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Background: Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignant tumors 
worldwide, and a larger number of ESCC patients have unsatisfactory overall survival (OS) rates. While 
pyroptosis participates in the development of a variety of malignancies, the function of pyroptosis-related 
genes (PRGs) in ESCC is still obscure. The aim of this study was to construct the pyroptosis-related 
prognostic model for ESCC, which will be developed to stratify the risk hazards of ESCC patients and to 
provide theoretical evidence for individualized treatment.
Methods: RNA-seq data of ESCC were download from the NCBI Gene Expression Omnibus (GEO) 
database. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis 
were used to explore the potential biological functions or pathways. OS was considered as the primary 
prognosis outcome in this study. The riskscore was constructed by Least Absolute Shrinkage and Selection 
Operator (LASSO) Cox regression analysis. The pyroptosis-related prognostic model was constructed based 
on all independent prognostic factors and verified by C-index, Receiver operating characteristic (ROC) 
curves, and Calibration curves, and the role of the riskscore in ESCC immunotherapy was evaluated by the 
Tumor Immune Dysfunction and Exclusion (TIDE) algorithm.
Results: The current study found 31 differentially expressed PRGs (P<0.001), and functional enrichment 
analysis showed these PRGs were enriched in positive regulation of cytokine production, interleukin-1 beta 
production. Univariate and multivariate Cox regression analysis were applied to validate that the riskscore 
based on four prognostic PRGs (HMGB1, IL-18, NLRP7, and PLCG1) was an independent prognostic 
factor for ESCC, and the C-index of prognostic model related to the riskscore (C-index =0.705) was higher 
than that of tumor node metastasis (TNM) stage (0.620). The low-risk group showed a better efficacy of 
immune checkpoint inhibitors.
Conclusions: The riskscore related to PRGs was one of the independent prognostic factors for ESCC. 
Moreover, the prognostic model related to the riskscore could be used to predict the OS of ESCC patients 
effectively. However, there still were several limitations in this study, such as no external validation sample. In 
summary, our data provides a novel perspective in exploring the potential prognostic biomarkers of ESCC.

Keywords: Pyroptosis; prognostic model; esophageal squamous cell carcinoma (ESCC); bioinformatics

2969

https://crossmark.crossref.org/dialog/?doi=10.21037/jtd-22-948


Zhang et al. A prognostic model related to pyroptosis for ESCC2954

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2022;14(8):2953-2969 | https://dx.doi.org/10.21037/jtd-22-948

Introduction

Esophageal cancer (EC) is the 7th most prevalent malignant 
neoplasm and 6th leading cause of cancer-related death 
worldwide (1). Pathological types of EC are classified as 
esophageal squamous cell carcinoma (ESCC) and esophageal 
adenocarcinoma (EAC), of which ESCC accounts for 
90% of all cases of EC and mostly occurs in the Eastern 
Asian and Eastern and Southern African regions (2,3). The 
etiology of ESCC is incompletely understood, and may 
include genetic factors (e.g., mutation), environmental 
factors (e.g., alcohol and tobacco), viral factors [e.g., 
papillomavirus (HPV) infection], or the coexistence of 
these factors (4). When the esophageal mucosa is exposed 
to repeated damage from mechanical injury or carcinogens, 
abnormal epithelium cell proliferation occurs, and the 
abnormal cell will eventually develop into invasive cancer. 
Owing to the large population and high incidence of 
ESCC, the number of cases in China makes up more than 
half of those worldwide (5). Although patients with ESCC 
are treated according to current standard guidelines, some 
with locally advanced ESCC have a unsatisfactory overall 
survival (OS) (6), with the global 5-year OS rate around 
15–25% (1,7). Current treatment options for ESCC 
generally depend on its stage (8-10), with endoscopic 
resection for mucosal lesions versus esophagectomy for 
submucosal lesions the primary treatment option for early 
disease. Extensive studies have recorded that neoadjuvant 
therapy combined surgery is beneficial in improving the 
prognosis of locally advanced ESCC (11). Over the past 
years, technology advancements have comprehensively 
characterized the genomic landscape in ESCC, and targeted 
therapy has attracted increased attention (12). To the 
best of our knowledge, pembrolizumab, ramucirumab, 
and trastuzumab have been approved by the U.S. Food 
and Drug Administration (FDA) for the treatment of the 
advanced EC (13). Despite this, a minority of targeted 
therapies have prognostic and therapeutic implications for 
patients with ESCC, and the development of biomarkers 
and therapeutic targets is required.

