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Abstract 26 

Background: Step count is an intuitive measure of physical activity frequently quantified in a 27 

range of health-related studies; however, accurate quantification of step count can be difficult in 28 

the free-living environment, with step counting error routinely above 20% in both consumer and 29 

research-grade wrist-worn devices. This study aims to describe the development and validation 30 

of step count derived from a wrist-worn accelerometer and to assess its association with 31 

cardiovascular and all-cause mortality in a large prospective cohort study.  32 

Methods: We developed and externally validated a hybrid step detection model that involves 33 

self-supervised machine learning, trained on a new ground truth annotated, free-living step 34 

count dataset (OxWalk, n=39, aged 19-81) and tested against other open-source step counting 35 

algorithms. This model was applied to ascertain daily step counts from raw wrist-worn 36 

accelerometer data of 75,493 UK Biobank participants without a prior history of cardiovascular 37 

disease (CVD) or cancer. Cox regression was used to obtain hazard ratios and 95% confidence 38 

intervals for the association of daily step count with fatal CVD and all-cause mortality after 39 

adjustment for potential confounders.  40 

Findings:  The novel step algorithm demonstrated a mean absolute percent error of 12.5% in 41 

free-living validation, detecting 98.7% of true steps and substantially outperforming other recent 42 

wrist-worn, open-source algorithms. Our data are indicative of an inverse dose-response 43 

association, where, for example, taking 6,596 to 8,474 steps per day was associated with a 39% 44 

[24-52%] and 27% [16-36%] lower risk of fatal CVD and all-cause mortality, respectively, 45 

compared to those taking fewer steps each day. 46 
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Interpretation: An accurate measure of step count was ascertained using a machine learning 47 

pipeline that demonstrates state-of-the-art accuracy in internal and external validation. The 48 

expected associations with CVD and all-cause mortality indicate excellent face validity. This 49 

algorithm can be used widely for other studies that have utilised wrist-worn accelerometers and 50 

an open-source pipeline is provided to facilitate implementation. 51 

 52 
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Introduction 85 

Physical activity has been associated with lower risk of a wide range of non-communicable 86 

diseases and is a key feature of public health guidelines for cardiovascular health1–3. While 87 

researchers most commonly report device-measured activity in terms of overall acceleration or 88 

time-use behaviours derived from intensity thresholds4, the reporting of steps is a more intuitive 89 

measure of physical activity intrinsically linked to the key biomechanical feature of human gait5. 90 

However, current methods to measure steps from wrist-worn monitors during free-living activity 91 

are inaccurate6.  92 

Most activity tracking devices with embedded step counting rely on proprietary step counting 93 

methods without transparent evaluation7, and many popular open-source step counting 94 

algorithms were not developed in accordance with, or lack validation against, direct observation 95 

ground truth step counts in a free-living environment8–10. Current standards require commercial 96 

activity trackers to estimate step counts with an error of less than 10% in laboratory-controlled 97 

treadmill testing11. Subsequently, many devices and algorithms perform well during scripted, 98 

moderately paced walking in controlled conditions12,13. However, step counting performance 99 

substantially deteriorates in the real-world environment, wherein mean absolute percent error 100 

(MAPE) is regularly well above 20% in both commercial and research-grade activity monitors 101 

during free living6. As a consequence, uncertainty exists around the strength and shape of the 102 

association of daily step count with all-cause mortality and cardiovascular mortality14,15, where 103 

recent studies have not used transparent or robustly validated free-living step counting 104 

algorithms.  105 
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In response, we set out to develop and validate a method to accurately measure steps in free-106 

living environments. The purpose of this study was threefold: 1) to develop a novel self-107 

supervised learning step detection algorithm trained with free-living stepping data, 2) to 108 

externally validate the algorithm alongside other open-source algorithms, and 3) to evaluate the 109 

face validity of this method in a large scale prospective cohort study by associating step counts 110 

with fatal CVD and all-cause mortality. 111 

 Methods 112 

Development of the Free-Living, Ground Truth Annotated OxWalk Dataset 113 

To develop the OxWalk16 dataset, participants contributed activity data during unscripted, free 114 

living. Participants wore four triaxial accelerometers (AX3, Axivity, Newcastle, UK), two placed 115 

side-by-side on the dominant wrist and two clipped to the dominant-side hip at the midsagittal 116 

plane. Accelerometers were synchronised using the Open Movement GUI software (v.1.0.0.42), 117 

with one recording at 100 Hz and the other at 25 Hz at each body location. Final accelerometer 118 

data was resampled to the nominal sampling rate and calibrated to local gravity using the Open 119 

