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Abstract: Long electromagnetic transients occur in electrical systems because of switching and
impulse actions As a result, the simulation time of such processes can be long, which is undesirable.
Simulation time is significantly increased if the circuit in the study is complex, and also if this circuit
is described by a rigid system of state equations. Modern requests of design engineers require an
increase in the speed of calculations for realizing a real-time simulation. This work is devoted to
the development of a unified spectral method for calculating electromagnetic transients in electrical
circuits based on the representation of solution functions by series in algebraic and orthogonal
polynomials. The purpose of the work is to offer electrical engineers a method that can significantly
reduce the time for modeling transients in electrical circuits. Research methods. Approximation
of functions by orthogonal polynomials, numerical methods for integrating differential equations,
matrix methods, programming and theory of electrical circuits. Obtained results. Methods for
calculating transients in electrical circuits based on the approximation of solution functions by series
in algebraic polynomials as well as in the Chebyshev, Hermite and Legendre polynomials, have been
developed and investigated. The proposed method made it possible to convert integro-differential
equations of state into linear algebraic equations for images of time-dependent functions. The
developed circuit model simplifies the calculation method. The images of true current functions are
interpreted as direct currents in the proposed equivalent circuit. A computer program for simulating
the transient process in an electrical circuit was developed on the basis of the described methods. The
performed comparison of methods made it possible to choose the best method and a way to use it.
The advantages of the presented method over other known methods are to reduce the simulation
time of electromagnetic transients (for the considered examples by more than 6 times) while ensuring
the required accuracy. The calculation of the process in the circuit over a long time interval showed a
decrease and stabilization of errors, which indicates the prospects for using research methods for
calculating complex electrical circuits.

Keywords: electrical circuits; orthogonal polynomials; differential equations; numerical methods;
spectral methods; approximation; collocation; algebraic polynomials; Chebyshev; Hermit and
Legendre polynomials; transients; circuit model

1. Introduction

Electromagnetic transients occur in electrical systems because of switching and im-
pulse actions. This leads to dangerous current surges and overvoltages representing a
significant danger to the equipment, and also reduces the reliability of the protection sys-
tem. This leads to dangerous current surges and overvoltages, which pose a significant
danger to equipment, and also reduce the reliability of used protection. Until now, the
development and improvement of methods for studying transients have not lost their
relevance. A number of well-known commercial software systems, such as EMTP [1],
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PSpice [2], Simulink [3], and others are currently used for modeling transients in electrical
circuits. The equations of state in these software systems are compiled automatically based
on the circuit diagram. These equations are integro-differential algebraic equations. The in-
vestigated electrical circuits of real devices usually contain a great number of elements. The
duration of transients in complex circuits can be large. As a result, the simulation time of
such processes can be long, which is undesirable. Modern requests of design engineers are
required to increase the speed of calculations for realizing a real-time simulation. Therefore,
the actual scientific task is the development of improved numerical methods for calculating
electromagnetic transients that are faster than existing methods.

Analysis of publications. Multi-step methods of numerical integration of differential
equations are widely used to solve systems of equations of state in well-known software
complexes. As a result, various difference schemes [4,5] have been obtained that make it
possible to calculate the value of the desired function at one time point from the known
values of the function (or its derivatives) at several previous points. The problem of
increasing the speed of simulation of transients in electrical equivalent circuits has led to
the search for new methods for the numerical calculations of integro-differential equations
of state.

