much of the driving task. 

 

In trying to advance toward AHS, it appears to be more productive to build on the longitudinal 

control capabilities of ACC and try to provide benefits beyond the comfort and convenience 

offered by the basic autonomous ACC. Additional benefits could be associated with safety 

improvements or improvements to lane capacity (translating into congestion relief and time 

savings for travelers). These benefits could be gained by augmenting the ACC with vehicle-

vehicle and perhaps vehicle-roadside communication (leading to cooperative ACC – CACC) and 

with access to special protected highway lanes. 

 

3.3.1 Cooperative ACC (CACC) 

Vehicle-vehicle communication can provide an ACC system with more and better information 

about the vehicle it is following. This could include precise speed information, acceleration, fault 

warnings, warnings of forward hazards, maximum braking capability, and current braking 

capability (based on local tire/road coefficient of friction). With information of this type, the 

ACC controller can better anticipate problems, enabling it to be safer, smoother and more 

“natural” in response, and potentially to operate at a smaller time gap (i.e., closer to the 

preceding vehicle). 

 

The “communications” could be as primitive as equipping the back of the preceding vehicle with 

a tag that could be clearly distinguished by the ACC radar, or it could extend to a complete two-

way wireless communication system. The tag (designed to reflect the incident radiation from the 

ACC radar) could be implemented on all vehicles relatively quickly and cheaply by 

incorporating it in the annual license plate renewal sticker. 

 

The two-way communication system would involve more time and expense, particularly if it 

needs to have access to the outputs of various sensors and subsystems throughout the vehicle. 

The incremental expense of capabilities such as these will inevitably decrease over time as more 

vehicles are equipped with in-vehicle networks such as CAN (Controller Area Network) and 

sensors for collision warning and improved active braking control. However, it is not reasonable 
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to expect vehicle owners to select an option such as the two-way communication system unless 

they, themselves, receive a clear and direct benefit from it (i.e., beyond serving as a better target 

for somebody else’s CACC system). These benefits could be associated with traveler 

information systems, in-vehicle multimedia systems or perhaps with enhanced access to special 

highway lanes (as described below). 

 

3.3.2 Protected Highway Lanes 

A variety of levels of “protection” can be applied to highway lanes to restrict access and 

minimize hazards. Higher levels of protection can support higher levels of system performance, 

but they also tend to cost more and be more difficult to implement politically. Some possible 

levels of protection, ranging from least effective to most effective, include: 

 

a. “virtual barriers” using paint stripes or other forms of delineation – these are used to 

mark HOV lanes in many places, and represent a legal boundary beyond which only 

certain vehicles are authorized to operate. However, they provide no physical protection 

against scofflaw drivers’ vehicles, debris or animals. 

b. Concrete “Jersey barriers” – these are used to separate HOV lanes in some locations, and 

generally provide protection against inadvertent vehicle intrusions and some debris 

intrusions. However, they are sometimes breached by vehicles, and can be violated easily 

by crash debris and animals. 

c. Concrete barriers with fences on top – these can protect against the large majority of 

vehicle, debris and animal intrusions. If the “protected” facility is wider than a single lane 

width, it is still possible for vehicles within that facility to have adverse interactions if 

drivers overtake or change lanes too aggressively or sideswipe other vehicles. 

d. Single lane behind concrete barriers with fences – this provides the maximum  

protection for the vehicles, producing the simplest and most predictable driving 

environment. 

 

As the level of protection increases, the hazards to which the vehicles are exposed decrease and 

it becomes possible to place more reliance on automated system capabilities. The reduction in 

hazards should make it possible to reduce the need for driver vigilance, enabling vehicles to 
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operate closer together without compromising safety, which, in turn, is where improvements in 

lane throughput and travel time savings can become evident. 

 

The pacing factor for the deployment of AHS is the availability of sufficient protected lanes. In 

those locations where space is available to build new protected lanes or where the political 

environment is favorable to the addition of roadway infrastructure, the AHS facilities could be 

provided readily and the stimulus would thereby be applied for encouraging the growth of the 

AHS-capable vehicle population. In cases where the “empty lane syndrome” creates political 

difficulties while there are still relatively few AHS-capable vehicles, it may be necessary to go 

through many of the intermediate steps outlined below. However, most of those steps can be 

skipped where it is politically feasible to deploy an AHS lane before all the vehicles are 

available. This could be done, for example, in the form of a busway that is only open to AHS-

equipped buses at the start, but is then made available to suitably equipped vanpools and 

carpools. 

 

3.3.3 Potential Steps Beyond ACC 

Building on the foregoing elements, some steps that could be devised to lead from the first 

generation of ACC and collision warning systems toward AHS include: 

 

1. Cooperative ACC in mixed traffic – The cooperative elements provide better ability to 

identify and track equipped target vehicles, improving the comfort and convenience of 

ACC and its ability to distinguish stopped vehicles (bringing it closer to having a true 

forward collision warning capability). The improved performance can only be achieved 

when the vehicle ahead is equipped with the cooperative tag or communication system, 

so the increase in effectiveness of this system is strictly limited by the market penetration 

of the cooperative elements on other vehicles. 

2. Cooperative ACC in a separated lane, mixed with both cooperative and uncooperative 

vehicles – If the cooperative ACC vehicles and cooperating (communication-enabled) 

vehicles concentrate in a separated lane, rather than being spread across all highway 

lanes, the probability of being able to use the cooperative capability is greatly increased. 

This could initially be done by providing these vehicles access to under-utilized HOV 
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lanes. At this stage, even the “virtual barrier” is an adequate separation to demarcate the 

protected lane, because the only purpose of the lane restriction is to increase the 

percentage of cooperating vehicles. The user benefits will be relatively small (improved 

ACC performance and access to a previously-inaccessible lane), but the costs will also be 

negligible. 

3. Cooperative ACC in a separated lane, restricted to other cooperating vehicles – As the 

local market penetration of cooperative (communication-enabled) vehicles increases, it 

becomes politically feasible to dedicate a lane to their use, prohibiting non-cooperative 

vehicles from this lane. On a freeway with four lanes in each direction, this could 

correspond to a local market penetration of 25% (or even less if one assumes that the 

equipped vehicles are used by longer-distance commuters and therefore might be driven 

more than non-equipped vehicles). It is important to emphasize the local nature of this 

market penetration condition. There is no need to wait for the national or even the 

regional market penetration to reach a threshold value in order for this to become 

practical. Rather, it is the market penetration of vehicles using the specific highway 

facility that should be considered. The marketing of equipped vehicles could be 

concentrated in the locations with the greatest need for, as well as ability to pay for, the 

AHS-precursor capabilities. Once all vehicles in the lane are in communication with each 

other, they can operate somewhat more safely and smoothly, and possibly at a smaller 

average spacing, but the effect of this on lane capacity should be minor. 

4. Cooperative ACC and other cooperating vehicles in a protected, separated lane – By 

providing physical protection (barriers topped by fences) to the separated lane, the safety 

of operations should be increased, particularly by excluding road debris and crashing or 

scofflaw vehicles, and the level of stress on the drivers should be reduced. 

5. Protected lane restricted to cooperative ACC vehicles – As the local market penetration 

of cooperative ACC vehicles continues to increase, the protected lane can be restricted to 

vehicles with that full capability, so that longitudinal control behavior is consistent and 

predictable. Safety, smoothness of driving (via elimination of shock waves), and some 

consequent small energy/environmental improvements should be the additional benefits 

gained at this stage. Recent research has shown that proper design of the vehicle-follower 
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control law can produce asymptotically stable traffic flow, without shock waves, by 

eliminating the driver behavior that causes shock waves (17). 

6. Addition of automatic steering control to CACC in single fenced, protected lane – 

This is the step when the driver’s role changes most significantly to that of an observer or 

possibly a general supervisor rather than a direct participant in the driving task. At this 

point, the driver can no longer be depended upon to identify hazards or failures because 

his attentiveness cannot be assured. Therefore, the driving environment within the 

protected lane needs to be made as safe and predictable as possible, through physical 

protection (barriers and fences) and carefully limited interactions between vehicles 

(cooperative longitudinal motions only, no space for passing or sideswiping maneuvers). 

This step should probably be taken initially on a “pipeline” road facility with no 

intermediate entry or exit points in order to avoid the complications introduced by entry 

and exit maneuvers. It could be seen as the first truly automated driving step, albeit under 

strictly limited conditions. Drivers could gain the full comfort and convenience and 

safety benefits of AHS, for limited travel duration, but not any additional throughput 

increases because there would not yet be a means for inserting larger volumes of vehicles 

into the traffic stream. 