Pyroptosis is triggered by caspase-1/4/5/11 and is one type 
of lytic programmed cell death (14). Differences between 
pyroptosis and apoptosis in morphology were observed by 

Zychlinsky et al. in 1992 (15), and Cookson et al. created 
the term “pyroptosis” after observing macrophages infected 
with bacteria in 2001 (16). Pyroptosis can cause cell swelling, 
plasma membrane lysis, and chromatin fragmentation, which 
lead to osmotic swelling and cell death (17). Moreover, 
it can cause the release of intracellular pro-inflammatory 
factors, including IL-18 and IL-1β, into the extracellular 
space (18). Pyroptosis shows several similar features to 
apoptosis, including DNA damage, nuclear pyknosis, 
and TUNEL-positive staining, but with several unique 
characteristics (19,20). The mechanism of pyroptosis can be 
summarized into the following three pathways: the canonical 
inflammasome pathway, the non-canonical inflammasome 
pathway, and the caspase-3-dependent pyroptotic pathway 
(21,22). Triggered caspase 1/4/5/11/3 lead to gasdermin 
D (GSDMD) cleavage into the gasdermin-C domain and 
gasdermin-D domain, and the gasdermin-D domain then 
combines with the acidic phospholipids of the membrane 
to form oligomeric death-inducing pores, called gasdermin 
pores (23-26). This type of pore in membrane leads to 
cell swelling, rupture of the membrane, and eventual 
cell death (27). Pyroptosis is considered a general innate 
immune response (18). It can defend against intracellular 
infection, lead to the death of intracellular bacteria through 
pore-induced intracellular traps (28,29), and eliminate 
the pathogen protective niche (27). Pyroptosis is also 
significantly linked to the tumorigenesis and development of 
various cancers. The NLR family pyrin domain containing 3 
(NLRP3), one pyroptosis-related molecule, was significantly 
down-regulated in hepatocellular carcinoma (HCC) tissue 
and associated with prognosis of HCC patients (30). 
According to a published report, the inhibition of caspase-1 
interfered with the anticancer activity of euxanthone in 
HCC cells (31). Dihlmann et al. have demonstrated that a 
low expression of the interferon-inducible protein AIM2 was 
found in colorectal cancer (CRC) cells, and the mortality 
of patients with low AIM2 expression levels was higher 
than patients with normal levels (32). A study has shown 
docosahexaenoic acid (DHA) promoted the activation of 
caspase-1 and gasdermin D in breast cancer cells, suggesting 
it induces pyroptosis, and the anti-cancer effect of DHA in 
breast cancer was associated with it (33). 

Pyroptosis-related molecules have also been confirmed as 
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potential biomarkers in various kinds of human malignant 
neoplasms, including cervical cancer, ovarian carcinoma 
(OC), non-small cell lung cancer (NSCLC), and gastric 
cancer (GC) (34-37). Ye et al. developed a prognostic model 
related to pyroptosis for OC for the first time, which 
demonstrated good OS prediction (38), and while a LUAD 
prognostic model constructed using five pyroptosis-related 
genes (PRGs) was able to predict the OS of LUAD patients 
with moderate to high accuracy (39). To date, several 
prognostic biomarkers and associated prognostic model 
have been suggested in ESCC. A prognostic model based on 
six N6-methyladenosine (m6A) RNA methylation regulator 
(METTL3, WTAP, IGF2BP3, YTHDF1, HNRNPA2B1 and 
HNRNPC) was able to predict the OS of ESCC patients (40). 
Yao et al. developed a prognostic model of ESCC associated 
with 10 M2 macrophage genes, which also had good 
predictive power for OS (41). However, there were several 
limitations for these studies. These prognostic models need 
to be further validated in several large cohorts and multi-
center clinical trials. In addition, further experiments are 
needed to elucidate the potential mechanisms of these 
associated genes in the progression of ESCC.

To the best of our knowledge, no prognostic model 
related to ESCC has been developed. Herein, we 
performed a bioinformatics analysis to identify the four 
prognostic PRGs in ESCC. The riskscore based on the 
PRGs was constructed and validated in a validation set, 
and the prognostic model related to the riskscore was also 
constructed and validated. Finally, we explored the potential 

role of the riskscore in guiding the immunotherapy of 
ESCC patients. Our data provided a novel prognostic 
model that can be used to stratify the risk hazards of 
patients with ESCC, and to offer theoretical evidence for 
individualized therapy of ESCC patients. We present the 
following article in accordance with the TRIPOD reporting 
checklist (available at https://jtd.amegroups.com/article/
view/10.21037/jtd-22-948/rc). 

Methods

Research design

All analyses performed are shown in Figure 1. Firstly, we 
selected expression profiles data of PRGs and performed 
differential analysis to obtain differential PRGs. Gene 
Ontology (GO)-terms Semantic Similarity Measures 
(GSSM), GO, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses and protein-protein interaction (PPI) 
network construction were performed based on differential 
PRGs. Next, we obtained the training set and the validation 
set after randomly grouping the ESCC cases. In the training 
set, we found four prognostic PRGs by cox regression analysis 
and constructed the riskscore based on the four prognostic 
PRGs via Least Absolute Shrinkage and Selection Operator 
(LASSO) cox regression analysis. Subsequently, the riskscore 
was validated in the validation set, and the nomogram was 
established based on the riskscore and other independent 
prognostic factors. Lastly, the correlation between riskscore 

Acquisition of RNA-seq expression profile and 
clinical data (From GSE53625)

The differential  analysis

Riskscore= (0.4714) × HMGB1 + (−0.1881) × IL-18 + (−0.0886) × NLRP7 + (0.2458) × PLCG1