The perspective of using orthogonal polynomials for integrating differential equations
is shown in [6]. Orthogonal functions are a set of functions for which the scalar product
of each pair is zero. The set of orthogonal functions constitutes the basis over which an
arbitrary continuous function can be decomposed. The method of decomposing functions
into a series of orthogonal polynomials is called the spectral method in this work. This is
due to the analogy of the function’s expansion into Fourier series of trigonometric functions,
where the set of expansion coefficients is the frequency spectrum. The investigation of the
convergence speed of the series is presented in this paper. The author considers the terms
“interpolation” and “collocation” to be identical, but the term “interpolation” is used to
represent a known function, and the term “collocation” is used for expansion into the series of
a function resulting from solving a differential equation. The fundamentals of the spectral
method using the Chebyshev polynomials for integrating differential equations are given,
and the advantages of this method over the finite difference method are shown in [5]. The
bases of the spectral method for the solution of differential equations in partial derivatives
for the problems of hydrodynamics are investigated in [7]. The best effectiveness of this
method, compared to the methods of finite differences, was noted. The fundamentals of the
spectral method are briefly outlined in [8]. The Chebyshev and Legendre polynomials are
considered basic functions. The application of the method to the solution of equations in
partial derivatives is shown. The bases of the spectral method for solving partial differential
equations are also outlined in [9]. The presentation is presented without unnecessary abstract
mathematics and trifles. The author tried to show that spectral methods are not as difficult as
some experts believe. Work [10] is one of a few books on spectral methods based on MATLAB
programs. This practical introduction is built around forty short and powerful MATLAB
programs that a reader can download from the World Wide Web. The author argues that if
one wants to solve ordinary differential equations with high accuracy, and if the data defining
the problem is smooth, then spectral methods are usually the best tools. In this case, ten-digit
accuracy can be achieved when the finite difference or finite element method gives two or
three digits. Spectral methods require less computer memory than alternative methods. The
approximation of the solution of transients for the current function in an electric circuit by
series in the Chebyshev polynomials was used in [11]. It is shown by the transformation
of the integro-differential equation of state into an algebraic equation for images of current.
Kirchhoff’s rules for images of current have been proven. As a result, a method has been
obtained that can significantly increase the speed of modeling. However, this work does not
address the use of other orthogonal polynomials. The convergence of series in the Chebyshev
polynomials and other orthogonal polynomials was compared in [12]. In many cases, though
not always, the Chebyshev polynomials are preferred. The systematic presentation of the
properties of the Chebyshev polynomials is devoted to [13]. The paper [13] is devoted to a
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systematic presentation of the properties of the Chebyshev polynomials. Methods for solving
differential and integral equations are considered in this work.

In work [14], the approximation of transient solutions is used for current and mag-
netic flux functions in magneto-electric equivalent circuits of transformers by a series of
Chebyshev polynomials. In [15], this method is used to model transients in asynchronous
motors. The multi-step Gere method was used for comparison, as well as the Dommel
method, and the efficiency of using the Chebyshev polynomials was shown in these works.
However, these papers do not address the application of other orthogonal polynomials. In
work [16], the approximation of the solution of transient processes for the derivative of the
current function in the electric circuit by the Chebyshev polynomials is used. This is done
in order to reduce the error in the approximation of the solution. However, these papers do
not address the use of other orthogonal polynomials.

Conclusion. Orthogonal polynomials are successfully used to integrate differential and
integral equations. However, there are few publications showing the application of spectral
methods for calculating transients in electrical circuits. Until now, a comparative analysis
of the effectiveness of using various orthogonal polynomials for modeling transients in
electrical circuits has not been carried out.

The purpose of the work is

• development of a unified method for calculating electromagnetic transients in electrical
circuits based on the representation of solution functions in different polynomials;

• development of a circuit model of the spectral method leading to the visibility of
engineering calculation methods;

• study of a method using algebraic polynomials, the Chebyshev, Hermite and Legen-
dre polynomials.

2. Materials and Methods

Let us consider, as in [11], a simple linear electrical circuit containing series-connected
resistive R, inductive L and capacitive C elements.

Let us suppose that before switching, the capacitor is charged to the voltage value uc(t0).
If at the moment t = t0, the alternating voltage source u(t) is switching on, then the transient of
i(t) occurs in the circuit. This process is described by a linear integro-differential equation:

L
di
dt

+ Ri +
1
C

∫ t

t0

i(t)dt + uC(t0) = u(t) (1)

Let us set the condition that Equation (1), compiled according to Kirchhoff’s voltages
rule, is observed exactly in a given series of n time reference points t0, t1, . . . , tN−1 for the
function i(t), which describes the dependence of current on time. These points are called
collocation points. Kirchhoff’s voltages rule is approximated with some error at other
points. The function i(t) is not known in advance.

It seems relevant to fulfill research and compare the features of the use of various
orthogonal polynomials for calculating transients. The most popular polynomials of the
Chebyshev, Hermite, Legendre, as well as algebraic polynomials, were selected for research.

The Weierstrass theorem states: “A function that is continuous on a finite closed
interval can be approximated with a given accuracy by polynomials” [17]. Thus, the
functions of varying current of time can be expanded into a series in terms of polynomials:

i(t) ≈ p(t) = c0P0(t) + c1P1(t) + · · · cN−1PN−1(t)

where the argument is t ∈ [a, b], P0(t), P1(t), · · · PN−1(t)—basis functions that can be or-
thogonal polynomials or members of an algebraic polynomial.

The Chebyshev and Legendre polynomials have the range of the argument x ∈ [−1, 1].
In this case, for convenience, argument t ∈ [a, b] is replaced by a dimensionless argument
for convenience, where x = ((2t− (a + b)))/((b− a)). Algebraic polynomials have the domain
of the argument t ∈ [0, ∞], and Hermite’s polynomials have t ∈ [−∞, ∞]. To improve the
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accuracy of calculations, it is advisable to normalize the values of the argument in real time:
x = t·Kn, Normalization factor is Kn = 2/τ, τ = b − a.

