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IMPORTANCE Deep learning is a family of computational methods that allow an algorithm to
program itself by learning from a large set of examples that demonstrate the desired
behavior, removing the need to specify rules explicitly. Application of these methods to
medical imaging requires further assessment and validation.

OBJECTIVE To apply deep learning to create an algorithm for automated detection of diabetic
retinopathy and diabetic macular edema in retinal fundus photographs.

DESIGN AND SETTING A specific type of neural network optimized for image classification
called a deep convolutional neural network was trained using a retrospective development
data set of 128 175 retinal images, which were graded 3 to 7 times for diabetic retinopathy,
diabetic macular edema, and image gradability by a panel of 54 US licensed ophthalmologists
and ophthalmology senior residents between May and December 2015. The resultant
algorithm was validated in January and February 2016 using 2 separate data sets, both
graded by at least 7 US board-certified ophthalmologists with high intragrader consistency.

EXPOSURE Deep learning–trained algorithm.

MAIN OUTCOMES AND MEASURES The sensitivity and specificity of the algorithm for detecting
referable diabetic retinopathy (RDR), defined as moderate and worse diabetic retinopathy,
referable diabetic macular edema, or both, were generated based on the reference standard
of the majority decision of the ophthalmologist panel. The algorithm was evaluated at 2
operating points selected from the development set, one selected for high specificity and
another for high sensitivity.

RESULTS The EyePACS-1 data set consisted of 9963 images from 4997 patients (mean age, 54.4
years; 62.2% women; prevalence of RDR, 683/8878 fully gradable images [7.8%]); the
Messidor-2 data set had 1748 images from 874 patients (mean age, 57.6 years; 42.6% women;
prevalence of RDR, 254/1745 fully gradable images [14.6%]). For detecting RDR, the algorithm
had an area under the receiver operating curve of 0.991 (95% CI, 0.988-0.993) for EyePACS-1 and
0.990 (95% CI, 0.986-0.995) for Messidor-2. Using the first operating cut point with high
specificity, for EyePACS-1, the sensitivity was 90.3% (95% CI, 87.5%-92.7%) and the specificity
was 98.1% (95% CI, 97.8%-98.5%). For Messidor-2, the sensitivity was 87.0% (95% CI, 81.1%-
91.0%) and the specificity was 98.5% (95% CI, 97.7%-99.1%). Using a second operating point
with high sensitivity in the development set, for EyePACS-1 the sensitivity was 97.5% and
specificity was 93.4% and for Messidor-2 the sensitivity was 96.1% and specificity was 93.9%.

CONCLUSIONS AND RELEVANCE In this evaluation of retinal fundus photographs from adults
with diabetes, an algorithm based on deep machine learning had high sensitivity and
specificity for detecting referable diabetic retinopathy. Further research is necessary to
determine the feasibility of applying this algorithm in the clinical setting and to determine
whether use of the algorithm could lead to improved care and outcomes compared with
current ophthalmologic assessment.
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Among individuals with diabetes, the prevalence of dia-
betic retinopathy is approximately 28.5% in the United
States1 and 18% in India.2 Most guidelines recom-

mend annual screening for those with no retinopathy or mild
diabetic retinopathy, repeat examination in 6 months for mod-
erate diabetic retinopathy, and an ophthalmologist referral for
treatment evaluation within a few weeks to months for se-
vere or worse diabetic retinopathy or the presence of refer-
able diabetic macular edema, known as clinically significant
macular edema.3 Referable diabetic retinopathy has been de-
fined as moderate or worse diabetic retinopathy or referable
diabetic macular edema,4 given that recommended manage-
ment changes from yearly screening to closer follow-up at mod-
erate disease severity.3 Retinal photography with manual in-
terpretation is a widely accepted screening tool for diabetic
retinopathy, with performance that can exceed that of in-
person dilated eye examinations.3

