
Development and Validation of a Deep Learning System

to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs

Hanruo Liu, MD, PhD; Liu Li, BEng; I. Michael Wormstone, PhD; Chunyan Qiao, MD, PhD; Chun Zhang, MD, PhD;

Ping Liu, MD, PhD; Shuning Li, MD, PhD; HuaizhouWang, MD, PhD; DapengMou, MD, PhD; Ruiqi Pang, MD;

Diya Yang, MD, PhD; LindaM. Zangwill, PhD; SasanMoghimi, MD; Huiyuan Hou, MD, PhD;

Christopher Bowd, PhD; Lai Jiang, BEng; Yihan Chen, MD; Man Hu, MD, PhD; Yongli Xu, PhD; Hong Kang, PhD;

Xin Ji, BEng; Robert Chang, MD, PhD; Clement Tham, MD, PhD; Carol Cheung, PhD; Daniel ShuWei Ting, MD, PhD;

Tien YinWong, MD, PhD; Zulin Wang, PhD; Robert N. Weinreb, MD, PhD; Mai Xu, PhD; Ningli Wang, MD, PhD

IMPORTANCE A deep learning system (DLS) that could automatically detect glaucomatous

optic neuropathy (GON) with high sensitivity and specificity could expedite screening

for GON.

OBJECTIVE To establish a DLS for detection of GON using retinal fundus images and glaucoma

diagnosis with convoluted neural networks (GD-CNN) that has the ability to be generalized

across populations.

DESIGN, SETTING, AND PARTICIPANTS In this cross-sectional study, a DLS for the classification

of GONwas developed for automated classification of GON using retinal fundus images

obtained from the Chinese Glaucoma Study Alliance, the Handan Eye Study, and online

databases. The researchers selected 241 032 images were selected as the training data set.

The images were entered into the databases on June 9, 2009, obtained on July 11, 2018, and

analyses were performed on December 15, 2018. The generalization of the DLS was tested in

several validation data sets, which allowed assessment of the DLS in a clinical setting without

exclusions, testing against variable image quality based on fundus photographs obtained

fromwebsites, evaluation in a population-based study that reflects a natural distribution of

patients with glaucomawithin the cohort and an additive data set that has a diverse ethnic

distribution. An online learning systemwas established to transfer the trained and validated

DLS to generalize the results with fundus images from new sources. To better understand the

DLS decision-making process, a prediction visualization test was performed that identified

regions of the fundus images utilized by the DLS for diagnosis.

EXPOSURES Use of a deep learning system.

MAIN OUTCOMES ANDMEASURES Area under the receiver operating characteristics curve

(AUC), sensitivity and specificity for DLS with reference to professional graders.

RESULTS From a total of 274 413 fundus images initially obtained from CGSA, 269601 images

passed initial image quality review and were graded for GON. A total of 241 032 images

(definite GON 29865 [12.4%], probable GON 11 046 [4.6%], unlikely GON 200 121 [83%])

from 68013 patients were selected using random sampling to train the GD-CNNmodel.

Validation and evaluation of the GD-CNNmodel was assessed using the remaining 28 569

images from CGSA. The AUC of the GD-CNNmodel in primary local validation data sets was

0.996 (95% CI, 0.995-0.998), with sensitivity of 96.2% and specificity of 97.7%. Themost

common reason for both false-negative and false-positive grading by GD-CNN (51 of 119

[46.3%] and 191 of 588 [32.3%]) andmanual grading (50 of 113 [44.2%] and 183 of 538

[34.0%]) was pathologic or highmyopia.

CONCLUSIONS AND RELEVANCE Application of GD-CNN to fundus images from different

settings and varying image quality demonstrated a high sensitivity, specificity, and

generalizability for detecting GON. These findings suggest that automated DLS could

enhance current screening programs in a cost-effective and time-efficient manner.
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G
laucoma is the leading causeof irreversibleblindness.1

It is predicted to affect 80 million people worldwide

by 2020 and 111.8 million by 2040.2 Glaucoma is a

chronic neurodegenerative disease of the eye.3 The majority

of patients with glaucoma are unaware of their condition un-

til late in the course of their disease, when central visual acu-

ity is affected.4 Screening and early detection of glaucoma,

along with timely referral and treatment, is a generally ac-

cepted strategy for preventing vision loss.5Digital fundus im-

age evaluationhas emerged as amodality for large-scale glau-

coma screening owing to its convenience and relative

affordability.6,7Nevertheless, theprocess ofmanual image as-

sessment is labor-intensive and time-consuming.7 In addi-

tion,glaucomadiagnosis fromfundus images is subjective, and

efficiency is likely linked to the experience and skill of the

observer.

Artificial intelligencehas been successfully applied in im-

age-basedmedical diagnoses, such as skin cancer, breast can-

cer, brain tumors, anddiabetic retinopathy.8-12Thedeep learn-

ing system (DLS) approach also has recently been adopted to

provide high sensitivity and specificity (>90%) for detecting

glaucomatousoptic neuropathy (GON) fromhigh-quality reti-

nal fundus images.13 However, the use of DLS for medical di-

agnosis has inferior performance when applied to data ob-

tained from different sources.12,13 This is an important

consideration, because if maximum reach and clinical ben-

efit are to be achieved, ideally a DLS would be used in differ-

ent settings with images of varying quality, patient ethnicity,

and population sources.14-16

In this study,weestablished a large-scale database of fun-

dus images for glaucoma diagnosis (FIGD database) and de-

veloped from the fundus images Glaucoma Diagnosis With

Convoluted Neural Networks (GD-CNN), as an advanced DLS

approach for automatically detecting GONwith the ability to

be generalized across populations.

Methods

Training Data Sets

This study followed the Strengthening the Reporting of Ob-

servational Studies in Epidemiology (STROBE) reporting

guideline. The study was conducted according to the tenets

of the Declaration of Helsinki and it was approved by the

institutional reviewboardofBeijingTongrenHospital.Because

the study was a retrospective review and analysis of fully

anonymized color retinal fundus images, the medical ethics

committee declared it exempt from informed consent.