Movement software package. Foot-facing video was captured using an action camera (Action 120 

Camera CT9500, Crosstour, Shenzhen, China) mounted at the participant’s beltline 121 

(Supplemental Figure 1). Participants were instructed to wear the camera for one hour and could 122 

remove the camera any time they felt uncomfortable or required additional privacy17. To create 123 

a clear, easily distinguishable data point for video and accelerometer synchronisation in this 124 

study, participants were asked to strike their accelerometers together with four forceful blows 125 

within camera view at the start of data collection18.  126 
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Ground truth annotation of steps was conducted within video annotation software (Elan 6.0, The 127 

Language Archive, Nijmegen, Netherlands) by two independent annotators (SS and LvF) blinded 128 

to each other’s results. Similar to Bassett et al., we identified the act of lifting a foot and placing 129 

it in a new location as a central tenant of step identification5. This definition was used as the 130 

framework for step annotation in the OxWalk dataset, with an annotated step being a 131 

repositioned foot linked to a change in gross body position along the floor. Annotated steps did 132 

not include foot shuffling, changing of foot alignment via pivoting, or shifting of weight from one 133 

foot to the other. Ethical approval for participant recruitment was obtained from the Central 134 

University Research Ethics Committee of the University of Oxford (Ref: R63137/RE001). Written 135 

informed consent was obtained from adult volunteers (aged 18 and above) with no lower limb 136 

injury within the previous six months and who were able to walk without an assistive device.  137 

 138 

Model Development and Evaluation 139 

To develop the proposed step count model, a hybrid machine learning and peak detection 140 

algorithm was created wherein an activity classification model was first used to detect periods of 141 

walking and non-walking, followed by step counting only on predicted walking data epochs 142 

(Figure 1). Activity classification was performed using a self-supervised deep learning model 143 

developed by Yuan et al20 incorporating an 18-layer ResNet-V221 pre-trained using self-144 

supervised tasks on the UK Biobank accelerometer dataset. This pre-training step has previously 145 

demonstrated consistent performance improvement for downstream activity recognition tasks 146 

against Random Forest activity classification20. The pre-trained self-supervised learning model 147 

was then trained for supervised gait classification using the OxWalk dataset, wherein training 148 
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data consisted of 10 second epochs of accelerometer data with ground-truth walk or non-walk 149 

labels. In the OxWalk dataset, walking was defined as at least four steps within the 10 second 150 

epoch. Ten-fold cross-validation was used to train and validate the walking activity classifier and 151 

evaluate end-to-end performance of the step detection pipeline. The participant dataset was 152 

divided into 10 equal random folds where one fold was left out for testing and the remaining 153 

folds underwent a randomised 80%-20% split for training and validation, respectively. Folds were 154 

stratified by class label and data was grouped by participant. The self-supervised learning model 155 

was trained on the remaining set with an early-stopping mechanism on the validation set when 156 

the loss stopped decreasing for 5 consecutive training epochs. The weights prior to early stopping 157 

were used to perform activity prediction on the test and validation set. An additional data-158 

augmentation step was performed during training, whereby each triaxial training sample was 159 

randomly transformed with a rotation along a random axis and the axes were switched in a 160 

random order to make the model rotation invariant. The model was trained using PyTorch 1.12.1 161 

and Adam optimisation22 with a learning rate of 0.0001. Weighted cross entropy loss was used, 162 

with the class weights set in such a way that the balance of walking and non-walking segments 163 

was 10% to 90%, respectively, bringing the class balance in line with 24-hour direct observation 164 

during free living in a previously collected dataset23. Finally, predictions on the validation set and 165 

corresponding ground-truth labels were used to train a Hidden Markov Model smoother which 166 

was then applied to the predictions in the test set.  167 

Step counting was performed through peak detection on classified walking time windows using 168 

the “find_peaks” method from the SciPy Python package24. Euclidean norm of triaxial 169 

acceleration, minus 1 g to remove the effect of gravity, was clipped between ±2 g and lowpass 170 
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filtered at 5 Hz prior to use as the input signal for peak detection. The “find_peaks” method 171 

detects local peaks using predefined heuristics including the minimum peak height (prominence), 172 

maximum peak width (width), and minimum time between peaks (distance). These heuristics 173 

served as detection hyperparameters for which optimal values would minimise the mean 174 

absolute error for step count in the validation set. Detection parameters were iterated across a 175 

pre-selected range of values (prominence: 0.1 to 1 g; distance: 0.2 to 2 s; width: 10 ms to 1 s).  176 

