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ABSTRACT 

Computational prediction of HLA class II restricted T cell 
epitopes has great significance in many immunological studies 
including vaccine discovery. With the development of novel 
bioinformatics approaches, prediction of HLA class II binding has 
improved significantly but a strategy to predict the most dominant 
HLA class II epitopes has not been defined. Using different sets of 
peptides from various allergen and bacterial antigens and HLA 
class II binding prediction tools from the IEDB, we have designed 
a strategy to predict the top epitopes from any antigen. We found 
that the top 21% of 15-mer peptides overlapping by 10 residues 
(based on the predicted binding to seven DRB1 and DRB3/4/5 
alleles) capture 50% of the immune response. This corresponded 
to an IEDB consensus percentile rank of 19.82 which could be 
used as a universal prediction threshold. 
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1. INTRODUCTION 

Prediction and identification of HLA class II restricted T cell 
epitopes is a task of significance for several applications, 
including studying the immune response against pathogens or 
allergens, or deimmunization of protein-based drugs. Class II 
molecules are alpha/beta heterodimers encoded by four different 
loci in humans: DRB1/DRA, DRB1/DRB3/4/5, DPA/DPB and 
DQA/DQB. HLA class II polymorphism presents a challenge for 
epitope identification [9]. However, the problem is simplified by 
focusing on the alleles most frequently expressed in the general 
population, which account for an overwhelming majority of the 
expressed genes [4]. Furthermore, extensive similarities exist 

within the peptides bound by different allelic variants [3].  
Accordingly, peptides capable of binding multiple HLA class II 
molecules (i.e., promiscuous peptides) often account for a large 
fraction of antigen specific T cell responses [6, 8]. While 
computational predictions of HLA class II binding capacity have 
improved as novel bioinformatic approaches have been 
implemented [5, 8, 12], a strategy to predict the most dominant 
HLA class II epitopes has not been defined.  

2. MATERIALS AND METHODS 

2.1 Immunogenicity studies 

Sets of overlapping 15 or 16mer peptides spanning various 
allergen and bacterial antigens were screened for immune 
reactivity as previously described [1, 6, 7] (Supplemental Table 
1). Antigen specific cytokine production induced in donor PBMC 
was measured in dual ELISPOT assays. Responses to timothy 
grass, cockroach and house dust mite peptides were measured 
following in vitro stimulation with respective allergen extracts, 
and responses to Bordetella pertussis antigens following 
stimulation with corresponding peptide pools. Responses to 
mycobacterial antigens were analyzed ex vivo.  Peptide specific 
responses were expressed as spot-forming cells (SFCs)/106 
peripheral-blood mononuclear cells (PBMCs). Donors were HLA 
typed at each class II locus to four-digit resolution by SSP or deep 
sequencing methods [11]. 

2.2 Prediction of binding affinity 

Peptide affinity for HLA class II alleles was predicted using the 
MHC II binding prediction tool available at the IEDB 
(www.iedb.org) [10, 11]. Allele-specific consensus percentile 
ranks of all algorithms queried by the IEDB tool were utilized 
[12]. A percentile rank is generated by comparing the selected 
peptide’s predicted binding affinity against that of a large set of 
similarly sized peptides randomly selected from the SWISS-
PROT database. Percentile rank provides a uniform scale allowing 
comparisons across different predictors. A lower percentile rank 
indicates higher affinity. In the case of consensus method, median 
of the percentile ranks of the three methods involved is considered 
as the IEDB consensus percentile rank. 

2.3 Correction for epitope redundancy 

Responses against two consecutive peptides are often due to the 
same minimal epitope. To avoid counting the same epitope twice, 
two consecutive responses with magnitudes within 2.5-fold of 
each other were merged into a single antigenic region, and the 
higher SFC value utilized. The region is considered successfully 
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predicted if either of the two peptides is predicted, and “credit” 
for prediction is given only once.   

3. RESULTS AND DISCUSSION 

3.1 Definition of alternative prediction 

strategies for HLA class II epitopes  

Predicted binding of peptides in the data sets (Supplemental Table 
1) for a previously described set of 26 HLA class II alleles that are 
most frequent in the general worldwide population [3] 
(Supplemental Table 2), was determined as described above. To 
evaluate the efficacy of various approaches to identify the most 
dominant epitope responses, employing these predictions, the 
percentage (fraction) of peptides in each data set needed to 
capture 50% of the total response (50% of the total SFC values in 
the data set - expressed as SFCs/106 PBMCs) was utilized as a 
performance metric.  

