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Abstract: The ability to accurately predict the prognosis and intervention requirements for treating
highly infectious diseases, such as COVID-19, can greatly support the effective management of
patients, especially in resource-limited settings. The aim of the study is to develop and validate a mul-
timodal artificial intelligence (AI) system using clinical findings, laboratory data and AI-interpreted
features of chest X-rays (CXRs), and to predict the prognosis and the required interventions for
patients diagnosed with COVID-19, using multi-center data. In total, 2282 real-time reverse tran-
scriptase polymerase chain reaction-confirmed COVID-19 patients’ initial clinical findings, laboratory
data and CXRs were retrospectively collected from 13 medical centers in South Korea, between
January 2020 and June 2021. The prognostic outcomes collected included intensive care unit (ICU)
admission and in-hospital mortality. Intervention outcomes included the use of oxygen (O2) sup-
plementation, mechanical ventilation and extracorporeal membrane oxygenation (ECMO). A deep
learning algorithm detecting 10 common CXR abnormalities (DLAD-10) was used to infer the initial
CXR taken. A random forest model with a quantile classifier was used to predict the prognostic
and intervention outcomes, using multimodal data. The area under the receiver operating curve
(AUROC) values for the single-modal model, using clinical findings, laboratory data and the outputs
from DLAD-10, were 0.742 (95% confidence interval [CI], 0.696–0.788), 0.794 (0.745–0.843) and 0.770
(0.724–0.815), respectively. The AUROC of the combined model, using clinical findings, laboratory
data and DLAD-10 outputs, was significantly higher at 0.854 (0.820–0.889) than that of all other
models (p < 0.001, using DeLong’s test). In the order of importance, age, dyspnea, consolidation
and fever were significant clinical variables for prediction. The most predictive DLAD-10 output
was consolidation. We have shown that a multimodal AI model can improve the performance
of predicting both the prognosis and intervention in COVID-19 patients, and this could assist in
effective treatment and subsequent resource management. Further, image feature extraction using an
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established AI engine with well-defined clinical outputs, and combining them with different modes
of clinical data, could be a useful way of creating an understandable multimodal prediction model.

Keywords: COVID-19; artificial intelligence; prognosis; chest radiograph

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic has swept the world, and ap-
propriate and efficient medical triaging is becoming increasingly important to prevent
health services from becoming overwhelmed by excessive demand [1]. As seen in the surge
of COVID-19 cases, a sudden increase in the number of infected patients can lead to a
shortage of critical resources [2–5]. Effective management of such surges requires swift
clinical evaluation, treatment and resource management [6]. In addition, during near-mass
casualty scenarios, it is important to predict the likelihood of mortality to help prioritize
treatments and resources [7–9]. The prognostication of disease progression in terms of re-
quired interventions and mortality are important factors to consider when treating severely
ill patients [10]. Hence, the usage of artificial intelligence (AI) in prognosis prediction
is growing and the research interests are even expanding into areas such as COVID-19
prognosis prediction in telehealthcare [11,12].

Chest X-ray (CXR) is a first-line imaging modality that allows rapid, affordable and
accessible chest imaging worldwide. CXR is a useful medical triage resource for patients
with a high pre-test probability of COVID-19 and who are suspected to have moderate-
to-severe disease [13]. However, for COVID-19 patients, the interpretation of CXR varies
greatly between readers because of the differences in the skillset of the readers and the
added difficulty in interpretation due to the severe changes in the CXRs from COVID-
19 [14,15]. The efforts to reduce the variation and improve the quality of interpretation
have resulted in the use of AI with imaging to grow in the context of COVID-19. It has
been shown that AI can help interpret CXRs effectively in COVID-19 patients [16]. Khuzani
et al. showed that a CXR AI classifier trained on 420 images can accurately classify, with
94% accuracy, the CXR images into normal, COVID-19 and non-COVID-19 pneumonia,
based on imaging findings alone [17]. Naturally, combining different modes of data used in
clinical medicine to predict the events in COVID-19 patients has become the goal of many
researchers. For example, a previous model created in the US, which was trained on a
cohort of 1834 patients from a single institution, showed that multimodal AI models using
combined CXR and clinical data were more useful than single-modal models for predicting
the risk of critical illness progression in patients with COVID-19 [18]. However, there is a
lack of evidence for creating a model that mimics the way that clinicians use information to
derive the necessary management and the prognosis in COVID-19 patients.

The aim of this study was to develop and validate models for predicting adverse
events in COVID-19 patients using a multimodal approach based on clinical findings,
laboratory data, and AI-interpreted features of CXRs in a nationwide multicenter cohort.

2. Related Works

Our study has several differences compared to earlier studies. Previous studies
focused either on diagnostic or severity prediction, and did not take into account the next
decision for the patient, which is a necessary intervention for treatment [19–23]. In our
study, the model was trained with both prognostic outcomes and required interventions,
such as O2 supplementation and intensive care unit (ICU) admission. Being able to predict
the necessary treatment resources is especially important in managing highly infectious
diseases that cause a surge in cases. To the author’s knowledge, this is the first multimodal
model that utilizes three different modes of data that are clinically relevant and enables the
prediction of both prognosis and treatment.
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Furthermore, previous works on using medical imaging for prognosis prediction used
end-to-end models that utilized convolutional neural networks or radionics features [18,20,21].
By contrast, we used an established AI engine for image feature extraction from the CXRs,
which can provide clinically interpretable and relevant information in a hospital setting.
These imaging features are clinically well-defined findings, routinely used by clinicians.
This allows users to be able to infer the logic behind the predicted prognosis and treatments
heuristically, which is useful for understanding AI behavior.