Automated grading of diabetic retinopathy has potential
benefits such as increasing efficiency, reproducibility, and
coverage of screening programs; reducing barriers to access;
and improving patient outcomes by providing early detection
and treatment. To maximize the clinical utility of automated
grading, an algorithm to detect referable diabetic retinopathy
is needed. Machine learning (a discipline within computer
science that focuses on teaching machines to detect patterns
in data) has been leveraged for a variety of classification tasks
including automated classification of diabetic retinopathy.
However, much of the work has focused on “feature-
engineering,” which involves computing explicit features
specified by experts, resulting in algorithms designed to
detect specific lesions or predicting the presence of any level
of diabetic retinopathy.5 Deep learning6 is a machine learning
technique that avoids such engineering by learning the most
predictive features directly from the images given a large
data set of labeled examples. This technique uses an optimi-
zation algorithm called back-propagation to indicate how a
machine should change its internal parameters to best pre-
dict the desired output of an image.

In this study, deep learning7,8 was used to train an algo-
rithm to detect referable diabetic retinopathy and assess the
performance of the algorithm in 2 clinical validation sets.

Methods
Data Sets
For algorithm development, macula-centered retinal fundus
images were retrospectively obtained from EyePACS in the
United States and 3 eye hospitals in India (Aravind Eye Hos-
pital, Sankara Nethralaya, and Narayana Nethralaya) among
patients presenting for diabetic retinopathy screening. All
images were deidentified according to Health Insurance
Portability and Accountability Act Safe Harbor prior to
transfer to study investigators. Ethics review and institu-
tional review board exemption was obtained using Quorum
Review IRB.

Two further data sets were used for clinical validation.
The first deidentified data set consisted of a random sample

of macula-centered images taken at EyePACS screening sites
between May 2015 and October 2015. A variety of cameras
were used, including Centervue DRS, Optovue iCam, Canon
CR1/DGi/CR2, and Topcon NW using 45° fields of view.
EyePACS images were acquired as a part of routine clinical
care for diabetic retinopathy screening, and approximately
40% of the images were acquired with pupil dilation. This
data set did not overlap with the EyePACS data used in devel-
opment. The second data set was the publicly available
Messidor-2 data set,9,10 which has been used by other groups
for benchmarking performance of automated detection algo-
rithms for diabetic retinopathy.11-13 The images were obtained
between January 2005 and December 2010 at 3 hospitals in
France using a Topcon TRC NW6 nonmydriatic camera and
45° fields of view centered on the fovea. Approximately 44%
of images were acquired with pupil dilation.

Grading
All images in the development and clinical validation sets
were graded by ophthalmologists for the presence of dia-
betic retinopathy, diabetic macular edema, and image qual-
ity using an annotation tool (eFigures 1 and 2 in the Supple-
ment). Diabetic retinopathy severity (none, mild, moderate,
severe, or proliferative) was graded according to the Inter-
national Clinical Diabetic Retinopathy scale.14 Referable dia-
betic macular edema was defined as any hard exudates
within 1 disc diameter of the macula,15 which is a proxy for
macular edema when stereoscopic views are not available.
Image quality was assessed by graders using the rubric in
the “Grading Instructions” section in the Supplement.
Images of excellent, good, and adequate quality were con-
sidered gradable.

Derivation
The 54 graders for the development set were US-licensed
ophthalmologists or ophthalmology trainees in their last year
of residency (postgraduate year 4). Each individual graded
between 20 and 62 508 images (mean, 9774; median, 2021).
Trainee performance was not worse than that of licensed

Key Points
Question How does the performance of an automated deep
learning algorithm compare with manual grading by
ophthalmologists for identifying diabetic retinopathy in retinal
fundus photographs?

Finding In 2 validation sets of 9963 images and 1748 images, at
the operating point selected for high specificity, the algorithm had
90.3% and 87.0% sensitivity and 98.1% and 98.5% specificity for
detecting referable diabetic retinopathy, defined as moderate or
worse diabetic retinopathy or referable macular edema by the
majority decision of a panel of at least 7 US board-certified
ophthalmologists. At the operating point selected for high
sensitivity, the algorithm had 97.5% and 96.1% sensitivity and
93.4% and 93.9% specificity in the 2 validation sets.