Model performance metrics were calculated on participants within each test set; mean precision, 177 

recall, F1, Cohen’s kappa, and accuracy were used to evaluate walking classification, while MAPE 178 

and mean bias and Spearman’s rank correlation coefficient were calculated against ground truth 179 

step annotations. Following internal model validation, the final activity prediction model was 180 

retrained on the entire OxWalk dataset with an 80%-20% training-validation split prior to external 181 

deployment. 182 

External Model Validation 183 

 External model performance was assessed by applying the step detection algorithm to wrist-184 

worn accelerometer data to an open-source, step-annotated dataset from Clemson University19. 185 

Within this external dataset, 30 participants contributed a mean of 37 minutes of activity, split 186 

between three distinct sessions of regular walking (two laps around a predefined path), 187 

semiregular walking (locating objects throughout a building), and irregular walking (collecting 188 

and assembling building blocks distributed around a room). Participants were video recorded 189 

throughout scripted activities, allowing timestamp-annotated steps while wearing Shimmer3 190 

inertial measurement units (Shimmer, Dublin, Ireland) recording at 15 Hz. Researchers annotated 191 
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steps as well as “shifts”, foot movement not necessarily tied to a change in body position, though 192 

these annotated shifts were not included in the current analysis19. Prediction error was quantified 193 

by calculating MAPE and mean percent under/overcounting bias for each gait subtype and 194 

overall, at the participant level, across all gait subtypes. Bland-Altman plots were created for 195 

comparison between cumulative ground truth and predicted step counts for each participant. 196 

Open-source Step Count Algorithm Assessment 197 

In addition to assessment of the novel algorithm, two additional step counting approaches were 198 

evaluated in this study using both the OxWalk and Clemson datasets: 1) a recently-published 199 

acceleration-threshold algorithm by Ducharme et al. 8, and 2) the Verisense algorithm, a popular 200 

open-source peak detection algorithm developed from the Clemson dataset25 and previously 201 

applied to UK Biobank accelerometer data using integration with the GGIR package26,27. Further 202 

details for these algorithms are presented in Supplemental Note 1, while details of all datasets 203 

used are presented in Supplemental Table 1. 204 

Model Implementation into the UK Biobank 205 

The UK Biobank is a prospectively recruited observational cohort of over 500,000 participants 206 

aged 40–69 at the time of recruitment, from 2006–201028. From 2013–2015, participants were 207 

invited to wear an Axivity AX3 accelerometer on their dominant wrist, recording at 100 Hz, for a 208 

seven-day, 24 hours per day activity measurement window. In the current study, raw 209 

accelerometer data was processed from 103,391 available participants, after which data was 210 

excluded from participants with fewer than 72 hours of wear, those lacking data across the entire 211 

diurnal cycle, with poor device calibration, or with unrealistic average acceleration (>100 mg)4. 212 
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The externally validated hybrid SSL step detection model was applied to raw accelerometer data 213 

from the UK Biobank.  Overall daily step count was reported as the median number of steps taken 214 

across the seven-day measurement period. Missing step count data from non-wear was imputed 215 

by averaging step count from the corresponding time of day in all other valid days, similar to the 216 

imputation of vector magnitude acceleration during non-wear in the UK Biobank physical activity 217 

cohort4. One-minute peak cadence was calculated as previously described by Saint-Maurice et 218 

al29.  219 

Statistical Analysis 220 

UK Biobank participants with prevalent cardiovascular disease or cancer as a primary diagnosis, 221 

as identified by International Classification of Diseases (ICD) codes I00–I99 and C00–C97 in their 222 

routine hospital data, were removed from analysis. Spearman’s rank correlation (r) was 223 

calculated between step count, peak cadence, overall acceleration, and UK Biobank derived 224 

activity time use activity classification23. Daily step count and one minute peak cadence were 225 

stratified across demographic and self-reported health variables as collected by the UK Biobank 226 

at the time of enrolment. Analysis of variance and Tukey Honestly Significant Difference tests 227 

were conducted to compare step count based on self-reported health and usual walking pace.  228 

