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Abstract

Objectives—The existing risk prediction model for patients requiring prolonged mechanical 

ventilation is not applicable until after 21 days of mechanical ventilation. We sought to develop 

and validate a mortality prediction model for patients earlier in the ICU course using data from 

day 14 of mechanical ventilation.

Study Design—Multi-center retrospective cohort study.

Patients—Adult patients receiving at least 14 days of mechanical ventilation at 5 medical centers 

(development cohort) or enrolled in the ARDS Network FACTT trial (validation cohort).

Contact: Catherine L. Hough, MD MSc, Associate Professor of Medicine, Division of Pulmonary and Critical Care Medicine, 
Harborview Medical Center, University of Washington, 325 Ninth Ave, Mailstop 359762, Seattle, WA 98104, phone: 206 744-3356, 
cterrlee@uw.edu. 
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Measurements and Main Results—Predictor variables were measured on day 14 of 

mechanical ventilation in the development cohort and included in a logistic regression model with 

one-year mortality as the outcome. Variables were sequentially eliminated to develop the ProVent 

14 model. This model was then generated in the validation cohort. A simplified prognostic scoring 

rule (ProVent 14 Score) using categorical variables was created in the development cohort and 

then tested in the validation cohort. Model discrimination was assessed by the area under the 

receiver-operator characteristic curve (AUC).

491 patients and 245 patients were included in the development and validation cohorts, 

respectively. The most parsimonious model included age, platelet count, requirement for 

vasopressors, requirement for hemodialysis, and non-trauma admission. The AUC for the ProVent 

14 model using continuous variables was 0.80 (95% CI, 0.76–0.83) in the development cohort and 

0.78 (95% CI, 0.72–0.83) in the validation cohort. The ProVent 14 Score categorized age at 50 

and 65 years old, and categorized platelet count at 100 × 109/L, and had similar discrimination as 

the ProVent 14 model in both cohorts.

Conclusion—Using clinical variables available on day 14 of mechanical ventilation, the 

ProVent14 model can identify patients receiving prolonged mechanical ventilation with a high risk 

of mortality within one year.
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For an increasing number of patients, critical illness or injury is neither self-limited nor 

imminently fatal1. As survival from life-threatening illness improves, pre-existing disease 

and newly-acquired organ dysfunction may conspire against recovery, leaving patients 

dependent on life supporting therapies for extended time periods. This syndrome, termed 

“chronic critical illness”, is commonly typified by persistent respiratory failure that requires 

prolonged mechanical ventilation (PMV). Long-term mortality is high, approaching rates of 

40% to 60% at one-year in inclusive cohorts2–10. Patients have a very high symptom burden 

during the weeks of prolonged ventilation11,12 and chances of living at home with functional 

independence at the end of the year are as low as 10%9,13.

Most PMV patients are unable to participate in their own clinical decision making and must 

therefore rely on surrogates to guide their goals of care. These surrogate decision makers 

report that physicians rarely discuss prognosis, and studies have shown that physician and 

family estimates of one year outcome are highly discordant14,15. Traditional approaches to 

ICU mortality prediction, such as APACHE, are ill-suited to predicting longer term 

outcomes, particularly in this population16. Our research group developed and validated the 

ProVent mortality prediction model which estimates one-year mortality for patients 

receiving at least 21 days of mechanical ventilation to address prognostic uncertainty for 

these unique patients2,3,17.

However, many important decisions regarding the care of PMV patients occur before 21 

days have elapsed, including electing to perform tracheotomy18 or transfer care to a long-

term acute care hospital (LTACH), both of which in are in some form decisions to continue 
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life sustaining therapies19,20. If compelling prognostic data were available sooner for the 

patient whose goals of care are known, these decisions might be made more easily and 

earlier in the course of illness21–23. Building on our previous work, we hypothesized that a 

simple mortality prediction model constructed from factors clinically available by day 14 in 

the course of mechanical ventilation could discriminate between PMV patients at high and 

low risk of death at one year. Using a heterogeneous multicenter cohort of PMV patients in 

addition to a contemporaneous cohort of patients with acute lung injury (ALI) who were 

enrolled in a randomized, controlled trial, we sought to develop and validate a new model 

using data collected on day 14 of mechanical ventilation rather than on day 21 as in our 

previous model.