7. Addition of automatic entry and exit coordination for access to and from the single 

automated lane – Add vehicle-roadside communication and vehicle synchronization 

capabilities at the entry and exit points to and from the automated lane, so that the 

longitudinal maneuvering of the entering vehicles can be coordinated with the automated 

mainline operations and drivers can be relieved of the task of synchronizing their vehicles 

with the mainline traffic gaps. These communication and control systems also need to be 

integrated with the traffic management system for the rest of the roadway network to 

ensure that new bottlenecks are not created in the vicinity of the entries and exits. At this 

point, we have reached the stage of a basic single-lane AHS, which could be extended to 

an arbitrarily long highway. In the absence of completely automatic lane-changing 

control, the entry and exit maneuvers would still present some possible challenges and 

hazards to drivers, and it may therefore not be possible to gain the full capacity 

advantages of AHS. However, the throughput increase should be substantial at this stage, 

enabling real reductions in congestion and travel time. 
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8. Addition of lane-changing control – With the addition of automated lane changing, it 

becomes possible to extend automated operations from a single-lane to a multi-lane 

protected facility and to provide for fully automated entry and exit maneuvers. At this 

stage, the full lane or link capacity benefits of AHS can be gained on the protected 

facility. 

9. Addition of link and network layer control – With the further addition of these 

capabilities, it becomes possible to develop a connected AHS network, rather than just a 

single AHS line, so that travelers can take an automated trip of significant length, 

involving transfers among different highways, without needing to resume manual control. 

 

The above sequence assumes that CACC would precede the availability of protected lanes. 

However, there are already some highways in the U.S. equipped with segregated, protected HOV 

lanes. In locations such as these, it could become possible to begin with the segregated, protected 

lanes and then add cooperative capabilities later. This depends on the motivation of the HOV 

operator to support the equipping of the buses and employer-based vanpools that use the HOV 

facility with ACC and potentially newer and more capable technologies to maximize the utility 

of the HOV facility. 

 

In some locations, highway expansions involving new separated lanes are already being planned. 

With minor incremental costs, these facilities could be made much more hospitable toward 

automated vehicle operations, representing wonderful early targets of opportunity for advancing 

toward AHS. In cases such as these, it is not necessary to proceed through all of the above steps 

in sequence, but it could be possible to start at step 5 or 6 and then advance through steps 7 and 8 

simultaneously, before proceeding to step 9 when more facilities are developed and connected. 

 

3.3.4 Benefits 

The investments required to advance through each of the above steps need to be justified based 

on the benefits to be gained by both the public and private sector investors. Some of these 

benefits, such as driver comfort and convenience, are subjective and difficult to quantify. Others, 

such as safety improvements, are challenging to quantify in advance because of their strong 

dependence on specifics of system design and implementation. The benefits associated with lane 
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throughput, which translate directly into savings in travel time and reductions in congestion, are 

somewhat more tractable. 

 

A preliminary estimate of the throughput effects of mixing automated with manual vehicles, 

based on a highly simplified model, has already been reported (18). However, that analysis did 

not address the mixing of both autonomous and cooperative longitudinal controlled vehicles with 

manual vehicles, nor did it consider the driver role with these partial automation systems. The 

driver role can become a more severe constraint than the technology in defining the separations 

that should be maintained between vehicles. 

 

Under normal highway traffic conditions, the maximum stable traffic flow is about 2200 vehicles 

per lane per hour, which corresponds to an average headway of 3600/2200 = 1.63 seconds. If we 

assume an operating speed of 30 m/s (67 mph) and vehicle length of 5 m, the average time gap 

between vehicles is then 1.63 – 5/30 = 1.47 s. This average includes the extra-long gaps that will 

inevitably occur when vehicles change lanes and when a slow vehicle trails behind a fast vehicle, 

so it must also include a substantial fraction of gaps significantly smaller than 1.47 s. 

 

There has been a vigorous debate about what minimum time gap should be permitted by 

standards for autonomous ACC systems. The current international agreement establishes a 

minimum setting of 1.0 s, based primarily on the limited ability of drivers to react sufficiently 

quickly to anomalous conditions (failures or driving conditions that exceed the capabilities of the 

ACC system). This means that even if the entire population of vehicles in a highway lane were 

equipped with ACC, all choosing the minimum setting, the theoretical capacity of that lane could 

not exceed 3600/(1.0 + 5/30) = 3086 at a speed of 30 m/s. Allowing a margin of 25% for extra 

gaps to accommodate lane changing reduces this capacity to 2469 vehicles per hour. However, 

since many drivers will not be comfortable choosing the minimum setting, given the limited 

response capabilities of these systems, it is unlikely that autonomous ACC could produce any 

appreciable increase in lane throughput, even at a 100% market penetration. 

 

Increases in lane throughput beyond today’s are only likely to be achievable through the addition 

of cooperative vehicle-following capabilities (cooperative ACC, or CACC), combined with 
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separation from non-cooperative vehicles and perhaps in combination with physical protection of 

the driving environment from hazards. These make it possible to provide tighter coupling 

between vehicles so that drivers may feel secure selecting a shorter minimum setting than the 1.0 

s time gap for autonomous ACC. The communication link also improves the safety of the 

vehicle-following system by providing the following vehicle with near-instantaneous warning of 

any problem (failure, forward hazard) experienced by the leading vehicle. This can be used to 

justify permitting shorter time gaps than 1.0 s, but the time gaps can still not be decreased 

dramatically as long as the driver must be counted on as the “backup” safety supervisor to handle 

the hazards that the system cannot handle. 

 

The requirement for driver supervision is likely to be maintained for any operations that are not 

in fully protected lanes, because the hazards that can then be encountered are so diverse and 

complicated that sensors cannot be expected to identify them successfully within the foreseeable 

future. When the lane is fully protected, it could become possible to disengage the driver from 

even the supervisory responsibilities, and then the minimum separation between vehicles could 

be determined entirely by technological limitations. 

 

It is not possible to determine a priori what time gap would be acceptable to drivers of CACC 

vehicles. If, for example, they could operate at a time gap of 0.8 s rather than 1.0 s, the previous 

lane-changing-derated capacity estimate of 2469 could be increased to 2980 vehicles per lane per 

hour, an increase of about 20%. The actual capacity that is achievable will ultimately depend on 

the portion of the driving population that feels comfortable choosing each part of the available 

range of vehicle-following time gaps. Unless a substantial percentage of the drivers select the 

closest setting, the overall lane capacity will probably not increase appreciably. The significant 

capacity increases that lead to congestion reductions and travel-time savings cannot be gained 

until the longitudinal control of the vehicles is completely automated, removed from the 

capricious decision making of individual drivers. 

 

3.4 Deployment Staging Sequences by Vehicle Category 

The generic deployment sequence outlined in the preceding section does not account for the 

different economic and operational factors that distinguish the major categories of road vehicles. 
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These factors are likely to mean that automation will not progress at the same pace, nor 

necessarily even in the same sequence, for these different categories. In general, we should 

expect the heavy vehicle categories (both transit buses and commercial trucks) to be earlier 

adopters than light-duty vehicles. There are three primary reasons for this: 

 

• When the automation technology is still new, it will be relatively expensive. The fixed 

cost of the technology will be similar for all classes of vehicles, but it will represent a 

much smaller fraction of the total vehicle cost for the heavy vehicles, which can cost 

from five to ten times as much as a passenger car; 

• The improvements in productivity produced by the automation technology can be 

translated directly into an economic benefit by the heavy vehicle owners, which 

strengthens their justification for investing in the technology. The productivity effect is 

particularly strong because driver labor saving translates directly into dollars for them, 

while it does not have the same impact for most private automobile owners; 

• Heavy vehicles in fleet operations are driven by professional drivers and maintained by 

professional maintenance staffs, in contrast to private passenger cars. This means that 

drivers can be trained to understand limitations of the technologies that are implemented 

before they are robust to all possible operating conditions. The new components and 

subsystems can also be tested regularly in an orderly preventive maintenance program, 

leaving them less vulnerable to the neglect that is generally suffered by private passenger 

car systems. 

 

Transit buses have the additional advantage that in many cases their owners and operators are 

public agencies that may also own and operate some of the roadway infrastructure on which they 

operate (busways, HOV lanes). This means that the vehicle and infrastructure decision-making is 

consolidated, eliminating a major potential institutional hurdle and short-circuiting the normal 

“chicken and egg” problem of who invests first. Investments in AHS technologies for transit 

buses can be extended to vanpool fleets, and the special roadway infrastructure could be made 

available for use by private vanpool and carpool users as well, providing a logical sequence for 

expanding the population of user vehicles. 
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Sample AHS deployment staging ‘roadmaps’ for transit, trucking and private automobile users 

are illustrated in Figures 2-4. These sequences have much in common with each other and with 

the generic deployment roadmap (Figure 1) that was shown in Chapter 2, although they differ in 

some specific details peculiar to their respective needs. More importantly, they differ in time 

scales, with transit probably being the fastest and the private automobile the slowest. In these 

figures, the rectangular boxes represent enabling technologies that are needed, while the ovals 

represent user services that make use of the technologies. Time proceeds from left to right, and 

the shaded elements are those that cannot be expected to develop “on their own” as part of a 

natural market progression (or evolution). These are the key elements that will need public 

investment and/or the cooperation of public/private partnerships in order to become a reality. The 

unshaded elements are assumed to become available through normal product development and 

marketing processes. The blocks below the dashed line in each figure represent supporting 

capabilities that are likely to become available, but are not integral to the progress toward AHS. 