 Randomization

Training set
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GSSM

Evaluation and 
validation of Riskscore

Construction and 
validation of nomogram 

Independent 
prognostic analysis

Identification of the 
role of immunotherapy
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4 prognostic PRGs
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Figure 1 Flow diagram of all data analysis process in this study. GSSM, GO-terms Semantic Similarity Measures; GO, Gene Ontology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction; LASSO, Least Absolute Shrinkage and Selection Operator.
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and the response to immunotherapy was explored via Tumor 
Immune Dysfunction and Exclusion (TIDE) algorithm. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Acquisition and processing of gene expression profile and 
clinical data

Expression profiles of mRNAs of 179 ESCC patients 
and matched clinical information were downloaded from 
the NCBI Gene Expression Omnibus (GEO) database 
(GSE53625) for differential expression and survival analysis. 
The clinical data, including eleven clinical variables, is 
shown in website: https://cdn.amegroups.cn/static/public/
jtd-22-948-01.xlsx. The baseline characteristics of patients 
with ESCC in the GSE53625 was generated using the 
“tableone” R package, and the RNA-seq dataset was 
normalized via log2 conversion before further exploration. 

Identification of differentially expressed PRGs in ESCC

The PRGs, including fifty-two genes, were obtained from 
previous studies and the Molecular Signatures Database 
(MSigDB database, https://www.gsea-msigdb.org/gsea/
msigdb/index.jsp), and are listed in Table S1 (27,42-46).  
The PRGs-expression profiling data were extracted 
from the GSE53625 dataset, which is shown in website: 
https://cdn.amegroups.cn/static/public/jtd-22-948-02.
xlsx. The “limma” and “reshape2” R packages were used 
to identify differentially expressed PRGs in ESCC tissues 
in comparison to the normal tissues, and the PPI network 
was established by STRING database (https://string-db.
org/). The correlation network between the differentially 
expressed genes (DEGs) was built using the “igraph” R 
package and was visualized by the “reshape2” R package. 

Functional enrichment analysis 

GO analysis and KEGG analysis were used to explore the 
potential biological functions or pathways of DEGs. GO 
analysis of DEGs, including cellular component (CC) 
biological process (BP), and molecular function (MF) 
categories, was performed by the “clusterProfiler”, “org.
Hs.eg.db” and “enrichplot” R packages. KEGG analysis of 
DEGs was conducted using the same R package, and the 
top 30 pathways or biological function were visualized using 
the “ggplot2” package.

GSSM analysis

According to a previous study, GSSM analysis by 
“GOSemSim” R package is a quantitative way to calculate 
the similarities between gene groups, including semantic 
similarity of GO terms (47). Therefore, the semantic 
similarity of GO terms between DEGs was measured using 
this package. The score of GO semantic similarity can be 
considered as functional similarity between genes.

Construction of the PRG prognostic model

The outcome of interest in this study was OS of ESCC. 
To construct an ESCC prognostic model related to PRGs, 
the GSE53625 dataset was split randomly into a training 
set and validation set via the “caret” R package, and the 
group allocation was performed in a 1:1 ratio (Table S2). 
Cox regression analysis was used to identify the prognostic 
PRGs in ESCC, and results were visualized by forest plots 
plotted via the “forestplot” R package. Survival analysis 
was performed via the “survival” R package, and Kaplan-
Meier survival curves were established using the “survminer” 
R package. Log-rank tests were performed to obtain the 
P value of the Kaplan-Meier survival curves. LASSO-
Cox regression analysis was then performed to construct a 
riskscore based on the prognostic PRGs, with the riskscore 
= (0.4714) × HMGB1 + (−0.1881) × IL-18 + (−0.0886) × 
NLRP7 + (0.2458) × PLCG1. The all patients with ESCC 
in the GSE53625 dataset were distributed into a high-risk 
group and low-risk group by the median of the riskscore, 
and the OS prediction ability of the riskscore was assessed 
via the Kaplan-Meier curves and the risk curves. When we 
identified riskscore as an independent prognostic factor, 
nine other clinical variables were included for analysis, 
including age, gender, tobacco use, alcohol use, tumor 
location, grade, tumor node metastasis (TNM) stage, 
anastomotic leak, pneumonia. To construct the prognostic 
model, all independent prognostic factors, including the 
riskscore, were used to construct the nomogram using 
a multivariable regression model, and for assessing the 
accuracy of the nomogram, the C-index, Receiver operating 
characteristic (ROC) curves, and Calibration curves were 
used. The model has no predictive power when the C-index 
is equal to 0.5, low accuracy when the C-index is 0.51–0.70, 
moderate accuracy when the C-index is 0.71–0.90, and 
high accuracy when the C-index is greater than 0.90 (48). 
The C-index of the nomogram and that of the TNM stage 

https://cdn.amegroups.cn/static/public/jtd-22-948-01.xlsx
https://cdn.amegroups.cn/static/public/jtd-22-948-01.xlsx
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://cdn.amegroups.cn/static/public/JTD-22-948-Supplementary.pdf
https://cdn.amegroups.cn/static/public/jtd-22-948-02.xlsx
https://cdn.amegroups.cn/static/public/jtd-22-948-02.xlsx
https://string-db.org/
https://string-db.org/
https://cdn.amegroups.cn/static/public/JTD-22-948-Supplementary.pdf
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were compared to evaluate the accuracy of the nomogram 
further. All results of training set were verified by the 
validation set or all set. 