As a first approach, we considered the “promiscuous binding 
capacity” of each peptide which is determined by the number of 
alleles bound (i.e., peptides binding with more alleles being better 
binders; and peptides with predicted IEDB consensus percentile 
rank ≤20 are called as “binding” to that allele). Using this 
approach, as shown in Figure 1a-b, an average of 30.91% (range 
25.35%-40.08%) peptides were needed to capture 50% of the total 
response in the data set. In the second approach, we considered 
the “median consensus percentile rank” of each peptide, which is 
defined as the median of the IEDB consensus percentile ranks 
predicted for the set of 26 selected alleles. This approach was the 
most effective, with the top 26.26% (range 16.90%-38.38%) of 
the peptides capturing 50% of the total response (Figure 1a, c). 
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Figure 1a: Performance of two approaches for implementing 

HLA class II binding predictions to identify T cell epitopes. 
The % of peptides needed for each method to identify a panel of 
epitopes accounting for 50% of the total antigen specific response 
(SFC) is shown for 4 different systems, as described in the text: 
Der p/f (House dust mite), Phl p (Timothy grass), TB-1 
(Mycobacterium tuberculosis), and TB-2 (M. tuberculosis). Black 
bars show performance based on ranking peptides according to 
the median consensus percentile rank against a panel of the 26 
most common HLA class II alleles. The grey bars show 
performance based on ranking peptides according to the number 
of alleles predicted to bind (promiscuity). A lower % of peptides 
indicates better performance. 
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Figure 1b: The % of response as a function of % of peptides 

using the “promiscuity” approach for the four data sets. An 
average of 30.91% peptides was needed to capture 50% SFC with 
this approach.  
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Figure 1c: The % of response as a function of % of peptides 

using the “median consensus percentile rank” approach for 

the four data sets. An average of 26.26% peptides was needed to 
capture 50% SFC with this approach. 

3.2 Exclusion of DP locus improves predictive 

efficacy 

As different HLA class II loci appear to contribute differentially 
to human responses [6], we hypothesized that examining the 
performance as a function of the class II locus may improve 
predictions. The average % of peptides required to capture 50% 
SFC for different combinations of DRB1, DRB3/4/5, DQ, and DP 
alleles are shown in Figure 2. The best results (23.82%) were 
obtained when DP alleles were left out. The lower performance of 
methods incorporating DP molecules might be due to the fact that 
less binding data is available for these molecules leading to worse 
prediction algorithms. 
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Figure 2: Performance of the “median consensus percentile 

rank” approach as a function of variable inclusion of the DP, 

DQ, DRB1 and DRB3/4/5 loci. 

3.3 Optimal results obtained with a set of 

seven DRB1 and DRB3/4/5 alleles 

We next examined the effect of varying the specific alleles 
included in the prediction panel. Frequency thresholds for 
inclusion were varied independently for each locus (i.e., DQ, 
DRB1 and DRB3/4/5). The best results (21.41% of peptides 
needed to capture 50% SFC) were observed when the three DRB1 
alleles with frequency ≥ 12% (DRB1*03:01, DRB1*07:01, 
DRB1*15:01) were used along with the four DRB3/4/5 alleles 
(DRB3*01:01, DRB3*02:02, DRB4*01:01, DRB5*01:01) (data 
not shown). This empirical optimization is probably reflective of 
the fact that DR alleles are the most dominant locus restricting 
HLA class II responses in humans. It is noteworthy that the seven 
allelic variants cover the main HLA class II supertypes [3]. 

3.4 Predictions based on alleles frequent in 

specific donor cohorts 

The HLA composition of a donor varies with their ethnicity. 
Accordingly, we examined the performance of the “median 
consensus percentile rank” predictions utilizing alleles present 
with frequencies of 10% or more in each specific donor 
population. As above, the best results (19.69%) were obtained 
using only DRB1 and DRB3/4/5 alleles (Figure 3). At the same 
time, the improvement seen here is minor suggesting that tailoring 
the prediction to a specific population has limited value. 

3.5 Defining a universal prediction threshold 

The percent of total peptides required to capture 50% of the 
response, as calculated here on a protein-by-protein basis is not 
available when considering individual peptides. To derive a 
standard prediction threshold, we calculated the median IEDB 
consensus percentile rank, using predictions for the seven DRB1 
and DRB3/4/5 alleles highlighted above, associated with the 
selected set of peptides yielding 50% of the response. This value 
was found to be 19.82 (median consensus percentile rank from the 
seven selected alleles).  
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Figure 3: Average % of peptides required to capture 50% SFC 

for different allele combinations using the alleles with 

frequency >10% in each specific corresponding donor cohort. 

3.6 Validation of the results with blind 

prediction using new data sets 

The analyses above suggested that the optimal approach for 
efficient selection of epitope candidates would be based on 
determining the median consensus percentile rank across a 
selected panel of seven DR alleles (3 DRB1 alleles with frequency 
≥12% in conjunction with 4 DRB3/4/5 alleles). To validate these 
results we examined overlapping peptides for two additional sets 
of proteins of immunological interest: 1) cockroach allergens and 
2) pertussis vaccine antigens. When the range of approaches tried 
above was implemented against the two blind sets, the best 
performance was again achieved with the “median consensus 
percentile rank” approach. When the universal median IEDB 
consensus percentile threshold defined above (~20%) with the 
panel of seven DR alleles was utilized, the average % of SFC 
captured using peptides with median IEDB consensus percentile 
rank ≤ 20.0 was found to be 48.55%, confirming the validity of 
this prediction threshold.  