 

 
FIGURE 2  Deployment staging for transit (buses, vanpools). 
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The special elements particular to transit buses in Figure 2 are the early use of lane sensing and 

steering actuation to provide precision docking, maintenance automation and then lateral control 

on busways. These, combined with the possible early availability of a protected busway/HOV 

lane, give the transit buses the head start over the other categories of vehicles. 

 
 

FIGURE 3  Deployment staging for heavy trucks. 

 

The ‘roadmaps’ for the heavy trucks, Figure 3, and light-duty passenger vehicles, Figure 4, are 

quite similar to each other, but the trucks have an opportunity to reach higher levels of 

automation sooner if their stakeholders are genuinely interested in getting there. They also have 

the peculiar opportunity to adopt the “electronic towbar” to automatically link pairs of trucks 

while sharing the roadway with normal manual traffic (19). The milestone years of 2008 and 

2018 are indicated on the figures to give a general sense of when some of the indicated 

capabilities could be achieved if there is sufficient stakeholder interest to move forward. Note 

that Figure 3 shows a large uncertainty about the year 2008, indicating the range between what 
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could be accomplished if the trucking industry stakeholders express a strong positive interest in 

use of automation to improve their operations and what is likely if they remain passive. 

 

 
 

FIGURE 4  Deployment staging for light duty vehicles. 

 

 
4.0 MODELING AND EVALUATING THE EFFECTS OF DRIVER CONTROL 

ASSISTANCE SYSTEMS ON TRAFFIC 
The next step in our investigation of AVCSS deployment sequences to advance from today’s 

driving environment to full vehicle-highway automation involved their modeling and evaluation. 

Due to the significant amount of modeling and simulation work necessary, especially for the case 

of manually-driven vehicles, we were constrained to focus on only initial steps immediately 

beyond adaptive cruise control and analyzed the impacts of cooperative adaptive cruise control 

in a mixed-lane traffic setting, i.e., with manually-driven vehicles and vehicles under AACC 

control (See sections 3.3.1 and 3.3.3) in a single lane. We used light-duty passenger vehicles as 

the vehicle type for this analysis.   
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Adaptive cruise control (ACC) systems are the first driver control assistance systems to enter the 

marketplace having the potential to influence traffic flow characteristics. These systems use 

forward ranging sensors (typically millimeter wave radar or infrared laser) to measure the 

clearance (and sometimes the closing speed) to a forward vehicle to modify the commanded 

speed of the equipped vehicle’s cruise control system. The ACC system’s control logic 

substitutes for driver decision making in determining the desired vehicle speed at each time 

instant. This has profound implications for traffic flow theory, which has historically been 

founded on the dynamics produced by the aggregate decision making of the driving population. 

 

ACC systems have recently been introduced into passenger car markets and they are also being 

provided in heavy-duty trucks. It is important to understand their effects on traffic dynamics 

early in their development so that if they are discovered to inadvertently create problems their 

designs can be adjusted before adverse traffic effects are widely manifested. ACC systems can 

also be viewed as a first step toward future automation of the complete driving function. Thus, it 

is important to understand how ACC system designs and operating concepts can be developed to 

best support such future advances. 

 

To evaluate interactions between ACC vehicles and conventionally driven vehicles, it is 

necessary to use sophisticated and sensitive models of each having sufficient fidelity to capture 

their sometimes subtle interactions. It is not practical now to evaluate these interactions in full-

scale experiments because such experiments would require a large ACC vehicle fleet, not yet 

widely available. In the longer term, it would, however, be valuable to perform these 

experiments. This report describes a new set of models for evaluating large-scale interactions 

occurring when varying proportions of ACC vehicles are mixed with conventionally driven 

vehicles in a limited-access highway operating environment. To address the longer-term 

advances in ACC capabilities, models are developed for higher-capability cooperative ACC 

systems (CACC) as well as the first-generation autonomous ACC. 

 

Existing traffic simulation models incorporate simple representations of drivers’ car-following 

behavior. However, those models do not represent car following behavior at the level of detail 
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needed to predict expected traffic flow changes when ACC vehicles are mixed into the traffic 

stream. Hence, it has been necessary to adopt a new state-of-the-art driver behavior model (20). 

Its calibration and testing for use in this project are described in this report’s Human Driver 

Model section. Subsequent sections describe the ACC and CACC models used in our 

simulations. The ACC model is based on a simple, first-generation ACC system with a fixed 

time gap setting of 1.4 seconds (s), representing a middle performance range for the ACC 

systems that have been tested and are entering the market (21, 22). The CACC model represents 

a more sophisticated form of ACC, in which the preceding vehicle can communicate actively 

with the following vehicle so that their speed changes can be coordinated, permitting 

significantly closer vehicle following (time gap of 0.5 s). 

 

4.1 Review of the Literature 

The literature is well supplied with papers attempting to predict the effects that the introduction 

of ACC vehicles into the traffic stream will have on overall traffic behavior (congestion, safety, 

emissions, fuel consumption, etc.). These papers have been based on analytical models and/or 

simulations since there are not yet enough ACC vehicles to perform a direct experimental 

evaluation. Another body of literature addresses the prediction of the analogous effects for fully-

automated driving in an automated highway system (AHS), but these are not addressed here. 

 

Rao and Varaiya (23) based their analysis on a modification of a simulation originally developed 

for AHS evaluation, which led to assumptions that are not really appropriate for evaluation of 

ACC (clustering of vehicles into platoons and use of a transition lane for entering and exiting an 

ACC lane). Since they lacked a realistic model of human car-following behavior, they were not 

able to evaluate dynamic interactions between ACC and manually-driven vehicles. 

 

Chang and Lai (24) did detailed simulations to represent anticipated conditions on Taiwan 

highways, using their own ACC control law design (with separation dependent on velocity and 

velocity squared). The human drivers’ choices of following distance were assumed to follow the 

Greenshields linear dependence on speed, but the dynamics of human responses were not 

explained fully. They showed expected traffic flow effects at market penetrations of 30, 50, 80 
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and 100% ACC, with a nonlinear increase in traffic flow capacity, leading to a maximum of 

2750 vehicles/lane/hour with all ACC vehicles. 

 

Zwaneveld and van Arem (25) reviewed a variety of papers to synthesize existing predictions of 

traffic effects of ACC, concluding that the general tendency was to show little potential for 

congestion reduction, but some potential to improve traffic flow stability. 

 

The MIXIC model (26) was developed to study effects of ACC on traffic flow. Different ACC 

market penetrations were studied, concentrating on traffic flow characteristics, such as traffic 

speed, time gaps, and shock waves. They concluded ACC systems could contribute to more 

stable traffic flow without sacrificing capacity. However, a deterioration of traffic performance 

was found at higher levels of traffic demand: speed collapsed, especially in the left lane. This 

tool was calibrated for Dutch highways and Dutch driving behavior, and incorporated European 

traffic laws. 

 

Ioannou and Bose (27) investigated the ACC car’s influence on traffic flow and stability. They 

compared the 100% manual, 100% ACC, and mixed traffic cases, on a straight one-lane road. 

Traffic was simulated with two kinds of disturbances: smooth and rapid acceleration of lead car. 

They concluded that ACC vehicles smooth traffic flow by filtering the response of rapidly 

accelerating lead vehicles. Since only two disturbances were used for the lead vehicle, their 

simulation does not represent real traffic with its variety of disturbances.  

 

Yokota, et.al. (28) performed detailed simulations to explore the effects ACC could have in 

overcoming bottlenecks produced by the decelerations of typical human drivers encountering a 

significant highway grade change (-2.6% to +0.3%). They represented human driver behavior 

using Koshi’s car-following model to reproduce existing shock wave conditions, then introduced 

20%, 40% and 100% ACC vehicles to the traffic stream to determine their traffic stability 

effects. Even at the 20% rate, ACC vehicles significantly reduced the shock wave, while at 

higher percentages they almost completely eliminated it. They also simulated an urban scenario 

with ACC vehicles representing 10%, 30% and 100% of traffic flow, with ACC time gaps of 0.9 

s and 1.6 s. Trip times and delays were the chosen measures of effectiveness, rather than overall 
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lane capacity. Yokota et al (29) also attempted to make some simple aggregate calculations of 

ACC’s effects on traffic speed, using the fundamental traffic flow-velocity diagram, but without 

benefit of any explicit modeling of ACC or human driver dynamic responses. 

 

Cremer et.al. (30) simultaneously compared one macroscopic and four microscopic models for 

predicting the traffic flow effects of ACC (time gap of 1.2 s). Results showed little change in 

traffic flow at ACC market penetrations of 40% and 70%, but indicated that either shorter or 

longer ACC time gaps could adjust those traffic flows up or down respectively. 