Then the expansion series takes the form:

i(x) ≈ p(x) = c0P0(x) + c1P1(x) + c2P2(x) + · · · cN−1PN−1(x) (2)

A series on orthogonal polynomials can be differentiated

i′(t) ≈ p′(t) = c0P′0(t) + c1P′1(t) + · · · cN−1P′N−1(t)

dp
dt

=
dp
dx
· dx

dt
=
[
c1P′1(x) + c2P′2(x) + · · · cN−1P′N−1(x)

]
· dx

dt
(3)

where dx/dt = 2/τ, and is also integrated.

J(x) =
∫

p(x)dx =
∫
(c0P0(x) + c1P1(x) + c2P2(x) + · · · cN−1PN−1(x))dx (4)

2.1. Formation of Matrix Equations

We select, on the time interval [a, b], a number of reference points of collocation
tm (m = 0, 1, 2, . . . , N − 1), which corresponds to the points xm of the variable x on the
normalized interval. If the condition (2) is written for each reference point, then we get a
system of linear algebraic equations:

c0P0(x0) + c1P1(x0) + c2P2(x0) + · · · cN−1PN−1(x0) = i0
c0P0(x1) + c1P1(x1) + c2P2(x1) + · · · cN−1PN−1(x1) = i(x1)
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
c0P0(xN−1) + c1P1(xN−1) + c2P2(xN−1) + · · · cN PN−1(xN−1) = i(xN−1)

 (5)

where P is a basis function (polynomial of any type).
Subtract the first equation from the equations of system (5) and obtain the following

system, in which the number of unknown coefficients and the number of equations are
the same:

c1[P1(x1)− P1(x0)] + c2[P2(x1)− P2(x0)] + · · · cN−1[PN−1(x1)− PN−1(x0)] = i(x1)− i0
c1[P1(x2)− P1(x0)] + c2[P2(x2)− P2(x0)] + · · · cN−1[PN−1(x2)− PN−1(x0)] = i(x2)− i0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
c1[P1(xN−1)− P1(x0)] + c2[P2(xN−1)− P2(x0)] + · · · cN−1[PN−1(xN−1)− PN−1(x0)] = i(xN−1)− i0

 (6)

This system does not have zero determination, because for the considered polynomials
P0 = 1 and does not depend on x.

Let us introduce a one-dimensional matrix of polynomials as a function of x.
Let us designate:

P(x) =
[
P1(x) P2(x) · · · PN−1(x)

]T (7)

V =


P(x1)
P(x2)

...
P(xN−1)

−


P(x0)
P(x0)

...
P(x0)

 (8)

The reduced system (6) in matrix form takes the view as:

V·C = I − I0, (9)

where C = [c1 c2 . . . cN−1]T is a one-dimensional matrix of values of the coefficients of the
approximating polynomial (2) without the coefficient c0;
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I = [i(x1) i(x2) . . . i(xN−1)]T is a one-dimensional matrix of values of current at reference
points 1, 2, . . . , N − 1;

I0 = [i(x0) i(x0) . . . i(x0)]T—is a one-dimensional matrix of values of current at reference
point 0, matrix size n − 1.

If Equation (3) is written for each reference point x0, x1, . . . , xN−1, we get a system of
linear equations similar to (5).

c0P′0(x0) + c1P′1(x0) + c2P′2(x0) + · · · cN−1P′N−1(x0) = i′0
c0P′0(x1) + c1P′1(x1) + c2P′2(x1) + · · · cN−1P′N−1(x1) = i′(x1)
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
c0P0

′(xN−1) + c1P′1(xN−1) + c2P′2(xN−1) + · · · cN P′N−1(xN−1) = i′(xN−1)

 (10)

Add the first equation to the rest of the equations of the system (9). (It is impossible
to subtract as in (6), since the full first column of matrix D will be equal to zero). Obtain a
reduced system in which the number of unknowns and the number of equations are the
same. Let us take into account that P′0 = 0. This system in matrix form is as follows:

D C = I′ + I0
′ (11)

where D is the quadratic matrix of the reduced system of linear Equation (10):

D =


P’(x1)
P’(x2)

...
P’(xN−1)

+


P’(x0)
P’(x0)

...
P’(x0)

 (12)

I′ = [i′(x1) i′(x2) . . . i′(xN−1)]T is the one-dimensional matrix of values of current
derivatives for points with the number k = 1, 2, . . . , N − 1,

I′0 = [i′(x0) i′(x0) . . . i′(x0)]T is a one-dimensional matrix of values of derivatives for
zero time point, matrix size N − 1.