3. Materials and Methods
3.1. Study Population

This study used the data repository of the Korean Imaging Cohort for COVID-19
(KICC-19), which is the multicenter data from 13 main referral institutions across South
Korea. These data were created by Korean Society of Thoracic Radiology (KSTR) mem-
bers in 2020 [24]. All of the enrolled patients’ data were anonymized and collected on a
cloud-based data storage platform. This study included consecutive patients from the data
repository between January 2020 and June 2021. The inclusion criteria were consecutive
adult patients (≥18 years old) with real-time reverse transcriptase polymerase chain reac-
tion (RT-PCR)-proven COVID-19, who underwent a diagnostic full inspiratory of the CXR
at the participating institution. Patients were excluded if no baseline data were available,
or if no details of the clinical course were recorded.

This retrospective study was approved by the institutional review board (GCIRB2021-
312), which waived the requirement for informed consent due to the retrospective nature
of data collection and the use of anonymized images.

3.2. Data Collection and Study Definition

The clinical findings, CXR and laboratory data of each patient, obtained at admission,
were collected from the cloud-based data storage platform. The initial CXR of each pa-
tient, obtained in anteroposterior or posterior–anterior views, was collected. The clinical
findings included demographics (age and sex), comorbidities (hypertension, diabetes, car-
diovascular disease and history of cancer) and clinical symptoms (fever, cough, sputum,
myalgia, dyspnea and sore throat). The initial laboratory data included lymphocyte and
thrombocyte counts and C-reactive protein (CRP) and lactate dehydrogenase (LDH) levels.
Lymphocytopenia was defined as a lymphocyte count of less than 1500 cells/µL. Throm-
bocytopenia was defined as a platelet count of less than 150,000 cells/µL. The predefined
clinical thresholds for LDH and CRP elevation were 50 mg/L and 250 U/L, respectively.
The clinical outcomes included the requirement for O2 supplementation, mechanical ven-
tilation, extracorporeal membrane oxygenation (ECMO) and ICU admission, as well as
in-hospital mortality. In-hospital mortality was defined as death resulting from clinically
compatible illnesses in COVID-19 patients during hospitalization.

3.3. Dataset Partitioning for Multicenter Validation

To develop and validate the COVID-19 prognosis and intervention prediction model,
the data from 13 medical centers were divided into model development and performance
validation datasets. The smallest unit of division was one medical center. For this nation-
wide multicenter cohort study, various levels of care centers with different medical roles
were included. Random data partitioning by mixing all the data can omit the character-
istics of each center and impair sample representativeness [25]. Therefore, we performed
center-based semi-random data partitioning, only considering the balance of the number of
clinical events between development and validation sets.

3.4. Image Feature Extraction from CXR

A commercially available AI model, a deep learning algorithm that detects 10 common
CXR abnormalities (Lunit INSIGHT for Chest Radiography Version 3.1.3.5; Lunit, Seoul,
South Korea) [26], was used to infer imaging features from the initial CXR images. The
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DLAD-10 has been trained on over 168,000 CXR images annotated by 20 board-certified
radiologists. The DLAD-10 is a ResNet-34-based algorithm that uses a CXR DICOM file as
an input, without needing further image processing. Subsequently, the DLAD-10 outputs
were used as inputs to the prediction model. The DLAD-10 outputs used were nodules,
consolidation, pneumothorax, pleural effusion, cardiomegaly, nodule, pneumoperitoneum,
mediastinal widening, calcification and atelectasis. Each output had a value between 0 and
100, and this represents the probability of the presence of lesions. This output was used
without any calibration.

3.5. Prognosis Prediction Model Development

Prognosis prediction models were trained to predict O2 supplementation, mechanical
ventilation, ECMO, ICU admission, in-hospital mortality and all adverse events. All
adverse events were defined as having any one of the event outcomes. A random forest
model with a quantile classifier was used to predict events from CXR, laboratory data
and clinical information using Fast unified random forests for survival, regression and
classification (RF-SRC), and non-parametric statistical estimation [27]. For model training,
out-of-bag (OOB) samples were used as test samples. Feature selection was performed
using the mean decrease in accuracy and mean decrease in Gini, as suggested by Han
et al. [28], and a maximum of five iterations were performed. The importance of the features
was defined as the mean decrease in forest’s performance for the randomly permuted OOB
samples. The workflow schemes for the data configuration, data type and model learning
are shown in Figure 1.
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Figure 1. Schematic of the study workflow and performance of risk prediction model.

3.6. Statistical Analysis

The statistical analysis of the differences between the development and validation sets
was performed using Pearson’s chi-square test or Fisher’s exact test for categorical variables
and an independent t-test for continuous variables. To compare the prognosis prediction
model, the area under the receiver operating curve (AUROC) was calculated for binary
clinical event classification and AUROCs were compared using the DeLong test in the pROC
R package (version 3.6.3; R Project for Statistical Computing, https://www.r-project.org,
accessed on 1 January 2022) [29,30]. The statistical significance was set at p < 0.05.

https://www.r-project.org
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4. Results
4.1. Patient Characteristics

The patient characteristics of the overall, training and validation sets are presented in
Table 1. A total of 2282 patients who met the inclusion criteria were evaluated across the
datasets. The mean age of patients was 52.8 years (interquartile range, 40–70 years); 1193
were male (52.3%) and 1089 were female. Of the 2282 patients from 13 centers, 1731 patients
from 8 centers were included in the development set and 551 patients from 5 centers were
included in the test set. The mean age was higher in the training set (53.5 ± 20.4) than
in the validation set (50.6 ± 17.9) (p = 0.003). The proportion of women was higher in
the training set (859/1731 [49.6%]) than in the validation set (230/551 [41.7%]) (p = 0.001).
The proportion of symptomatic patients was higher in the training set (477/551 [86.6%])
than in the validation set (1246/1731 [72%]) (p < 0.001). The proportion of patients with
elevated LDH was significantly higher in the validation set (449/551 [90.5%]) than in the
training set (603/1731 [42.8%]) (p < 0.001). The proportion of ICU admissions was higher
in the validation set (50/551 [9.1%]) than in the training set (74/1731 [4.3%]) (p < 0.001).
The detailed composition of the patient characteristics in each center is summarized in
Supplementary Table S1.