 

Darbha and Rajagopal (31) explored traffic flow stability issues that need to be considered when 

designing ACC controllers when all vehicles are equipped with ACC, but with no representation 

of manually driven vehicles and no prediction of traffic flow volume achievable with ACC. 

 

Minderhoud and Bovy (32) developed detailed simulations of a variety of ACC operating 

concepts for use on Dutch motorways, emphasizing the effects observed when entering traffic 

disturbs on-ramp flow.  The simulation cases were run with ever-increasing traffic flow rate 

generation on the mainline highway and on-ramp, well past the flow rates that could be sustained 

in steady state, so that queuing effects could not be evaluated realistically. Results showed that 

the ACC with time gap setting of 1.2 s would leave traffic flow capacity essentially unchanged 

from the baseline manual driving conditions, while time gaps of 1.0 s and 1.4 s could cause 

noticeable, yet small, increases and decreases in flow capacity respectively at the highest market 

penetrations. It was necessary to reduce the time gap to 0.8 s to generate capacity increases in the 

10% range at market penetrations of 50% or higher. 

 

Godbole et.al., (33) analyzed the behavior of two ACC designs (with and without active braking) 

to determine their ability to respond to the kind of transient disturbances occurring in highly 

congested freeway driving. All vehicles were assumed to be ACC-equipped except for the lead 

vehicle that causes the disturbance, so effects of different market penetrations of ACC could not 

be evaluated. For the assumed ACC time gap of 1.0 s, the achievable capacity was estimated to 

be approximately 2,800 vehicles per lane per hour. 
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4.2 Method of Approach 

For the study reported upon here, it was necessary to develop and then validate several 

mathematical models, including: 

 

• Vehicle-following logic for each operational mode: 

• Human driving, 

• Autonomous adaptive cruise control (AACC), and 

• Cooperative adaptive cruise control (CACC), both with and without a cooperating 

preceding vehicle. 

• Merging of vehicles entering a limited-access highway from an on-ramp. 

• “Free driving” of a vehicle in uncongested traffic or with no immediately preceding 

vehicle to follow. 

• Vehicle dynamic response to speed change commands. 

 

These models were tested initially for simple vehicle pairs (one following another), then for 

sequences of 20 vehicles with the same type of vehicle-following controller, and finally more 

complicated cases involving mixtures of controller types and larger numbers of vehicles, with 

vehicles entering and leaving the flow at interchanges. In this section of the report, these models 

and their test cases are described in general terms, while subsequent sections address the three 

classes of vehicle-following logic in more depth, with results of the validation test simulations. 

 

4.2.1 Vehicle Following Logic 

Each of the four operational modes, human, AACC, and CACC with and without 

communication, has its own following logic. In all cases, however, the free-driving acceleration 

is limited to +/- 2 m/s/s and no vehicle ever accelerates to a velocity greater than its desired 

velocity. The variables included for vehicle following are the current distance between vehicles, 

speed of both the preceding and following vehicles, and the length of the vehicle (all vehicles are 

assumed to be of the same length). 
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4.2.2 Free Driving 

When a vehicle has no vehicle ahead of it or has at least 100 m of clearance to the preceding 

vehicle, the controller (human, ACC, or CACC) is in the free driving state. In this state, the 

controller attempts to maintain a desired velocity, assigned when the vehicle entered the 

simulation, drawn from a normal distribution with a mean of 28.9 m/s (65 mph) and a standard 

deviation of 4.4 m/s (10 mph). Each type of controller uses an error-based control law: 

 

u t k x t v tf d2 2 2( ) ( & ( ) ( ))= − −  

Where: v td2 ( )  is desired speed of the second vehicle 

 kf  = 0.4 

 

In addition, acceleration is limited to +/- 2 m/s/s. 

 

4.2.3 Vehicle Model 

The detail level of our models is constrained by the need to simulate hundreds of vehicles at one 

time. We decided to use a unit mass dynamic model: &&( ) ( )x t u t= 2 . We also include a first-order 

lag between the controller command and the vehicle’s response. The flow of data among 

components of the vehicle in the simulation is as follows: 

 

1. Sensors output range and range-rate to the controller. 

2. Controller outputs acceleration command to the first-order lag. 

3. Lag outputs actual acceleration to vehicle mass (dynamics). 

4. Dynamics integrates and outputs velocity. 

5. Velocities of all vehicles are integrated to update their positions, which can then be read 

again by sensors. 

 

Sensors 

Sensors are assumed to be perfect, except in the case of a CACC vehicle following a non-CACC 

vehicle, in which case the control algorithm's sensitivity to small errors in range-rate justifies the 

added computational expense of simulated range-rate noise. 
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Braking capabilities 

In our simulation, hard braking is unlikely. However, to meet safety standards, our controllers 

must be able to handle such situations. We use a distribution of light-vehicle braking capabilities 

from the NAHSC (34), assuming dry pavement, as shown in Figure 5. Engine braking is not 

modeled separately. Brake dynamics are not explicitly modeled, although the first-order lag 

applies to deceleration as well as to acceleration. 

 

Lag 

The lag between controller command u and vehicle response a is a first order lag with the 

equation: 

 Tcaua /)( −=′  

The choice of time constant Tc turned out to be critical for the CACC controller. We found that a 

time constant of 0.05 s provided a realistic representation of vehicle response without requiring 

an excessively short simulation time step. 

 

4.2.4 Test Cases 

We show how a platoon of 20 vehicles each with the same controller (human, ACC or CACC) 

responds to severe disturbances. The disturbances are generated by a lead vehicle that follows a 

velocity trajectory taken from severely congested stop-and-go traffic on I-880 in the San 

Francisco Bay Area. We allow the following vehicles to follow each other stably before injecting 

the disturbance. For each run we plot the velocities of vehicles 0 (the leader), 5, 10, 15, and 20, 

and the trajectories of all 21 vehicles. 
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FIGURE 5  Weighted distribution of maximum deceleration capability. 

 
 
4.3 Human Driver Model 

We considered several existing models. MIXIC (26) has only one control region, and the 

parameters for that region are tuned for stable following behavior. It did not perform realistically 

in the other kinds of interactions that occur in our simulations. Fancher’s model (35) has more 

control regions but has some problems with the transition from free driving to following. We 

settled on the model of Song-Delorme (20) because it has more room for tuning, and 

incorporates recent research on perception (36). 

 

Desired time gap is assumed to be normally distributed, with a mean of 1.1s. This value was 

taken from a statistical analysis of the UMTRI ACC FOT baseline case human driving data (21). 

The model has many other characteristics (six discrete control regions, and for each region a gain 

factor), which have not been fully tuned from microscopic driving data. However, macroscopic 

observations of the simulation outputs appear to match standard sources describing aggregate 

traffic characteristics such as the Highway Capacity Manual (37). 
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FIGURE 6  Velocity trajectories for lead vehicle and human followers 
#5, 10, 15, and 20. 

 

 

Figure 6 shows the velocity trajectories for four sample vehicles of a 20-vehicle sequence using 

the human driver model, all of which are following the lead vehicle trajectory previously 

described from the I-880 database. The plotted results clearly show the kind of shock wave 

propagation expected in normal traffic response, with larger disturbances at later times for the 

vehicles further behind the leader. The higher-frequency disturbances of the lead vehicle velocity 

are also clearly damped out by the filtering effects of the drivers’ perceptual limitations and 

response lags. Figure 7 shows a portion of the same simulation from 110 seconds to 170 seconds, 

in a distance-vs.-time plot, which clearly shows the compression effect of a typical shock wave. 
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FIGURE 7  Human vehicle following trajectories. 

 

4.4 Autonomous ACC Model 

The purpose of ACC is to regulate the range between vehicles to a user-selected value, and to 

adjust the vehicle speed to the speed of downstream traffic. It is mainly designed to increase 

comfort and convenience for the drivers. The driver is responsible for safety and can override the 

ACC system at any time. The driver takes over control of the vehicle in situations demanding 

more braking authority than the ACC system can provide. It usually uses sensor measurements 

of range and range-rate to regulate the spacing between the preceding and following vehicles to a 

driver-desired value, rd. 

 

The first controller considered was ACC with braking proposed by Godbole (33). Here, three 

surfaces divide the range and range-rate space into five regions, with a different mode of ACC 

operation in each. Controller design is based on the notion of the safety surface, which is defined 

as a function of braking capabilities of the preceding and following vehicles, range, range-rate, 

driver time delay, and current vehicle speed. The desired vehicle behavior is to maintain a safe 

distance from the preceding vehicle.   
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Safety distance and hence desired following distance depends heavily on the braking capabilities 

of both vehicles, which, without communication between vehicles, are unknown. To avoid 

collisions the algorithm assumes the preceding vehicle has the maximum deceleration capability, 

which raises the safety and desired following distance to maximum values. Various studies have 

shown that the desired car-following distance depends on driver personality (21). Therefore, we 

chose desired range to be a function of the driver-selected constant time gap. When we changed 

the definition of desired distance we lost one of the three surfaces of ACC design, and could not 

use this controller anymore. Inspecting its five regions we noticed that three of them, 

corresponding to vehicle following, utilize linear control laws with deceleration limits. The 

vehicle was in the other two regions in the more extreme cases, while it was driving alone, or the 

situation required the maximum braking capability of the ACC. The three linear control laws 

similarly use range and range-rate and differ in their gains and maximum allowed deceleration. 