Integrals from polynomials are expressed by Equation (4). The integral with the upper
limit xm has the form as:

J(xm) =
∫ xm

x0
(c0P0(x) + c1P1(x) + c2P2(x) + · · · cN−1PN−1(x))dx

= c0
∫ xm

x0
P0(x)dx +

∫ xm
x0

(P ·C)dx
(13)

The values of the given argument xm (m = 1 . . . N − 1) at the reference points corre-
spond to the values of a function (12) which are the rows of the matrix J:

J =
[

J1 · · · Jm · · · JN−1
]T

The coefficient c0 is determined from the first equation of the system (5) by the follow-
ing expression:

c0 = i0 − (c1P1(x0) + c2P2(x0) + · · · cN−1PN−1(x0)) = i0 − P(x0) ·C (14)

Here, it is taken into account that P0 = 1.
Let us consider the features of the matrices V, D, J constructed for the system.
The Legendre polynomials are defined in the segment of varying of the argument

x ∈ [−1, 1] and are calculated by recurrent formulas [17]:

Pn(x) = [(2n − 1)x · Pn−1(x) − (n − 1)Pn−2(x)/n; P0(x) = 1, P1(x) = x. (15)
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We use the vector (7) of the Legendre polynomials as a function of x. Then the
expansion of the current function into a series (2) takes the form (16):

i(x) ≈ p(x) = c0P0(x) + P(x) ·C (16)

If Equation (16) is written for each point x1, x2, . . . , xN−1, we obtain a system of linear
equations, which has the matrix form (9).

The derivatives of the Legendre polynomials are calculated by recursion [14]:

P′n+1(x)− P′n−1(x) = (2n− 1) · Pn−1(x)

From expressions (3) and (16) we have got:

di
dx
≈ P’ ·C (17)

If Equation (17) is written for each point x1, x2, . . . , xN−1, we obtain a system of linear
equations, which has the matrix form (11).

Integrals of the Legendre polynomials are defined by formulas [17]:∫
Pn(x)dx = Pn+1(x)−Pn−1(x)

2n+1 ;
∫

P0(x)dx = P1(x) + d;∫
P1(x)dx = P2(x)/3 + d.

(18)

As a result, using property (18), we get from expression (13)

J(xm) =
∫ xm

x0
p(x)dx = [P1(xm)− P1(x0)]c0 +

{
1
3 [P2(xm)− P2(x0)]

}
c1 + · · ·

+
{[

Pk+1(xm)−Pk+1(x0)
2k+1 − Pk−1(xm)−Pk−1(x0)

2k+1

]}
ck + · · ·

+
{[

PN(xm)−PN(x0)
2N−1 − PN−2(xm)−PN−2(x0)

2N−1

]}
cN−1.

(19)

The expression (14) for calculating c0 is substituted into (19) and has got:

J(xm) =
∫ xm

x0
p(x)dx = δmi0 +

{
1
3 [P2(xm)− P2(x0)]− P1(x0)δm

}
c1 + · · ·

+
{[

Pk+1(xm)−Pk+1(x0)
2k+1 − Pk−1(xm)−Pk−1(x0)

2k+1

]
− Pk(x0)δm

}
ck + · · ·

+
{[

PN(xm)−PN(x0)
2N−1 − PN−2(xm)−PN−2(x0)

2N−1

]
− PN−1(x0)δm

}
cN−1

(20)

Let us express Equation (20) in terms of matrix V:

J(xm) = δmi0 +
{

1
3 [V2(xm)]− P1(x0)δm

}
c1 + · · ·

+
{[

Vk+1(xm)
2k+1 − Vk−1(xm)

2k+1

]
− Pk(x0)δm

}
ck + · · ·

+
{[

VN(xm)
2N−1 −

VN−2(xm)
2N−1

]
− PN−1(x0)δm

}
cN−1.

(21)

Let us introduce a one-dimensional matrix of all addendums (except the first one)
included in expression (21) as a function of the argument x:

Sx(xm) =

[{
1
3

V2(xm)

}
· · ·
{

Vk+1(xm)

2k + 1
− Vk−1(xm)

2k + 1

}
· · ·
{

VN(xm)

2N − 1
− VN−2(xm)

2N − 1

}]
(22)

The expression (21) takes the form:

J(xm) =
∫ xm

x0

p(x)dx = δmi0 + (Sxm − δm · P(x0)) ·C (23)

where
δm = P1(xm)− P1(x0) = xm − x0 (24)
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For the reference points m = 1, 2, . . . , N − 1, the integral (23) has the form:

J(x1) = δ1i0 + (Sx10 − δ1 · P1(x0) ·C

J(xn) = δni0 + (Sxn0 − δn · Pn(x0) ·C

J(xN−1) = δN−1i0 + (SxN−10 − δN−1 · PN−1(x0) ·C

In the matrix form, for all reference points, these equations have the form:

J =



J1
...
Jn
...