Exploration of the role of the riskscore in ESCC 
immunotherapy 

The TIDE algorithm (http://tide.dfci.harvard.edu), 
developed by Jiang et al., is based on integration and modelling 
of data from 189 human cancer research studies and can be 
used to evaluate the clinical response to immunotherapy (49). 
In the present study, the TIDE algorithm was utilized to 
assess the efficacy of immunotherapy in each ESCC patient. 
Subsequently, the Wilcoxon test was applied to evaluate 
the relationship between the riskscore and the efficacy of 
immunotherapy. A P value of less than 0.05 indicated the 
difference was significant.

Immune infiltration analysis

The activity or infiltration levels of 19 immunocytes or 
immune-related function was calculated by the single-
sample gene set enrichment analysis (ssGSEA), which was 
run in the “GSEABase” and “GSVA” R packages (50). The 
correlation between the riskscore and the infiltration levels 
of the different immune cells or functions was analyzed 
via the Wilcoxon test. All results above were considered as 
significance if the P value were less than 0.05.

Statistical analysis

The R software (version 4.1.0) and various R packages were 
used for conducting the data analysis and visualizing the data. 
Statistical significance for all analyses was defined by P<0.05.

Results

Identification of the differentially expressed genes in ESCC

The transcriptome dataset of ESCC was obtained from 
the GEO databse (GSE53625), which consists of 179 
ESCC samples and 179 normal samples. As shown in 
Figure 2A, the RNA-level expression of 52 PRGs in ESCC 
tissue and normal tissue were identified. We identified the 
differentially expressed PRGs via the differential expression 
analysis between ESCC samples and normal samples, and 
the results show there were 31 DEGs in ESCC (FDR 
<0.001) (Figure 2B). Of these, 16 DEGs were up-regulated 

in ESCC tissues, and the remainder were down-regulated.

Functional enrichment analysis and the exploration of 
semantic similarity 

To predict the CC, BP, and MF, GO enrichment analysis 
was performed, and the results showed the pyroptosis 
DEGs were enriched in positive regulation of cytokine 
production, interleukin-1 beta production, pyroptosis, 
inflammasome complex, inflammasome complex, late 
endosome, phospholipid binding, and cytokine receptor 
binding (Figure 3A). In addition, KEGG analysis suggested 
DEGs were primarily involved in the NOD−like receptor 
signaling pathway and necroptosis (Figure 3B).

To explore the semantic similarity of GO terms among 
the differentially expressed PRGs, the “GOSemSim” 
R package was used. The results suggested PYCARD, 
AIM2, CASP4, NOD1, and BAK1 had a higher semantic 
similarity of GO terms, which meant these genes had more 
interactions with other genes on the pathway and were 
more likely to be hub genes (Figure 3C). PPI network results 
of the DEGs are shown in Figure 3D, and the co-expression 
network of the DEGs is clearly documented in Figure S1. 

Construction of a riskscore based on prognostic PRGs

The GSE53625 dataset was split randomly into a training 
set and validation set, and the characteristics of patients 
with ESCC in the two sets is shown in Table 1. To 
determine the PRGs with an impact on the prognosis of 
ESCC, Cox regression analysis was applied in the training 
set, and the result showed the expression levels of the four 
PRGs respectively had significant relations to the OS of 
ESCC patients (Figure 4A). Kaplan-Meier survival curves 
suggested the expression of HMGB1 (Figure 4B, P=0.013) 
and PLCG1 (Figure 4C, P=0.00069) were associated with 
poorer prognosis, and the expression of IL-18 (Figure 4D 
P=0.045) and NLRP7 (Figure 4E, P=0.0045) were associated 
with a better prognosis. The riskscore based on the four 
prognostic PRGs mentioned above was constructed through 
the LASSO-Cox regression analysis (Figure 5A,5B), with 
the riskscore = (0.4714) × HMGB1 + (−0.1881) × IL-18 + 
(−0.0886) × NLRP7 + (0.2458) × PLCG1. The training set 
was classified into a low-risk group and a high-risk group 
according to the median of the riskscore, and the survival 
analysis of the training set indicated the OS of the former 
was worse than that of the latter (Figure 5C, P<0.001). 
Similarly, the Kaplan-Meier survival curves of the validation 

http://tide.dfci.harvard.edu
https://cdn.amegroups.cn/static/public/JTD-22-948-Supplementary.pdf
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set showed the low-risk group had a better OS (Figure 5D, 
P=0.03). In addition, patients from the training set were 
ordered (from left to right) according to the increasing 
riskscore, and the results showed the mortality risk increased 
and survival time decreased with the increase (Figure 5E). In 
the validation set, the trends of the distribution of survival 
states and survival time of patients were consistent with the 

trends in the training set, and the increase of deaths and 
decrease of survival time were significantly associated with 
the increased riskscore (Figure 5F). The results of principal 
component analysis (PCA) indicated ESCC patients could 
be significantly distinguished into high-risk and low-risk 
groups by the riskscore based upon the four prognostic 
PRGs (Figure 5G,5H).
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Construction of a prognostic model related to the prognostic 
PRGs