Meaning Deep learning algorithms had high sensitivity and
specificity for detecting diabetic retinopathy and macular edema
in retinal fundus photographs.
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ophthalmologists, although only 3 trainees graded more than
1000 images. Intergrader reliability was measured for each
physician using pairwise comparisons by taking the number
of times a grader was in agreement with another grader over
the total number of pairwise comparisons. Approximately
10% of the derivation set (128 175 images) were randomly
selected to be overread by the same grader to determine
intragrader reliability. All graders were paid for their work.

Validation
Graders who were US board-certified ophthalmologists with
the highest rate of self-consistency were invited to grade the
clinical validation sets, EyePACS-1 (n = 8) and Messidor-2
(n = 7). A simple majority decision (an image was classified as
referable if ≥50% of ophthalmologists graded it referable)
served as the reference standard for both referability and grad-
ability. Graders were masked to judgments by other graders.
(See “Grading Quality Control” section in the Supplement for
more details.)

Development of the Algorithm
Deep learning is the process of training a neural network
(a large mathematical function with millions of parameters)
to perform a given task. The function computes diabetic reti-
nopathy severity from the intensities of the pixels in a fundus
image. Creating or “training” this function requires a large set
of images for which the diabetic retinopathy severity is
already known (training set). During the training process, the
parameters of the neural network (mathematical function)
are initially set to random values. Then, for each image, the
severity grade given by the function is compared with the
known grade from the training set, and parameters of the
function are then modified slightly to decrease the error on
that image. This process is repeated for every image in the
training set many times over, and the function “learns” how
to accurately compute the diabetic retinopathy severity from
the pixel intensities of the image for all images in the training
set. With the right training data, the result is a function gen-
eral enough to compute diabetic retinopathy severity on new
images. The network used in this study is a convolutional
neural network that uses a function that first combines
nearby pixels into local features, then aggregates those into
global features. Although the algorithm does not explicitly
detect lesions (eg, hemorrhages, microaneurysms), it likely
learns to recognize them using the local features. The specific
neural network used in this work is the Inception-v3 architec-
ture proposed by Szegedy et al.8

Data were preprocessed according to a protocol de-
scribed in the Supplement. The optimization algorithm used
to train the network weights was a distributed stochastic gra-
dient descent implementation by Dean et al.16 To speed up
the training, batch normalization7 as well as preinitialization
using weights from the same network trained to classify ob-
jects in the ImageNet data set17 were used. Preinitialization
also improved performance. A single network was trained
to make multiple binary predictions, including whether
the image was (1) moderate or worse diabetic retinopathy
(ie, moderate, severe, or proliferative), (2) severe or worse dia-

betic retinopathy, (3) referable diabetic macular edema, or
(4) fully gradable. Referable diabetic retinopathy was defined
as any image that fulfilled either criterion 1, criterion 3, or both.

The performance of the algorithm was measured by the
area under the receiver operating curve (AUC) generated by
plotting sensitivity vs 1 − specificity. Because the network in
this study had a large number of parameters (22 million), an
early stopping criteria18 (that stops training when peak AUC
is reached on a separate tuning set) was used to terminate train-
ing before convergence. The development set was divided into
2 parts: (1) training: 80% of the data was used to optimize the
network weights and (2) tuning: 20% of the data was used to
optimize hyperparameters (such as early stopping for train-
ing, image preprocessing options). An ensemble19 of 10 net-
works trained on the same data was used, and the final pre-
diction was computed by a linear average over the predictions
of the ensemble.

Evaluating the Algorithm
The trained neural network generates a continuous number
between 0 and 1 for referable diabetic retinopathy and other
diabetic retinopathy classifications, corresponding to the prob-
ability of that condition being present in the image. Receiver
operating curves were plotted by varying the operating thresh-
old and 2 operating points for the algorithm were selected from
the development set. The first operating point approximated
the specificity of the ophthalmologists in the derivation set for
detecting referable diabetic retinopathy (approximately 98%)
and allowed for better comparison between the algorithm’s per-
formance and that of the 7 or 8 ophthalmologists that graded
the validation set. The second operating point corresponded
to a sensitivity of 97% for detecting referable diabetic reti-
nopathy because a high sensitivity is a prerequisite in a po-
tential screening tool.