Table 1. Baseline characteristics of patients from all centers.

Characteristics Overall
(N = 2282)

Development
(N = 1731)

Validation
(N = 551) p Value

Age (years) 52.8 ± 19.8 53.5 ± 20.4 50.6 ± 17.9 0.003
Sex 0.001

Male 1193 (52.3) 872 (50.4) 321 (58.3)
Female 1089 (47.7) 859 (49.6) 230 (41.7)

Comorbidity
Any comorbidities 942 (41.3) 718 (41.5) 224 (40.7) 0.732

Hypertension 690 (30.2) 531 (30.7) 159 (28.9) 0.418
Diabetes 419 (18.4) 319 (18.4) 100 (18.1) 0.883

Cardiovascular disease 135 (5.9) 104 (6.0) 31 (5.6) 0.741
History of cancer 115 (5) 81 (4.7) 34 (6.2) 0.163

Symptoms
Any symptoms 1723 (75.5) 1246 (72.0) 477 (86.6) <0.001

Fever 919 (40.3) 634 (36.6) 285 (51.7) <0.001
Cough 995 (43.6) 699 (40.4) 296 (53.7) <0.001

Sputum 653 (28.6) 435 (25.1) 218 (39.6) <0.001
Dyspnea 404 (17.7) 276 (15.9) 128 (23.2) <0.001
Myalgia 550 (24.1) 344 (19.9) 206 (37.4) <0.001

Sore throat 396 (17.4) 264 (15.3) 132 (24.0) <0.001
Initial laboratory findings

Lymphocyte count < 1000/µL * 615 (29.7) 459 (30.1) 156 (28.6) 0.503
Platelet count < 150,000/µL * 388 (18.7) 284 (18.6) 104 (19.0) 0.826

LDH > 300 U/L * 1052 (55.2) 603 (42.8) 449 (90.5) <0.001
CRP > 50 mg/L * 471 (23.1) 345 (22.9) 126 (23.5) 0.783
Clinical outcomes

O2 supplementation 408 (17.9) 323 (18.7) 85 (15.4) 0.085
Mechanical ventilation 117 (5.1) 84 (4.9) 33 (6.0) 0.292

ECMO 32 (1.4) 21 (1.2) 11 (2.0) 0.173
ICU admission 124 (5.4) 74 (4.3) 50 (9.1) <0.001

In-hospital mortality 106 (4.6) 85 (4.9) 21 (3.8) 0.286
ECMO, extracorporeal membrane oxygenation; ICU, intensive care unit. Values in parentheses are percentages.
Values are presented as mean ± standard deviation, where applicable. * Lymphocytes, platelets, LDH and CRP
results were available for 2071, 2075, 1902 and 2041 patients, respectively.

4.2. Performance of Adverse Events Prediction Model

The prediction performances of the models for the three data types and the multimodal
model are shown in Table 2. The clinical finding-based model had an AUROC of 0.742
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(95% confidence interval [CI], 0.696–0.788) for predicting all adverse events. The laboratory
data-based model had an AUROC of 0.794 (0.745–0.843) for predicting all adverse events.
The CXR-based model had an AUROC of 0.770 (0.724–0.815) for predicting all adverse
events. The multimodal model that combined all three data had an AUROC of 0.854
(0.820–0.889) for predicting all adverse events, which was significantly higher than that
of each single-modal model (Figure 2) (all Ps < 0.001). The multimodal model showed
the best performance in all remaining events, except for predicting ECMO use, which had
the smallest number of patients (11 patients in five centers). The average AUROC of the
models predicting all adverse events was higher in the order of CXR, laboratory data and
clinical data, but there was no significant difference.

Table 2. Predictive performance of the models in external validation.

Adverse Event Type
Area under the ROC Curve

Clinical Findings Laboratory Data CXR Combined

O2 supplementation 0.753
(0.703–0.802)

0.757
(0.708–0.806)

0.701
(0.648–0.754)

0.812
(0.772–0.852)

Mechanical ventilation 0.735
(0.646–0.825)

0.852
(0.780–0.923)

0.807
(0.726–0.888)

0.880
(0.810–0.950)

ECMO 0.664
(0.489–0.839)

0.794
(0.627–0.960)

0.650
(0.525–0.776)

0.745
(0.611–0.879)

ICU admission 0.708
(0.633–0.782)

0.711
(0.607–0.815)

0.784
(0.711–0.856)

0.838
(0.770–0.906)

In-hospital mortality 0.762
(0.655–0.869)

0.805
(0.700–0.910)

0.838
(0.757–0.919)

0.877
(0.792–0.962)

All adverse events 0.742
(0.696–0.788)

0.794
(0.745–0.843)

0.770
(0.724–0.815)

0.854
(0.820–0.889)

ROC, receiver operating characteristic; CXR, chest radiograph; ECMO, extracorporeal membrane oxygenation;
ICU, intensive care unit.
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Figure 2. (A) Average receiver operating characteristic (ROC) curves under conditions: unimodal
model using clinical data, chest X-ray, and laboratory data and multimodal model. (B) Area under
the ROC (AUROC) shows combined model has superior performance than others.