 Multivariable adjusted estimates of the effect of quintiles of step count on the relative hazards 229 

of cardiovascular mortality and all-cause mortality were derived using Cox proportional hazards 230 

regression using age as the underlying timescale30,31.  Date and cause of death was gathered from 231 

the UK Biobank linked death registry. Length of follow-up was calculated from censoring dates 232 

from the data sources or date of death. Further detail is provided in Supplemental Notes 2-3. 233 
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Step count detection was deployed on the UK Biobank using the University of Oxford Biomedical 234 

Research Computing cluster, while statistical analysis was completed using R (v.4.1.1) on the UK 235 

Biobank Research Analysis Platform. Statistical code is available at 236 

https://github.com/OxWearables/UKB_steps_mortality. 237 

Results 238 

Step Count Validation in the OxWalk Dataset 239 

Accelerometer and ground truth camera data was collected from 39 participants (19 female, 20 240 

male) with a mean age of 38.5 years (range 19.5 to 81.2 years), a mean wear time of 58 minutes, 241 

and a median [interquartile range (IQR)] 863 [312–2,123] steps within the measurement period. 242 

Thirty-three participants were annotated by both annotators, resulting in a corresponding step 243 

count MAPE of 4.0% and interclass correlation coefficient of 1.0 between annotators. Internal 244 

validation of the self-supervised learning model identified bouts of walking with a Cohen’s Kappa 245 

performance of 0.79 (Supplemental Table 3). Overall cross-validation of step detection in the self-246 

supervised learning model resulted in a 12.5% MAPE, 1.3% underestimation of steps, and 247 

correlation of r = 0.98 against ground truth in the free-living OxWalk dataset. For comparison, 248 

external validation of the step counting of the 100 Hz OxWalk wrist-worn dataset using the 249 

Ducharme acceleration-threshold algorithm8 resulted in a 69.1% overestimation of steps (231.3 250 

% MAPE, r= 0.91) across all participants. External validation of the Verisense algorithm10,25, 251 

incorporated into recent UK Biobank papers14,26, produced a 63.5% MAPE, 7.2% underestimation 252 

bias, and r = 0.85 against free-living ground truth step counts (Supplemental Table 2). Bland-253 

Altman plots for model comparisons against ground truth OxWalk step count are presented in 254 
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Figure 2, demonstrating lower variability and tighter agreement with ground truth using the 255 

novel step detection algorithm in the free-living dataset.  256 

Step Count Validation in the Clemson Dataset 257 

Bland-Altman plots for the performance of each prediction method in the overall Clemson 258 

dataset are also presented in Figure 2. This plot again demonstrates reduced variability and bias 259 

against ground truth using the novel model compared to reference algorithms. In external 260 

validation, the threshold model by Ducharme et al.8 performed well during sessions of regular 261 

gait, but poorly irregular gait, culminating in an overall MAPE of 47.5% and a 46.9% 262 

overestimation of steps at the participant-level, across all gait subtypes. The Verisense algorithm, 263 

for which this dataset serves as an internal validation, demonstrated a 17.6% underestimation of 264 

steps and a 17.3% per-participant MAPE over all gait subtypes, including 16.3% MAPE during 265 

regular walking (Supplemental Table 4). External validation of our novel self-supervised learning 266 

hybrid step algorithm performed best in the Clemson dataset, producing a 16.5% MAPE and 267 

16.6% underestimation across all gait subtypes, including 9.2% MAPE during regular walking. Due 268 

to superior performance in free-living and laboratory-based validation, the SSL step detection 269 

model was selected for analysis of UK Biobank data.  270 

Step Counts in the UK Biobank Physical Activity Cohort 271 

Baseline data from 75,493 UK Biobank participants without prevalent CVD or cancer is presented 272 

in Table 1 and Supplemental Figure 2. Peak step cadence demonstrated expected variations by 273 

self-reported usual walking pace (Supplemental Figure 3) and our measurements of steps 274 

demonstrated orthogonality to standard overall acceleration and time-use metrics 275 

(Supplemental Figure 4). Participants that self-reported that their overall health was excellent 276 
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were more active than all other participants, taking 2,947 more steps [95% CI 2,678–3,215] (p < 277 