METHODS

Development Cohort

Patients were enrolled from 5 tertiary care medical centers in geographically diverse regions 

of the U.S. (Seattle, WA, Denver, CO, San Francisco, CA, Philadelphia, PA, and Durham, 

NC). Patients who were discharged in 2005 and received at least 14 days of mechanical 

ventilation uninterrupted by more than 48 hours were eligible. Patients were excluded if they 

were less than 18 years old; diagnosed with acute or chronic neuromuscular disease, had 

extensive burns, or required chronic mechanical ventilation prior to hospital admission. 

Commitment to continued care with life-sustaining therapies was not an inclusion or 

exclusion criterion. Consecutive samples of patients were included from 4 centers, and a 

random sample of 176 patients was included from the largest center. The overall cohort 

included 260 patients who received 21 days or more of mechanical ventilation with whom 

we validated our previous model3.

Data on demographic variables, potential risk factors for death, and outcomes were 

abstracted from medical records by 2 investigators at each site. Risk factors were measured 

on day 14 of mechanical ventilation. The investigator abstracting data on risk factors was 

blinded to outcomes. The principal investigator at each site reviewed the first 10 charts and a 

random sample of 10 additional charts to confirm accuracy of data and identify errors that 

would prompt review and correction.

Potential risk variables for the model were chosen a priori based upon previous literature, 

clinical judgment and reliability of measurement. Each variable was measured on day 14 of 

mechanical ventilation. These included the four primary risk variables from the original 

ProVent model, including age, platelet count, requirement for vasopressors, and requirement 

for hemodialysis2,3. Requirement for hemodialysis was defined as renal replacement therapy 

provided on or within 48 hours before or after day 14 of mechanical ventilation. Additional 

variables included gender, a primary or secondary diagnosis of trauma, PEEP level, serum 

glucose, white blood cell count, and hemoglobin. The primary outcome, one year vital 

status, was obtained from medical records if available, or alternatively the National Death 

Index and Washington State Death Database. Work on the development cohort was 

approved by Institutional Review Boards (IRB) at all participating institutions, with waiver 

of informed consent for this minimal risk observational study.
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Validation Cohort

The validation cohort was derived from patients enrolled in the NHLBI ARDS Network 

Fluids and Catheter Treatment Trial (FACTT)24,25 who consented to be concomitantly 

enrolled in a prospective economic outcomes study (EA-PAC)26 and who received at least 

14 days of mechanical ventilation. Patients were enrolled in FACTT from 40 centers across 

the U.S. if they met consensus criteria for acute lung injury and were willing to consent to 

the trial and consent to a central venous catheter. Patients requiring hemodialysis or those 

having very advanced comorbid diseases such as severe cirrhosis at admission were 

excluded. While imminent plan to withdraw life support was an exclusion for enrollment in 

FACTT, there was no encouragement or enforcement of continued commitment to life-

sustaining therapies beyond the enrollment window27. A subgroup of patients in FACTT 

was enrolled in EA-PAC when surrogate decision makers consented to both studies. 

Detailed characteristics of patients in both studies have been described elsewhere24–26. 

Overlap between patients in development and validation cohorts was not measurable due to 

de-identified datasets, however if it occurred at all, it was less than 2% due to differences in 

study periods and non-consecutive enrollment in the FACTT trial. Day 14 risk variables 

were extracted from the FACTT database. Missing risk variable data were assumed to be 

normal. One-year mortality was extracted from the FACTT and EA-PAC databases; all 

patients in the validation cohort had known vital status at one year.