4.3. Feature Importance Analysis

Based on the multimodal model, the relative feature importance of the model learned
for all events is shown (Figure 3). The red, green and blue bars represent the clinical
data, the DLAD-10 outputs and laboratory findings, respectively. The CRP level was the



Sensors 2022, 22, 5007 7 of 12

most important predictor of O2 supplementation. In predicting mechanical ventilation,
the DLAD-10 outputs were selected as the top five important features. This pattern was
similar for predicting ECMO and in-hospital mortality. Consolidation was the most im-
portant feature for predicting ICU admission. In predicting all adverse events, a mix of
different modes of data was deemed important. The most important feature was CRP in
the laboratory data, followed by age, dyspnea in the clinical data and consolidation of the
DLAD-10 outputs.
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5. Discussion

In this study, we developed a multimodal-based predictive model by combining
AI-interpreted CXR outputs, clinical findings and laboratory data to predict adverse out-
comes in patients with COVID-19. As revealed in our study, (1) in the external validation
set, the performance of the AI-interpreted CXR-based predictive model had an AUROC
of 0.7 or higher for the prediction of major adverse events, which included O2 supple-
mentation, mechanical ventilation, ECMO, ICU admission and in-hospital mortality, and
(2) the multimodal prediction model using a combination of AI-interpreted CXR outputs,
clinical findings and laboratory data generally had better predictive performance for major
adverse events.

Combining clinical, laboratory and imaging findings is fundamentally how clinicians
derive differential diagnoses and proceed with an appropriate treatment [31]. Specific
clinical symptoms and signs of COVID-19, such as fever and sore throat, and CXR findings,
such as the pattern of consolidation, help clinicians to determine the likelihood of diagnosis,
required treatment and likely prognosis [32,33]. Therefore, the multimodal interpretation
of data is an important consideration when developing AI prediction tools. It was shown
in our study that the performance of the prediction model incrementally increased when
using imaging, clinical findings and laboratory data together, compared to when each
data modality was used alone. There has been previous work on the usage of multimodal
data in telehealthcare settings [34], but we have focused on the clinical information that is
routinely collected by the clinical team at medical institutions.
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We have developed and validated a COVID-19 prognosis and intervention prediction
model using a two-step multimodal approach based on clinical findings, laboratory data,
and AI-interpreted CXR features in a nationwide cohort enrolled from 13 centers. This is one
of the first studies to examine multicenter data split by each institution. Previous studies
have validated data split at the patient level, rather than at the institutional level. Each
center differs vastly in characteristics, such as patient demographics, treatment resources
available and imaging equipment vendors. By separating the training and validation
data from each center, we were able to show that our multimodal approach achieved
high performance and generalized well to data that are characteristically different from
the training dataset and have not been seen before. It has been shown that previous
imaging-based AI models for COVID-19 prognostication may be inadequate for real clinical
usage [35,36]. The major reason for this was the lack of external validation data. By
separating the training and validation datasets by each center, we are able to keep each
dataset independent from one another and maintain the sample representativeness.

There are several advantages of using a commercially available AI engine for image
feature extraction. The biggest benefit is that AI engine performance has been proven
via validations in multiple independent peer-reviewed studies [37–41]. The DLAD-10 has
previously shown to have good performance in detecting the 10 clinically well-defined and
important abnormalities, with AUROCS ranging 0.895–1.00 in CT-confirmed datasets [26].
Furthermore, the engine has shown good performance in COVID-19 patients [42–44]. The
performance of the DLAD-10 is high because it has been trained and validated on large
datasets, utilizing over three million images for pretraining and fine-tuning. The quantity
of the data is unparalleled compared with laboratory-created AI engines, which are often
used only for research purposes. Similar prognostication studies have used approximately
2000 CXR images for training, validation, and internal and external testing [28]. Finally,
commercially available products undergo rigorous review and validation before they are
approved for clinical use [45]. The model had both CE and KFDA markings for clinical use.

5.1. Benefits of Using a Feature Extractor (DLAD-10) with Clinically Defined Outputs

The outputs of the DLAD-10 are clinically important and have well-defined classifica-
tions. Using the classifications actively used by clinicians when making clinical decisions,
rather than incomprehensible AI interpretations of CXR in a numerical format, could enable
clinicians to heuristically understand and have confidence in the model’s prediction. As
an example, the DLAD-10 was trained on COVID-19 pneumonia data and the COVID-19
pneumonia-related changes were output as consolidation. This, together with pre-existing
medical knowledge about the presence of consolidation on the CXRs of patients with
COVID-19, helps clinicians understand why the correlation with consolidation output is
the strongest for both prognosis and treatment prediction [46]. Without understandable AI
model classifications of CXRs, clinicians are unable to understand how the model arrived
at the prediction. The ability to extract understandable and clinically meaningful features
from images could be an important consideration when making prediction models, to
increase the understandability of the model and improve acceptance in clinical use [47].

5.2. Benefits of Using the Two-Step Ensemble Approach with Imaging Extractor

The two-step ensemble model implemented in this study had several advantages. The
ensemble approach with an imaging feature extractor enables clinicians to have a good
understanding of how each variable, including imaging features, affects prognosis and
required treatments. This explainable AI allows clinicians to understand the manner in
which the prediction model behaves and the relative importance of each input.

Knowledge of the relative importance of each variable enables clinicians to be wary
of the appropriate treatments required, as well as the likely prognosis when a patient first
presents to them. This helps in planning treatment and managing resources ahead [6]. An
understandable model would allow such a thought process to occur, even without using
the prediction model every time the patient is seen. For instance, if an elderly patient
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presents with fever, cough and consolidation on CXR, clinicians will be able to think that
the patient is more likely to require an ECMO machine, twice as much as a patient with
similar symptoms and signs but with fibrosis on CXR.

Knowing the relative importance of variables can help to better understand the disease
process. This is important for emerging diseases such as COVID-19 or diseases that are
not fully understood. By looking at the impact of each clinical variable, clinicians can
form hypotheses and research questions, ultimately enabling understanding of the disease
pathology and appropriate treatments, using large amounts of data and machine learning.
In addition, the fact that we extracted medically well-known radiographical features from
a CXR allows clinicians to form a logical hypothesis regarding COVID-19 and investigate
further. For instance, it is now established that CXR consolidation can be unusually severe
in COVID-19, and this does not correlate well with the clinical presentation [46]. Using this
model earlier during the pandemic could have helped to discover this particular knowledge
sooner. The ensemble approach can be utilized in other prediction models, and its potential
use is not limited to COVID-19.