Toestablishanautomaticdiagnosis systemforGON,a total

of274413 fundus imageswereobtainedfromtheChineseGlau-

comaStudyAlliance (CGSA;eAppendix in theSupplement)be-

tween 2009 and 2017 (Table 1). The imageswere entered into

the databases on June 9, 2009, obtained on July 11, 2018, and

analyseswereperformedonDecember 15,2018.TheCGSAuses

a tele-ophthalmologyplatformanda cloud-basedonline data

set (http://www.funduspace.com), which has established its

own electronic data capture system to achieve effective data

quality control. For each patient, 2 fundus images of each eye

were recorded. For this study, each image in the training data

set was subjected to a tiered grading system consisting of

multiple layersof trainedgradersof increasingexpertise. Each

image imported into thedatabase startedwitha labelmatching

themost recent diagnosis of thepatient; the labelwasmasked

to evaluators. The first tier of graders consisted of 5 trained

medical students and nonmedical undergraduates. They

conducted initial quality control according to the following

criteria: (1) the image did not contain severe resolution

reductions or significant artifacts; (2) the image field included

the entire optic nerve head and macula; (3) the illumination

was acceptable (ie, not toodarkor too light); (4) the imagewas

focusedsufficiently forgrading theopticnerveheadandretinal

nerve fiber layer. The second tier of graders consisted of 22

Chinese board-certified ophthalmologists or postgraduate

ophthalmology trainees, withmore than 2 years’ experience,

who had passed a pretraining test. In the process of grading,

each imagewas assigned randomly to 2 ophthalmologists for

grading.Eachgrader independently gradedand recordedeach

image according to the criteria ofGON (Table 2). The third tier

of graders consisted of 2 senior independent glaucoma

specialists with more than 10 years of experience with

glaucoma diagnosis (H.W. and S.L.); they were consulted to

adjudicate disagreement in tier 2 grading (eAppendix in the

Supplement). After this process, images were classified as

unlikely, probable, and definite GON. Referable GON was

defined as probable or definite GON.

GlaucomaDiagnosis

With Convoluted Neural NetworksModel

The training images with assigned labels were used to estab-

lish a state-of-the-artDLS,GD-CNN,basedon theResidualNet

(ResNet) platform17 (eFigures 1 and 2 in the Supplement). In

the current study,we restricted the analysis to thebinary clas-

sificationproblemofglaucoma in fundus images.Thebasicop-

eration of ResNet is to apply convolution repeatedly,which is

computationally quite expensive or high-resolution images,

because processing them requires more computational re-

sources, such as memory, and time. Therefore, we prepro-

cessed imagesbydownsampling themto224 × 224pixel reso-

lution. In addition, these images were centered on the optic

Key Points

Question How does a deep learning system compare with

professional human graders in detecting glaucomatous optic

neuropathy?

Findings In this cross-sectional study, the deep learning system

showed a sensitivity and specificity of greater than 90% for

detecting glaucomatous optic neuropathy in a local validation data

set, in 3 clinical-based data sets, and in a real-world distribution

data set. The deep learning system showed lower sensitivity when

tested in multiethnic and website-based data sets.

Meaning This assessment of fundus images suggests that deep

learning systems can provide a tool with high sensitivity and

specificity that might expedite screening for glaucomatous optic

neuropathy.
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cup and contained part of the surrounding vessels, because

glaucomaishighlyassociatedwithalteration in these regions.18

Toachieve this, theoptic cupswere automaticallydetectedby

recognition of the areawith the highest intensity on the gray-

scale map of each fundus image; this was found to consis-

tently be associated with the optic cup. Next, we calculated

the mean values of red, green, and blue channels, respec-

tively, among all the fundus images in the training data set.

Then, for each sample, we remove the 3 mean values on red,

green, and blue channels, such that the input to GD-CNNwas

approximately0 for relieving theoverfitting.19As such, the re-

dundancy of the fundus image could be removed for the bi-

nary classification of glaucoma in GD-CNN. Because the GON

diagnosis was formulated as a binary classification problem,

estimating whether GON was positive or negative, a cross-

entropy functionwas applied inGD-CNNas the loss function.

For each parameter assessed, GD-CNN was trained to mini-

mize the cross-entropy loss over the large-scale training

samples of positive andnegativeGON. Theminimizationwas

achieved throughtheback-propagationalgorithmwith thesto-

chastic gradient descent optimizer. Once training of GD-CNN

was established, the systemwas applied to validation sets.

Validation Data Sets

Details of all validation datasets are described in Table 1 and

eTable 1 in the Supplement. The initial local validation

data set did not overlap with the image data used in training.

Images previously not seenby thenetworkwere presented to

GD-CNN for assessment and automated diagnosis. The im-

ageswere also independently assessed by 3 experienced pro-

fessional graders (D.M., R.P., Y.C.) withmore than 2 years’ ex-

perience in detecting referable GON.

Online Deep Learning System

The central challenge of applying DLSs in medicine is the

ability to guarantee generalizability in prediction. General-

ization refers to the ability of DLSs to successfully grade pre-

viously unseen samples from different data sources. An

ODL system was developed to improve the generalization

ability of the GD-CNN model, making automatic GON diag-

nosis practical. In the ODL system, the GD-CNN model is

used to sequentially predict GON with a human-computer

interaction loop (eFigure 2A in the Supplement). The

human-computer interaction loop consisted of 3 iterative

steps: (1) the computer used GD-CNN to initially diagnose

glaucoma of fundus images with a high sensitivity rate; (2)

the ophthalmologists manually confirmed the positive

Table 1. Summary of Source Data Sets

Source Data
Sets

No. Age,
Mean
(SD), yb

Female
No./Total
(%)b Cohort Ethnicity/Race, (%) Camera AssessorImages Eyesa Individuals

CGSA 274 413 138 210 69 105 54.1
(14.5)