Statistical Analysis and Performance Comparison
on Clinical Validation Sets
Based on the 2 operating points, 2 × 2 tables were generated
to characterize the sensitivity and specificity of the algorithm
with respect to the reference standard, which was defined as
the majority decision of the ophthalmologists’ readings
based on all available grades. The 95% confidence intervals
for the sensitivity and specificity of the algorithm at the 2
operating points were calculated to be “exact” Clopper-
Pearson intervals,20 which corresponded to separate 2-sided
confidence intervals with individual coverage probabilities of
sqrt(0.95) ≈ 0.975. The 95% confidence intervals for the
intragrader and intergrader reliabilities are z confidence
intervals.

Statistical significance and simultaneous 2-sided confi-
dence intervals were computed using the StatsModels ver-
sion 0.6.1 and SciPy version 0.15.1 python packages.

Subsampling Experiments
Experiments to understand the relationship between the
amount of development data on the performance of the re-
sulting algorithms also were conducted. To understand the
effect of reducing the number of images in the training set,
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images were sampled at rates of 0.2%, 2%, and N × 10%, in
which N ranged from 1 to 10; a new algorithm was trained for
each data set; and its performance was measured on a fixed
tuning set. To understand the effect of reducing the number
of grades per image, 2 experiments were run: (1) training: grades
in the training set were subsampled at rates of N × 20%, in
which N ranged from 0 to 5, with a restriction that the mini-
mum number of grades to sample per image was 1. A new al-
gorithm was trained for each N, and its performance was mea-
sured on a fixed tuning set with all the available grades and
(2) tuning: grades in the tuning set (used to measure perfor-
mance) were sampled using the same procedure as in the train-
ing experiment. The training set and the algorithm were fixed
and used all available grades.

Results
Patient demographics and image characteristics are summa-
rized in the Table. The development set included 128 175
images, of which 118 419 were assessed for referable diabetic
retinopathy and 33 246 (28.1%) had referable diabetic reti-

nopathy. Each image was graded by ophthalmologists
between 3 and 7 times. The EyePACS-1 and Messidor-2 clini-
cal validation sets consisted of 9963 images (8788 fully grad-
able; 683 [7.8%] referable) and 1748 images (1745 fully grad-
able; 254 [14.6%] referable), respectively. Image quality was
assessed only for a subset of the development set, and fully
gradable images ranged from 75.1% (52 311 of 69 598 images
that were assessed for image quality) for the development set
to 99.8% (1745 of 1748) for the Messidor-2 validation set
(Table and Figure 1).

In the development set, intragrader reliability among the
ophthalmologists could be assessed among 16 graders who
had graded a sufficient volume of repeat images. The mean
intragrader reliability for referable diabetic retinopathy of
these graders was 94.0% (95% CI, 91.2%-96.8%). Intergrader
reliability could be assessed on 26 graders. The mean inter-
grader reliability for these graders was 95.5% (95% CI,
94.0%-96.9%).

In the validation sets, a total of 8 grades per image were
obtained for the EyePACS-1 data set and 7 grades per image
for Messidor-2. The mean intragrader reliability for referable
diabetic retinopathy for EyePACS-1 was 95.8% (95% CI,

Table. Baseline Characteristicsa

Characteristics Development Data Set EyePACS-1 Validation Data Set Messidor-2 Validation Data Set
No. of images 128 175 9963 1748

No. of ophthalmologists 54 8 7

No. of grades per image 3-7 8 7

Grades per ophthalmologist, median
(interquartile range)

2021 (304-8366) 8906 (8744-9360) 1745 (1742-1748)

Patient demographics

No. of unique individuals 69 573b 4997 874

Age, mean (SD), y 55.1 (11.2)c 54.4 (11.3) 57.6 (15.9)

Female, No./total (%) among images
for which sex was known

50 769/84 734 (59.9)c 5463/8784 (62.2) 743/1745 (42.6)

