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ABSTRACT

A set of models for the prediction of mechanical
efficiency as function of the operating conditions for an
automotive spark ignition engine is presented. The
models are embedded in an integrated system of models
with hierarchical structure for the analysis and the
optimal design of engine control strategies. The
validation analysis has been performed over a set of
more than 400 steady-state operating conditions, where
classical engine variables and pressure cycles were
measured. Models with different functional structures
have been tested; parameter values and indices of
statistical significance have been determined via non-
linear and step-wise regression techniques. The Neural
Network approach (Multi Layer Perceptrons with Back-
Propagation) has been also used to evaluate the
feasibility of using such an approach for fast black-box
modelization. The proposed regression models,
characterized by a very limited computational demand,
exhibit excellent performance over a large set of
experimental data, with less than ten parameters but

requiring a rather complex engine geometrical and
operative description. On the other hand, the Neural
Network model has been developed considering as
independent variables only four measurable engine
parameters and the training has been performed using a
reduced set of experimental data. The results presented
show a relevant precision improvement with respect the
available models cited in literature. The different model
structures developed are suitable for several uses, both
for off-line and on-line applications.

INTRODUCTION

The evaluation of engine mechanical losses is a
significant objective for engine designers due to its
strong influence on engine life, fuel consumption and
emission levels. Mechanical losses are responsible for
crank shaft power decrease with respect to the indicated
power generated by gas expansion in the engine
cylinder. This work reduction is related with energy
dissipation caused by both friction processes, generated
by the relative motion of adjacent components within the



engine (i.e. piston, rings, bearings, gears, pulleys, belts),
and engine accessories driving (i.e. oil, water and
power-steering pumps, generator, air conditioner).

Because of the complex phenomenology involved,
mainly in the friction process, the building of engine
mechanical efficiency model is not a trivial task.
Nevertheless, the researchers have made a great effort
for the development of comprehensive and accurate
mechanical losses models and different model
approaches have been proposed [1,2,3,4]. Among
others, Mc Geehan [5] and Ciulli [6] presented a detailed
description of friction phenomena between piston, rings
and cylinder walls and an exhaustive analysis of
available models has been found in the works of Ciulli [7]
and Ciulli and Psarudakis [8]. Accurate studies have
been performed by Rezeka and Henein [9] for the
simulation of the instantaneous friction torque for a
Diesel engine and by Patton et al. [10] on the global
evaluation of friction mean effective pressure. Recent
simulations have been carried out by Ciulli et al. [11] and
Tuccillo et al. [12] for research NCG engine and Diesel
engine, respectively. Furthermore, experimental analysis
have been conducted by Koch et al. [13] for the
evaluation of friction forces between piston, rings and
cylinder walls as function of operating conditions for a SI
engine. However, from the reviewed literature works
emerges the limited availability of global engine
mechanical efficiency models since all the followed
approaches require a specific characterization on the
particular engine.

The present work deals with the development of models
for the evaluation of mechanical efficiency of a SI
engine; these models are part of a set of sub-models
with different approaches arranged in a hierarchical
engine models structure [14,15]. This hierarchical
structure [16] combines the use of both models and
experimental data through an Experimental Design
technique [17] to characterize the engine with a limited
number of experimental data. These models are
embedded in the code O.D.E.C.S. for the design of
optimal engine control strategies for SI engines,
currently used at Magneti Marelli. In this framework the
required properties of mechanical efficiency model are: i)
a reduced computational time, ii) a balanced precision
with respect to other engine sub-models, iii) a limited
experimental data set for the identification phase.

In the following sections the available literature models
(Rezeka and Henein [9], Patton et al. [10]) are described
and implemented for the current application. Two
different approaches are then proposed: the first one
relies on a fully black-box approach as function of engine
operating variables, while the second one is derived
from the more complex Rezeka and Henein [9] and
Patton et al. [10] models suitably modified for their use in
the framework of the present reasearch.