20 167
(55.8)

Clinic-based Han Chinese (78.3) Topcon,
Canon,
Carl Zeiss

Professional grader
team

Beijing
Tongren
Hospital

20 466 10 308 5154 52.8
(16.7)

1 068 (49.7) Clinic-based Han Chinese (81.7) Topcon,
Canon

2 Ophthalmologists;
arbitration by 1
glaucoma specialist

Peking
University
Third
Hospital

12 718 6460 3230 57.2
(10.9)

327 (43.1) Clinic-based Han Chinese (79.5) Topcon 2 Ophthalmologists;
arbitration by 1
glaucoma specialist

Harbin
Medical
University
First Hospital

9305 4732 2366 59.9
(11.2)

771 (57.3) Clinic-based Han Chinese (82.9) Topcon 2 Professional senior
graders; arbitration by
1 glaucoma specialist

Handan Eye
Study

29 676 13 404 6702 55.2
(10.9)

2 589 (42.2) Population-basedHan Chinese (80.1) Topcon,
Canon

3 Glaucoma specialists

Hamilton
Glaucoma
Center

7877 3938 1969 58.2
(19.2)

1041 (52.9) Clinic-based White (73.0),
black/African
American (19.3),
Asian (5.4),
Middle Eastern (0.3)

Topcon,
Canon

3 Glaucoma specialists

Website 884 884 884 NA NA Website-based NA NA 2 Professional senior
graders; arbitration by
1 glaucoma specialist

Abbreviations: CGSA, Chinese Glaucoma Study Alliance; NA, not applicable.

a For each patient, 2 fundus images of each eye were taken and recorded.

b Individual data, including age, sex, and race/ethnicity, were available for CGSA

(36 142 of 69 105 individuals [52.3%]), Beijing Tongren Hospital (2150 of 5154

[41.7%]), Peking University Third Hospital (759 of 3230 [23.5%]), Harbin

Medical University First Hospital (1346 of 2366 [56.9%]) (%), Handan Eye

Study (6675 of 6702 [99.6%]), and the Hamilton Glaucoma Center (100%).

This information was NA for the website.

Table 2. Classification for Glaucomatous Optic Neuropathy

Classification Clinical Features

Unlikely
glaucomatous
optic neuropathy

No sign of the conditions below

Probable
glaucomatous
optic neuropathy

At least 2 conditions positive: 0.7 ≤ VCDR < 0.85; rim
width ≤0.1 DD; general rim thinning ≥60° or localized
rim thinning <60° (11 to 1 o’clock or 5 to 7 o’clock);
RNFL defects; splinter hemorrhages; and peripapillary
atrophy (β zone)

Definite
glaucomatous
optic neuropathy

Any of the following conditions:
VCDR ≥ 0.85;
RNFL defects correspond with thinning area of
rim or notches.

Abbreviations: DD, disc diameter; RNFL, retinal nerve fiber layer; VCDR, vertical

cup-disc ratio.
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samples predicted by the computer; (3) the confirmed

samples fine-tuned the GD-CNN model, which was used for

initial GON diagnosis of the subsequent fundus images

(ie, return to step 1).

Visualization of Predictive Imaging Features

Following Zeiler and Fergus,20 we visualized the contribu-

tions of different regions to GD-CNN prediction of GON on

fundus images. The visualization is represented by heat-

maps, which highlight strong prognostic regions of the fun-

dus images. The experiment of occlusion testing was con-

ducted to obtain the visualization results. First, the original

fundus image was resized into a 360 × 360 red, green, and

blue image. Then, a 60 × 60 gray block was used to slice

through the fundus image (with a stride of 10 pixels), along-

side both horizontal and vertical axes. Consequently, the

fundus image generates 961 (31 × 31) visualization testing

images, each of which has a 60 × 60 gray block at a different

position. Second, the visualization testing images were pre-

dicted using the GD-CNN model. For each visualization test

image, the prediction probability output refers to the value

of the visualization heatmap at the corresponding position.

Hence, the visualization heat map was 31 × 31. Finally, the

heatmap was mapped to the original fundus image to visu-

alize the importance of each region in GON prediction.

Thedeep features refer to theoutputof the finalmaxpool-

ing layer, which is in 512 dimensions. To visualize the distri-

bution of the deep features from different categories, the di-

mensionality of deep features was reduced by t-distributed

stochastic neighbor embeddingvisualization (t-SNE) from512

to 3. t-Distributed stochastic neighbor embedding visualiza-

tion is a state-of-the-art nonlinear dimensionality reduction

method. The deep features from glaucoma and no finding of

glaucomaareclustered into2groupsonce the training losscon-

verges. The groups of 2 clusters canbe clearly separated, veri-

fying the effectiveness of the deep features learned in

GD-CNN.

Statistical Analysis

The performance of our algorithm was evaluated in terms of

area under the receiver operating characteristic curve

(AUC). The 95% CIs for AUC were calculated nonparametri-

cally through logit-transformation–based CIs, which was

found to have good coverage accuracy over unbiased

samples. In addition to AUC, the sensitivity and specificity

of each operating point in ROC curves were also measured

with 2-sided 95% CIs. These CIs were calculated as Clopper-

Pearson intervals, which are exact intervals based on cumu-

lative probabilities.

Furthermore, to determine whether the ODL system has

an effect on diagnosing glaucoma, McNemar tests were con-

ducted between the original GD-CNN model and the fine-

tuned GD-CNN models. Specifically, two 2 × 2 contingency

tableswere applied to count the diagnosis changes after ODL,

for positive and negative samples, respectively. Then a χ2-

based P value was calculated along with the sensitivity/

specificity over each validation data set. Statistical signifi-

cance was set at 2-sided P < .05.

All statistical analyseswerecomputedusing theStatsMod-

els Python package, version 0.6.1 (http://www.statsmodels.

org) and Matlab AUC, version 1.1 (MathWorks).