Image quality distribution

Fully gradable, No./total (%) among images
for which image quality was assessed

52 311/69 598 (75.1)d 8788/9946 (88.4) 1745/1748 (99.8)

Disease severity distribution classified
by majority decision of ophthalmologists
(reference standard)

Total images for which both diabetic
retinopathy and diabetic macular edema
were assessed, No. (%)

118 419 (100) 8788 (100) 1745 (100)

No diabetic retinopathy 53 759 (45.4) 7252 (82.5) 1217 (69.7)

Mild diabetic retinopathy 30 637 (25.9) 842 (9.6) 264 (15.1)

Moderate diabetic retinopathy 24 366 (20.6) 545 (6.2) 211 (12.1)

Severe diabetic retinopathy 5298 (4.5) 54 (0.6) 28 (1.6)

Proliferative diabetic retinopathy 4359 (3.7) 95 (1.1) 25 (1.4)

Referable diabetic macular edema 18 224 (15.4) 272 (3.1) 125 (7.2)

Referable diabetic retinopathye 33 246 (28.1) 683 (7.8) 254 (14.6)
a Summary of image characteristics and available demographic information

in the development and clinical validation data sets (EyePACS-1 and
Messidor-2). Abnormal images were oversampled for the development set
for algorithm training. The clinical validation sets were not enriched for
abnormal images.

b Unique patient codes (deidentified) were available for 89.3% of the
development set (n = 114 398 images).

c Individual-level data including age and sex were available for 66.1% of the
development set (n = 84 734 images).

d Image quality was assessed for a subset of the development set.
e Referable diabetic retinopathy, defined as the presence of moderate and

worse diabetic retinopathy and/or referable diabetic macular edema according
to the International Clinical Diabetic Retinopathy Scale,14 was calculated for
each ophthalmologist before combining them using a majority decision. The
5-point grades represent the grade that received the highest number of votes
for diabetic retinopathy alone. Hence, the sum of moderate, severe, and
proliferative diabetic retinopathy for the 5-point grade differs slightly from the
count of referable diabetic retinopathy images.
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92.8%-98.7%). Intragrader reliability was not assessed for
Messidor-2. The mean intergrader reliability was 95.9% (95%
CI, 94.0%-97.8%) for EyePACS-1 and 94.6% (95% CI, 93.0%-
96.1%) for Messidor-2.

On EyePACS-1, the mean agreement among ophthalmolo-
gists on referable diabetic retinopathy images was 77.7% (SD,
16.3%), with complete agreement on 19.6% of the referable
cases. On nonreferable images, the average agreement was
97.4% (SD, 7.3%), with complete agreement on 85.6% of the
nonreferable cases. On Messidor-2, the average agreement
among ophthalmologists on referable diabetic retinopathy im-
ages was 82.4% (SD, 16.9%), with complete agreement on 37.8%
of the referable cases. On nonreferable images, the average
agreement was 96.3% (SD, 9.9%), with complete agreement
on 85.1% of the nonreferable cases. The distribution of agree-
ment among ophthalmologists is reported in eFigure 3 in the
Supplement.

Figure 2 summarizes the performance of the algorithm in
detecting referable diabetic retinopathy in the EyePACS-1 and
Messidor-2 validation data sets for fully gradable images. For
referable diabetic retinopathy, the algorithm achieved an
AUC of 0.991 (95% CI, 0.988-0.993) on EyePACS-1 and an
AUC of 0.990 (95% CI, 0.986-0.995) on Messidor-2. Using the
first operating cut point with high specificity, approximating
the specificity of ophthalmologists in the development set,
on EyePACS-1, the algorithm’s sensitivity was 90.3% and

specificity was 98.1%. In Messidor-2, the sensitivity was
87.0% and specificity was 98.5%.