LITERATURE MODELS

In this section the two models proposed by Rezeka and
Henein [9] and Patton et al. [10] are reviewed.  They
substantially differ for the time basis adopted for
mechanical losses computation: in the former a crank
angle basis is used, while a cycle average is performed
for the latter model.

REZEKA-HENEIN MODEL

The model described in this paragraph allows estimating
the instantaneous value of mechanical efficiency through
the evaluation of dissipated torque in each engine
mechanical subsystem as function of crank angle [9].

In the following, the Rezeka-Henein model equations are
reported. The complete set of equations is split into two
main groups describing the friction between piston and
cylinder wall and the mechanical losses in the crankcase
assembly system, respectively. For the computation, the
indicated pressure signal and the knowledge of engine
geometrical data are required. The total loss is then
expressed as a friction torque by summing up each term.

The first group for the evaluation of the friction between
piston and cylinder walls is composed of the following
terms:

• Losses due to piston rings viscous lubrication
(hydrodynamic):
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• Losses due to mixed lubrication regime
(hydrodynamic and boundary) of piston rings near
the top dead center:
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• Losses due to piston skirt friction:
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The losses in the crankcase are computed considering
the sources quoted below:

• Valve train friction:
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• Auxiliaries and unloaded bearing friction:
( )ωµ ⋅⋅= 55 aT f
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• Loaded bearing friction:
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In the equations (1, 2, 3 and 6) the summation is
extended to all the engine cycle crank angles while the
non-dimensional term k (eqs. 1, 2, 3 and 4) is:
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The coefficients a1-6 in the equations (1 - 6) are
proportional factors depending on the engine design and
related with both geometrical data (i.e. rings shape,
cylinder liner, piston inclination) and lubrication regime
(i.e. oil film thickness).

PATTON-NITSCHKE-HEYWOOD MODEL

The model proposed by Patton, Nitschke and Heywood
[10] predicts the friction mean effective pressure for a SI
engine as function of geometrical and operating engine
data. Three main groups are derived to account for
friction, pumping and auxiliary losses from engine
accessories, as shown below.

The friction losses are split into three part:

• Crankshaft bearing friction, due to boundary and
hydrodynamic lubrication regimes and turbulent
dissipation:
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• Reciprocating component group friction including
piston, piston rings (both without gas pressure
loading and considering the friction increase caused
by gas pressure loading) and connecting rod
friction:
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• Valvetrain friction due to camshaft, cam follower
and valve actuation mechanism:
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The auxiliary component friction are predicted
considering the sum of oil pump, water pump and non
charging alternator friction, through the following
equation:

2
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The pumping losses during intake and exhaust strokes
are computed by the following equation:
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For the present application of the model the pumping
losses term (eq. 12) is not considered since it has
directly accounted from the indicated pressure cycle
during both intake and exhaust strokes.

Consistently with the original Patton et al. [10] model
formulation, all the geometrical data and the pressure
terms in the equations (8 - 12) are expressed in
millimeters and in kPa, respectively. The constant K' in

the relationship (9) has been set to 2.38⋅10-2 [s/m], as
suggested by Patton et al. [10].  In the equations set (8-
11) the coefficients b1-14 must be identified making use of
the available experimental data in order to characterize
the particular engine system.

APPLICATION OF REZEKA-HENEIN AND PATTON-
NITSCHKE-HEYWOOD MODELS

An application of the two models previously described [9,
10] has been carried out to check their prediction level
on the engine used for the current research activity. The
simulated values of mechanical efficiency obtained with
the Rezeka and Henein and Patton et al. models have
been compared with the corresponding steady-state
experimental data after an appropriate identification of
model coefficients (a1-6, b1-14) by means of regression
techniques.