Results

Training, Validation, and Evaluation of the GD-CNNModel

From a total of 274413 fundus images initially obtained from

CGSA, 269601 images passed initial imagequality reviewand

were graded for GON by the second-tier graders of Chinese

board-certifiedophthalmologists. Themedianquantity of im-

ages per ophthalmologist graded was 14 756 (range, 8762-

55 389) and 10ophthalmologists gradedmore than 15000 im-

ages. Senior glaucoma specialists adjudicated 13 254 images

in which there was disagreement in tier 2 grading. We se-

lected 241 032 images (definite GON, 29865 [12.4%]; prob-

ableGON,11046[4.6%];andunlikelyGON200, 121 [83%]) from

68013 patients, using random sampling, to train theGD-CNN

model. Validation and evaluation of the GD-CNN model was

assessed using the remaining 28569 images from CGSA. Dis-

tributionof the3diagnostic categorieswas 15.8%definiteGON,

2% probable GON, and 82.2% unlikely GON (eTable 1 in the

Supplement). In the local validation data set, the AUC of the

GD-CNNmodel was 0.996 (95% CI, 0.995-0.998), and sensi-

tivity and specificity in detecting referable GONwere compa-

rable with that of trained professional graders (sensitivity,

96.2% vs 96.0%; P = .76; specificity, 97.7% vs 97.9%; P = .81)

(eFigure 3 in the Supplement). To evaluate the ability of the

GD-CNN to work across different populations, 3 clinical-

based studieswere performed to reflect the routine function-

ing of an ophthalmic center.When images from these cohorts

fromdifferenthospitalswerediagnosed throughGD-CNNand

comparedwithclinicalevaluation,performanceremainedhigh

(Table 3); the AUC for referable GON ranged from 0.995 to

0.987, with both sensitivity and specificity greater than 90%

(range: sensitivity,93.6%to96.1%; specificity,95.6%to97.1%).

Further evaluation was undertaken using the Handan Eye

Studydata set toprovide a real-worlddistributionof individu-

alswith glaucoma. In this case, theAUCwas0.964with a sen-

sitivity of 91.0%and specificity of 92.6% (Table 3). To testGD-

CNNacross a range of ethnic backgrounds, amultiethnic data

set (73.0% white, 19.3% African American, 5.4% Asian, 0.3%

MiddleEastern) fromtheHamiltonGlaucomaCenterwasused,

with an AUC of 0.923, sensitivity of 87.7%, and specificity

80.8%. Glaucoma Diagnosis With Convoluted Neural Net-

works showed an AUC of 0.823 with 82.2% sensitivity and

70.4% specificity in a data set composed of images of a varied

range of quality obtained online (Table 3).

Understanding the Basis for Incorrect Diagnosis

Amongthe localvalidationdata sets, anadditional analysiswas

conducted to further evaluateGD-CNN’sperformance tobetter

establish the basis for false-positive and false-negative diagno-

ses (eTable 2 in the Supplement). Themost common reason for

undetected GON from fundus images was pathologic or high

myopia for both GD-CNN (51 of 110 [46.3%] ) andmanual grad-

ing (50 of 113 [44.2%]). The most likely cause for a false-
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positiveclassificationbyDLSormanualgradingwasalsopatho-

logicorhighmyopia (DLS: 191of588[32.3%];manual: 183of538

[34.0%]).Physiologically largecuppingwasalsoacommoncause

of false-positive results with manual diagnosis (138 of 538

[25.6%]),andtoalesserdegreewithGD-CNN(94of588[16.0%]).

Implementation of the Online Deep Learning System

TheODL systemwas implemented in the tele-ophthalmic im-

age reading platform of Beijing Tongren Hospital (eAppendix

in the Supplement), which collected a group of fundus im-

ageseveryweek (approximately600 images). Itwas foundthat

bothsensitivityandspecificityof theODLsystemimprovewith

each group of samples collected sequentially across a 5-week

period (eFigure 2 in the Supplement). Specifically, the im-

provement in sensitivity was 1.3%, 2.6%, 2.6%, and 3.9%, re-

spectively, andthe improvementof specificitywas2.0%,2.4%,

2.1%, and 2.6%.

Visualization of Prediction

Tovisualize the learningprocedureandrepresent theareascon-

tributing most to the DLS, we created a heatmap that super-

imposed a convolutional visualization layer at the end of our

network, performedon 1000 images (Figure 1; eFigure4 in the

Supplement). The regions of interest identified to havemade

thegreatestcontributiontotheneuralnetwork’sdiagnosiswere

also shared with 91.8% of ophthalmologists (Figure 2A). All

areas containing optic nerve head variance and neuroretinal

rim losswere located correctly on all the images used for test-

ing, whereas retinal nerve fiber layer defects and peripapil-

lary atrophy on occasions did not present a clear point of in-

terest with an accuracy of 90.0% and 87.0% respectively.

Figure 2B represents a t-distributed stochastic neighbor em-

beddingvisualizationof thisdatasetbyourautomatedmethod,

clearly showing2 clusters of fundus images and indicating the

ability of our model to separate normal from those with

glaucoma.

Discussion

In this study, we focused on automating the diagnosis of

glaucoma from fundus images by establishing a DLS (GD-

CNN) with an ability to work across numerous populations.

Previous studies have reported automated methods for the

evaluation of glaucoma, with most using technology on fea-

ture extraction.21-25Recently, theDLS approach also has been

adopted to provide high sensitivity and specificity for detect-

ingGONfromhigh-quality retinal fundus images.2,26,27Theam-

bition of deep learning is to create a fully automated screen-

ing model, which can automatically learn the features for

glaucomadiagnoseswithout anyhumaneffort, avoidingmis-

alignment and misclassification caused by introduced errors

in localization and segmentation. Compared with previous

work, theGD-CNNmodel differs fromconventional learning-

based algorithms in a number of aspects.