We extracted total relevant clinical information from the 
GEO database (GSE53625). Subsequently, univariate 
(Figure 6A) and multivariate (Figure 6B) Cox regression 
analysis were applied in the training set, and the results 
showed the riskscore (P<0.05), TNM stage (P<0.05), and 
grade (P<0.05) were independent prognostic factors. At 
the same time, the riskscore, TNM stage, and grade in the 
training set were used to construct the nomogram for OS 

prediction (Figure 6C). The time-dependent ROC curves 
indicated the nomogram based on the three independent 
prognostic factors had excellent accuracy for the prognostic 
prediction of ESCC, as the Area under the ROC Curve 
(AUC) were 0.715, 0.820, and 0.728 for 1-, 3-, and 5-year 
(Figure 6D). With the aim of assessing the Calibration of 
the nomogram, Calibration curves predicting 1-, 3-, and 
5-year OS were generated, and the results showed the actual 
OS rates were close to the nomogram-predicted OS rates  
(Figure 6E) ,  while the C-index for the nomogram 
(0.705) was better than that for the TNM stage (0.620)  
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(Figure 6F). In the all set (Figure 7A,7B) and the validation 
set (Figure 7C,7D), the independent prognostic factors 
were also identified, and the results showed the riskscore 
(P<0.05), TNM stage (P<0.05), and age (P<0.05) were 
independent prognostic factors. The nomogram based on 
independent prognostic factors was also constructed in 
the all set and is shown in Figure S2A. The AUSs of the 
nomogram for predicting 1-, 3-, and 5-year OS in the all 
set were 0.701, 0.752, and 0.675, respectively (Figure 7E), 
and the Calibration curves for this nomogram also indicated 
the nomogram had a good prediction ability for OS rates  
(Figure 7F). In terms of the C-index, the nomogram 
(C-index =0.676) was also higher than the TNM stage 
(C-index =0.596) (Figure 7G). The nomogram of the 
validation set was also constructed (Figure S2B) and the 
time-dependent ROC curves analysis evaluated its accuracy. 
The nomogram of the validation set was verified by the 
ROC curves (Figure 7H), Calibration curves (Figure 7I), and 
C-index (Figure 7J) and the results demonstrated the ability 
to predict the OS of ESCC patients was better than the 
TNM stage. In conclusion, the data above demonstrated 
the prognostic model related to PRGs had a satisfactory 
performance for predicting OS of ESCC. 

Role of the riskscore based on the PRGs in tumor 
immunotherapy

Pyroptosis is closely correlated with immunity, and the 
riskscore is based on the PRGs. Hence, we speculated the 

Table 1 Baseline characteristics of patients with ESCC in the 
GSE53625

Characteristics
All set 

(N=179)
Training set 

(N=90)
Validation set 

(N=89)

Status, n (%)

Alive 73 (40.8) 34 (37.8) 39 (43.8)

Death 106 (59.2) 56 (62.2) 50 (56.2)

Age (years), n (%) 

≤65 130 (72.6) 69 (76.7) 61 (68.5)

>65 49 (27.4) 21 (23.3) 28 (31.5)

Gender, n (%)

Female 33 (18.4) 15 (16.7) 18 (20.2)

Male 146 (81.6) 75 (83.3) 71 (79.8)

Tumor location, n (%)

Upper 20 (11.2) 13 (14.4) 7 (7.9)

Middle 97 (54.2) 43 (47.8) 54 (60.7)

Lower 62 (34.6) 34 (37.8) 28 (31.5)

Grade, n (%)

I 32 (17.9) 16 (17.8) 16 (18.0)

II 98 (54.7) 52 (57.8) 46 (51.7)

III 49 (27.4) 22 (24.4) 27 (30.3)

TNM stage, n (%)

I 10 (5.6) 5 (5.6) 5 (5.6)

II 77 (43.0) 41 (45.6) 36 (40.4)

III 92 (51.4) 44 (48.9) 48 (53.9)

T, n (%)

T1 12 (6.7) 7 (7.8) 5 (5.6)

T2 27 (15.1) 14 (15.6) 13 (14.6)

T3 110 (61.5) 56 (62.2) 54 (60.7)

T4 30 (16.8) 13 (14.4) 17 (19.1)

N, n (%)

N0 83 (46.4) 42 (46.7) 41 (46.1)

N1 62 (34.6) 34 (37.8) 28 (31.5)

N2 22 (12.3) 8 (8.9) 14 (15.7)

N3 12 (6.7) 6 (6.7) 6 (6.7)

Anastomotic leak, n (%)

Yes 12 (6.7) 3 (3.3) 9 (10.1)

No 167 (93.3) 87 (96.7) 80 (89.9)

Table 1 (continued)

Table 1 (continued)

Characteristics
All set 

(N=179)
Training set 

(N=90)
Validation set 

(N=89)

Pneumonia, n (%)

Yes 15 (8.4) 4 (4.4) 11 (12.4)

No 164 (91.6) 86 (95.6) 78 (87.6)

Tobacco use, n (%)

Yes 114 (63.7) 60 (66.7) 54 (60.7)