For the analysis of the cited models, a set of more than
400 experimental data have been used. It is worth to
remark that the experimental data considered are part of
an extended data set applied for the development and
the identification of other engine models [14, 15] which
are part of the mentioned hierarchical model structure
[16]. These data were measured on a S.I. engine Fiat
2.0 liters 16 valves with a Magneti Marelli IAW4Q3.P8
E.C.U., at Istituto Motori-CNR laboratories in Naples. For
each engine working condition, located in the Engine
speed - Torque plane (Figure 1), 23 engine variables
were measured by varying both A/F ratio from 11 to 18
and spark advance within knock and misfiring limits. For
each of 426 steady-state mean pressure cycle an
average of 288 consecutive pressure cycles, sampled by
an AVL Indiskop system, was performed.



Figure 1 - Experimental grid plane (Engine speed - Torque).

Friction torque and friction mean effective pressure,
which are not easily available as direct measures on the
engine, have been computed through pressure cycle
and measured engine variables. Mechanical efficiency
has been computed as ratio between brake power
measured on the dynamometer and the indicated power
computed through the mean indicated pressure:
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Experimental friction power is then given by the following
relationship:

( )
ω

η
mi

measf

P
T

−⋅
=

1
,

 (14)

Experimental mean effective friction pressure is
computed as difference between mean indicated
pressure and mean effective pressure:
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where all the terms are expressed in kPa, consistently
with Patton et al. model [10].

The model identification has been conducted making
use of a multiple linear regression analysis with the
commercial code Statistica [18, 19]. The model
coefficients have been found via least square technique
on the whole data set composed of 426 experimental
points. In what follows the results of the identification
analysis are discussed.

In the Figure 2 the comparison between the observed
and the computed with Rezeka and Henein model [9]
(see eqs. 1-6) friction torque (14) is shown. From the
analysis of the figure the poor accuracy achieved is
evident, confirmed also by the quite unsatisfactory value
of correlation index (R2=0.58). Moreover, a residual
analysis has been performed and shown through the

distribution histogram of Figure 3, where only the 60% of
simulated data present an error in the interval (-2, +2
[Nm]).

The comparison between observed and computed, with
the model of Patton et al. [10], friction mean effective
pressure is presented in the Figure 4, which reveals the
same level of accuracy found with the previous model.
Furthermore, the correlation index R2 attains a value of
0.57 while, from the residual analysis (see Figure 5),
only the 51% of the data falls in the accuracy limits of (-
10, +10 [kPa]).

Figure 2 - Comparison between observed and computed friction torque
- Rezeka and Henein model.
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Figure 3 - Distribution of residuals - Rezeka and Henein model.

The results show the inadequate precision level reached
by applying the two models to the engine used for the
current research. Concerning the first model (Rezeka
and Henein [9]), it should be pointed out that it was
originally developed for a Diesel engine, which presents
higher inertia levels and lower engine speed regimes
with respect to SI engines. Moreover, in the relationship
(4) and (6) the mean angular speed has been
considered instead of the instantaneous one as
suggested by the authors [9]. On the other hand,
although the model of Patton et al. [10] was developed
for SI engine its mean value formulation is intrinsically
less accurate. The analysis performed show that these



models could not be applied through a straightforward
implementation for any engine configuration. Indeed, the
limited level of built-in physical information is inadequate
to describe the complex phenomena involved in both
friction and lubrication processes taking place in an
engine.

Figure 4 - Comparison between observed and computed friction mean
effective pressure - Patton, Nitschke, Heywood model.
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Figure 5 - Distribution of residuals - Patton, Nitschke, Heywood model.

It is worth to remember that the model performance has
been originally tested on a limited set of experimental
data [9,10]. Nevertheless, a lack of model applications
referred to an extended set of experimental data, as the
one used in the present work, has been found in the
literature.