4. CONCLUSIONS 

We scrutinized the use of HLA class II binding predictions to 
identify sets of epitopes with high immunological activity. The 
results validate previous observations that promiscuous binders 
account for a high fraction of the total response. Compared to 
HLA class I predictions, the results are sobering, as this 
performance is remarkably less effective. This is in line with other 
recent studies [2]. At the same time, our results provide guidance 
for practical implementation of predictions, and identify specific 
subsets of HLA molecules that are most effectively considered by 
prediction schemes. The synthesis of approximately 20% of the 
peptides in a set of 15-mer peptides overlapping by 10 residues 
allows covering a 200-residue protein (otherwise covered by 40 
overlapping peptides) with 10 peptides, which still constitutes 
significant cost savings.  
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Supplemental Table 1: Data sets used in the analyses 

Data set 

No. of 

antigens Antigens Peptides 

Total 

peptides 

No. of 

donors Ethnicity Reference 

Der p/f 4 proDer p 1.0105 59 156* 20 White Oseroff, in 
preparation   proDer f 1.0101 59    

  Der p 2.0101 24     

    Der f 2.0103 24       

Phl p 10 Phl p 1 51 425 25 Mixed Oseroff, 2010 

  Phl p 2 23   (predominantly 
white) 

 

  Phl p 3 18    

  Phl p 4 103    

  Phl p 5.0103 61     

  Phl p 6 26     

  Phl p 7 14     

  Phl p 11 27     

  Phl p 12 25     

    Phl p 13 77       

TB-1 4 ESAT-6 17 71 18 Mixed Arlehamn, 2012 

  CFP10 18     

  hspX 27     

    Rv1038c 9       

TB-2 11 Rv0125 69 499 32 Coloured Arlehamn, in 
preparation 
McKinney, 2012 

  Rv0288 18    

  Rv1196 77    

  Rv1813c 27    

  Rv1886c 63     

  Rv2608 114     

  Rv2660c 13     

  Rv3619 17     

  Rv3620c 18     

  Rv3804c 66     

    Rv3875 17       

Cockroach 6 Bla g 1 189 463 19 Mixed Oseroff, 2012 

  Bla g 2 69   (predominantly 
black) 

 

  Bla g 4 35    

  Bla g 5 39    

  Bla g 6 76     

    Bla g 7 55       

Pertussis 9 fhaB 468 785 23 Mixed Dillon, in 
preparation   fim2 26    

  fim3 25    

  prn 131     

  ptxA 40     

  ptxB 30     

  ptxC 28     

  ptxD 21     

    ptxE 16       

*10 peptides are shared by different antigens in the Der p/f data set. Thus, the total no. of unique peptides is 10 less than the sum of 
peptides in individual antigens. 

 

ACM-BCB 2014 737



 

 

Supplemental Table 2: The 26 MHC class II alleles that are most frequent in the general worldwide population [3], and thus were 

included in the analyses. 

Locus Allele Phenotype frequency Gene frequency 

DRB1 DRB1*0101 5.4 2.8 

 
DRB1*0301 13.7 7.1 

 
DRB1*0401 4.6 2.3 

 
DRB1*0405 6.2 3.1 

 
DRB1*0701 13.5 7.0 

 
DRB1*0802 4.9 2.5 

 
DRB1*0901 6.2 3.1 

 
DRB1*1101 11.8 6.1 

 
DRB1*1201 3.9 2.0 

 
DRB1*1302 7.7 3.9 

 
DRB1*1501 12.2 6.3 

  Total 71.1 46.2 

DRB3/4/5 DRB3*0101 26.1 14.0 

DRB3*0202 34.3 18.9 

DRB4*0101 41.8 23.7 

DRB5*0101 16.0 8.3 

  Total 87.7 65.0 

DQA1/DQB1 DQA1*0501/DQB1*0201 11.3 5.8 

DQA1*0501/DQB1*0301 35.1 19.5 

DQA1*0301/DQB1*0302 19.0 10.0 

DQA1*0401/DQB1*0402 12.8 6.6 

DQA1*0101/DQB1*0501 14.6 7.6 

DQA1*0102/DQB1*0602 14.6 7.6 

  Total 81.6 57.1 

DPB1 DPB1*0101 16.0 8.4 

DPB1*0201 17.5 9.2 

DPB1*0401 36.2 20.1 

DPB1*0402 41.6 23.6 

DPB1*0501 21.7 11.5 

  Total 92.6 72.7 
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