TheGD-CNNmodelwas trainedusinga largerdata set than

used inpreviousstudies.12,13,26-31 It is reasonable toassumethat

access toagreaterpoolof training images is likely to increase the

accuracy of the DLS in detecting glaucoma. A major challenge

withdeeplearningalgorithmsistheirgeneralapplicabilitytosys-

tems and settings beyond the site of development. To address

this challenge, additional data sets were used. Data sets result-

ing from ophthalmic settings are likely to produce a higher in-

cidence of glaucoma than is present in the general population.

Therefore, to provide a realistic disease-screening test for GD-

CNN,apopulationdatasetobtainedfromtheHandanEyeStudy

wasused,whichprovideda real-world ratioof individualswith

and without diagnosed glaucoma.32,33 Ethnicity is also associ-

Table 3. Performance of the GD-CNN in Validation Data Sets

Data Sets (No. of Images) AUC (95% CI)

% (95% CI) Confusion Result No. (%)

Sensitivity Specificity True-Positive
False-
Positive

False-
Negative True-Negative

Total
Concordant
Images

Local Validation

Chinese Glaucoma Study
Alliance (28 569)

0.996
(0.995-0.998)

96.2
(95.4-96.9)

97.7
(97.5-97.9)

2 786 (9.8) 588 (2.1) 110 (0.4) 25 085 (87.8) 27 871 (97.6)

Clinical Validation

Beijing Tongren Hospital
(20 466)

0.995
(0.996-0.996)

96.1
(95.2-96.9)

97.1
(96.8-97.3)

2 226 (10.9) 534 (2.6) 90 (0.4) 17 616 (86.1) 19 842 (97.0)

Peking University Third
Hospital (12 718)

0.994
(0.991-0.996)

96.0
(93.9-97.2)

96.1
(95.8-96.5)

593 (4.7) 468 (3.7) 26 (0.2) 11 631 (91.5) 12 224 (96.1)

Harbin Medical University
First Hospital (9305)

0.987
(0.982-0.991)

93.6
(90.9-95.6)

95.6
(95.1-96.0)

435(4.7) 392 (4.2) 30 (0.3) 8 448 (90.8) 8 883 (95.5)

Population Screening Validation

Handan Eye Study (29 676) 0.964
(0.952-0.972)

91.0
(88.4-93.1)

92.6
(92.2-92.8)

543 (1.8) 2 175 (7.3) 54 (0.2) 26 904 (90.7) 27 447 (92.5)

Multiethnic Validation

Hamilton Glaucoma Center
(7877)

0.923
(0.916-0.930)

87.7
(86.8-88.5)

80.8
(78.9-82.5)

5224 (66.3) 369 (4.7) 733 (9.3) 1551 (19.7) 6 775 (86.0)

Multiquality Validation

Website (884) 0.823
(0.787-0.855)

82.2
(76.9-86.6)

70.4
(65.8-74.7)

212 (31.0) 126 (18.4) 46 (6.7) 300 (43.9) 512 (74.9)

Abbreviations: AUC, area under the receiver operating characteristic curve; GD-CNN, Glaucoma Diagnosis with Convoluted Neural Networks.
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ated with different anatomical and clinical features and a dif-

ferent incidence of glaucoma.34 A number of the cohorts de-

rived from Chinese centers have limited ethnic diversity.

Therefore, to test GD-CNN across a range of ethnic back-

grounds, a multiethnic data set from the Hamilton Glaucoma

Center, which includes white, African American, Asian, and

MiddleEastern individuals,wasused.Despitethedifferentchal-

lenges imposed by these different data sets, GD-CNN consis-

tently performedwith high sensitivity and specificity. Another

major factor in the generalization of DLSs is the quality of im-

agesonwhichtheDLS ismakingdecisionsanddiagnosis.Toad-

dress this important concern, GD-CNN was externally evalu-

Figure 1. Visualization of Deep Features of the GD-CNNDeep Learning System
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Figure 2. Training Loss and Visualization of Deep Features at Different Training Iterations
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ated using a multiquality image data set of retinal fundus

photographsestablished fromwebsite sources.Examinationof

884 imagesavailableon theWorldWideWebusingGD-CNN,as

expected, proved a greater challenge, but analysis showed ac-

ceptable performance, with AUC of 0.823with 82.2% sensitiv-

ity and 70.4% specificity.

Thecurrent studyaddressed the issueof false-positiveand

false-negative diagnosis by the DLS andmanual grading. The

main reason for both false-negative and false-positive diag-

noses byGD-CNNandmanual gradingwas high or pathologic

myopia, which are characterized by peripapillary atrophy

(β-zone), shallow cups, and tilting, torsion, or both of the op-

ticdisc.More studies assessing textural properties areplanned

to allow more accurate classification by the algorithm to al-

lowit todistinguishamongtheopticdisc region,centralβ-zone,

and peripheral α-zone of peripapillary atrophy and other

retinal areas.

To furtherevaluate theabilityof theGD-CNNmodel across

multiple populations, an ODL systemwas proposed in which

the GD-CNN model iteratively updated with a human-

computer interaction loop.

Limitations

This study has some limitations. In the ODL system, the gen-

eralizationabilityofGD-CNNcanbe improvedthroughhuman-

computer interaction, such that each can educate and inform

the other. An ODL system using a pretrained GD-CNNmodel

to reinforce training on limited local imageswould likely gen-

erate amore accuratemodel requiring less time for local data

set classifications. In principle, the ODL system we have de-

scribedherecouldpotentiallybeusedonawide rangeofmedi-

cal images across multiple disciplines. Further benefit may

come from the use of artificial intelligence with digital im-

ages in a combinationof structural and functional testing, and

even multiple other orthogonal data sets, for example, car-

diovascular data and genomic data, to further enhance the

value of data use for the health care system.

Conclusions

The GD-CNN model, which was driven by a large-scale data-

base of fundus images, has high sensitivity and specificity for

detecting glaucoma. The experimental results show the po-

tential of automatedDLSs inenhancing current screeningpro-

grams in a cost-effective and time-efficientmanner. The gen-

eralizationof this approachmightbe facilitatedby training the

GD-CNN model on large-scale data and implementing

GD-CNN in an ODL system, which may be further refined

through a human computer interface.