DEVELOPMENT OF ALTERNATIVE MODELS FOR
MECHANICAL EFFICIENCY ESTIMATION

The results shown above led to the opportunity to
develop a set of mechanical efficiency models starting
from the reference model structures [9,10]. For the
current research purposes, two main approaches have
been followed. The former model has been designed as
a fast black-box input-output model, while the latter has
been substantially derived from Rezeka and Henein [9]
and Patton et al. [10] models, including the influence

exerted by further engine variables and pressure cycle
measurements.

The main goal of the present research activity is the
development of a model for mechanical efficiency
estimation, to be integrated in a more extended model
structure for the design of engine control strategies,
rather than an accurate study of mechanical losses
sources. Therefore, the model is requested to be easily
validated on the engine currently used and to offer good
precision level and limited computational resources in
accordance with control purposes applications. In order
to meet these features an extended set of experimental
data has to be measured by the use of conventional
laboratory tools, leading to deal with some experimental
troubles, which are mentioned below:

• The pressure cycle sampling system presents poor
resolution during the intake and exhaust strokes,
where the pressure values are lower.

• Pressure cycles measured in low load operating
conditions are generally affected by a great cyclic
dispersion, leading to an excessive variability of the
sampled signal. This problem can be overcome
increasing the number of data sampled for the mean
pressure cycle evaluation.

• As a consequence, some particularly high values of
mechanical efficiency, close to unit, can result in
some conditions (fig. 6, 9, 11, 13). These values,
which are obviously unrealistic, have not been
filtered since their elimination would have distorted
the statistical distribution of the errors and therefore
would have led to underestimation of the mechanical
efficiency itself.

• The top dead center signal is affected by uncertainty
due to the kinematics train action. A sensitivity
analysis has then been carried out simulating crank
angle position variations of ± 1 degree; it has been
found that this uncertainty does not affect
substantially the subsequent modeling and validation
phases.

FAST BLACK BOX MODELS

The development of this class of models does not
require an accurate description of the physical
phenomena responsible for friction losses (lubrication
regimes, oil film thickness, and gas pressure loading on
piston rings). It allows reducing substantially the
computational time and reaching a precision level
compatible with the sub-models included in the code
O.D.E.C.S. [14]. In the following sections two models
structures selected for fast black-box applications are
reported. The former relies on classical multiple non-
linear regressions the latter is based on a neural
network.

Multiple non-linear regression

A multiple non-linear regression has been applied for
model structure definition, paying particular attention to



statistical significance of model parameters. The
influence exerted by each engine variable over the
experimental data set has been accurately analyzed by
using the p-level index. A p-level index equal to 0.05
states that the current variable and the process to be
described are not correlated with a probability of 5%, so
that a correlation analysis can be usually considered
positive if p-level values less than 5% are reached [19,
20, 21].

The following relationship describes the mechanical
efficiency estimation model:

( ) ( ) ( )            

1010
           

10

1010
           

1010

8
3304.0

76

3
1089.6

2

235

3

4

2365.0
2

4

2

33

2

22310

airmanman

man

m

maPaTa

TN
a

N
a

PN
a

T
a

TN
aa

&⋅+⋅+⋅

+



























⋅











+













⋅+



























⋅








⋅

+







⋅+







 ⋅
⋅+=

−
⋅−

⋅

η

(16)

Where the model parameters ai have been evaluated by
means of a multiple linear regression technique while the
fraction exponents in eq. 16 have been computed by
means of non-linear regression techniques. Model
prediction levels have been tested by a comparison
between simulated and measured mechanical efficiency
over 426 engine operating steady-state conditions.

The results obtained by applying the multiple regression
approach can be considered satisfactory, as confirmed
by the reached values of the p-level indices (less than
0.001) reported in Table I together with the computed
regression coefficients ai and the correlation index R2.