Since we did not have a safety surface to separate those regions we decided to merge them and 

use the same controller in the whole area.  

 

Finally, the ACC controller that we adopted is linear with limits on deceleration and acceleration. 

The control variable is the acceleration command.                   

                 

 

                    max2 )( atu ≤  

 max2 )( dtu ≥  

                      )(*)( 2 txttr gd &=   

 

Where: )(trd  = desired distance between vehicles 

 )(tr  = current distance between vehicles 

 gt  = desired time gap 

 )(1 tx&  = speed of the preceding vehicle 

 )(2 tx&  = speed of the following vehicle 

))()((*))()((*)( 22112 trtrktxtxktu d−+−= &&
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 maxa  = maximum allowed acceleration 

 maxd  = maximum allowed deceleration 

 01 >k  and 02 >k  are gains, which are tuned for the ACC performance 

 

Since ACC is a comfortable system we bounded its acceleration capability by a “comfortable 

value” of 2 m/s/s (38), while the deceleration capability has the limit of -3 m/s/s.   

 

We chose a time gap of 1.4 s representing a mid-point among the settings that are being provided 

in commercially available ACC systems, which typically range from 1.0 to 2.0 s.  

 

This ACC controller is structurally simpler than the controllers that are being commercially 

implemented. Because it has been designed to ensure string stability of vehicle following, its 

response to traffic disturbances is equivalent to the best that could be achieved with real vehicles. 

The results derived using this model therefore likely provide higher capacity and smoother 

damping of shock waves than would be achieved in practice. 

 

Figure 8 shows the velocity trajectories for four sample vehicles of a 20-vehicle sequence using 

the ACC model, following the same lead vehicle trajectory as in Figure 6. Because this ACC 

control law was designed specifically to provide string stability (unlike some that have been 

developed elsewhere), disturbances are clearly damped out the further we get from the lead 

vehicle. The responses are obviously delayed in time, but we do not encounter the amplification 

of disturbances experienced with the human driver. Absence of shock wave propagation can be 

seen clearly in Figure 9, showing one potential improvement to traffic dynamics from use of 

ACC. 
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FIGURE 8  Velocity trajectories of lead vehicle and AACC followers 
#5, 10, 15, and 20. 

 

FIGURE 9  AACC vehicle following trajectories. 
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4.5 Cooperative ACC (CACC) Model 

Cooperative ACC (CACC) systems add vehicle-to-vehicle communication to the capabilities of 

ACC systems. We restricted our model to one-way, “hop-by-hop” communication. That is, 

messages are transmitted from a vehicle to the upstream vehicle in the same lane, providing the 

simplest possible cooperative architecture and the easiest to implement. This form of cooperation 

can be implemented using simple line-of-sight wireless communication technologies and does 

not require any complicated addressing schemes or infrastructure. 

 

We have assumed a perfectly reliable and instantaneous form of transmitting three double-

precision floating-point numbers per time-step (50 ms). Estimates of transmission delays for this 

amount of data with existing technology fall well below our simulation time-step and no data 

needs to be relayed past the receiving vehicle; it is simply used by the controller to produce its 

control outputs. 

 

The data we chose to transmit are: 

• velocity of lead vehicle, 

• acceleration of lead vehicle, and 

• braking capability of lead vehicle, i.e., its maximum deceleration. 

 

These, along with range and range-rate from the sensors, represent all the information needed to 

enable the following vehicle to closely match the behavior of the lead vehicle. This information 

would not be available to an autonomous vehicle or else would only be available with less 

accuracy (lead vehicle velocity). 

 

The CACC model evaluated in this study is intended to increase highway capacity by 

minimizing time gaps between vehicles, while maintaining the typical ACC goals of increasing 

driving comfort and convenience and preserving driving safety.  

 

The CACC, like the ACC system, uses an error-based controller attempting to maintain three 

invariants: 

• )()( 21 txtx &&&& =  
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• )()( 21 txtx && =  

• drr = .  

 

The desired gap, dr , is not a fixed time gap but rather is chosen so that if the front vehicle brakes 

at its maximum rate and the follower reacts immediately by braking at its own maximum rate, 

they will not collide. If the braking capability of the following vehicle exceeds that of the 

preceding vehicle this gap could be quite small, so the follower does not try to follow at a closer 

time gap than 0.5 s. At this short a time gap, the system designer cannot assume that a normal 

driver will always be able to respond to anomalous behavior by the preceding vehicle, but such 

anomalous behaviors are much less likely to occur because the preceding vehicle would not be 

manually driven but would be operating under ACC control.  

 

The control variable is the CACC commanded acceleration. 

                       ))()(())()(()()( 2211102 trtrktxtxktxktu d−+−+= &&&&  

                       max2 )( atu ≤        22 )( dtu ≥  

Where: )(trd  = desired distance between vehicles 

 )(tr  = current distance between vehicles 

 )(1 tx&&  = acceleration of preceding vehicle 

 )(1 tx&  = speed of preceding vehicle 

 )(2 tx&  = speed of following vehicle 

 maxa  = maximum allowed acceleration 

 2d  = braking capability of following vehicle 

 10 =k , 01 >k  and 02 >k  are gains, which are the same as for ACC 

 

Desired safe range rd (t) is defined as a maximum among safe following distance, following 

distance with 0.5 s time gap, and a minimum allowed distance, chosen to be 2m. 

 )),(),(max()( min5.0 rtrtrtr ssafed =  
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Where: δ = 20ms  = communication delay 

 1d   = braking capability of preceding vehicle 

 2d   = braking capability of following vehicle 

 

When a CACC-equipped vehicle follows a non-CACC vehicle, an alternative control scheme 

must be used. We chose to use the same control laws, but with estimated values for the preceding 

vehicle substituted for communicated values: 

 

• velocity replaced with noisy velocity, 

• acceleration estimated from noisy velocity, and 

• braking capability assumed to be the maximum (over all vehicles) 

 

The radar noise is modeled by an error factor uniformly distributed between –20% and +20% of 

the actual value and sampled every time step. In addition, the minimum desired time gap is 

raised from 0.5 seconds to 1.4 seconds, to match ACC. 

 

Figure 10 shows the velocity trajectories for four sample vehicles of a 20-vehicle sequence using 

the CACC model, following the same lead vehicle trajectory as in Figure 6. The tighter control 

of the CACC controller is evident in the closer match to the velocity trajectory of the leader and 

the reduction in the response delay from one vehicle to another. While this tight control increases 

the accuracy of vehicle following and lane capacity, its close matching of velocities also raises 

the potential for reduced ride quality (particularly if the vehicle being followed is driven 

erratically) unless the controller is carefully designed to include acceleration and jerk limits. 

Figure 11 clearly shows both the precision and closeness of the vehicle following achieved here, 

which is clearly and significantly different from the traditional traffic characteristic shown in 

Figure 7. 
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FIGURE 10  Velocity trajectories of lead vehicle and CACC followers  

#5, 10, 15, and 20. 

 

FIGURE 11  CACC vehicle following trajectories. 
 
 

0

5

10

15

20

25

80 120 160 200 240 280 320 360 400
Time (seconds)

1500
1600
1700
1800
1900
2000
2100
2200
2300

110 120 130 140 150 160 170

Time (seconds)



 

 

45

4.6 Merging Model 

We assume that merging is under human control in all cases, since automated control of merging 

is unlikely to be available in the near future. The driver at the head of the merge queue waits 

until the gap between passing vehicles is of an acceptable length. When such a gap appears, the 

driver merges into it at the velocity of traffic. We do not model the lateral movement of the 

merging vehicle. 

 

Our model for gap acceptance is taken from the dissertation of K. Ahmed (39). This model has 

been calibrated with driving data and including it in our simulation produces realistic-looking 

traffic patterns. 

 

Figure 12 shows the trajectories of human-driven vehicles before and after a merge point. Traffic 

is near capacity and initially moving at about 20 m/s. Merging vehicles enter just after 500 m. 

The horizontal line represents queued vehicles. Merging vehicles can be identified by a curve 

that lies entirely above this line. Gaps at the bottom of the figure are due to Monte Carlo 

simulation of vehicle arrival times. 

 

Several forms of shock waves are evident. First, at around 615 s, a merge causes a disturbance to 

propagate forward, eventually dissipating. Second, a vehicle queued since about 630 s accepts a 

gap after three vehicles in the main stream have passed the merge point. The resulting 

disturbance propagates backwards hundreds of meters over the next few minutes, producing the 

distinctive shockwave seen in Figure 12. Third, after a period of vehicles queuing but not 

merging, several vehicles merge into relatively small gaps beginning at about 750 s. However, 

disturbances dissipate quickly because upstream traffic density here is below the critical 

threshold for unstable traffic flow. 
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FIGURE 12  Trajectories of human-driven vehicles near merge point. 
 