ARTICLE INFORMATION

Accepted for Publication: July 14, 2019.

Published Online: September 12, 2019.

doi:10.1001/jamaophthalmol.2019.3501

Correction: This article was corrected on

December 1, 2019, to fix an error in the byline.

Author Affiliations: Beijing Institute of

Ophthalmology, Beijing Tongren Hospital, Capital

Medical University, Beijing, China (H. Liu, Qiao, S. Li,

H. Wang, Mou, Pang, Yang, Chen, N. Wang); Beijing

Ophthalmology and Visual Science Key Lab, Beijing,

China (H. Liu, Qiao, S. Li, H. Wang, Mou, Pang, Yang,

Chen, N. Wang); School of Electronic and

Information Engineering, Beihang University,

Beijing, China (L. Li, Jiang, Z. Wang, M. Xu); School

of Biological Sciences, University of East Anglia,

Norwich, United Kingdom (Wormstone);

Department of Ophthalmology, Peking University

Third Hospital, Beijing, China (Zhang);

Ophthalmology Hospital, First Hospital of Harbin

Medical University, Harbin, Heilongjiang, China

(P. Liu); Department of Ophthalmology, Beijing

Children’s Hospital, Capital Medical University,

Beijing, China (Hu); Department of Mathematics,

Beijing University of Chemical Technology, Beijing,

China (Y. Xu); College of Computer Science, Nankai

University, Tianjin, China (Kang); Beijing Shanggong

Medical Technology Co., Ltd, Beijing, China (Ji);

Department of Ophthalmology, Byers Eye Institute

at Stanford University, Palo Alto, California (Chang);

Department of Ophthalmology and Visual Sciences,

Faculty of Medicine, The Chinese University of

Hong Kong, Kowloon, Hong Kong, China (Tham,

Cheung); Singapore Eye Research Institute,

Singapore National Eye Center, Singapore (Ting,

Wong); Shiley Eye Institute, University of California,

San Diego, La Jolla, California (Zangwill, Moghimi,

Hou, Bowd,Weinreb).

Author Contributions:Drs H. Liu, M. Xu, and

N.Wang had full access to all of the data in the

study and take responsibility for the integrity of the

data and the accuracy of the data analysis.

Drs M. Xu and N.Wang contributed equally to this

work.

Concept and design:H. Liu, Qiao, Zhang, H. Wang,

Yang, Moghimi, Lai, Hu, Y. Xu, Kang, Ji, Tham, Ting,

Wong, Z. Wang, M. Xu, N. Wang.

Acquisition, analysis, or interpretation of data:

H. Liu, L. Liu, Wormstone, Qiao, P. Liu, Li, H. Wang,

Mou, Pang, Yang, Zangwill, Hou, Bowd, Chen,

Chang, Tham, Cheung, Wong, Weinreb, M. Xu.

Drafting of the manuscript:H. Liu, L. Liu, Qiao,

Zhang, Li, Pang, Chen, Tham, M. Xu.

Critical revision of the manuscript for important

intellectual content:H. Liu, Wormstone, Qiao, P. Liu,

H. Wang, Mou, Yang, Zangwill, Moghimi, Hou,

Bowd, Lai, Hu, Y. Xu, Kang, Ji, Chang, Tham,

Cheung, Ting, Wong, Z. Wang, Weinreb, M. Xu,

N. Wang.

Statistical analysis:H. Liu, L. Liu, Pang, Lai, Chen,

Tham,Wong, M. Xu.

Obtained funding:H. Liu, Mou, Pang, Zangwill,

Chen, Weinreb.

Administrative, technical, or material support: L. Liu,

Qiao, Zhang, P. Liu, Li, H. Wang, Yang, Zangwill,

Moghimi, Hou, Bowd, Chen, Hu, Y. Xu, Kang,

Ji, Tham, Cheung, Z. Wang, Weinreb, M. Xu.

Supervision: P. Liu, Chen, Tham, Ting, Wong,

Z. Wang, M. Xu, N. Wang.

Conflict of Interest Disclosures:Dr Zangwill

reports grants from the National Eye Institute

during the conduct of the study and research and

equipment support fromHeidelberg Engineering,

Optovue, Carl Zeiss Meditec, and Topcon. Dr Ting

reported having a patent pending for a deep

learning system for retinal diseases, not related to

this work. DrWong reported receiving personal

fees from Allergan, personal fees from Bayer,

personal fees from Boehringer Ingelheim, personal

fees from Genentech, personal fees fromMerck,

personal fees fromNovartis, personal fees from

Oxurion, and personal fees from Roche outside the

submitted work and he is a shareholder in Plano

and EyRIS. No other disclosures were reported.

Funding/Support: The research has received

funding from the National Natural Science Fund

Projects of China (81271005), Beijing Municipal

Administration of Hospitals Qingmiao Projects

(QMS20180210), the Priming Scientific Research

Foundation for the Junior Researcher in Beijing

Tongren Hospital (Dr H. Liu; 2016-YJJ-ZZL-021),

Beijing Tongren Hospital Top Talent Training

Program, andMedical Synergy Science and

Technology Innovation Research

(Z181100001918035).

Role of the Funder/Sponsor: The funding

organizations had no role in design and conduct of

the study; collection, management, analysis, and

interpretation of the data; preparation, review, or

approval of themanuscript; and decision to submit

themanuscript for publication.

REFERENCES

1. Tham YC, Li X, Wong TY, Quigley HA, Aung T,

Cheng CY. Global prevalence of glaucoma and

projections of glaucoma burden through 2040:

a systematic review andmeta-analysis.

Ophthalmology. 2014;121(11):2081-2090. doi:10.1016/

j.ophtha.2014.05.013

2. Quigley HA, Broman AT. The number of people

with glaucomaworldwide in 2010 and 2020. Br J

Ophthalmol. 2006;90(3):262-267. doi:10.1136/bjo.