0.001) than those reporting that their overall health was poor. Similarly, self-reported brisk 278 

walkers had a peak one-minute cadence 11.2 steps per minute [95% CI 10.6–11.7] (p < 0.001) 279 

higher than slow walkers. Adjusted mean daily step counts by self-reported health status and by 280 

selected physician-diagnosed chronic conditions are presented in Figure 3. 281 

Association of Step Counts with All-Cause and Cardiovascular Mortality 282 

The Cox regression analysis cohort had a median follow-up of 6.9 [IQR 6.3–7.4] years, with 572 283 

events in the CVD mortality analysis and 1,844 events in the all-cause mortality analysis (Figure 284 

4). For CVD mortality, a curvilinear association was observed with a linear association observed 285 

between the first and third fifths of the step count distribution and then a flattening of the 286 

association for the top two fifths of the distribution. For example, a median daily step count of 287 

8,474 to 10,284 steps per day was associated with a 56% [43–66%] lower risk of CVD mortality 288 

compared to participants taking fewer than 6,596 steps per day, whereas taking 12,677 or more 289 

steps was associated with a 56% [43-66%] lower risk on CVD mortality. Similar results were 290 

observed in the analysis of all-cause mortality and median daily step count, with a 39% [30-47%] 291 

and 43% [34-51%] lower risk of all-cause mortality in the middle and most active 20%, 292 

respectively.  293 

Discussion 294 

We have developed a new open-source step counting method, informed by self-supervised 295 

machine learning methods that substantially outperforms current wrist-worn step counting 296 

algorithms in the free-living environment. The open data and code released with this manuscript 297 

will provide the global research community access to a more transparent and well-validated 298 
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method to measure steps in large-scale wrist-worn accelerometer datasets. When applying the 299 

algorithm and resulting step metric in epidemiological analysis, we demonstrated that a higher 300 

daily step count is associated with a lower risk of all-cause and cardiovascular mortality.  301 

Our novel approach of using a hybrid step detection model that involves self-supervised machine 302 

learning outperformed existing wrist-worn step counting methods, producing a 12.5% MAPE and 303 

1.3% step underestimation during free living. Wrist-worn step counting is highly popular in both 304 

commercial and research applications, but valid step detection at the wrist can be associated 305 

with high measurement error relative to ground truth. In 2018, Toth et al.6 assessed wrist-worn 306 

step detection in free-living conditions, finding error rates between 18% and 120% across a range 307 

of methodologies. We found similar performance in current open-source algorithms during free-308 

living testing, with a mean average percent error ranging from 64% to 231%. Even while analysing 309 

data from a different device and sampling rate, external validation of the novel model in the 310 

Clemson dataset demonstrated a 9.2% error during regular walking in the laboratory-based 311 

setting, below the 10% MAPE threshold required during treadmill-based validation11. External 312 

validation of the novel model outperformed both reference algorithms, including the Verisense 313 

algorithm, which was trained and tuned using the Clemson laboratory dataset10,25. 314 

This study demonstrates a strong inverse curvilinear association between increased step count 315 

and lower risk of fatal CVD and all-cause mortality while highlighting the importance of accurate 316 

step detection algorithms in epidemiological analysis. Our current results parallel those of Paluch 317 

et al.15, who demonstrated higher daily step counts are associated with an incrementally lower 318 

risk of all-cause mortality across 15 international longitudinal cohorts nearly exclusively using hip-319 

mounted devices. Using less accurate step-detection methods, another study has also indicated 320 
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a curvilinear association between daily steps and CVD mortality27. Though the direction of 321 

epidemiological associations may remain broadly similar across step detection algorithms, it is 322 

important that algorithms derive step counts as accurately as possible. Accurate step counting 323 

will be particularly important when translating results into target levels of physical activity in 324 

guidelines compatible with device-measured activity32. Reporting of inaccurate step counts may 325 

additionally be demotivating and counterproductive in terms of health metrics and behavioural 326 

change for individuals monitoring their own physical activity33. 327 

Clear strengths of our study include the development of a step counting algorithm trained in a 328 

large dataset of free-living, wrist-worn accelerometer data with doubly-annotated ground truth 329 

video and demonstrated high accuracy. While this training data consisted of short 1-hour data 330 

collection windows, it is important to note that the current study algorithm is trained on one of 331 

the most complete free-living, open-source datasets to date. Some overestimation of step counts 332 

may occur when applied to multiday protocols due to the lack of extended periods of sedentary 333 

inactivity in the short training data, however; class rebalancing was utilised to minimise this 334 

effect. In the future, it will be important to further assess the robustness of this method across a 335 

variety of populations and against 24-hour free-living, ground truth annotated step count data.  336 