5.0 EVALUATING THE EFFECTS OF DRIVER CONTROL ASSISTANCE 
SYSTEMS ON HIGHWAY TRAFFIC FLOW CAPACITY 

 
This section provides quantitative analyses of the lane capacity that could be achievable at 

several stages in the AHS deployment sequence that was proposed in Section 3. These capacity 

estimates are important factors in determining the benefits that can be gained at each deployment 

stage. It is important to understand these benefits because they will serve as the justification for 

the investments needed to advance to each deployment stage, and if the benefits are insufficient 

the investments are unlikely to be made. At the same time, these analyses can also help shed 

light on the effects that ACC vehicles are likely to have on general highway traffic flow as their 

market penetration increases. This is not yet a well-understood issue, as existing literature on 

ACC modeling studies provides a wide range of estimates of these effects, ranging from 

substantial increases in capacity and smoothing of traffic flows to substantial decreases in 

capacity and worsening of traffic flow instabilities. 
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5.1 Cases To Be Evaluated 
 
The diversity of possible operating conditions is very wide, so it is important to focus the study 

on a manageable set of cases that can nevertheless shed light on the likely effects under a wider 

variety of conditions. The vehicle capabilities that have been chosen for evaluation are: 

 

a) Vehicles driven by “normal” human drivers, represented using a state-of-the-art model of 

car-following behavior; 

b) Vehicles whose speed is controlled by a relatively simple, but high performance, 

autonomous ACC system, with a driver-selected time gap setting of 1.4 seconds between 

consecutive vehicles; 

c) Vehicles whose speed is controlled by a more advanced cooperative ACC system, using 

vehicle-vehicle communications to enable operations with a time gap setting of only 0.5 

seconds between consecutive vehicles. 

 

The mathematical models used to represent these three classes of vehicles and their calibration 

and validation were described in detail in Section 4. The reasoning behind the selection of the 

ACC systems’ operating characteristics was as follows: 

 

The autonomous ACC (AACC) system was intended to represent a typical first-generation 

product such as those now entering the market. The time gap setting of 1.4 seconds is typical of 

the middle range setting on such vehicles, which are typically adjustable for time gaps from 1.0 

to 2.0 seconds. Younger, more aggressive drivers tend to favor the shorter time gap settings, 

while older, more conservative drivers tend to favor the longer settings (40). The value of 1.4 

seconds was chosen as a compromise between these extremes. This ACC system has the 

capability of automatic acceleration and deceleration, with a maximum deceleration rate of 0.3 g. 

If larger decelerations are needed to avoid a crash, the driver must intervene (but this kind of 

emergency condition was not modeled in this study). 

 
The cooperative ACC (CACC) system was intended to represent a significantly more advanced 

product, in which the equipped vehicle’s speed control system could receive wireless 

communication of the speed, acceleration, and fault conditions of a similarly-equipped preceding 
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vehicle. When the similarly-equipped vehicle is immediately ahead, it becomes possible to 

reduce the operating time gap to 0.5 seconds. This shorter time gap was chosen to take advantage 

of the improved ability of the vehicle to match speed changes of its predecessor. At this short a 

time gap, the ACC system also needs to have a high enough level of reliability and fault 

tolerance that it does not need to depend on the driver’s manual intervention to avoid hazardous 

conditions (because the driver would not be capable of intervening quickly enough). When the 

cooperative ACC vehicle drives behind a vehicle that is not similarly equipped, it cannot operate 

at the reduced time gap, but must fall back to the larger time gap of the autonomous ACC 

system. 

 

The analyses were initially conducted for the distinct cases of 100% manually driven vehicles, 

100% autonomous ACC and 100% cooperative ACC in order to verify the reasonableness of the 

results under these simplest cases. Once those cases were completed, mixed vehicle populations 

were then analyzed, in all feasible multiples of 20% of each vehicle type. These are the cases that 

will demonstrate the advantages and disadvantages that are obtained with each increase in 

market penetration of autonomous and cooperative ACC vehicles. 

 
5.2 Simulation Approach 

Our goal is to estimate the capacity of a highway as a function of the proportions of AACC, 

CACC, and human-driven vehicles. Having modeled the three types of controllers described in 

Section 4, the main difficulties are defining and measuring capacity and generating realistic 

streams of traffic. 

 

5.2.1 Defining Highway Capacity in Simulation 

We define the capacity of our simulated highway to be the maximum rate of flow that it can 

sustain indefinitely. The following sections explain how we approach and detect this maximum, 

and how we estimate, in a finite length simulation run, that a certain flow level is indefinitely 

sustainable. 
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5.2.2 Measuring Capacity 

Our original approach to measuring highway capacity in each case was to simulate a 16 km 

section of single-lane highway with on- and off- ramps at nodes separated by 1.6 km intervals. 

The traffic volume at the beginning of this section would be chosen to be well below a 

conservative estimate of capacity. At each successive node, we would increment traffic flow by a 

small number of entering vehicles per hour. 

 

For realism, the increment was to be the net effect of injecting a certain number of vehicles 

through the on-ramp and removing a smaller number of vehicles through the off-ramp. The 

numbers added and removed would have to be chosen small enough that minor disturbances due 

to merging settled out without affecting the neighboring merge processes 1.6 km upstream and 

downstream. In effect, our road would have the same flow properties as a more realistic road 

with ramps separated by larger distances, but we would not incur the extra computational 

overhead of simulating long sections of highway with stable flow. 

 

The initial flow and the increments would be chosen so that the demand at the end of the 16 km 

section was in excess of any reasonable estimate of capacity. This would cause shock waves and 

queuing at the ramps. By recognizing which node caused these effects, we hoped to measure, to 

the precision of the chosen increment, the capacity for the given specification of control types 

and other parameters. 

 

The difficulty with this approach turned out to be the recognition problem. When a shock wave 

was observed, how could one be sure which node was its source or, if it was caused by vehicle 

interactions on the link between two nodes, which link? Further, if a shock wave propagates 

upstream from one node, all subsequent upstream observations are affected; one can say little 

about where capacity is reached.  

 

To avoid these difficulties, we decided to isolate each node on its own highway, in its own 

simulation, and model the incoming upstream traffic stochastically. This technique is described 

in detail below. 

 



 

 

50

5.2.3 Highway Layout 

We consider a single protected highway lane, with a single interchange consisting of an off-ramp 

followed immediately by an on-ramp. We do not model any interaction between exiting and 

entering traffic. The highway segments adjacent to the merge are 500 m long in the upstream 

direction and 200 m long in the downstream direction. 

 

Our constraints in choosing these two distances were run time and realism. Shorter road 

segments require less computation, but we needed to have enough of a window that minor 

disturbances dissipated before reaching the end of the road. Test runs on longer highways 

showed that, under sub-capacity flow conditions, disturbances caused by the merge point usually 

did not propagate beyond 500 m upstream or 200 m downstream. (Near capacity, however, 

shock waves propagate for much greater distances.) 

 

5.2.4 Traffic Generation 

We model two sources of traffic: mainstream traffic entering our highway section from the 

upstream direction, and merging traffic entering by way of the on ramp. 

 

Mainstream traffic  

Our goal in this case is to generate realistically stable traffic, as if vehicles were entering from an 

upstream segment. To do this, vehicles are generated according to a Poisson distribution without 

being placed on the road. They are kept in a virtual queue so that when they eventually enter the 

road, they do so in the order of their creation. The queue in this case is an artifice used to 

generate steady-state traffic; it does not represent waiting vehicles. 

 

Conditions for a vehicle entering from the queue are as follows. As described in Section 4, the 

inputs to each controller include range and range-rate to the leading vehicle. The controller of the 

vehicle at the head of the queue is given the range from the point of entry to the vehicle 

immediately downstream (typically, the previously entering vehicle). The controller assumes a 

range-rate of zero, because the vehicle will enter with the same velocity as the downstream 

vehicle. 
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As the simulation proceeds, the controller outputs an acceleration command based on the inputs. 

When this command is greater than or equal to zero, the vehicle is allowed to enter the road. 

Because of the conditions we have imposed and the design of our controllers, the controller is 

immediately in its steady-state vehicle following mode. 

 

Merging traffic 

For merging traffic, our goal is for entering vehicles to inject disturbances that are typical of 

merge points on real highways. We cannot use the same model as for mainstream traffic, because 

in that model vehicles only enter when they can do so without disturbance. We used a merging 

model based on the dissertation of K. Ahmed (39) and described in Section 4. In this case, the 

merging vehicle is aware of not only the vehicle immediately downstream of the merge point, 

but also the vehicle immediately upstream, if any, allowing the merge model to consider the 

entire gap into which the vehicle must merge. On merging, the vehicle assumes a velocity equal 

to the average of its neighbors. As in the mainstream case, vehicles are generated off the 

roadway and placed in a queue until they enter. However, in this case the queue is not virtual, but 

really represents vehicles waiting to enter the roadway. 