2005.081224

3. Hood DC, Raza AS, deMoraes CG, Liebmann JM,

Ritch R. Glaucomatous damage of themacula. Prog

Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Original Investigation Research

jamaophthalmology.com (Reprinted) JAMAOphthalmology December 2019 Volume 137, Number 12 1359

© 2019 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaophthalmol.2019.3501?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2019.3501
https://dx.doi.org/10.1016/j.ophtha.2014.05.013
https://dx.doi.org/10.1016/j.ophtha.2014.05.013
https://dx.doi.org/10.1136/bjo.2005.081224
https://dx.doi.org/10.1136/bjo.2005.081224
http://www.jamaophthalmology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2019.3501


Retin Eye Res. 2013;32:1-21. doi:10.1016/j.

preteyeres.2012.08.003

4. Tatham AJ, Weinreb RN, Medeiros FA. Strategies

for improving early detection of glaucoma: the

combined structure-function index. Clin Ophthalmol.

2014;8:611-621. doi:10.2147/OPTH.S44586

5. Weinreb RN, Aung T, Medeiros FA. The

pathophysiology and treatment of glaucoma:

a review. JAMA. 2014;311(18):1901-1911. doi:10.1001/

jama.2014.3192

6. Zhao D, Guallar E, Gajwani P, et al; SToP

Glaucoma Study Group. Optimizing glaucoma

screening in high-risk population: design and 1-year

findings of the screening to prevent (SToP)

glaucoma study. Am J Ophthalmol. 2017;180:18-28.

doi:10.1016/j.ajo.2017.05.017

7. Fleming C, Whitlock EP, Beil T, Smit B, Harris RP.

Screening for primary open-angle glaucoma in the

primary care setting: an update for the US

preventive services task force. Ann FamMed. 2005;

3(2):167-170. doi:10.1370/afm.293

8. Esteva A, Kuprel B, Novoa RA, et al.

Dermatologist-level classification of skin cancer

with deep neural networks.Nature. 2017;542

(7639):115-118. doi:10.1038/nature21056

9. Ehteshami Bejnordi B, Veta M, Johannes

van Diest P, et al; the CAMELYON16 Consortium.

Diagnostic assessment of deep learning algorithms

for detection of lymph nodemetastases in women

with breast cancer. JAMA. 2017;318(22):2199-2210.

doi:10.1001/jama.2017.14585

10. Korfiatis P, Kline TL, Coufalova L, et al. MRI

texture features as biomarkers to predict MGMT

methylation status in glioblastomas.Med Phys.

2016;43(6):2835-2844. doi:10.1118/1.4948668

11. Gulshan V, Peng L, CoramM, et al. Development

and validation of a deep learning algorithm for

detection of diabetic retinopathy in retinal fundus

photographs. JAMA. 2016;316(22):2402-2410. doi:

10.1001/jama.2016.17216

12. Ting DSW, Cheung CY, Lim G, et al.

Development and validation of a deep learning

system for diabetic retinopathy and related eye

diseases using retinal images frommultiethnic

populations with diabetes. JAMA. 2017;318(22):

2211-2223. doi:10.1001/jama.2017.18152

13. Li Z, He Y, Keel S, MengW, Chang RT, HeM.

Efficacy of a deep learning system for detecting

glaucomatous optic neuropathy based on color

fundus photographs.Ophthalmology. 2018;125(8):

1199-1206. doi:10.1016/j.ophtha.2018.01.023

14. Wong TY, Bressler NM. Artificial intelligence

with deep learning technology looks into diabetic

retinopathy screening. JAMA. 2016;316(22):2366-

2367. doi:10.1001/jama.2016.17563

15. Castelvecchi D. Can we open the black box of

AI? Nature. 2016;538(7623):20-23. doi:10.1038/

538020a

16. Verghese A, Shah NH, Harrington RA. What this

computer needs is a physician: humanism and

artificial intelligence. JAMA. 2018;319(1):19-20. doi:

10.1001/jama.2017.19198

17. He K, Zhang X, Ren S, et al. Deep residual

learning for image recognition. Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition. Boston, MA: IEEE; 2016:770-778. doi:

10.1109/CVPR.2016.90

18. HaleemMS, Han L, van Hemert J, Li B.

Automatic extraction of retinal features from colour

retinal images for glaucoma diagnosis: a review.

Comput Med Imaging Graph. 2013;37(7-8):581-596.

doi:10.1016/j.compmedimag.2013.09.005

19. Szegedy C, LiuW, Jia Y, et al. Going deeper with

convolutions. Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition.

Boston, MA: IEEE; 2015:1-9. doi:10.1109/CVPR.2015.

7298594

20. Zeiler MD, Fergus R. Visualizing and

understanding convolutional networks. In: Fleet D,

Pajdla T, Schiele B, Tuytelaars T, eds. Computer

Vision—ECCV 2014. Cham, Switzerland: Springer;

2014:818-833. doi:10.1007/978-3-319-10590-1_53

21. Singh A, Dutta MK, ParthaSarathi M, Uher V,

Burget R. Image processing based automatic

diagnosis of glaucoma using wavelet features of

segmented optic disc from fundus image. Comput

Methods Programs Biomed. 2016;124:108-120. doi:

10.1016/j.cmpb.2015.10.010

22. Issac A, Partha Sarathi M, Dutta MK. An

adaptive threshold based image processing

technique for improved glaucoma detection and

classification. Comput Methods Programs Biomed.

2015;122(2):229-244. doi:10.1016/j.cmpb.2015.08.

002

23. Chakrabarty L, Joshi GD, Chakravarty A, Raman

GV, Krishnadas SR, Sivaswamy J. Automated

detection of glaucoma from topographic features of

the optic nerve head in color fundus photographs.

J Glaucoma. 2016;25(7):590-597. doi:10.1097/IJG.