Table I – p-level indices, correlation index and regression coefficients
computed for eq. 16.

a0 a1 a2 a3 a4

Estimated 10.82402 .00173 -.3859 -.5217 -.5410
p-level .0 .0 .0 .0 .0

a5 a6 a7 a8 R2

Estimated -10.8629 .001439 .06819 .00231 .9606
p-level .0 .000302 .0 3.0 e-6

In the Figure 6 the good estimation levels reached by the
non-linear multiple regression approach is shown by
comparing measured and computed mechanical
efficiency. The lack of data in the range [0.55÷0.63] is
due to an incomplete coverage of experimental grid
(Figure 1). From residual statistical analysis reported in
Figure 7, 55 % of data falls inside the range [-0.02÷0.02]
while only the 9 % is off the range [-0.06÷0.06].

Figure 6 – Comparison between measured and estimated mechanical
efficiency – Multiple non-linear Regression (eq. 16).

From the analysis of both model structure and obtained
results, some considerations on model accuracy,
flexibility and applicability arise. Regarding to model
precision, the achieved accuracy is satisfactory but not
excellent with respect to the complex procedure required
for model parameter evaluation. Furthermore, the
presence of measured brake torque T in the relationship
(16), which in turn is a computed variable in an engine
performance evaluation model, could lead to a not
straightforward model application. Indeed, an iterative
procedure should be applied in order to compute
contemporarily, through distinct model, both mechanical
efficiency and brake torque. Thus resulting in a global
model precision reduction and in a computational time
increase. Nevertheless, other analysis were carried out
to replace the brake torque with other engine variables.
From these tests a relatively poor model precision has
been reached compared with the resulting model
structure complexity. Many of these problems have been
overcome by the use of Neural Network approach, which
allowed a more direct definition of model parameters and
to straightforward model application.
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Figure 7 – Residuals of observed and estimated mechanical efficiency
– Multiple non-linear Regression (eq. 16).



Neural network

In the present section the artificial neural network model
application is discussed. A complete description on basic
theory, capabilities and procedures is beyond the scope
of the present paper and the reader is addressed to the
selected bibliography [22,23,24]. Some recent neural
network applications have been presented in literature
showing its favorable use for engine modeling purposes
[25,26,27,28,29].

An Artificial Neural Network is composed of several
elementary interconnected processing elements working
in a parallel way, the perceptrons. From the analogy with
human brain behavior, Artificial Neural Networks are
able to reproduce a process from training examples
(neurocomputing approach [23]) rather than from a
coded algorithm which simulate the process on the basis
of a mathematical model (programmed computing
approach [23]). Due to the use of experience knowledge,
Neural Networks have relevant capabilities in term of
generalization from limited training data sets making
them able to work outside the training domain (i.e.
extrapolation). Moreover, other neural network
capabilities refer to their robustness in presence of noisy
input data because the stored knowledge is spread over
the entire perceptron structure instead of being
concentrated in few units [22].

For the purpose of the present application a multi-layer
feedforward neural network has been chosen to model
the engine mechanical efficiency as function of engine
control and state variables (engine speed, manifold
pressure, air-fuel ratio, spark advance). The choice of
this set of independent variables, together with a proper
neural network structure, is well suited to model the
mechanical efficiency in a black-box manner. The
prediction level obtained by following this approach is
comparable with the one reached through the multiple-
non linear regression which makes use of the brake
torque as independent variable.

The selected neural network structure is composed of
three layers with one input, one hidden and one output
layers. The input layer has four neurons one for each
independent variable, the hidden layer has nine units,
while the output layer presents one neuron. The signals
propagating from the input to the output layers are
processed by the neurons by means of biased bipolar
continuous activation functions. Each neuron is linked
with the previous layer neurons through a weighted
connection whose level is found making use of a training
procedure. Such structure configuration presents the
minimum number of layers and neurons compatible with
the process to be represented. This choice has been
performed to reduce the effect of neural network
overparametrization1. For the training process the well

                                                  
1 When a large neural network structure is considered a
high training accuracy is reached, while a loss of
precision on the data not belonging to the training
examples could occur.

established backpropagation error algorithm has been
used to found both weight and function biases [22,23,
29]. In the Figure 8 a generic multi layer neural network
structure is shown.

input hidden output

neuron weight

Figure 8 - Generic Multi Layer Neural Network Structure.