A second operating point for the algorithm was evalu-
ated, which had a high sensitivity on the development set,
reflecting an output that would be used for a screening tool.
Using this operating point, on EyePACS-1, the algorithm had a
sensitivity of 97.5% (95% CI, 95.8%-98.7%) and a specificity
of 93.4% (95% CI, 92.8%-94.0%). In Messidor-2, the sensitiv-
ity was 96.1% (95% CI, 92.4%-98.3%) and the specificity was
93.9% (95% CI, 92.4%-95.3%). Given an approximately 8%
prevalence of referable diabetic retinopathy (on a per-image
basis [Table]), these findings correspond to a negative predic-
tive value of 99.8% for EyePACS-1 and 99.6% for Messidor-2.

The algorithm performance in making all-cause referable
predictions, defined as moderate or worse diabetic retinopa-
thy, referable diabetic macular edema, or ungradable images
(Figure 3), was also evaluated using the EyePACS-1 data set.
The Messidor-2 data set had only 3 ungradable images, so it
was omitted from this analysis. For this task, the algorithm
achieved an AUC of 0.974 (95% CI, 0.971-0.978). At the first
(high-specificity) operating point, the algorithm had a sensi-
tivity of 90.7% (95% CI, 89.2%-92.1%) and a specificity of 93.8%
(95% CI, 93.2%-94.4%). At the second (high-sensitivity) op-
erating point, the algorithm had a sensitivity of 96.7% (95%
CI, 95.7%-97.5%) and a specificity of 84.0% (95% CI, 83.1%-
85.0%).

Figure 1. EyePACS-1 and Messidor-2 Clinical Validation Sets for Detection of Diabetic Retinopathy and All-Cause Referable Diabetic Retinopathy

Referable diabetic retinopathy (RDR)A

17 Excluded (circular
mask detection
failed)

EYEPACS-1

1158 Excluded (not
fully gradable)

8021 Graded by majority
decision of 8
ophthalmologists
(reference standard)

767 Graded by majority
decision of 8
ophthalmologists
(reference standard)

8021 Graded as no RDR 767 Graded as RDR

9946 Eligible images

8788 Graded by algorithm for RDR
(index test)

9963 Potentially eligible images

All-cause referable casesB

17 Excluded (circular
mask detection
failed)

EYEPACS-1

7636 Graded by majority
decision of 8
ophthalmologists
(reference standard)

2310 Graded by majority
decision of 8
ophthalmologists
(reference standard)

9946 Eligible images

9946 Graded by algorithm for all-
cause referability (index test)

9963 Potentially eligible images

Final diagnosis
489 Not referable

1821 All-cause referable
cases

Final diagnosis
7450 Not referable

186 All-cause referable
cases

MESSIDOR-2

3 Excluded (not
fully gradable)

1503 Graded by majority
decision of 7
ophthalmologists
(reference standard)

242 Graded by majority
decision of 7
ophthalmologists
(reference standard)

1503 Graded as no RDR 242 Graded as RDR

1748 Eligible images

1745 Graded by algorithm for RDR
(index test)

1748 Potentially eligible images

Final diagnosis
7955 No RDR

66 RDR

Final diagnosis
150 No RDR
617 RDR

Final diagnosis
1469 No RDR

34 RDR

Final diagnosis
22 No RDR

220 RDR

7636 Graded as not
referable

2310 Graded as all-
cause referable

A, Referable diabetic retinopathy, defined as moderate or worse diabetic
retinopathy or referable diabetic macular edema. B, All-cause referable cases,

defined as moderate or worse diabetic retinopathy, referable diabetic macular
edema, or ungradable image quality.
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Additional sensitivity analyses were conducted for sev-
eral subcategories: (1) detecting moderate or worse diabetic reti-
nopathy only; (2) detecting severe or worse diabetic retinopa-
thy only; (3) detecting referable diabetic macular edema only;
(4) image quality; and (5) referable diabetic retinopathy on 2
data sets, each restricted to mydriatic and nonmydriatic im-
ages, respectively. For each subcategory 1 through 4, the al-
gorithm achieved high sensitivity and specificity (see section
on “Performance on Individual Diabetic Retinopathy Sub-
types, Image Quality,” eTable 1, and eFigure 4 in the Supple-
ment). For example, for the EyePACS-1 data set, at the first op-
erating point for moderate or worse diabetic retinopathy, the
algorithm had a sensitivity of 90.1% (95% CI, 87.2%-92.6%) and
specificity of 98.2% (95% CI, 97.8%-98.5%). For severe or worse
diabetic retinopathy only at the first operating point, the al-
gorithm had a sensitivity of 84.0% (95% CI, 75.3%-90.6%) and
specificity of 98.8% (95% CI, 98.5%-99.0%). For diabetic macu-
lar edema only, the algorithm’s sensitivity was 90.8% (95% CI,
86.1%-94.3%) and specificity was 98.7% (95% CI, 98.4%-
99.0%). The algorithm’s performance on mydriatic images was
very close to its performance on nonmydriatic images (and both
were similar to the overall algorithm performance; see eTable
2 in the Supplement).