Conclusions 337 

We have developed a new, open, and transparent method that markedly improves the ability to 338 

measure steps in large-scale wrist-worn accelerometer datasets. While using this validated step 339 

detection method trained using free-living data, we demonstrate an inverse dose response of 340 

daily step count with all-cause and cardiovascular disease mortality. This reinforces public health 341 
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messaging of “the more, the better” approaches toward step count guidelines, encouraging any 342 

increase in physical activity, particularly in populations wherein a specific target number of daily 343 

steps may be unrealistic or feel unreachable.  344 

Data Availability 345 

The OxWalk dataset generated in this study is available for download and free for use through 346 

the Oxford University Research Archive (https://ora.ox.ac.uk/objects/uuid:19d3cb34-e2b3-347 

4177-91b6-1bad0e0163e7). An open-source accelerometer processing tool integrating the 348 

hybrid machine learning step detection method derived in this study will be available for use at 349 

https://github.com/OxWearables/stepcount. 350 

 351 
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 472 

Figure 1: Schematic of the process for generating step count from 30 seconds of raw triaxial 473 

accelerometer data using a hybrid self-supervised learning (SSL) and peak detection step 474 

counting model. 475 
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 476 

Figure 2: Bland-Altman plots with dotted 95% limits of agreement for the comparison of step counting models in the (Top) OxWalk 477 

free-living dataset of 39 adults and (Bottom) Clemson laboratory-based dataset of 30 young adults. Left: baseline acceleration 478 

threshold model8, Centre: Verisense algorithm25, and  Right: the novel hybrid self-supervised learning model.479 
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 480 

Figure 3: Adjusted estimated marginal mean (95% confidence interval) daily step count 481 

according to self-reported overall health status, hospital data derived chronic disease status, 482 

and select diagnoses for 75,493 UK Biobank participants. Mean daily step counts are adjusted 483 

for age and sex.484 
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 485 

Figure 4: (Top) Forest plots for all-cause mortality and cardiovascular disease mortality 486 

associations with quintiles of daily step count, (Bottom) continuous daily step count for 487 

75,493 UK Biobank participants. Hazard ratios (HR) and 95% confidence intervals were 488 

calculated using age as a timescale, adjusted for sex, ethnicity, education, alcohol intake, 489 

smoking status, Townsend deprivation index, processed meat intake, fresh fruit intake, oily fish 490 

intake, and added salt intake. HR is above and number of events is plotted below each data 491 

point. Spline plot of hazard ratio and 95% confidence interval of the association of continuously 492 

modelled median daily step count. Vertical bars along the step axis indicate distribution of 493 

participant daily step counts. 494 
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Table 1: Overall Physical Activity Metrics by Demographic Characteristic in the UK Biobank 

Characteristic N (%) Daily Steps 
Peak Cadence 
 (Steps per 
minute) 

Overall Acceleration (mg) 

Overall 75,493 (100.0) 9,352 [7,099-11,973] 117 [111-122] 27.5 [22.9-32.9] 

Sex     

Female 43,802 (58.0) 9,267 [7,050-11,840] 118 [113-124] 27.8 [23.3-33.2] 

Male 31,691 (42.0) 9,468 [7,182-12,159] 114 [109-119] 27.0 [22.3-32.6] 

Age, years     

40-49 7,229 (9.6) 9,412 [7,181-12,047] 119 [113-125] 30.4 [25.5-36.5] 

50-59 23,390 (31.0) 9,348 [7,136-12,014] 118 [113-124] 29.1 [24.4-34.8] 

60-69 32,903 (43.6) 9,497 [7,222-12,122] 116 [110-122] 26.9 [22.5-32.1] 

70-79 11,971 (15.9) 8,925 [6,667-11,374] 114 [108-120] 24.6 [20.5-29.2] 

Ethnicity     

Nonwhite 2,380 (3.2) 9,050 [6,764-11,691] 118 [111-124] 28.7 [23.9-34.2] 

White 73,113 (96.8) 9,362 [7,115-11,981] 116 [111-122] 27.4 [22.9-32.9] 

Body Mass Index     

Underweight (<18.5 
kg/m2) 444 (0.6) 10,000 [7,972-13,120] 121 [115-127] 31.3 [25.2-36.8] 