 
After the merge, the ranges between the merging vehicle and the upstream and downstream 

vehicles may be small enough to cause one of the controllers to command a deceleration, which 

may in turn cause a shock wave. The resulting traffic patterns appear to be realistic (See Section 

4). 

 

5.2.5 Monte-Carlo Generation of Vehicles 

Each variable in our simulation is sampled from a distinct generator. The variables are described 

in Table 1. 
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TABLE 1 Simulation variables. 
 
Variable Distribution Mean and Std. 

Deviation 
Vehicle inter-
arrival times 

Exponential (note that this value 
determines arrival in queue, not on 
the road) 

Based on flow rate 
settings 

Vehicle 
destination 
(off-ramp or 
beyond) 

Weighted uniform, based on flow rate 
settings 

NA 

Desired speed Gaussian, bounded by fixed interval  29 m/s, std dev = 4.5 m/s
Control type Weighted uniform, based on control 

type ratios 
NA 

Desired time 
gap 

Human: Gaussian, bounded by fixed 
interval AACC: constant 
CACC: constant                              

1.1 sec, std dev = 0.15 
sec  
1.4 sec  
0.5 sec if following 
CACC 
1.4 sec otherwise 

Braking 
capacity 

Empirical distribution NA 

 
We bounded the desired speed distribution by a fixed interval (minimum of 20 m/s, maximum of 

40 m/s) because of our single lane layout. One slow vehicle will reduce the speed of traffic on 

the lane for the remainder of the simulation. In effect, we are assuming that minimum speed laws 

are enforced. 

 

Detailed explanations of these model characteristics can be found in Section 4. 

 

We used antithetic sampling to test the dependence of simulation outputs on particular values of 

the seeds and on characteristics of the random number sequence. This test involves two runs of 

the simulation, differing only in that in one case the basic random sequence of numbers in the 

interval (0, 1) is passed through the function (1-x) before generating the sequences used by the 

simulation. Our use of this technique is based on (41). 

 

Each run of the simulation used the same seeds for each generator in order to confine the sources 

of variability between runs to the issue we are evaluating (the market penetrations of the two 
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types of ACC). So, for example, the sequence of desired speeds of vehicles generated at the ramp 

is the same in all (non-antithetic) cases. 

 

5.2.6 Estimating Capacity 

Using our simplified highway layout to estimate capacity requires that we run, for each 

proportion of control types, a set of simulations at varying levels of traffic demand. We decided 

to hold fixed the net flow at the ramp, with 200 vehicles/hr entering and 100 vehicles/hr exiting. 

Traffic flow on the mainstream varies in increments of 50 vehicles/hr. 

 

A simulation run outputs an overflow message and stops when either of the two sources has 50 

or more vehicles queued. If the overflow occurs at the ramp, the message indicates that the 

mainstream is too congested for vehicles to merge into the mainstream at the rate at which they 

are generated. If the overflow occurs at the “virtual” queue at the mainstream source, the 

message indicates either that a disturbance has propagated back to the beginning of the road and 

would presumably continue upstream indefinitely, or that stably flowing traffic cannot exist at 

the specified rate. In either case, we can conclude that capacity has been exceeded. 

 

Barring such messages, the run continues for 90 minutes of simulation time, after which we 

declare the simulated highway to be at or below capacity. The 90 minute period is large enough 

that the number of vehicles queued (at most 50 in each of two queues) is small in proportion to 

the total number of vehicles passing through the simulation (over 3000 in most cases). Further, 

the number of vehicles on the road at any one time is small in proportion to the total number of 

vehicles generated. Therefore, simply adding the initial upstream flow and the net increment 

introduced at the interchange yields a good estimate of capacity. Another estimate is obtained by 

measuring the rate at which vehicles reach the end of the road. 

 

A variety of diagnostics were calculated for each case to ensure good understanding of the traffic 

flow characteristics. These include: downstream traffic speed distribution, queue length and 

queue time distributions, and vehicle trip times and speeds. 
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To reduce computation time, we start the sequence of runs at a mainstream flow level that is 

expected to be well above the capacity for the given proportion of control types, and reduce this 

flow by 50 vehicles per hour in successive simulations. We continue the sequence until one 

simulation is below capacity. Figure 13 illustrates this procedure in the manual driving case; note 

the horizontal axis (‘Flow Rate’) runs from high to low, in the same order as our sequence of 

runs from left to right. 
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FIGURE 13  Time before source overflow. 
 
Each of these four simulation runs generates 100% manually driven vehicles; plots for other 

control types show a similar pattern. The first three runs (for flow rates of 2200, 2150 and 2100 

vehicles/hr) were terminated early because of queue overflows. The final run was stopped at 90 

minutes without a queue overflow. In fact, queue lengths for the upstream and merging traffic 

rarely exceeded 5 vehicles over this 90 minute run. We conclude from this set of runs that 

capacity for this case is between 2050 and 2100 vehicles per hour. 

 

5.2.7 Selection of Simulation Cases  

 

In order to maximize our computational resources, we decided to study cases in which the 

percentage of each control type is a multiple of 20. This level of granularity is enough to show 

trends without too many runs. 
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5.3 Results 
 
The flows and other diagnostics for each sub-capacity run (the first run not terminated by an 

overflow message) for each control type proportion are summarized in Table 2. 

 
TABLE 2  Simulation results. 

 
Wait time (seconds) Ramp queue length Control type proportions 

percentile percentile 
Man’l AACC CACC 

Nominal 
flow 
(v/h) 

Actual 
flow 
(v/h) 

 
mean 90th 95th 100th 

 
mean 90th 95th 100th 

100 0 0 2050 2050 21.2 76 111 205  1.1  5 7 10 
80 20 0 2150 2147 26.9 81 134 214  1.4  5 7 11 
60 40 0 2250 2237 106.1 251 265 354  5.5  15 16 21 
40 60 0 2250 2241 86.5 222 254 298  4.5  13 16 21 
20 80 0 2250 2245 102.1 314 394 528  5.3  13 22 34 
0 100 0 2200 2191 85.5 221 339 402  4.5  13 19 22 
             

80 0 20 2200 2192 53.5 144 172 284  2.8  8 11 15 
60 20 20 2350 2340 148.6 266 284 353  7.7  14 17 21 
40 40 20 2400 2393 168.7 379 463 657  8.9  22 29 41 
20 60 20 2500 2477 336.5 567 659 748 17.2  31 33 36 
0 80 20 2450 2440 42.5 145 156 232  2.2  8 11 15 
             

60 0 40 2500 2487 134.5 254 280 451  7.0  14 16 24 
40 20 40 2600 2592 113.9 302 382 521  5.9  17 21 32 
20 40 40 2750 2733 161.2 293 404 640  8.4  16 22 29 
0 60 40 2800 2795 76.6 226 261 374  4.2  13 14 20 
             

40 0 60 2800 2793 55.5 183 226 349  3.1  10 14 18 
20 20 60 3050 3046 384.4 583 660 741 19.5  31 32 36 
0 40 60 3200 3222 88.1 198 247 363  4.6  12 14 22 
             

20 0 80 3400 3416 153.4 390 434 596  8.1  20 24 31 
0 20 80 3850 3843 400.4 695 757 831 20.3  36 39 43 
             

0 0 100 4550 4562 227.6 372 393 642 12.2  21 24 31 
  

Nominal flow is not contingent on simulation behavior but is based on the input settings for 

upstream traffic and ramp entry rates. This value determines, in a probabilistic way, the inter-

arrival times between vehicles. 

 

Actual flow is the number of vehicles passing 200 m downstream of the junction per hour of 

simulation, measured after a 120 second simulation warm-up (to eliminate start-up transients 
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from the simulation statistics). Actual flow differs slightly from nominal flow because of the 

probabilistic behavior, because some queued vehicles never enter the road, and because of 

vehicle interactions (which depend on control type proportions).  However, the closeness of the 

actual flow to the nominal flow supports the interpretation that these are good representations of 

achievable capacity. 

 

Wait times are sampled when a vehicle enters the road from the entry ramp queue; queue lengths 

are sampled at 1second intervals. Means and percentiles refer to the distributions of these 

samples. 

 

The high wait times in cases with a high proportion of CACC vehicles are due to the small gaps 

between successive (and therefore communicating) CACC vehicles, which makes merging 

difficult, under our assumption of manually controlled, uncoordinated  merging. This observation 

highlights the need for some kind of cooperative merging system when CACC reaches high 

market penetrations. 

 

Note that in cases with more human drivers, the high end of the wait time distribution tends to be 

somewhat more elongated than in the cases with more ACC control. This can be seen by looking 

at successive ratios of mean wait time, 90th percentile wait time, 95th percentile wait time, and so 

on. A possible explanation is that ACC vehicles tend to stabilize flow to some extent, making 

merging more predictable, if slow. 