JN−1

 =



Sx1,0 − δ1P1(x0)
...

Sxn,0 − δ2Pn(x0)
...

SxN−1,0)− δN−PN−1(x0)

 ·


c1
...

cn
...

cN−1

+ ∆ · I0

or
J = S ·C + ∆ · I0 (25)

where

S =



Sx1,0 − δ1P(x0)
...

Sxn,0 − δ2P(x0)
...

SxN−1,0)− δN−P(x0)

 (26)

∆ =
[
δ1 δ2 · · · δN−1

]T (27)

2.2. Algebraic Polynomials

The one-dimensional matrix of algebraic polynomials (7) has the form:

P(x) =
[
P1(x) P2(x) · · · PN−1(x)

]
=
[
x x2 x3 · · · xN−1] (28)

The function of current approximated by the polynomial is:

i(x) ≈ p(x) = c0P0(x) + P(x) ·C (29)

If Equation (29) is written for each point x1, x2, . . . , xN−1 then we get a system of
linear equations, which has the matrix form (9).

Let us differentiate the expression (28). The row-vector of derivatives of algebraic
polynomials has the form as:

P’(x) =
[
1 2x 3x2 · · · (N − 1)xN] (30)

If Equation (3) for the derivatives is written for each point x1, x2, . . . , xN−1, we obtain
a system of linear equations, which has the matrix form (11).

Integrals from algebraic polynomials (4) have the form:∫
p(x)dx = xc0 +

1
2

x2c1 + · · ·+
1
N

xNcN−1 (31)

For each reference point with the value of the time argument tm, which corresponds
to the moments xm of the given argument x, we have Equation (23). Then, for all N − 1
referent points, we obtain the matrix system of Equation (25).



Energies 2022, 15, 8550 8 of 16

The Chebyshev polynomials of the 1st type [13,17] are defined in the segment of
varying in the argument x ∈ [−1, 1] as

Tn(x) = cos(narc cos(x)) (32)

and calculated by recursion

Tn−1(x) + Tn+1(x) = 2x Tn(x) (33)

taking into account that
T0(x) = 1, T1(x) = x (34)

The Hermite polynomials are defined in the segment t ∈ [−∞, ∞] of the argument
variation and are calculated by recursion [17]:

Hn(x) = 2xHn−1(x)− 2(n− 1)Hn+2(x) (35)

H0(x) = 1; H1(x) = 2x; H2(x) = 4x2 − 2 (36)

Matrices V, D, J are constructed in the same way both for Legendre polynomials and
for Chebyshev and Hermit algebraic polynomials.

2.3. Recording the Equation of State of an Electrical Circuit through Polynomials

Let us write the integro-differential Equation (1) for the specific values of the argument
at the reference points by varying the point numbers m = 1, 2, . . . , N − 1. We get a system
of equations, which has the matrix form [11]:

LI’ + RI + BJ + uC0 = U, (37)

where B = 1/C is the inverse value of condenser capacitance, U is the vector of voltage
source values at points 1, 2, . . . , N − 1 of the time segment; I, I′, J are vectors of current
values (9), current derivative values (11) and current integral values (13) at reference points,
uC0 is voltage value across the capacitor at the initial moment of time t0.

If we substitute vectors I (9), I′ (11), J (25) into expression (43), then we obtain the
expression

L(D ·C + i0′) + R(V ·C− i0) + B(S ·C− ∆ · i0) + uC0 = U, (38)

or
(LD + RV + BS)C = U− uC0 + R · i0 − L · i0′ − B · ∆ · i0 (39)

or
Z ·C = F (40)

where
Z = LD + RV + BS

F = U− uC0 + R · i0 − L · i0′ − B · ∆ · i0 (41)

Equation (39) is an expression of the Kirchhoff voltages rule for image C.
The solution of Equation (45) is determined by the formula (42):

C = Z−1 · F (42)

where Z−1 denotes the operation of taking the inverse matrix is denoted.
As a result of the solution (39), the one-dimensional matrix C of polynomial collocation

coefficients of the current is determined. In the case of orthogonal polynomials, this one-
dimensional matrix can be called a spectrum. This is due to the analogy of the Fourier series
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decomposition of functions by trigonometric functions, where the set of decomposition
coefficients is the frequency spectrum.

Then, with the known initial current value i0 and its derivative in zero point and the
initial voltage value across the capacitor uC0, the current values can be determined at all
arbitrary points of the time segment τ according to (2).

Circuit interpretation of the method of the numerical calculation of transients in
electrical circuits.