Informed consent was obtained for participation in FACTT and EA-PAC studies, and IRB 

approval was obtained at all participating institutions. Additionally, IRB approval was 

obtained at the University of Washington for use of FACTT/EA-PAC data for this validation 

cohort, with waiver of additional informed consent.

Analysis—Descriptive statistics are presented using mean and standard deviation for 

continuous variables with normal distribution or median and interquartile range for variables 

with non-normal distribution. Categorical variables are presented as proportions. Using the 

derivation cohort, all of the preselected predictor variables were included in a logistic 

regression equation with one-year mortality as the outcome variable. The area under the 

Receiver Operator Characteristic curve (AUC) was used to assess model discrimination. 

Individual variables were dropped from the model in a stepwise fashion with a subsequent 

assessment of the AUC. Variables were returned to the model if the AUC changed by more 

than 0.02 from the original value3. Calibration of the final model was assessed by the 

Hosmer and Lemeshow goodness of fit statistic, comparing observed mortality to predicted 

mortality for each decile of risk. A bootstrap method repeating 1000 random samples 

consisting of 60% of the cohort was used to obtain a 95% confidence interval for the AUC 

of the final model.

We performed 2 additional steps to develop a points-based clinical scoring rule. Continuous 

variables from the final model above were categorized and included in a second logistic 

regression model using categorical variables only. Next, points were assigned to each 

variable based upon the beta coefficients in that model. To assess the performance of the 

scoring rule, cumulative scores (ProVent 14 Score) were tabulated for each patient, and a 
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third logistic regression model for one-year mortality was generated using the cumulative 

score as the independent variable.

Using the validation cohort, we then fit a logistic regression model using the beta values of 

the risk variables from the derivation scoring rule model. Assessments of model 

discrimination and calibration for the validation cohort were performed similarly to the 

development set by calculating the AUC and Hosmer Lemeshow goodness of fit statistics 

(using observed levels of score). We compared ROC discrimination of the ProVent14 

continuous model to APACHE III28 for prediction of one-year mortality using the DeLong 

method29. We created Kaplan-Meier plots to assess differential survival by ProVent 14 

Score in both development and validation cohorts.

Analyses were performed using Stata version 11.0 (Stata, College Station, Texas), MedCalc 

Statistical Software version 14.10.2 (MedCalc Software, Ostend, Belgium) and SAS/STAT 

software, Version 9.4 of the SAS System for Windows (Cary, NC, USA).

RESULTS

Model Development

A total of 491 patients were included in the development cohort. Patient characteristics and 

hospital outcomes are presented in Table 1. The mean age of patients was 54 ± 17 years old, 

and 40% were female. Median (IQR) duration of mechanical ventilation was 22 (17–33) 

days. Hospital mortality was 29%, and one-year mortality was 45%. Univariate analysis of 

associations between predictor variables and one-year mortality are presented in Table 2. 

The AUC for the logistic regression model with all predictor variables was 0.80. Stepwise 

elimination of gender, glucose, white blood cell count, hemoglobin, and PEEP level resulted 

in a final model containing age, platelet count, vasopressors, hemodialysis, and non-trauma 

diagnosis. Enrollment site was not an independent predictor when added to this model and 

did not affect the AUC. The AUC for the final parsimonious model was 0.80 (95% CI, 0.76–

0.83), and the Hosmer and Lemeshow goodness of fit statistic was 3.32 with 8 degrees of 

freedom, p=0.91. In contrast, the AUC using APACHE III to predict one-year mortality in 

this cohort was 0.60 (95% CI, 0.55–0.64), which differed significantly from the ProVent 14 

model (p<0.0001).