Finally, although predicting mortality has been explored in COVID-19-related studies,
this study is one of the first that aimed to predict the interventions required for treating se-
vere respiratory conditions, including ECMO, O2 supplementation and mechanical ventila-
tion. Knowing the required interventions and prognosis is crucial, as appropriate and early
interventions have been shown to be effective in improving COVID-19 prognosis [48,49].
Furthermore, ICU beds and ECMO are critical resources that are short in number, es-
pecially in developing countries. As seen in the oxygen shortage crisis during the pan-
demic, it is important to be able to predict the demand for each intervention based on the
patient’s presentation.

This study had several limitations. First, the training and validation datasets were
not completely balanced in terms of the predicted outcomes. However, this was because
the data split was performed by each center. We believe that our approach considers the
real world, where hospitals differ in the resources and equipment available. For instance,
not all hospitals have multiple ECMO machines available, which would have affected
the number of patients treated with ECMO. For more common interventions, such as O2
supplementation, the variation was less obvious. Second, we only used the initial CXR
at admission for each institution. In the future, it would be better to conduct an analysis
using serial CXRs taken during hospitalization. Third, we did not consider the sequential
or temporal relationship between clinical data and outcomes. In a future study, we could
focus on developing models that can predict the timeframe until a clinically relevant event
or intervention.

6. Conclusions

We utilized the commercially available DLAD-10 to extract the image features and
combined them with a variety of clinical data to help predict the prognosis and required
treatments. Our goal was to create a model that mimics the actual clinical thought process,
through which clinicians review the CXR, classify the findings, and combine this infor-
mation with other clinically relevant information to derive the necessary treatments and
the likely prognosis. This understandable AI approach may enable efficient and timely
treatment for patients and better resource management during the COVID-19 outbreak.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/xxx/s1. Table S1. Baseline characteristics of patients from each center.

Author Contributions: Conceptualization, J.H.L. and E.Y.K.; methodology, J.S.A. and J.E.L.; software,
J.H.L. and J.S.A.; validation, J.H.L. and J.E.L.; formal analysis, J.H.L., J.S.A. and J.E.L.; investigation,
E.Y.K. and M.J.C.; resources, M.J.C., Y.J.J., J.H.K., J.K.L., J.Y.K., J.E.L. and E.Y.K.; data curation, Y.J.K.;
writing—original draft preparation, J.H.L., J.S.A. and J.E.L.; writing—review and editing, E.Y.K.,
M.J.C. and Y.J.K.; Visualization, J.H.L. and J.S.A.; supervision, J.E.L. and E.Y.K. All authors have read
and agreed to the published version of the manuscript.

https://www.mdpi.com/xxx/s1
https://www.mdpi.com/xxx/s1


Sensors 2022, 22, 5007 10 of 12

Funding: This research was supported by a grant of the information and Communications Promotion
Fund (ICT promotion fund) through the National IT industry Promotion Agency (NIPA), funded by
the Ministry of Science and ICD (MSIT), Republic of Korea and by the Gachon University Gil Medical
Center (Grant number: FRD2021-11).

Institutional Review Board Statement: This retrospective study was approved by the Institutional
Review Board of our institution (GCIRB2021-312), which waived the requirement for informed
consent due to the retrospective nature of the data collection and the use of anonymized images.

Informed Consent Statement: Patient consent was waived owing to the retrospective nature of data
collection and the use of anonymized images.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We acknowledge the support and collaborative efforts of members of the Korean
imaging cohort of COVID-19 (KICC-19).

Conflicts of Interest: J.H.L. and J.S.A. are employees of Lunit Inc.; all other authors declare no conflict
of interest.

References
1. World Health Organization. Algorithm for COVID-19 Triage and Referral: Patient Triage and Referral for Resource-Limited Settings

during Community Transmission; WHO Regional Office for the Western Pacific: Manila, Philippines, 2020.
2. Lancet. India under COVID-19 lockdown. Lancet 2020, 395, 1315. [CrossRef]
3. Yuki, K.; Fujiogi, M.; Koutsogiannaki, S. COVID-19 pathophysiology: A review. Clin. Immunol 2020, 215, 108427. [CrossRef]

[PubMed]
4. Farrell, N.M.; Hayes, B.D.; Linden, J.A. Critical medication shortages further dwindling hospital resources during COVID-19. Am.

J. Emerg. Med. 2021, 40, 202–203. [CrossRef] [PubMed]
5. Sen-Crowe, B.; Sutherland, M.; McKenney, M.; Elkbuli, A. A Closer Look Into Global Hospital Beds Capacity and Resource

Shortages During the COVID-19 Pandemic. J. Surg. Res. 2021, 260, 56–63. [CrossRef] [PubMed]
6. Lerner, E.B.; Schwartz, R.B.; Coule, P.L.; Weinstein, E.; Cone, D.; Hunt, R.C.; Sasser, S.M.; Liu, J.M.; Nudell, N.; Wedmore, I.S.; et al.