To train the network a set of "examples" is considered,
for each training the desired output of the network being
known (i.e. experimental data). At every iteration the
error between the experimental data and the
corresponding estimated value is propagated backward
from the output layer to the input one through the hidden
layers. During the backpropagation both weights and
biases are tuned as function of the error gradient
through the learning rate. The weights updating is also
controlled by a momentum constant term. The learning
rate and the momentum terms allow to speed up and to
stabilize the minimum error search process [22,23,29].

For the purpose of the present work the training set has
been chosen selecting the most meaningful
experimental data, indicated with square symbols in the
torque-engine speed grid (Figure 1). Furthermore, for
each operating condition, combinations of three air-fuel
ratio values and three spark advance angles have been
selected, finally obtaining a set of 117 training
experimental data. The remaining 309 experimental data
have then been used to test the neural network
prediction level.

In Figure 9 a comparison between observed and
computed mechanical efficiency is shown. The
prediction level can be considered satisfactory, as
confirmed from residual histogram reported in Figure 10.
From the statistic analysis a 49 % of data falls inside the
residual range [-0.02÷0.02] while only 13 % is off the
range [-0.06÷0.06] and the correlation index is R2=0.934.

From the results obtained by applying the neural network
model, some interesting features of such approach come
to light. The first aspect to be pointed out is the precision
level reached with a limited number of experimental data
required for the training process, in comparison with the
previous multiple regression model. Furthermore, by
considering other appropriate independent variables the
accuracy could be enhanced, particularly in the low
mechanical efficiency region [0.2 ÷ 0.4]. Indeed, in this
region the predicted data (see Figure 9) present a larger
spread with respect to the higher mechanical efficiency



area.  A preliminary test has been conducted taking into
account the influence of the manifold temperature,
already included in the multiple regression (16), with a
negligible precision enhancement. Further investigations
are under course in order to find the proper combination
of even correlated independent variables (i.e. air mass
flow, ambient pressure and temperature, water and oil
temperature) which can improve the prediction level.

Figure 9 - Comparison between observed and simulated mechanical
efficiency - Neural Network

Observed-Estimated

N
o 

of
 o

bs

0

20

40

60

80

100

120

140

160

180

200

-0.2 -0.16 -0.12 -0.08 -0.04 0 0.04 0.08 0.12 0.16 0.2

Figure 10 - Residuals of observed and estimated mechanical efficiency
- Neural Network.

PRESSURE CYCLE BASED MODEL

A more complex model structure has been designed
starting from Rezeka and Henein [9] and Patton et al.
[10] models, by including the effects of other engine
variables. Furthermore, the friction torque in equations 1
to 6 and the friction mean effective pressure in equations
8 to 11 are normalized with respect to the brake torque
and the mean indicated pressure, respectively.

A multiple linear regression technique in forward
stepwise mode has been used to determine the
regression model functional form, allowing to select the
most meaningful engine variables among the whole
experimental data set.  The significance level has been
evaluated by means of statistical analyses on partial
correlation indices, taking into account the mutual

relationships between the variables. Two formulations
have been obtained modifying two regression control
parameters, such as the tolerance and the F to enter
term, which indicate the threshold for the functional
correlation between any independent variable and the
process to be described. The tolerance represents the
complement to one of the square correlation index
between the current variable and all the other
independent variables. The F to enter term is a
significance level index related to the introduction of the
current variable in the regression structure and is
computed as ratio between the regression mean
squares and residual mean squares. A decrease in the
tolerance lead to a greater number of variables to be
included in the regression; nevertheless, the selection of
a too low tolerance value could lead to an over-
parametrized structure. Analogously, an increase in the
F term cause a greater threshold level to be reached by
the significance level of each variable to be included in
the regression model, thus resulting in a reduced
number of independent variables to be considered.
Finally, a tolerance reduction and an F term increase
lead to functional structures with a greater number of
variables and higher precision level.