Model Validation

Three hundred forty-two patients from FACTT received 14 or more days of mechanical 

ventilation, of whom 245 had known one-year outcomes through EA-PAC and were 

included in the validation cohort. Table 1 compares patient characteristics and outcomes 

between the development and validation cohorts. Patients in the two cohorts were similar in 

age, gender, and race, and had similar median days of mechanical ventilation. Patients in the 

validation cohort had higher acute illness severity at hospital admission as represented by 

APACHE III score, and they had higher hospital and one-year mortality. The AUC for the 

Provent 14 model in the validation cohort was 0.78 (95% CI 0.72–0.83), and the Hosmer 

Lemeshow statistic was 9.39, p=0.31. The AUC using APACHE III to predict one-year 
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mortality in the validation cohort was 0.62 (95% CI, 0.55–0.68), which differed significantly 

from the ProVent 14 model (p<0.0001).

ProVent 14 Score

To develop the simplified prognostic scoring rule, age was cut at 50 and 65 years old as in 

the original ProVent model3. Platelet count was cut at 100 × 109, which was associated with 

a higher risk of mortality when measured at day 14 than a cutpoint of 150 × 109 as in the 

original 21 day model. In the development cohort, a logistic regression model was fit with 

these categorized variables as independent variables and one-year mortality as the dependent 

variable. Points assigned to each predictor according to the beta coefficients from the 

categorical model are shown in Table 3.

Cumulative points based upon the number of predictor variables present for a patient 

constitute the ProVent 14 Score. We combined the seven possible scores into five 

categories: 0, 1, 2, 3 and 4 or greater. Figure 1 contains Kaplan Meier plots with long-term 

survival by ProVent 14 Score in the development and validation cohorts. ProVent 14 Score 

models performed well both in the development cohort (AUC 0.78, 95% CI 0.74–82; 

Hosmer-Lemeshow statistic 9.57, p=0.02) and in the validation cohort (AUC 0.76, 95% CI 

0.70–0.81; Hosmer-Lemeshow statistic 1.45, p=0.69).

DISCUSSION

In this two-cohort multi-center study, we successfully developed and validated a long-term 

mortality prediction model for patients requiring 14 days of mechanical ventilation after 

acute illness or injury. The model performed well for discrimination and calibration in the 5 

centers constituting the development cohort, and the model has similar discrimination and 

calibration in the validation cohort. Calibration was best in the validation cohort for patients 

who are at highest and lowest risk for death—the patient subgroups groups for whom 

objective mortality prediction is likely to have the most impact on decision making30.

The good performance of the model in the validation cohort is notable given that the cohort 

is a distinctly different group of patients derived from 40 hospitals in the U.S. who were 

enrolled in a clinical trial for patients with ARDS. This compares to the development cohort 

which enrolled consecutive patients with any diagnosis who received 14 days of mechanical 

ventilation. The validation cohort had higher overall hospital and one-year mortality, likely 

reflecting higher acute illness severity associated with the presence of ARDS in all patients. 

Overall mortality also was increased because vital status in the EA-PAC database was 

known for all patients who died in the hospital, whereas unknown vital status due to loss to 

follow up affected hospital survivors only. Other factors differentiating the validation cohort 

from the development cohort include various exclusion criteria of the FACTT trial such as 

low expected 6-month survival, morbid obesity, and requirement for hemodialysis at trial 

enrollment. Despite the overall differences between patients in the 2 cohorts and any 

variations in management, the mortality prediction model had good performance in the 

external validation cohort, which supports the broad based value of the model31,32.
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Multiple studies have shown that family members of patients in the ICU desire prognostic 

information, including families of patients requiring PMV, but this information is not always 

forthcoming33,34. This deficiency results in significant discordance between expectations of 

clinicians and surrogate decision-makers, with typically overly optimistic expectations by 

families14. There are numerous barriers to sharing of prognostic information, including 

uncertainty and worries about sharing incorrect prognoses, concerns about upsetting family 

members or defeating hope, and available clinician time35,36. Like the MELD score in 

common use for patients with cirrhosis37, the ProVent 14 model uses a small number of 

readily available clinical variables that can be collected in minutes at the bedside or 

remotely from the electronic medical record. Surrogate decision makers for patients with 

very high likelihood of death can be prepared for that eventuality and prompted to consider 

the role of ongoing life support in the context of the patient’s values and wishes. For patients 

at very low risk of long-term mortality, family members and surrogate decision makers can 

be reassured that their loved one is unlikely to meet the usual grim outcome of the average 

patient requiring prolonged mechanical ventilation. Even for surrogates of patients with 

intermediate risk (e.g. 30% to 70% mortality estimate), typically overly optimistic family 

expectations may be modified14, and families can be better prepared for the potential of poor 

outcome.