Mass Casualty Triage: An Evaluation of the Data and Development of a Proposed National Guideline. Disaster Med. Public Health
Prep. 2008, 2, S25–S34. [CrossRef] [PubMed]

7. Schwab, P.; Schütte, A.D.; Dietz, B.; Bauer, S. Clinical Predictive Models for COVID-19: Systematic Study. J. Med. Internet Res.
2020, 22, e21439. [CrossRef] [PubMed]

8. Wynants, L.; Van Calster, B.; Collins, G.S.; Riley, R.D.; Heinze, G.; Schuit, E.; Bonten, M.M.J.; Dahly, D.L.; Damen, J.A.; Debray,
T.P.A.; et al. Prediction models for diagnosis and prognosis of COVID-19: Systematic review and critical appraisal. BMJ
2020, 369, m1328. [CrossRef]

9. Pan, P.; Li, Y.; Xiao, Y.; Han, B.; Su, L.; Su, M.; Li, Y.; Zhang, S.; Jiang, D.; Chen, X.; et al. Prognostic Assessment of COVID-19 in
the Intensive Care Unit by Machine Learning Methods: Model Development and Validation. J. Med. Internet Res. 2020, 22, e23128.
[CrossRef]

10. Knaus, W.A.; Wagner, D.P.; Draper, E.A.; Zimmerman, J.E.; Bergner, M.; Bastos, P.G.; Sirio, C.A.; Murphy, D.J.; Lotring, T.;
Damiano, A.; et al. The APACHE III prognostic system: Risk prediction of hospital mortality for critically III hospitalized adults.
Chest 1991, 100, 1619–1636. [CrossRef]

11. Monjur, O.; Bin Preo, R.; Bin Shams, A.; Raihan, M.S.; Fairoz, F. COVID-19 Prognosis and Mortality Risk Predictions from
Symptoms: A Cloud-Based Smartphone Application. BioMed 2021, 1, 11. [CrossRef]

12. Alkhodari, M.; Khandoker, A.H. Detection of COVID-19 in smartphone-based breathing recordings: A pre-screening deep
learning tool. PLoS ONE 2022, 17, e0262448. [CrossRef] [PubMed]

13. Rubin, G.D.; Ryerson, C.J.; Haramati, L.B.; Sverzellati, N.; Kanne, J.; Raoof, S.; Schluger, N.W.; Volpi, A.; Yim, J.-J.; Martin, I.B.K.;
et al. The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement
from the Fleischner Society. Radiology 2020, 296, 172–180. [CrossRef] [PubMed]

14. Wong, H.Y.F.; Lam, H.Y.S.; Fong, A.H.-T.; Leung, S.T.; Chin, T.W.-Y.; Lo, C.S.Y.; Lui, M.M.-S.; Lee, J.C.Y.; Chiu, K.W.-H.; Chung,
T.W.-H.; et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. Radiology 2020, 296,
E72–E78. [CrossRef] [PubMed]

15. Cozzi, A.; Schiaffino, S.; Arpaia, F.; Della Pepa, G.; Tritella, S.; Bertolotti, P.; Menicagli, L.; Monaco, C.G.; Carbonaro, L.A.; Spairani,
R.; et al. Chest x-ray in the COVID-19 pandemic: Radiologists’ real-world reader performance. Eur. J. Radiol. 2020, 132, 109272.
[CrossRef] [PubMed]

16. Murphy, K.; Smits, H.; Knoops, A.J.G.; Korst, M.B.J.M.; Samson, T.; Scholten, E.T.; Schalekamp, S.; Schaefer-Prokop, C.M.;
Philipsen, R.H.H.M.; Meijers, A.; et al. COVID-19 on Chest Radiographs: A Multireader Evaluation of an Artificial Intelligence
System. Radiology 2020, 296, E166–E172. [CrossRef]

http://doi.org/10.1016/S0140-6736(20)30938-7
http://doi.org/10.1016/j.clim.2020.108427
http://www.ncbi.nlm.nih.gov/pubmed/32325252
http://doi.org/10.1016/j.ajem.2020.05.059
http://www.ncbi.nlm.nih.gov/pubmed/32471781
http://doi.org/10.1016/j.jss.2020.11.062
http://www.ncbi.nlm.nih.gov/pubmed/33321393
http://doi.org/10.1097/DMP.0b013e318182194e
http://www.ncbi.nlm.nih.gov/pubmed/18769263
http://doi.org/10.2196/21439
http://www.ncbi.nlm.nih.gov/pubmed/32976111
http://doi.org/10.1136/bmj.m1328
http://doi.org/10.2196/23128
http://doi.org/10.1378/chest.100.6.1619
http://doi.org/10.3390/biomed1020011
http://doi.org/10.1371/journal.pone.0262448
http://www.ncbi.nlm.nih.gov/pubmed/35025945
http://doi.org/10.1148/radiol.2020201365
http://www.ncbi.nlm.nih.gov/pubmed/32255413
http://doi.org/10.1148/radiol.2020201160
http://www.ncbi.nlm.nih.gov/pubmed/32216717
http://doi.org/10.1016/j.ejrad.2020.109272
http://www.ncbi.nlm.nih.gov/pubmed/32971326
http://doi.org/10.1148/radiol.2020201874


Sensors 2022, 22, 5007 11 of 12

17. Barbieri, D.; Giuliani, E.; Del Prete, A.; Losi, A.; Villani, M.; Barbieri, A. How Artificial Intelligence and New Technologies Can
Help the Management of the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 7648. [CrossRef]

18. Jiao, Z.; Choi, J.W.; Halsey, K.; Tran, T.M.L.; Hsieh, B.; Wang, D.; Eweje, F.; Wang, R.; Chang, K.; Wu, J.; et al. Prognostication of
patients with COVID-19 using artificial intelligence based on chest x-rays and clinical data: A retrospective study. Lancet Digit.
Health 2021, 3, e286–e294. [CrossRef]

19. Toussie, D.; Voutsinas, N.; Finkelstein, M.; Cedillo, M.A.; Manna, S.; Maron, S.Z.; Jacobi, A.; Chung, M.; Bernheim, A.; Eber, C.;
et al. Clinical and Chest Radiography Features Determine Patient Outcomes in Young and Middle-aged Adults with COVID-19.
Radiology 2020, 297, E197–E206. [CrossRef]

20. Zargari Khuzani, A.; Heidari, M.; Shariati, S.A. COVID-Classifier: An automated machine learning model to assist in the diagnosis
of COVID-19 infection in chest X-ray images. Sci. Rep. 2021, 11, 9887. [CrossRef]