For the current analysis thirty independent variables
have been selected, also considering some terms
obtained as combination of engine variables included in
Rezeka and Henein [9] and Patton et al. [10] models.

The functional structure for mechanical efficiency
estimation has been finally expressed by the following
relationship, with tolerance and F term set respectively
to 0.01 and 1.0:
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where the presence of only seven parameters to be
identified is remarked. The summation terms are
referred to the crank angle domain, extended over the
engine cycle. The first two terms represent friction losses
due to piston rings and piston skirt respectively, and
have been derived from Rezeka and Henein [9] model,
while the fifth term is referred to the friction losses due to
gas pressure loading on piston rings, described in Patton
et al. [10] model.

In order to improve model prediction level, several tests
have been carried out by a suitable tuning of the control



parameters (tolerance and F term). The best results
have been found setting the tolerance to 0.001 and the F
term to 9.0:
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where three new variables have been introduced, thus
resulting in ten parameters to be identified. A least
square technique has been applied to compute the
regression coefficients ai in both the equations (17, 18)
over the entire set of 426 experimental data.

In table II regression coefficients and p-level
corresponding to the first model (17) are reported with
the correlation index which attains the remarkable value
of 0.9821. The satisfactory level is also evident in Figure
11 where the comparison between observed and
measured mechanical efficiency is shown and in Figure
12 where the residual distribution is reported. From
residuals analysis it emerges that 66 % of data is inside
the range [-0.02÷0.02], while only 8 % is off the range [-
0.06÷0.06].

table II - regression coefficients (17), p-level and correlation index.

a0 A1 a2 a3

Estimated 3.46201 -0.2455 0.0253
5

2.0 e-6
p-level .0 .0 .0 6.2 e-5

a4 A5 a6 R2

Estimated 0.8363 0.05632 -0.9251 0.9821
p-level .0 .0 .0

Figure 11 - Comparison between observed and computed mechanical
efficiency - eq. (17).
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Figure 12 - Residuals of observed and estimated mechanical efficiency
- eq. (17).

Excellent results have also been obtained by applying
the second model (18) which led to an even better
correlation index (0.988). In table III regression
coefficients, p-level and correlation index are reported,
while in Figure 13 and 14 the comparison between
measured and estimated mechanical efficiency and the
residual distribution are shown respectively.

table III - regression coefficients (18), p-level and correlation index.

A0 a1 a2 a3 a4 a5

Estim. 6.977 -.0151 .0418 1.0 e-5 1.093 .0558
p-level .0 .0 .0 .0 .0 .0

A6 a7 a8 a9 R2

Estim. -1.842 -.0346 -.0135 .0012 .988
p-level .0 .00030 .0 3.0 e-6



Figure 13 - Comparison between observed and computed mechanical
efficiency - eq. (18).
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Figure 14 - Residuals of observed and estimated mechanical efficiency
- eq. (18).

The presented results show the high accuracy achieved
with the proposed pressure cycle models (eqs. 17,18)
which require the identification of seven and ten
regression parameters, respectively. Thus, a reduced
number of suitably selected experimental data is
required for model identification.

A valuable aspect of the presented modeling activity,
both black-box and pressure cycle based, is related with
the large set of experimental data used for development,
also considering critical engine working conditions such
as low regimes at high load, lean mixture and reduced
spark advance operations.

CONCLUSION

A set of SI mechanical efficiency models to be
implemented in general models oriented to engine
control have been developed and validated on a wide
experimental data set. More than 400 operating
conditions have been investigated building a complete
data set, including in-cylinder pressure cycles.