Equation (39) can be interpreted using a special equivalent scheme. Let current i(t)
flow in the R-L-C-e branch of the original circuit (Figure 1). In a special equivalent scheme
(Figure 2) the original current i(t) after switching is represented by its image C. Image C
is the one-dimensional matrix of extensional coefficients in a series by polynomials of the
function of current i(t).
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The role of total resistance plays Z = LD + RV + BS.
The right side of Equation (44) contains 4 terms, which can be interpreted as

voltage sources.
The resistive element has an image in the form of resistance R·V in the substitution

branch. Direct voltage source having R·i0 value is joined to this element in series and in
opposite direction concerning to the current (see Figure 2). The inductive element has
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an image in the form of some resistance L·D. A DC voltage source having a L·i’o value is
connected in series with this element in the current direction.

The capacitive element has an image in the form of resistance B·S. The source of
direct voltage with value B·∆·i0 + uC0 is joined to this resistive element in series and in the
opposite direction concerning to the current.

It has been proven in [11] that the current Kirchhoff rule is also observed for images of
Ck branches converging to the node (k = 1, 2, . . . , b):

b

∑
k=1

Ck = 0 (43)

Conclusions. The one-dimensional matrix image C corresponds to the real current i(t)
in the equivalent scheme shown in Figure 2. All images of currents C in the equivalent
circuit satisfy Kirchhoff’s rule for a DC circuit if the circuit is composed according to the
following rules:

• the voltage source is replaced by the one-dimensional matrix source U containing the
voltage value at all N − 1 reference points;

• the resistive element R, inductive element L and capacitive element B = 1/C in the
equivalent circuit are replaced by operator resistances and additional sources of
direct voltage.

Therefore, with the known initial values of the branch currents i0k values of derivatives
of the branch currents I’0k and the voltages across the capacitors uC0k at the point t0 of the
segment [a, b], the system of equations compiled according to Kirchhoff’s rules for images
of currents C for all nodes without one and for all main contours has a single solution. As a
result of solving a system of linear algebraic equations compiled according to Kirchhoff’s
rules for images of currents, we obtain a one-dimensional matrix C consisting of submatrix
Ck containing the values of the coefficients of the expansion in polynomials of the functions
of current ik(t) for all branches. Knowing the polynomial expansion coefficients of the
current ik(t) and the value of ik0 for branch k, we can obtain the current values Ik at all
reference points in the time interval [a, b]:

Ik= V·Ck + ik0 (44)

Error estimation and its minimization. If the positions of the reference points in the
segment [−1, 1] are not chosen evenly, but in the zeros of the Chebyshev polynomials
TN(xk) = 0;

xk = − cos
[

2k + 1
2N

π

]
, k = 0, 1, . . . , N − 1, (45)

interpolation error can be significantly reduced. In this case, the density of the reference
points thickens at the edges of the segment. These points are called the Chebyshev–Gauss
(CG) ones. The interpolation error of the time function of the current, derivative and time
integral of the current is estimated in [11]. In this work, it is shown that the derivative of the
solution function has the largest approximation error. We also encounter an approximation
of the current derivative in the analysis of transients. To reduce this error, it is advisable to
choose the locations of the reference points not in the zeros of the Chebyshev polynomials,
but in the maxima. These points are called the Gauss–Lobatto (GL) ones. Thus, the optimal
choice of the location of the reference points for different tasks is not clear.

In [11], the multiplier τN = (b − a)n is included in the formulas for estimating the error,
therefore the error largely depends on the dimension of the time segment. At large intervals
of variation of the independent variable t >> τ, the entire modeling interval should be
divided into several segments Nu, and Equation (39) should be solved sequentially on each
segment by a cyclic run increasing the value of the current time by τ.
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2.4. Studies of Transient Modeling Methods

A computer program for the calculation of transients in an AC electric circuit con-
taining the resistive R, inductive L and capacitive C elements connected in series has been
developed for researching the considered methods. The capacitor is charged up to the
voltage value uc0 before a switching. The voltage source contains the first, fifth, tenth and
twentieth harmonics. The calculation according to the program developed on the basis of
considered methods has been compared with the exact calculation obtained analytically.
The program is compiled in MATLAB.

The equivalent circuit for images of current is shown in Figure 2. The block-diagram
is shown in Figure 3. The program starts by entering the initial data R, L, C, specifying
the interval of simulation tend − tbegin and the dimension of the one-time segment Segm.
Then, the initial conditions i0 and uC0 are given for the first time segment. The number of
segments is defined as the whole part of Nu= (tend − tbegin)/Segm. The program provides a
selection of the type of polynomials. For each type, there are features of the formation of
matrices V, D, S. There is also a choice of the method of distribution of reference points t:
at zeros, at the in maxima of the Chebyshev polynomials, as well as a uniform distribution
of points.
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The operator resistance Z = LD + RV + BS is calculated. Then cyclic changing of
segment number ku from 1 up to Nu is carried out. The calculation error depends on the
dimension of the time segment. Choosing a segment dimension for different tasks is done
in a trial way. As the segment dimension decreases, the error decreases too.