No 65 (36.3) 30 (33.3) 35 (39.3)

Alcohol use, n (%)

Yes 106 (59.2) 54 (60.0) 52 (58.4)

No 73 (40.8) 36 (40.0) 37 (41.6)

ESCC, esophageal squamous cell carcinoma; TNM, tumor node 
metastasis.
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riskscore might be associated with tumor immunotherapy, 
and the re lat ionships  between the express ion of 
immunotherapy-related mRNAs (PD-L1, CD23, CTLA4, 
IDO1, IFNG, IL-2, LAG3) and the riskscore were explored. 
The findings showed PD-L1 (Figure 8A, P=0.000046) and 
IL-2 (Figure 8B, P=0.0019) expression levels in the low-
risk group were higher than in the high-risk group, and 
the high-risk group had a higher expression level of CD23 
(Figure 8C, P=0.0023). In addition, the TIDE score was 
calculated using the TIDE web tool and patients were 
divided into two groups by its median. Patients with low 
TIDE scores showed better OS (Figure 8D, P=0.021). As 
described for Figure 8E, the high-risk group had a higher 
TIDE score, which meant that the effect of immunotherapy 
was significantly related with the riskscore, and the 
low-risk group had a better efficacy of immunotherapy 
(P=0.00034). In addition, patients in the high-risk group 

were more likely to experience immune evasion (Figure S3,  
P<0.001). Furthermore, the relationship between the 
riskscore and immune cells and function were analyzed 
using the ssGSEA R package, and the findings suggested 
significant differences were found in 10 kinds of immune 
cells, including Regulatory T Cells (Treg), tumor-
infiltrating lymphocyte (TIL), T helper 2 cells (Th2 cells), 
T helper 1 cells (Th1 cells), T helper cells, Neutrophils, 
Neutrophils, Mast cells, Macrophages, Dendritic cells 
(DCs), and B lymphocytes (B cells), between the high-risk 
group and low-risk group (Figure 8F, P<0.05). Moreover, 
the scores of the immune functions in the low-risk group, 
including Antigen-presenting cell (APC)_co_inhibition, CC 
chemokine receptor (CCR), Parainflammation, and Type_
II_interferons (IFN)_reponse, were higher than those in the 
high-risk group. Therefore, those immune functions played 
a greater role in low-risk group.
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Discussion

Pyroptosis is a form of programmed cell death different from 
apoptosis, and is regulated by inflammasome and involved 
in tumorigenesis and progression of various malignancies 
(51,52). Accumulating evidence suggests pyroptosis has a 
dual effect on tumor growth and progression. It can promote 
tumor progression by releasing inflammatory cytokines 
and contributing to inflammation (53), and has the ability 
to inhibit tumorigenesis and tumor development caused 
by triggering tumor cell death (54). It has previously been 

suggested that a high expression level of Gasdermin B has 
a significant relation with the lower survival and increased 
metastasis in patients with breast cancer (55). NALP1 
inflammasome has been proven to be a prognostic marker 
related to pyroptosis (56). However, to date there are no 
reports on prognostic signatures related to pyroptosis in 
ESCC, which was the objective of this study.

The first objective of this study was to determine the 
differentially expressed genes among PRGs in ESCC, and 
the results showed over half of all PRGs were DEGs in 
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Figure 6 Construction of a prognostic model related to prognostic PRGs in the training set. Univariate (A) and multivariate (B) Cox 
regression analyses of OS according to the riskscore and clinical factors. (C) The nomogram related to the riskscore for predicting the 1-, 
3- , and 5-year OS of patients with ESCC. ROC curves (D) and the Calibration curves (E) for the nomogram for evaluating the predictive 
value. (F) Comparison between the C-index of the nomogram with that of the TNM stage suggested the prognostic model had a better OS 
prediction ability. CI, confidence interval; TNM, tumor node metastasis; AUC, area under the curve; PRGs, pyroptosis-related genes; OS, 
overall survival; ESCC, esophageal squamous cell carcinoma; ROC, receiver operating characteristic.
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Figure 7 Validation set of the prognostic model related to the prognostic PRGs in all set and the validation set. Univariate and multivariate 
Cox regression analyses showed the riskscore was also an independent prognostic factor in all set (A,B) and the validation set (C,D). ROC 
curves and the Calibration curves for the nomogram of all set (E,F) and the validation group (H,I). The C-index of the nomogram of all set (G) 
and the validation set (J) were also higher than the TNM stage. CI, confidence interval; TNM, tumor node metastasis; AUC, area under the 
curve; PRGs, pyroptosis-related genes; ROC, receiver operating characteristic.
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ESCC, indicating there was a relationship between ESCC 
and pyroptosis (Figure 2B, FDR <0.001). In accordance with 
our results, previous study have shown GSDME was up-
regulated in ESCC tissues and a high expression level meant 
a better 5-year survival in patients with the disease (57).  
Additionally, it has been previously suggested that IL-18 
expression of ESCC tissues was down-regulated and the 
deficiency of IL-18 enhanced the progression of ESCC in 
vivo and in vitro, which also was consistent with our findings 
(58,59). IL-18 was also one of the factors used to construct 
the riskscore related to pyroptosis.