0000000000000354

24. Xiangyu Chen, Yanwu Xu, Jiang Liu, Damon

Wing KeeWong, Tien YinWong. Glaucoma

detection based on deep convolutional neural

network. Conf Proc IEEE EngMed Biol Soc. 2015;

2015:715-718. doi:10.1109/EMBC.2015.7318462

25. Annan Li, Jun Cheng, Jiang Liu, DamonWing

KeeWong. Integrating holistic and local deep

features for glaucoma classification. Conf Proc IEEE

EngMed Biol Soc. 2016;2016:1328-1331. doi:10.

1109/EMBC.2016.7590952

26. Christopher M, Belghith A, Bowd C, et al.

Performance of deep learning architectures and

transfer learning for detecting glaucomatous optic

neuropathy in fundus photographs. Sci Rep. 2018;8

(1):16685. doi:10.1038/s41598-018-35044-9

27. Shibata N, Tanito M, Mitsuhashi K, et al.

Development of a deep residual learning algorithm

to screen for glaucoma from fundus photography.

Sci Rep. 2018;8(1):14665. doi:10.1038/s41598-018-

33013-w

28. Meier J, Bock R, Michelson G, et al. Effects of

preprocessing eye fundus images on appearance

based glaucoma classification. Proceedings of the

International Conference on Computer Analysis of

Images and Patterns. Berlin, Germany: Springer;

2007:165-172. doi:10.1007/978-3-540-74272-2_21

29. Bock R, Meier J, Michelson G, et al. Classifying

glaucomawith image-based features from fundus

photographs. In: Hamprecht FA, Schnörr C, Jähne

B, eds. Pattern Recognition. DAGM 2007.

Heidelberg, Germany: Springer; 2007. doi:10.1007/

978-3-540-74936-3_36

30. Bock R, Meier J, Nyúl LG, Hornegger J,

Michelson G. Glaucoma risk index: automated

glaucoma detection from color fundus images.Med

Image Anal. 2010;14(3):471-481. doi:10.1016/j.

media.2009.12.006

31. Keerthi SS, Shevade SK, Bhattacharyya C, et al.

Improvements to Platt’s SMO algorithm for SVM

classifier design.Neural Comput. 2014;13(3):637-649.

doi:10.1162/089976601300014493

32. Wang NL, Hao J, Zhen Y, et al. A

population-based investigation of circadian rhythm

of intraocular pressure in habitual position among

healthy subjects: the Handan Eye Study. J Glaucoma.

2016;25(7):584-589. doi:10.1097/IJG.

0000000000000351

33. Zhang Y, Li SZ, Li L, Thomas R, Wang NL. The

Handan Eye Study: comparison of screening

methods for primary angle closure suspects in a

rural Chinese population.Ophthalmic Epidemiol.

2014;21(4):268-275. doi:10.3109/09286586.2014.

929707

34. Cho HK, Kee C. Population-based glaucoma

prevalence studies in Asians. Surv Ophthalmol.

2014;59(4):434-447. doi:10.1016/j.survophthal.2013.

09.003

Research Original Investigation Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy

1360 JAMAOphthalmology December 2019 Volume 137, Number 12 (Reprinted) jamaophthalmology.com

© 2019 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://dx.doi.org/10.1016/j.preteyeres.2012.08.003
https://dx.doi.org/10.1016/j.preteyeres.2012.08.003
https://dx.doi.org/10.2147/OPTH.S44586
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2014.3192?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2019.3501
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2014.3192?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2019.3501
https://dx.doi.org/10.1016/j.ajo.2017.05.017
https://dx.doi.org/10.1370/afm.293
https://dx.doi.org/10.1038/nature21056
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2017.14585?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2019.3501
https://dx.doi.org/10.1118/1.4948668
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2016.17216?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2019.3501
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2017.18152?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2019.3501
https://dx.doi.org/10.1016/j.ophtha.2018.01.023
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2016.17563?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2019.3501
https://dx.doi.org/10.1038/538020a
https://dx.doi.org/10.1038/538020a
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2017.19198?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2019.3501
https://dx.doi.org/10.1109/CVPR.2016.90
https://dx.doi.org/10.1016/j.compmedimag.2013.09.005
https://dx.doi.org/10.1109/CVPR.2015.7298594
https://dx.doi.org/10.1109/CVPR.2015.7298594
https://dx.doi.org/10.1007/978-3-319-10590-1_53
https://dx.doi.org/10.1016/j.cmpb.2015.10.010
https://dx.doi.org/10.1016/j.cmpb.2015.08.002
https://dx.doi.org/10.1016/j.cmpb.2015.08.002
https://dx.doi.org/10.1097/IJG.0000000000000354
https://dx.doi.org/10.1097/IJG.0000000000000354
https://dx.doi.org/10.1109/EMBC.2015.7318462
https://dx.doi.org/10.1109/EMBC.2016.7590952
https://dx.doi.org/10.1109/EMBC.2016.7590952
https://dx.doi.org/10.1038/s41598-018-35044-9
https://dx.doi.org/10.1038/s41598-018-33013-w
https://dx.doi.org/10.1038/s41598-018-33013-w
https://dx.doi.org/10.1007/978-3-540-74272-2_21
https://dx.doi.org/10.1007/978-3-540-74936-3_36
https://dx.doi.org/10.1007/978-3-540-74936-3_36
https://dx.doi.org/10.1016/j.media.2009.12.006
https://dx.doi.org/10.1016/j.media.2009.12.006
https://dx.doi.org/10.1162/089976601300014493
https://dx.doi.org/10.1097/IJG.0000000000000351
https://dx.doi.org/10.1097/IJG.0000000000000351
https://dx.doi.org/10.3109/09286586.2014.929707
https://dx.doi.org/10.3109/09286586.2014.929707
https://dx.doi.org/10.1016/j.survophthal.2013.09.003
https://dx.doi.org/10.1016/j.survophthal.2013.09.003
http://www.jamaophthalmology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaophthalmol.2019.3501