Multiple networks with varying number of images and
grades per image were trained to determine how smaller train-
ing data sets related to the performance of the trained algo-
rithms. In the first subsampling experiment (Figure 4A), the

effects of data set size on algorithm performance were exam-
ined and shown to plateau at around 60 000 images (or ap-
proximately 17 000 referable images). In the second experi-
ment (Figure 4B) on subsampling grades, 2 trends emerged:
(1) increasing the number of grades per image on the training
set did not yield an increase in relative performance (31.6% ab-
solute difference) and (2) using only 1 grade per image on the
tuning set led to a decline of 36% in performance compared
with using all the available grades on the tuning set (an aver-
age of 4.5 grades), and that performance steadily increased as
more grades were made available for the tuning set. This sug-
gests that additional grading resources should be devoted to
grading the tuning set (on which evaluation is done), which
improves the quality of the reference standard and the algo-
rithm performance.

Discussion
These results demonstrate that deep neural networks can be
trained, using large data sets and without having to specify
lesion-based features, to identify diabetic retinopathy or dia-
betic macular edema in retinal fundus images with high sen-
sitivity and high specificity. This automated system for the de-
tection of diabetic retinopathy offers several advantages,
including consistency of interpretation (because a machine will
make the same prediction on a specific image every time), high

Figure 2. Validation Set Performance for Referable Diabetic Retinopathy
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Performance of the algorithm (black curve) and ophthalmologists (colored
circles) for the presence of referable diabetic retinopathy (moderate or worse
diabetic retinopathy or referable diabetic macular edema) on A, EyePACS-1
(8788 fully gradable images) and B, Messidor-2 (1745 fully gradable images).
The black diamonds on the graph correspond to the sensitivity and specificity of
the algorithm at the high-sensitivity and high-specificity operating points.
In A, for the high-sensitivity operating point, specificity was 93.4% (95% CI,
92.8%-94.0%) and sensitivity was 97.5% (95% CI, 95.8%-98.7%); for the

high-specificity operating point, specificity was 98.1% (95% CI, 97.8%-98.5%)
and sensitivity was 90.3% (95% CI, 87.5%-92.7%). In B, for the high-sensitivity
operating point, specificity was 93.9% (95% CI, 92.4%-95.3%) and sensitivity
was 96.1% (95% CI, 92.4%-98.3%); for the high-specificity operating point,
specificity was 98.5% (95% CI, 97.7%-99.1%) and sensitivity was 87.0% (95%
CI, 81.1%-91.0%). There were 8 ophthalmologists who graded EyePACS-1 and 7
ophthalmologists who graded Messidor-2. AUC indicates area under the
receiver operating characteristic curve.
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sensitivity and specificity, and near instantaneous reporting
of results. In addition, because an algorithm can have mul-
tiple operating points, its sensitivity and specificity can be

tuned to match requirements for specific clinical settings, such
as high sensitivity for a screening setting. In this study, sen-
sitivities of 97.5% and 96.1% were achieved.