21. Gong, K.; Wu, D.; Arru, C.D.; Homayounieh, F.; Neumark, N.; Guan, J.; Buch, V.; Kim, K.; Bizzo, B.C.; Ren, H.; et al. A multi-center
study of COVID-19 patient prognosis using deep learning-based CT image analysis and electronic health records. Eur. J. Radiol.
2021, 139, 109583. [CrossRef]

22. Kim, H.W.; Capaccione, K.M.; Li, G.; Luk, L.; Widemon, R.S.; Rahman, O.; Beylergil, V.; Mitchell, R.; D’Souza, B.M.; Leb, J.S.;
et al. The role of initial chest X-ray in triaging patients with suspected COVID-19 during the pandemic. Emerg. Radiol. 2020, 27,
617–621. [CrossRef] [PubMed]

23. Chau, T.-N.; Lee, P.-O.; Choi, K.-W.; Lee, C.-M.; Ma, K.-F.; Tsang, T.-Y.; Tso, Y.-K.; Chiu, M.-C.; Tong, W.-L.; Yu, W.-C.; et al. Value
of initial chest radiographs for predicting clinical outcomes in patients with severe acute respiratory syndrome. Am. J. Med.
2004, 117, 249–254. [CrossRef] [PubMed]

24. Yoon, S.H.; Ham, S.-Y.; Da Nam, B.; Chae, K.J.; Lee, D.; Yoo, J.Y.; Bak, S.H.; Kim, J.Y.; Kim, K.B.; Jung, J.I.; et al. Establishment of a
Nationwide Korean Imaging Cohort of Coronavirus Disease 2019. J. Korean Med. Sci. 2020, 35, e413. [CrossRef] [PubMed]

25. Liu, H.; Chen, S.-M.; Cocea, M. Subclass-based semi-random data partitioning for improving sample representativeness. Inf. Sci.
2018, 478, 208–221. [CrossRef]

26. Nam, J.G.; Kim, M.; Park, J.; Hwang, E.J.; Lee, J.H.; Hong, J.H.; Goo, J.M.; Park, C.M. Development and validation of a deep
learning algorithm detecting 10 common abnormalities on chest radiographs. Eur. Respir. J. 2020, 57, 2003061. [CrossRef]

27. Ishwaran, H.; Lauer, M.S.; Blackstone, E.H.; Lu, M.; Kogalur, U.B. RandomForestSRC: Random Survival Forests Vignette. 2021.
Available online: http://randomforestsrc.org/articles/survival.html (accessed on 1 January 2022).

28. Han, H.; Guo, X.; Yu, H. Variable selection using mean decrease accuracy and mean decrease gini based on random forest. In
Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China,
26–28 August 2016.

29. DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating
characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [CrossRef]

30. Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source package for R and S+
to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [CrossRef]

31. Li, M.; Chapman, G.B. Medical Decision Making. In The Wiley Encyclopedia of Health Psychology; Wiley Online Library, 2020;
pp. 347–353.

32. Viner, R.M.; Ward, J.L.; Hudson, L.D.; Ashe, M.; Patel, S.V.; Hargreaves, D.; Whittaker, E. Systematic review of reviews of
symptoms and signs of COVID-19 in children and adolescents. Arch. Dis. Child 2020, 106, 802–807. [CrossRef]

33. Felsenstein, S.; Herbert, J.A.; McNamara, P.S.; Hedrich, C.M. COVID-19: Immunology and treatment options. Clin. Immunol.
2020, 215, 108448. [CrossRef]

34. Shams, A.B.; Raihan, M.M.S.; Khan, M.M.U.; Preo, R.B.; Monjur, O. Telehealthcare and COVID-19: A Noninvasive & Low Cost
Invasive, Scalable and Multimodal Real-Time Smartphone Application for Early Diagnosis of SARS-CoV-2 Infection. arXiv 2021,
arXiv:2109.07846.

35. Roberts, M.; Covnet, A.; Driggs, D.; Thorpe, M.; Gilbey, J.; Yeung, M.; Ursprung, S.; Aviles-Rivero, A.I.; Etmann, C.; McCague, C.;
et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest
radiographs and CT scans. Nat. Mach. Intell. 2021, 3, 199–217. [CrossRef]

36. López-Cabrera, J.D.; Orozco-Morales, R.; Portal-Díaz, J.A.; Lovelle-Enríquez, O.; Pérez-Díaz, M. Current limitations to identify
COVID-19 using artificial intelligence with chest x-ray imaging (part ii). The shortcut learning problem. Health Technol. 2021, 11,
1331–1345. [CrossRef] [PubMed]

37. Hwang, E.J.; Hong, J.H.; Lee, K.H.; Kim, J.I.; Nam, J.G.; Kim, D.S.; Choi, H.; Yoo, S.J.; Goo, J.M.; Park, C.M. Deep learning
algorithm for surveillance of pneumothorax after lung biopsy: A multicenter diagnostic cohort study. Eur. Radiol. 2020, 30,
3660–3671. [CrossRef] [PubMed]

38. Kim, E.Y.; Kim, Y.J.; Choi, W.J.; Lee, G.P.; Choi, Y.R.; Jin, K.N.; Cho, Y.J. Performance of a deep-learning algorithm for referable
thoracic abnormalities on chest radiographs: A multicenter study of a health screening cohort. PLoS ONE 2021, 16, e0246472.
[CrossRef]