The current study found DEGs most enriched in the 
positive regulation of cytokine production, interleukin-1 
beta production, pyroptosis, inflammasome complex, late 
endosome, phospholipid binding, cytokine receptor binding, 
response to molecule of bacterial origin, and interleukin-8 
production (Figure 3A,3B). A previous study revealed IL-1 
beta could promote the migration and invasion of ESCC 

cells, which was in accord with our results about functional 
enrichment (60). This study also found the five genes in 
the DEGs, including PYCARD, AIM2, CASP4, NOD1, 
and BAK1, had a higher semantic similarity of GO terms  
(Figure 3C). A literature review concluded PYCARD had 
dual role in cancers (61) by inhibiting tumors by mediating 
tumor cell death on the one hand, and promoting tumors 
by triggering the release of inflammatory cytokines and 
changing the tumor microenvironment on the other. This 
mechanism is similar to the dual effect mechanism on 
tumors related to pyroptosis. Moreover, PYCARD expression 
was usually silenced by methylation, and its methylation 
degree of PYCARD correlated with the depth of ESCC 
invasion (61). It has been previously confirmed that AIM2 
expression was up-related in human cutaneous squamous 
cell carcinoma (cSCC) and its degree became higher with 
the grade of cSCC increasing (62). Similar histological 
features are seen in sSCC and ESCC, and previous work 
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has shown this suggests a similar pathogenesis (63). Based 
on the results of these results and our data, we hypothesized 
AIM2 might play a role in ESCC. 

In this study, we observed a significant relationship 
between the prognosis of ESCC and the four PRGs; 
PLCG1, HMGB1, IL-18, and NLRP7 (Figure 4B-4E), and 
the riskscore was constructed based on these. Kaplan-
Meier survival curves and the risk curves of the training set 
showed the riskscore could predict OS of ESCC patients 
with great accuracy (Figure 5C,5E). The prognostic role 
of the riskscore was confirmed in the validation set, the 
related results of validation set being similar to those of 
the training set (Figure 5D,5F). Prior study has revealed a 
signature based on extracellular matrix (ECM) which could 
also be used to predict the OS of patients with ESCC (64). 
Micro(mi)RNAs are non-coding RNAs and are significantly 
associated with malignant initiation and progression (65). A 
riskscore based on five prognostic miRNA was constructed 
in ESCC, and the high-risk group also had a worse  
survival (66). The present study is the first to establish a 
riskscore based on pyroptosis. We found it had a meaningful 
effect on the prognosis of ESCC patients and was an 
independent prognostic factor (Figure 6A,6B, P<0.001). 
The riskscore and the other independent prognostic 
factors (TNM stage and grade) were used to construct the 
prognostic model related to pyroptosis in the training set. 
(Figure 6C), and the nomogram constructed in the training 
set could accurately and consistently predict the 1-, 3-, and 
5-year OS (Figure 6D,6E). Furthermore, the C-index of the 
prognostic model we constructed was significantly higher 
than that of the TNM stage (Figure 6F), and these results 
were validated in the validation set and all set. Our data 
also showed the riskscore was an independent prognostic 
factor in the validation set and all set (Figure 7A-7D). The 
nomogram related to the riskscore obtained better OS 
prediction than the TNM stage, evidenced by the C-index 
of the nomograms being significantly higher than those 
of the TNM stage (Figure 7G,7J). These findings clearly 
indicate our prognostic model related to PRGs had a better 
OS prediction ability because of the prognostic prediction 
value of the riskscore. 

Pyroptosis is mediated by the gasdermin family of 
genes and is accompanied by immune and inflammatory 
responses (42). Caspase-1 has an important effect on innate 
immunity by triggering the release of the pro-inflammatory 
cytokines (IL-β and IL-18) and activating pyroptosis (18). 
Previous study has found a deficiency of IL-18 contributes 

to the impairment of anti-tumor immune response and the 
immune escape in ESCC (60). The results of functional 
enrichment also showed significant enrichment for the 
immune response (Figure 3A,3B), suggesting the riskscore 
based on PRGs had some relation to immunotherapy in 
ESCC. We found the expressions of PD-L1 (Figure 8A), 
IL-2 (Figure 8B), and CD23 (Figure 8C) were significantly 
associated with the riskscore. PD-1 is mainly expressed on 
activated T cells and is a significant immune checkpoint (67). 
It often combines with PD-L1, triggering tumor immune 
escape (68), and many studies have suggested that PD-
L1 could be used to predict the efficacy for PD1/PD-L1 
targeted therapy in a variety of tumor types (69). In 2019, 
an immune checkpoint inhibitor was approved by the FDA 
for use in the treatment of advanced ESCC patients with 
positive PD-L1 expression (70). In the present study, PD-
L1 expression level in the low-risk group was higher than 
the high-risk group (Figure 7A) and the high-risk group 
had a higher TIDE score, which meant immunotherapy 
showed better efficacy in the low-risk group (Figure 8E). 
These results indicate the riskscore based on PRGs plays a 
significant role in predicting the effect of immunotherapy. 