Over twenty years ago, the SUPPORT trial failed to show an impact of providing objective 

prognostic information to clinicians, perhaps because clinicians did not share the 

information in 80% of cases38. Yet, when incorporated into formal decision aids, data from 

prognostic models can facilitate the presentation of objective prognostic information to 

surrogates, reduce decisional conflict, reduce use of low value health care, and better align 

choice with values21–23. Preliminary studies incorporating the ProVent model in an 

innovative decision aid to inform surrogate decision makers of PMV patients indicate that 

significant discordance in expectations of outcome between clinicians and decision-makers 

can be minimized39. The ProVent model also differs from SUPPORT in its simplicity and 

timing, intending to provide information more than a week after the onset of critical illness

—a time when surrogates remain uncertain of prognosis and anxious for information. 

However, objective prognostic information should not replace clinical judgment that 

incorporates unique patient characteristics, but such models are useful in the clinical setting 

to support clinical judgment and anchor it in objective data40.

Our model has several limitations. The ProVent 14 model was developed in cohorts of 

patients requiring PMV at tertiary care research centers and may not be generalizable to 

other settings. However the majority of patients requiring PMV are managed in tertiary 

centers which have a high number of patients at risk for PMV and accept transfers of 

complicated patients from smaller centers. Additionally, some of the hospitals in the 

validation cohort were smaller community hospitals affiliated with research centers. The 

development cohort consisted of patients who received PMV in 2005, however there have 

been no empirical data published in the intervening period that suggests that long-term 

outcomes of PMV patients have improved in any appreciable way. In this study, variables 

were chosen for analysis as predictors based upon associations with outcomes in acute or 

chronic critical illness, ease of measurement, and relatively complete availability in medical 

records. We deliberately limited the number of variables assessed in order to create a simple, 

Hough et al. Page 7

Crit Care Med. Author manuscript; available in PMC 2016 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



usable model that would stand up to external validation. It is possible that inclusion of 

additional variables could have improved the discrimination of the model, but this would be 

a subject for future prospective studies. Finally, the ProVent 14 model predicts one-year 

mortality, but it does not provide information on long-term physical or cognitive function, 

which would also be of significant importance in decision making and should be an 

objective of future research41.

Conclusion

The ProVent 14 mortality prediction model has good discrimination and calibration for one-

year mortality in patients who require mechanical ventilation for at least 14 days. This 

simple prognostic model can support clinical judgment of prognosis and can inform clinical 

decision aids to facilitate discussions of goals of care in the setting of PMV, where long-

term outcomes are patient specific and often not immediately evident.
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Figure 1. 
A, Kaplan-Meier plots of survival for development cohort by ProVent 14 Score. B, Kaplan-

Meier plots of survival for validation cohort by ProVent 14 Score.
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TABLE 1

Patient Characteristics and Outcomes

Variable Development (n = 491) Validation (n = 245) P

Age, yr, mean ± SD   54±17   53±16    0.2090

Female sex, n (%) 185 (40) 107 (44)    0.3230

Non white race, n (%) 182 (37)   94 (38)    0.9754

Trauma, n (%) 118 (24)   29 (12)    0.0001

Acute Physiology and Chronic Health Evaluation III score, mean ± SD   81±28 101±28 < 0.0001