39. Hwang, E.J.; Park, S.; Jin, K.-N.; Kim, J.I.; Choi, S.Y.; Lee, J.H.; Goo, J.M.; Aum, J.; Yim, J.-J.; Cohen, J.G.; et al. Development and
Validation of a Deep Learning–Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs. JAMA
Netw. Open 2019, 2, e191095. [CrossRef]

http://doi.org/10.3390/ijerph18147648
http://doi.org/10.1016/S2589-7500(21)00039-X
http://doi.org/10.1148/radiol.2020201754
http://doi.org/10.1038/s41598-021-88807-2
http://doi.org/10.1016/j.ejrad.2021.109583
http://doi.org/10.1007/s10140-020-01808-y
http://www.ncbi.nlm.nih.gov/pubmed/32572707
http://doi.org/10.1016/j.amjmed.2004.03.020
http://www.ncbi.nlm.nih.gov/pubmed/15308434
http://doi.org/10.3346/jkms.2020.35.e413
http://www.ncbi.nlm.nih.gov/pubmed/33258333
http://doi.org/10.1016/j.ins.2018.11.002
http://doi.org/10.1183/13993003.03061-2020
http://randomforestsrc.org/articles/survival.html
http://doi.org/10.2307/2531595
http://doi.org/10.1186/1471-2105-12-77
http://doi.org/10.1136/archdischild-2020-320972
http://doi.org/10.1016/j.clim.2020.108448
http://doi.org/10.1038/s42256-021-00307-0
http://doi.org/10.1007/s12553-021-00609-8
http://www.ncbi.nlm.nih.gov/pubmed/34660166
http://doi.org/10.1007/s00330-020-06771-3
http://www.ncbi.nlm.nih.gov/pubmed/32162001
http://doi.org/10.1371/journal.pone.0246472
http://doi.org/10.1001/jamanetworkopen.2019.1095


Sensors 2022, 22, 5007 12 of 12

40. Yoo, H.; Lee, S.H.; Arru, C.D.; Khera, R.D.; Singh, R.; Siebert, S.; Kim, D.; Lee, Y.; Park, J.H.; Eom, H.J.; et al. AI-based improvement
in lung cancer detection on chest radiographs: Results of a multi-reader study in NLST dataset. Eur. Radiol. 2021, 31, 9664–9674.
[CrossRef]

41. Lee, J.H.; Sun, H.Y.; Park, S.; Kim, H.; Hwang, E.J.; Goo, J.M.; Park, C.M. Performance of a Deep Learning Algorithm Compared
with Radiologic Interpretation for Lung Cancer Detection on Chest Radiographs in a Health Screening Population. Radiology
2020, 297, 687–696. [CrossRef]

42. Jang, S.B.; Lee, S.H.; Lee, D.E.; Park, S.-Y.; Kim, J.K.; Cho, J.W.; Cho, J.; Kim, K.B.; Park, B.; Park, J.; et al. Deep-learning algorithms
for the interpretation of chest radiographs to aid in the triage of COVID-19 patients: A multicenter retrospective study. PLoS ONE
2020, 15, e0242759. [CrossRef]

43. Hwang, E.J.; Kim, K.B.; Kim, J.Y.; Lim, J.-K.; Nam, J.G.; Choi, H.; Kim, H.; Yoon, S.H.; Goo, J.M.; Park, C.M. COVID-19 pneumonia
on chest X-rays: Performance of a deep learning-based computer-aided detection system. PLoS ONE 2021, 16, e0252440. [CrossRef]

44. Hwang, E.J.; Kim, H.; Yoon, S.H.; Goo, J.M.; Park, C.M. Implementation of a Deep Learning-Based Computer-Aided Detection
System for the Interpretation of Chest Radiographs in Patients Suspected for COVID-19. Korean J. Radiol. 2020, 21, 1150. [CrossRef]

45. Pesapane, F.; Volonté, C.; Codari, M.; Sardanelli, F. Artificial intelligence as a medical device in radiology: Ethical and regulatory
issues in Europe and the United States. Insights Imaging 2018, 9, 745–753. [CrossRef] [PubMed]

46. Rousan, L.A.; Elobeid, E.; Karrar, M.; Khader, Y. Chest x-ray findings and temporal lung changes in patients with COVID-19
pneumonia. BMC Pulm. Med. 2020, 20, 245. [CrossRef] [PubMed]

47. Schneider, J.; Agus, M. Reflections on the clinical acceptance of artificial intelligence. In Multiple Perspectives on Artificial Intelligence
in Healthcare; Springer: Berlin/Heidelberg, Germany, 2021; pp. 103–114.

48. Sun, Q.; Qiu, H.; Huang, M.; Yang, Y. Lower mortality of COVID-19 by early recognition and intervention: Experience from
Jiangsu Province. Ann. Intensiv. Care 2020, 10, 33. [CrossRef]

49. Goyal, D.K.; Mansab, F.; Iqbal, A.; Bhatti, S. Early intervention likely improves mortality in COVID-19 infection. Clin. Med.
2020, 20, 248–250. [CrossRef] [PubMed]

http://doi.org/10.1007/s00330-021-08074-7
http://doi.org/10.1148/radiol.2020201240
http://doi.org/10.1371/journal.pone.0242759
http://doi.org/10.1371/journal.pone.0252440
http://doi.org/10.3348/kjr.2020.0536
http://doi.org/10.1007/s13244-018-0645-y
http://www.ncbi.nlm.nih.gov/pubmed/30112675
http://doi.org/10.1186/s12890-020-01286-5
http://www.ncbi.nlm.nih.gov/pubmed/32933519
http://doi.org/10.1186/s13613-020-00650-2
http://doi.org/10.7861/clinmed.2020-0214
http://www.ncbi.nlm.nih.gov/pubmed/32357975

	Introduction 
	Related Works 
	Materials and Methods 
	Study Population 
	Data Collection and Study Definition 
	Dataset Partitioning for Multicenter Validation 
	Image Feature Extraction from CXR 
	Prognosis Prediction Model Development 
	Statistical Analysis 

	Results 
	Patient Characteristics 
	Performance of Adverse Events Prediction Model 
	Feature Importance Analysis 

	Discussion 
	Benefits of Using a Feature Extractor (DLAD-10) with Clinically Defined Outputs 
	Benefits of Using the Two-Step Ensemble Approach with Imaging Extractor 

	Conclusions 
	References