In conclusion, we identified a riskscore based on four 
PRGs (PLCG1, HMGB1, IL-18, and NLRP7), which is an 
independent prognostic factor in ESCC. The prognostic 
model related to the riskscore and other independent 
factors was constructed, and the data demonstrated the 
prognostic model had a better OS prediction ability than 
the TNM stage. The riskscore could be taken as a reliable 
factor to guide the immunotherapy of ESCC. This study 
has several limitations. Firstly, the lack of an external cohort 
to validate the prediction accuracy of the prediction model 
is a major limitation of this study. Secondly, the number 
of cases included was only 179, which is small compared 
to other studies. Lastly, the present study is the only 
investigation into the prognostic model related to PRGs. 
Therefore, further studies should focus on in vitro and  
in vivo experiments to confirm our findings.
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Supplementary

Figure S1 Co-expression network of the DEGs in PRGs. Full names of the DEGs in PRGs showing in the Co-expression network: BAK1, 
BCL2 Antagonist/Killer 1; BAK, BCL2 Associated X, Apoptosis Regulator; CASP3, Caspase 3; CHMP2A, Charged Multivesicular Body 
Protein 2A; CHMP2B, Charged Multivesicular Body Protein 2B; CHMP4B, Charged Multivesicular Body Protein 4B; CHMP4C, Charged 
Multivesicular Body Protein 4C; CHMP7, Charged Multivesicular Body Protein 7; GSDMD: Gasdermin D; GSDME, Gasdermin E; 
GZMB, Granzyme B; HMGB1, High Mobility Group Box 1; IL18, Interleukin 18; IL1A, Interleukin 1A; IL1B, Interleukin 1B; TP63, 
Tumor Protein P63; AIM2, Absent In Melanoma 2; CASP6, Caspase 6; CASP9, Caspase 9; GPX4, Glutathione Peroxidase 4; GSDMB, 
Gasdermin B; GSDMC, Gasdermin C; IL6, interleukin 16; NLRP2, NLR Family Pyrin Domain Containing 2; NLRP6, NLR Family 
Pyrin Domain Containing 6; NLRP7, NLR Family Pyrin Domain Containing 7; NOD1, Nucleotide Binding Oligomerization Domain 
Containing 1; NOD2, Nucleotide Binding Oligomerization Domain Containing 2; PYCARD, PYD And CARD Domain Containing; 
TIRAP, TIR Domain Containing Adaptor Protein.
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Figure S2 Nomograms based on independent prognostic factors in all set (A) and validation set (B).

A

B The validation set

All set

Linear predictor

Linear predictor
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Figure S3 Relationship with exclusion score and riskscore suggested 
that patients in the high-risk group have a higher probability of 
immune evasion. ***, stand for significance at P<0.001.

Table S1 Pyroptosis-related genes list

AIM2

BAK1

BAX

CASP1

CASP3

CASP4

CASP5

CASP6

CASP8

CASP9

CHMP2A

CHMP2B

CHMP3

CHMP4A

CHMP4B

CHMP4C

CHMP6

CHMP7

CYCS

ELANE

GPX4

GSDMA

GSDMB

Table S1 (continued)

Table S1 (continued)

GSDMC

GSDMD

GSDME

GZMA

GZMB

HMGB1

IL18

IL1A

IL1B

IL6

IRF1

IRF2

NLRC4

NLRP1

NLRP2

NLRP3

NLRP6

NLRP7

NOD1

NOD2

PJVK

PLCG1

PRKACA

PYCARD

SCAF11

TIRAP

TNF

TP53

TP63
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Table S2 Randomisation of 179 patients in GSE53625

GSM1296992

GSM1296994

GSM1297248

GSM1297044

GSM1297244

GSM1297048

GSM1297090

GSM1297024

GSM1297296

GSM1297290

GSM1297142

GSM1297198

GSM1296956

GSM1297228

GSM1297056

GSM1297060

GSM1297006

GSM1297030

GSM1297020

GSM1297034

GSM1297220

GSM1297086

GSM1297180

GSM1297226

GSM1297028

GSM1297250

GSM1297100

GSM1297200

GSM1297266

GSM1296986

GSM1297218

GSM1297118

GSM1297222

GSM1297196

GSM1296982

GSM1297212

Table S2 (continued)

Table S2 (continued)

GSM1297158

GSM1297294

GSM1297258

GSM1297292

GSM1297214

GSM1297012

GSM1297172

GSM1297284

GSM1297046

GSM1297122

GSM1297022

GSM1297032

GSM1296962

GSM1296990

GSM1297188

GSM1296988

GSM1296960

GSM1297192

GSM1297108

GSM1296964

GSM1297216

GSM1297104

GSM1297112

GSM1297268

GSM1297280

GSM1297148

GSM1297018

GSM1297008

GSM1297176

GSM1297182

GSM1296976

GSM1297088

GSM1297052

GSM1297050

GSM1297238

GSM1297286

Table S2 (continued)
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Table S2 (continued)

GSM1297076

GSM1297096

GSM1297230

GSM1297256

GSM1297288

GSM1297042

GSM1297038

GSM1297282

GSM1297132

GSM1297174

GSM1297106

GSM1297252

GSM1297210

GSM1297116

GSM1297138

GSM1297058

GSM1297002