Automated and semiautomated diabetic retinopathy evalu-
ation has been previously studied by other groups. Abràmoff
et al4 reported a sensitivity of 96.8% at a specificity of 59.4%
for detecting referable diabetic retinopathy on the publicly
available Messidor-2 data set.9 Solanki et al12 reported a sen-
sitivity of 93.8% at a specificity of 72.2% on the same data set.
A study by Philip et al21 reported a sensitivity of 86.2% at a
specificity of 76.8% for predicting disease vs no disease on their
own data set of 14 406 images. In a recent Kaggle machine-
learning competition,22 deep learning was used to predict the
diabetic retinopathy grade only (no diabetic macular edema
prediction). The winning entry had a performance that was
comparable with an ophthalmologist grading the wrong eye
of the same patient23 and higher than the agreement demon-
strated between general physicians and ophthalmologists.24

Although there are differences in the data set and reference
standards compared with the previous studies, the present
study extends this body of work by using deep convolutional
neural networks and a large data set with multiple grades per
image to generate an algorithm with 97.5% sensitivity and
93.4% specificity (at the screening operating point, which had
been selected to have high sensitivity). When screening popu-
lations with substantial disease, achieving both high sensitiv-
ity and high specificity is critical to minimize both false-
positive and false-negative results.

In the future, based on the observations from this study,
the development of similar high-performing algorithms for
medical imaging using deep learning has 2 prerequisites. First,
there must be collection of a large developmental set with tens
of thousands of abnormal cases. While performance on the tun-
ing set saturated at 60 000 images, additional gains might be

Figure 3. Validation Set Performance for All-Cause Referable
Diabetic Retinopathy in the EyePACS-1 Data Set (9946 Images)
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Figure 4. Model Performance for Detection of Diabetic Retinopathy and All-Cause Referable Diabetic Retinopathy as a Function of the Number
of Images and Grades Used in the Development Set
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grades per image. Relative specificity was calculated as specificity at each grade
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achieved by increasing the diversity of training data (ie, data
from new clinics). Second, data sets used to measure final per-
formance (tuning and the clinical validation data sets) should
have multiple grades per image. This provides a more reliable
measure of a model’s final predictive ability. Although inter-
grader variability is a well-known issue in many settings in
which human interpretation is used as the reference stan-
dard (as opposed to “hard” outcomes like mortality), such as
in radiology25 or pathology,26 diseases with unambiguous in-
terpretations may not require additional grades per image.

There are limitations to this system. The reference stan-
dard used for this study was the majority decision of all oph-
thalmologist graders. This means the algorithm may not per-
form as well for images with subtle findings that a majority of
ophthalmologists would not identify. Another fundamental
limitation arises from the nature of deep networks, in which
the neural network was provided with only the image
and associated grade, without explicit definitions of features
(eg, microaneurysms, exudates). Because the network
“learned” the features that were most predictive for the
referability implicitly, it is possible that the algorithm is using
features previously unknown to or ignored by humans.
Although this study used images from a variety of clinical
settings (hundreds of clinical sites: 3 in India, hundreds in the
United States, and 3 in France) with a range of camera types
to mitigate the risk that the algorithm is using anomalies in
data acquisition to make predictions, the exact features being
used are still unknown. Understanding what a deep neural

net uses to make predictions is a very active area of research
within the larger machine learning community. Another open
question is whether the design of the user interface and the
online setting for grading used by ophthalmologists has any
influence on their performance relative to a clinical setting.
This needs further experiments to address. The algorithm
has been trained to identify only diabetic retinopathy and
diabetic macular edema. It may miss nondiabetic retinopathy
lesions that it was not trained to identify. Hence, this algo-
rithm is not a replacement for a comprehensive eye examina-
tion, which has many components, such as visual acuity,
refraction, slitlamp examination, and eye pressure measure-
ments. In addition, further validation of the algorithm is
necessary in a data set in which the gold standard was not a
consensus of experts who participated in the derivation of
the algorithm.

Conclusions
In this evaluation of retinal fundus photographs from adults
with diabetes, an algorithm based on deep machine learning
had high sensitivity and specificity for detecting referable dia-
betic retinopathy. Further research is necessary to determine
the feasibility of applying this algorithm in the clinical setting
and to determine whether use of the algorithm could lead to
improved care and outcomes compared with current ophthal-
mologic assessment.
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