In each cycle voltage source values are calculated at reference points (vector U), the
right-hand side F of Equation (41) is calculated, vector C, the vectors of current values
I = VC + I0, current derivative I’ = D · C, the voltage across the capacitor Uc = B ·
(J ·C + I0 · ∆) + Uc0 are calculated. The values of vector elements I, I′, Uc with maximal
numbers of nodes of the current segment are determined and they are taken as initial
values for the next segment. Calculated values for the current cycle are written to arrays
for output. When Nu cycles should be executed, program execution is terminated.

The calculation according to the proposed method was compared with the exact
calculation analytically obtained analytically. The program with accompanying subroutines
can be freely downloaded from the link [18] and tested in the MATLAB system. The script
program is called RLC_ALCH_1_5_10_20_NU.

3. Results
Analysis of the Obtained Calculation Results

The circuit parameters for calculation are given: R = 0.1 Ohm, L = 0.001 H, C = 0.001 F.
The voltage source contains the first harmonic with a frequency of 50 Hz and an amplitude
Em1 = 14.1 V, the fifth harmonic Em5 = Em1/2, the tenth harmonic Em10 = Em1/5 and the
twentieth harmonic Em20 = Em1/5.

The results of transient calculation using the Chebyshev algebraic polynomials are shown
in Figure 4a–c. The reference points were placed in the zeros of the Chebyshev polynomials.
The relative deviations of the values of the function of current ik from the values of ianal k
obtained by the exact analytical method, are determined as,error i = (ianal k − ik)/|I|max,
where |I|max is the maximum value of the current module.
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The time dependence of the function error i is shown in Figure 4d.
Asterisks in the figures show the values obtained by an accurate analytical method.

The number of reference points per the segment n = 7. A total of 125 time sections were
used. The graph shows that with increasing time value the error does not increase.

To estimate the accuracy of calculations, the relative root-mean-square error deviations
are determined. For this purpose, the quadratic deviation of the calculated value of the
function of current from the exact value obtained by an accurate analytical method is
calculated in the program at each reference point:

∆ik = (ianal k − ik)
2

The mean quadratic deviation is calculated for the entire simulation interval

∆ik =

√√√√ 1
(N − 1)·Nu

(N−1)Nu

∑
k=1

∆ik

and the relative mean quadratic deviation in percent

∆iotn% =
∆i
|I|max

·100%

The errors of the capacitor voltage function and the derivative of the function of
current are calculated analogically.

Table 1 shows the relative root-mean-square deviations in percent for the function of
current ∆i, the function of the current derivative—∆di/dt and the function of the capacitor
voltage—∆Uc. The calculations were carried out with a different choice of the method of
distribution of reference points: at the zeros of the Chebyshev polynomials, at the maxima
of the Chebyshev polynomials, as well as with the uniform distribution of points. Two
simulation intervals of 0.05 s and 0.5 s were given. The use of a longer interval 0.5 s makes
it possible to evaluate the stabilization process of the calculation. The calculation time on
the simulation interval of 0.05 s with the segment duration of 0.0004 s and the number of
reference points on into the segment n = 7 is the same in all calculations The processor time
of the calculation was estimated with the help of tic, toc operators.

Table 1. Relative mean quadratic deviations of simulating errors in %.

Algebraic
Polynomials

The Tchebyshev
Polynomials

The Legendre
Polynomials

The Hermite
Polynomials

Simulation
Time. s Zero Max Equal Dis-

tribution Zero Max Equal Dis-
tribution Zero Max Equal Dis-

tribution Zero Max Equal Dis-
tribution

∆i
0.05 2.75 × 10−4 4.67 × 10−5 3.41 × 10−4 0.73 0.78 1.339 0.95 0.98 1.375 8.44 8.19 7.462

0.5 2.54 × 10−4 4.66 × 10−5 3.11 × 10−4 0.69 0.73 1.159 0.89 0.91 1.207 6.89 6.71 6.074

∆di/dt
0.05 1.03 × 10−4 6.06 × 10−6 1.34 × 10−4 0.40 0.46 0.833 0.48 0.53 0.755 5.78 5.60 5.127

0.5 4.97 × 10−5 5.50 × 10−6 6.16 × 10−5 0.35 0.39 0.621 0.39 0.41 0.526 4.08 3.94 3.567