The first part of the work has concerned with the
application of the available model in the literature. The

models of Rezeka and Henein [9] and Patton et al. [10]
have been applied and an identification analysis has
been conducted to find the unknown model parameters.
The precision achieved with these models is far from the
accuracy levels required. Two other approaches have
been followed, the former has led to the development of
fully black-box models for fast computation applications
(i.e. optimization), while the other one requiring the
pressure cycle data can be used for accurate engine
performance evaluation.

For black box models a regression based model has
been built considering global engine working variables
(manifold pressure, brake torque, air flow rate, engine
speed). Then a Multi Layer Neural Network has been
also used considering only easy-to-measure engine
variables (engine speed, manifold pressure, air-fuel
ratio, spark advance). The precision achieved is
comparable for both model but the latter one seems the
most promising because of its straightforward
parameters specification.

The second model approach is based on the combined
use of both operating and pressure cycle data. Its
structure and unknown coefficients are found by using a
multiple stepwise linear regression procedure. In this
case the accuracy obtained fulfills the requirements of
applicability in the framework of phenomenological
engine models.

As general remark, it could be concluded that the
models previously proposed in literature and examined
in this work are not enough general to be successfully
applied to engines whose structure differs from the one
where the models were originally developed. It also
emerges that a more detailed physical description of the
complex phenomena related to friction is needed to
enhance their predictive capabilities.

On the other hand, further work is under course in order
to asses the direct applicability of the developed models
to other engine structures and to define the minimum set
of experimental  point to be investigated (i.e. most
significant operating conditions). This latter goal will be
pursued through the combined use of both Neural
Network and Experimental Design Techniques [17].
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DEFINITIONS, ACRONYMS, ABBREVIATIONS

ai [/] i-th regression coefficient;

A/F [/] Air-Fuel ratio;

B [m] Cylinder bore;

bmep [kPa] Brake mean effective pressure;

Db [m] Bearing diameter;

Fm [N] Springs load;

fmep [kPa]Friction mean effective pressure;

h [m] Oil film thickness;

Hp [m] Piston skirt length;



l [m] Connecting rod length;

imep [Pa] Indicated mean effective
pressure;

Lb [m] Bearing thickness;

Li [J] Indicated work per cycle;

Lv [m] Max valve lift;

&mair [kg/h] Intake air flow;

Me [Nm] Engine torque;

N [rpm] Engine speed;

nb [/] Number of main bearings;

nc [/] Number of cylinders;

npc [/] Number of rings;

npo [/] Number of oil rings;

nv [/] Number of valves per cylinder;

Pe [W] Brake power;

Pec [Pa] Ring pressure loading;

Peo [Pa] Oil ring pressure loading;

Pf [W] Friction Power;

Pgas [Pa] In-Cylinder gas pressure;

Pi [W] Indicated power;

Pman [Pa] Intake manifold pressure;

Pmax [Pa] Max in-cylinder gas pressure;

pmep [kPa] Pumping mean effective
pressure;

r [m] Crank radius;

R2 [/] Correlation index;

rb [m] Bearings radius;

rc [/] Compression ratio;

rexh [/] Exhaust valve diameter / cylinder
bore Ratio;

rman [/] Intake valve diameter / cylinder
bore Ratio;

S [m] Piston stroke;

T [Nm] Brake torque;

Tf [Nm] Friction torque;

Tman [°C] Intake air temperature;

Tw [°C] Cylinder wall temperature;

V [m3] Current piston volume;

Vp [m/s] Mean piston speed;

Vp,ist [m/s] Current piston speed;

w [m] Piston ring thickness;

Greek symbols

α [/] Air-fuel ratio;

β [°]Throttle opening;

ηm [/] Mechanical efficiency;

µ [Kg/ms] Dynamic viscosity;

θ [°] Crank angle;

ρ [kg/m3] Density;

τinj [ms] Injection time;

ω [rad/s] Angular speed;

Subscripts

Air Air;

amb Ambient;

exh Exhaust;

man Manifold;

meas Measured;

pred Predicted;

w,wall Cylinder wall.