Normal weight (18.5-24.9 
kg/m2) 30,312 (40.2) 9,923 [7,696-12,526] 119 [113-125] 29.5 [24.7-35.1] 

Overweight (25.0-29.9 
kg/m2) 30,791 (40.8) 9,363 [7,174-11,943] 116 [110-121] 27.0 [22.7-32.1] 

Obese (30+ kg/m2) 13,946 (18.5) 7,956 [5,896-10,457] 113 [107-119] 24.4 [20.3-29.2] 

Education     

School Leaver 16,710 (22.1) 8,933 [6,749-11,532] 116 [110-122] 27.0 [22.3-32.5] 

Further Education 25,052 (33.2) 9,172 [6,908-11,846] 116 [110-122] 27.5 [22.9-32.9] 

Higher Education 33,731 (44.7) 9,679 [7,454-12,248] 117 [112-123] 27.7 [23.2-33.1] 

Smoking Status     

Never 44,231 (58.6) 9,422 [7,200-12,007] 117 [112-123] 27.8 [23.2-33.2] 

Former 26,107 (34.6) 9,329 [7,043-11,984] 116 [110-122] 27.3 [22.7-32.7] 

Current 5,155 (6.8) 8,784 [6,532-11,547] 114 [109-120] 26.3 [21.5-31.8] 

Alcohol Consumption     

Never 
4,086 (5.4) 
 8,906 [6,448-11,620] 116 [109-122] 26.8 [21.8-32.4] 

< 3 Days Per Week 34,319 (45.5) 9,031 [6,810-11,622] 117 [111-122] 27.3 [22.6-32.7] 

3+ Days Per Week 37,088 (49.1) 9,685 [7,475-12,281] 117 [111-122] 27.8 [23.3-33.2] 

Townsend Deprivation     

Least Deprived (<-3.8) 18,854 (25.0) 9,332 [7,200-11,945] 116 [110-122] 27.6 [23.1-32.9] 
Second Least Deprived (-

3.8 to -2.2) 18,892 (25.0) 9,326 [7,145-11,860] 116 [111-122] 27.5 [23.0-32.9] 
Second Most Deprived (-

2.5 to -1.2) 18,869 (25.0) 9,362 [7,080-11,951] 117 [111-122] 27.5 [22.9-32.9] 

Most Deprived (≥-0.2) 18,878 (25.0) 9,384 [6,974-12,124] 117 [111-124] 27.4 [22.6-32.9] 
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 495 

Characteristic N (%) Daily Steps 
Peak Cadence 
 (Steps per 
minute) 

Overall Acceleration (mg) 

Self-Reported Usual Walking 
Pace 

    

Brisk 36,733 (48.7) 9,787 [7,567-12,405] 118 [113-124] 29.0 [24.4-34.6] 

Steady 35,727 (47.3) 9,078 [6,890-11,653] 115 [110-121] 26.4 [22.0-31.4] 

Slow 2,905 (3.8) 6,889 [4,582-9,495] 109 [102-116] 22.3 [18.1-27.2] 

None of the above 61 (0.1) 5,773 [3,371-10,301] 107 [99-112] 22.5 [18.4-28.4] 

Missing 67 (0.1) 3,148 [868-5,758] 96 [65-105] 18.9 [14.1-24.2] 

Self-Reported Overall Health     

Excellent 17,781 (23.6) 9,855 [7,708-12,432] 118 [113-124] 29.2 [24.5-35.0] 

Good 45,755 (60.6) 9,397 [7,178-12,017] 116 [111-122] 27.5 [23.0-32.7] 

Fair 10,520 (13.9) 8,468 [6,208-11,099] 114 [108-120] 25.3 [20.9-30.4] 

Poor 1,437 (1.9) 6,939 [4,394-9,626] 110 [103-117] 22.9 [18.4-28.1] 

Wear Season     

Spring 17,327 (23.0) 9,479 [7,193-12,130] 117 [111-123] 27.9 [23.2-33.4] 

Summer 20,014 (26.5) 9,812 [7,525-12,520] 116 [110-121] 28.1 [23.4-33.6] 

Autumn 22,342 (29.6) 9,236 [7,040-11,804] 117 [111-123] 27.4 [22.9-32.8] 

Winter 15,810 (20.9) 8,774 [6,647-11,288] 117 [111-123] 26.6 [22.1-31.7] 

Activity metrics reported as unadjusted median [interquartile range] 
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