Platelets day 14, mean ± SD 316±199 297±191    0.2303

Platelets < 100,000/mL, n (%)   63 (13)   32 (13)    0.9770

Vasopressors/inotropes day 14, n (%)   78 (16)   35 (16)    0.9634

Hemodialysis day 14, n (%)   51 (10)   34 (14)    0.2027

Mechanical ventilation days, median (IQR)   22 (17–33)   23 (17–31)    0.9277

ICU length of stay, median (IQR)   28 (21–38)   25 (19–33)    0.0015

Hospital length of stay, median (IQR)   38 (27–55)   34 (26–47)    0.0102

Hospital mortality, n (%) 141 (29) 121 (49) < 0.0001

1-yr mortality, n (%) 221 (45) 145 (59)    0.0004

IQR = interquartile range.
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TABLE 2

Univariate Analysis of Risk Variables and 1-Year Mortality in Development Cohort

Variable Alive, n = 270 Dead, n = 221 P

Age, yr

 Mean (SD) 48.9 (16.9) 60.9 (14.6) < 0.0001

 Median (IQR)    49 (38–61)    63 (52.8–72) < 0.0001

Gender (male), n (%)  172 (64.7)  111 (55.0)    0.0421

Race (nonwhite),a n (%)  137 (50.7)    64 (29.0)    0.2411

Platelets (day 14), × 109/L

 Mean (SD)  380 (211)  238 (150) < 0.0001

 Median (IQR)  347 (215–507)  234 (109.3–342) < 0.0001

Vasopressors (day 14), n (%)    18 (6.7)    60 (27.1) < 0.0001

Hemodialysis (day 14), n (%)    12 (4.4)    39 (17.6) < 0.0001

Nontrauma, n (%)  174 (64.4)  199 (90) < 0.0001

Positive end-expiratory pressure (day 14)

 Mean (SD)   7.1 (3.5)   7.2 (3.6)    0.8572

 Median (IQR)      5 (5–8)      5 (5–8)    0.7508

Glucose (day 14), mg/dL

 Mean (SD)  145 (46)  167 (64) < 0.0001

 Median (IQR)  134 (112.5–171.5)  156 (124–197.5)    0.0001

WBC (day 14), × 109/L

 Mean (SD) 14.3 (7.5) 15.1 (12.3)    0.4216

 Median (IQR) 12.7 (9.7–17.3) 12.5 (9.2–18.7)    0.9188

Hemoglobin (day 14), g/dL

 Mean (SD)   9.9 (7.3)   9.5 (2.4)    0.3610

 Median (IQR)   9.1 (8.2–10.1)   9.3 (8.6–10)    0.1685

IQR= interquartile range.

a
Nonwhite category includes race coded as unknown.
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TABLE 3

Model in Development Cohort With Categorized Risk Variables to Derive Simplified Scoring Rule (ProVent 

14 Score)

Categorical Variable n (%) OR (95% Cl) β Points

Age, ≥ 65 yr 144 (29) 6.5 (3.8, 11.2) 1.86 2

Age, 50–64 yr 162 (33) 2.7 (1.6, 4.4) 0.95 1

Platelets ≤ 100×109/L   63 (13) 3.0 (1.5, 6.1) 1.11 1

Vasopressors   78 (16) 3.8 (2.0, 72) 1.32 1

Hemodialysis   51 (10) 2.5 (1.1, 5.4) 0.93 1

Nontrauma 373 (76) 2.6 (1.5, 4.6) 0.94 1

OR = odds ratio.
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TABLE 4

ProVent 14 Score and Observed 1-Year Mortality

ProVent 14 Score

Development Cohort Validation Cohort

n Observed Mortality, % (95% Cl) n Observed Mortality, % (95% Cl)

0   70   4 (0, 9) 17 24 (3, 44)

1   99 28 (19, 37) 68 32 (21, 44)

2 142 43 (35, 51) 66 62 (50, 74)

3 117 61 (52, 70) 62 81 (71, 90)

4–6   63 92 (84, 100) 32 88 (75, 100)

The PnoVent 14 Score is calculated by summing the point values assigned according to the presence of risk variables listed in Table 3 when 
measured on day 14 of mechanical ventilation.
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