 

Some of the information in this table is depicted in Figures 14 and 15. Figure 14 shows the 

effects of two gradual transitions, one from the purely manual case to the purely AACC case, and 

the other from the purely manual case to the purely CACC case. Figure 15 displays the same 

AACC results with the vertical axis magnified for detail. 
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FIGURE 14  Effect of increasing proportion of one ACC type 
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FIGURE 15  Effect of increasing proportion of AACC vehicles with no CACC vehicles 
 
 

Note that neither of the curves in Figures 14 and 15 appears to be linear. In the CACC case, the 

upward concavity can be explained by the mode switching in the CACC controller. If the CACC 

is following another CACC vehicle, it establishes communication and will attempt to maintain a 

time gap of 0.5 seconds. Otherwise, there is no possibility of communication and the desired gap 

is 1.4 seconds, just as for AACC. As the fraction pC of CACC vehicles increases, the chance that 

any given CACC vehicle will be following another increases linearly. Therefore, the expected 

fraction of communicating CACC vehicles among all vehicles increases quadratically in pC. 
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The AACC curve seems to peak at 40% through 80% market penetration. A mixture of AACC 

vehicles with manually driven vehicles improves flow because they tend to smooth out 

disturbances. The decrease after 80% is probably because the set time gap of the AACC is 1.4 

seconds, whereas the mean desired time gap for manual driving is 1.1 seconds. Without manual 

drivers (in the 100% AACC case), no additional advantage is gained by the smoothing effect. 

 

Results for all cases are summarized in Figure 16. 
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FIGURE 16 Estimated capacities for all control type proportions. 
 

For the three 100% market penetration cases (Table 2), nominal capacity estimates for the 

manual driving, AACC, and CACC cases were, respectively: 2,050, 2,200, and 4,550 vehicles 

per hour. Recall that for the AACC case a time gap of 1.4 s was used and in the CACC case, a 

minimum of 0.5 s time gap was used. The estimate for manually driven vehicles is consistent 

with current estimates for such driving. The AACC estimate emphasizes the point that adaptive 
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cruise control is not really designed to increase throughput, whereas for CACC we see a 

substantial increase in capacity. However, if alternative time gap values were used in lieu of 1.4 

s, substantial variability in capacity estimates would be seen (See Figure 17). The 1.4 s value was 

selected since it represents the middle performance range for the ACC systems that have been 

tested and are entering the market. In practice, the time gap setting will be selected by each 

individual ACC driver, and it is very unlikely that the mean value chosen across the entire 

driving population would be near either of the extreme values (1.0 or 2.0 seconds).  
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FIGURE 17  Capacity estimates for AACC with different time gap values. 

 

5.4 Comparison with Similar Studies in the Literature 

 

Based on our review of the literature conducted earlier in this study and reported on in Section 

4.1, we can observe numerous differences among the assumptions and parameter values used in 

our study and previous work that lead to different findings and generally make the job of 

comparing the results across the different studies more difficult. These differences include the 

distribution of vehicle types in the traffic stream (including heavy trucks or not), the car-

following dynamics and nominal time gap maintained by the normal human drivers, the time gap 

setting chosen for the ACC, the dynamics of the ACC vehicle following algorithm, and the 

number of lanes of traffic simulated.   
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The results presented here are intended to represent a “best case” for the capacity impacts of 

ACC, being based on use of a very stable, high-performance car following controller in a traffic 

stream with no trucks, and a simulation approach designed to push capacity up to the boundary at 

which traffic disturbances cause the flow to break down. Therefore, it is not surprising that these 

results show somewhat higher lane capacity increases for the AACC cases than prior reported 

studies (30, 32). However, it is very significant that even with these conditions the estimated 

capacity increases with AACC remain quite modest (at best, less than 10%). 

 

6.0 CONCLUSIONS AND FUTURE WORK 
 

It is possible to define credible progressive deployment sequences that can advance from today’s 

manual control of vehicles to the future fully automated vehicles, without falling into the trap of 

the “evolutionary/revolutionary” dichotomy. This requires identifying a sequence of steps that 

can be taken by both vehicle and roadway infrastructure stakeholders with risks that are more 

than balanced by the expected rewards at each step. 

 

Of all the issues surrounding highway automation, the least well understood to date has 

been the sequence of steps by which an automated highway system can be developed and 

implemented. This involves a complicated mix of technological, human factors, 

economic and political factors. This report has set out to define the most important deployment 

issues and indicate how they can be addressed in general. Based on consideration of the real 

constraints to progress, a generic sequence of steps is suggested, and the different ways in which 

those could be applied to transit buses, heavy trucks and light-duty passenger vehicles have been 

shown schematically. 

 

This report has also presented models to predict the effects that new driver control assistance 

systems such as adaptive cruise control can have on traffic flow dynamics and highway capacity. 

Results have been shown for the validation cases used to test the models individually, for the 

capacity estimates for the 100% market penetration cases for each of the three modes of 

operation:  manually driven vehicles, AACC, and CACC, and for the capacity impacts of 
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different combination of market penetrations for AACC and CACC mixed with manually-driven 

vehicles.  

 

Several significant conclusions can be drawn from these results, with implications for the 

introduction of ACC into highway traffic and for the longer-term advances toward highway 

automation: 

 

1. Even under the most favorable conditions, with ideal ACC system design and performance, it 

appears that autonomous ACC can only have a small impact on highway capacity. Assuming 

that average ACC users choose a mid-range time gap of 1.4 seconds, highway capacity can 

be increased by at most 9.5% when the market penetration of autonomous ACC is in the 40% 

to 80% range. 

 
2. Diminishing returns set in quickly with respect to the capacity increases from introducing 

AACC into the traffic stream. The increase in lane capacity in advancing from market 

penetration of 0% AACC to 20% AACC is greater than that from advancing from 20% to 

40%, and after 40% there are virtually no capacity increases. 

 

3. Increases in the market penetration of autonomous ACC above 80% can lead to a modest loss 

of highway capacity, based on ACC users choosing an average time gap for ACC that is 

somewhat longer than the time gap they use when driving manually. 

 

4. Because of the modest effects of AACC on highway capacity, there does not appear to be 

any justification for providing AACC vehicles with priority access to special lanes such as 

HOV lanes. In fact, the tendency of (well designed) AACC to attenuate shock waves in 

traffic tends to argue in favor of distributing the AACC vehicles throughout all lanes. 

 

5. Cooperative ACC systems, using vehicle-vehicle communications to enable closer vehicle 

following (down to a time gap of 0.5 second), have the potential to produce significant 

highway capacity increases. The capacity increases quadratically with CACC market 
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penetration, based on the fact that the reduced time gaps are only achievable between pairs of 

vehicles that are equipped with CACC. 

 

6. Cooperative ACC can represent an important step in a progressive deployment strategy to 

lead toward highway automation, because it can potentially double the capacity of a highway 

lane at a high market penetration. The capacity effect is very sensitive to market penetration, 

which means that it is important to gather as high a proportion as possible of CACC vehicles 

into the same lane. This provides a strong justification for giving priority access to a special 

lane for CACC vehicles. For example, a four-lane freeway occupied entirely by manually 

driven vehicles could accommodate 8,200 vehicles per hour based on the results shown here.  

However, if one of those lanes were devoted entirely to CACC vehicles, it could 

accommodate over 4,500 vehicles per hour by itself, and combined with the other three 

conventional lanes the overall capacity of the freeway could be increased to 10,650.   

 

Much more work remains to be done before this can be turned into an action plan. More 

quantitative studies of the costs and benefits associated with the different stages are needed and 

are either currently underway or being planned for. Several topics for future work are of interest: 

 
1. Using an AACC controller with the same mean time gap as manual drivers (1.1 seconds). 

Whereas our current study compared controllers operating under parameters we feel are 

realistic based on expected usage of AACC, using the lower time gap setting would allow 

more direct comparison of the potential capabilities of each control type. 

 

2. Applying our simulation software and capacity estimation methodology to parameters and 

assumptions used in the other studies of ACC effects on traffic. 

 

3.   Studying analogous scenarios with multilane traffic, using the lane-change models of (4). 
 

4.   Comparisons of results derived using various driver models, including updated versions of 

the Song-Delorme model (20), and revisions of the MIXIC model (26). 
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Related work underway at PATH involving further validation and tuning of the driver model 

includes 1. the freeway performance measurement system (PeMS) data for macroscopic traffic 

behavior1, 2. planned for field tests for microscopic driver behavior2, and 3. data from the 

Berkeley Highway Laboratory covering 2.7 miles of freeway on I-803. The results of this further 

analysis will then need to be explored with representatives of the relevant stakeholder groups for 

verification or refutation. The real action can come only after the stakeholders have been 

convinced of the genuine benefits that they will gain from each significant step on the road 

toward AHS. 
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