∆Uc
0.05 3.61 × 10−4 1.79 × 10−5 4.75 × 10−4 1.44 1.65 3.001 1.70 1.89 2.693 20.8 20.3 18.51

0.5 1.55 × 10−4 1.53 × 10−5 1.95 × 10−4 1.24 1.38 2.230 1.38 1.46 1.857 14.7 14.3 12.91

Diagrams of changes in the errors in calculating the voltage across the capacitor when
simulating time is equal to 0.5 s are given in Figure 5. As follows from Figure 5, after about
0.1 s, calculation errors decrease and stabilize. The relative mean quadratic error deviations
for a simulation time 0.5 s are from 40% up to 99% relative to these errors for a simulation
time 0.05 s (Table 1). Error stabilization indirectly indicates the reliability of the obtained
analytical expressions and the prospects of using the methods under study for calculating
complex circuits.
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4. Discussion

The comparison of the errors obtained in calculations by different methods showed the
following results. The method using algebraic polynomials is the most accurate. The mean
relative quadratic deviations of the current errors were less than 5 × 10−5%. Errors when
using other polynomials were more than 1000 times higher. The lowest accuracy was when
using the Hermite polynomials The method of distributing the reference points influenced
the accuracy of the calculation. The least errors are in the following distribution methods:
algebraic polynomials—in maxima; the Chebyshev and the Legendre polynomials—in
zeros; the Hermite polynomials—with a uniform distribution of points.

An increase in the accuracy of calculation can be achieved by reducing the segment size.
However, by how many times the segment size decreases, the calculation time increases
by the same factor. Increasing the number of reference points n > 7 does not improve the
accuracy, but increases the calculation time.

It is possible to provide a simplified explanation of the obtained results. When using
other orthogonal polynomials, in comparison with algebraic ones, the coefficients in the
expressions representing derivatives and integrals of the currents change significantly.
With the equality of the right and left parts of the system of Equation (44), this leads to an
increase in errors in the calculation of voltages across each circuit element and the current
in the circuit, accordingly.

The calculation time was compared according to the program based on the proposed
method and according to the program based on the implicit Euler method of numerical
integration of differential equations. The solution of the problem under consideration
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by the Euler method and its comparison with the solution by the analytical method is
given in [19]. This program can be freely downloaded from the specified link and tested
in the MATLAB system. The processor time for calculating this program in the MATLAB
system (estimated using the built-in function tic, toc) is 6.8 times greater than when using
orthogonal polynomials.

The relative mean quadratic current error is 0.85%, that is, it is much larger when
orthogonal polynomials are applied. It can be explained as so: Methods for the numerical
integration of differential equations calculate sequentially the values at the current step,
based on values at the previous steps. In this case, quite a large number of points are
used. When using polynomials, the type of solution function is known—polynomial. In
the current segment, N − 1 value is calculated at the reference points, and this reduces the
calculation time.

The proposed method was also tested to calculate the transient in a more complex
circuit. The computer program can be downloaded from the link [20]. The calculation
results for this program were verified by comparing the calculations obtained using the
multistep Geer method as well as the popular Dommel method.

In conclusion, we note that the development and study of the proposed method for cal-
culating complex nonlinear electrical and magneto-electric circuits of arbitrary complexity
will be presented in subsequent publications.

5. Conclusions

1. The developed unified spectral method for calculating electromagnetic transients
in electrical circuits based on the representation of solution functions by orthogonal
polynomials can significantly reduce the simulation time compared with the known
methods of numerical integration of differential equations. It is desirable to normalize
the segment dimension so that it is close to 1 s. Some researchers consider function
approximation of transient by a polynomial to be a risky operation because parasitic
oscillations can occur. It is shown that risk is justified if the number of decomposition
members is less than 7. The calculation error according to the proposed method can be
reduced as you like, reducing the value of the argument segment. Then, the number
of segments increases.

2. The completed development of the circuit model of the method is convenient for practice.
3. The study of the method for algebraic polynomials, as well as the Chebyshev, Her-

mit and Legendre polynomials, showed that the greatest accuracy is achieved for
algebraic polynomials. Errors were more than 1000 times higher when using other
polynomials. The method of distributing the reference points influences the accuracy
of the calculation.

4. Comparison of the calculation time by the proposed method with the implicit Euler
method showed that the calculation time decreased by 6.8 times. The calculation of the
process in the circuit at a longer time interval showed a decrease and stabilization of
errors, which indirectly indicates the reliability of the obtained analytical expressions
and the prospects for using the studied methods for calculating complex electrical
and magneto-electric circuits.

5. The mathematical justification of the proposed method may be interesting for devel-
opers of computer modeling programs. For practicing electrical engineers, equivalent
circuits and computer programs themselves are of greatest interest.
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