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Abstract Conventional tools for measuring dietary

exposure have well recognized limitations. Measurement

of food-derived metabolites in biofluids provides an alter-

native approach and our aim was to develop an experi-

mental protocol which ensures that extraneous variability

does not obscure metabolic signals from ingested foods.

Healthy adults consumed a standardized meal in the

evening before each test day and collected pooled over-

night urine. On each test day of three different studies,

urine was collected in the fasted state and at different time

points after consumption of a standardized breakfast.

Metabolite fingerprinting of samples using Flow Infusion

Electrospray-Ionization Mass Spectrometry followed by

multivariate data analysis showed strong discrimination

between overnight, fasting and postprandial samples, in

each study separately and when data from the three studies

were pooled. Such differences were robust and highly

reproducible within individuals on separate occasions.

Urine volume was an efficient data normalization factor for

metabolite fingerprinting data. Postprandial urines had a

stable chemical composition over a period of 2–4 h after

eating a standardized breakfast, suggesting that there is a

flexible time window for urine collection. Fasting urine

samples provided a stable baseline for universal compari-

sons with postprandial samples. A dietary exposure bio-

marker discovery protocol was validated by demonstrating

that top-ranked signals discriminating between fasting and

2–4 h postprandial urine samples could be linked to

metabolites abundant in some components of the stan-

dardized breakfast. We conclude that the protocol devel-

oped will have value in the search for biomarker leads of

dietary exposure.
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1 Introduction

Conventional tools for measuring dietary exposure, which

is an essential component of much health-related research,

are difficult to validate, are subject to participant bias and

depend upon food composition tables for estimation of

intakes of energy, nutrients and other food constituents

(Bingham 2002). Since foods contain thousands of

metabolites and give rise to further metabolites following
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food ingestion, digestion, absorption and metabolism, the

metabolites in body fluids are a potentially rich source of

information about dietary exposure (Penn et al. 2010).

It has been proposed recently that metabolomics method-

ology, which allows the comprehensive analysis of the

small molecule composition of accessible human biofluids

(Bollard et al. 2005; Walsh et al. 2006; Maher et al. 2007;

Holmes et al. 2008; Favé et al. 2009; Llorach et al. 2009;

Scalbert et al. 2009) may provide more objective infor-

mation in attempts to evaluate recent or habitual dietary

intake (Holmes et al. 2008; Favé et al. 2009; Scalbert et al.

2009; Penn et al. 2010). Particularly, methods utilizing

mass spectrometry (Major et al. 2006; Beckmann et al.

2008) are now relatively routine and certain techniques are

becoming high throughput, with potential for automation in

the future (Beckmann et al. 2008).

The development of metabolomics approaches for die-

tary assessment in humans faces a major issue i.e., the

substantial inter- and intra-individual variability in human

metabolite profiles (Assfalg et al. 2008). Several factors

contribute to intra-individual variability including diurnal

changes (Walsh et al. 2006), hormonal status (Bollard et al.

2005) and stage in the menstrual cycle for women of

reproductive age (Wallace et al. 2010). Inter-individual

variability may result from easily recorded factors such as

gender, age and adiposity (Kochhar et al. 2006; Gu et al.

2009; Winnike et al. 2009; Rasmussen et al. 2011) or from

less well-characterized habitual dietary patterns and other

environmental and cultural influences (Lenz et al. 2003;

Holmes et al. 2008). Less obvious sources of variance,

which relate to individual behaviors and which are more

challenging to detect, include the timing of last meal in

relation to biofluid collection, the volume of fluid intake

(deRooij et al. 1996; Schneider et al. 2003; Mullen et al.

2004), inflammatory status (Chen et al. 2008) and unre-

ported non-compliance with study protocols in terms of use

of medication, alcohol consumption or fasting require-

ments. These difficulties highlight the need for the devel-

opment of robust experimental protocols to minimize their

potential confounding effects if metabolomics approaches

for assessing dietary exposure are to realize their promise

(Walsh et al. 2006; Kussmann et al. 2008; Rasmussen et al.

2011).

To address this issue, there is a need for systematic

investigation of experimental protocols for volunteer

characterization and handling and for biofluid collection

and processing in nutritional metabolomics studies. Some

potential confounding factors such as peri-intervention

food intakes can be controlled, and this has proven useful

in studies of the urinary metabolome (Walsh et al. 2006;

Winnike et al. 2009). However there are no standardized

protocols for such studies and different investigators

have adopted very different strategies, ranging from the

collection of information on food intakes (Wang et al.

2005; Walsh et al. 2007; van Velzen et al. 2009) and the

specification of a list of allowed/forbidden foods (Walsh

et al. 2007; van Velzen et al. 2009) to the use of fully

controlled meal provisions (Stella et al. 2006; Rezzi et al.

2007) and the use of deionized water in metabolic suites

(Stella et al. 2006). Although protocols for blood collection

(particularly fasting bloods) and processing to produce

plasma and serum components are reasonably well stan-

dardized, there is no consensus on protocols for urine

sample collection in human metabolomics studies. Inves-

tigators have collected spot urine samples, including the

first void in the morning (Walsh et al. 2007), a random

sample late in the morning (Wang et al. 2005), or several

spontaneous samples at various times up to 48 h after

treatment (van Velzen et al. 2009). Other investigators

have collected 24 h urine samples on each day of a clin-

ical trial (Rezzi et al. 2007) or on three occasions after

each treatment period (Stella et al. 2006). Thus, there is a

need to establish standardized sampling protocols which

will help ensure that nutritional metabolomics data are

robust and to facilitate comparison of results between

studies.

The objective of this study, which constitutes the first

phases of the MEtabolomics to characterize Dietary

Exposure (MEDE) Study (Favé et al. 2009), was to develop

a standardized protocol for nutritional metabolomics

investigations which would minimize confounding factors

including inter- and intra-individual variability and to

assess its suitability for monitoring metabolic changes in

response to dietary exposure. It was expected that the

provision of a standardized evening meal low in plant

polyphenols on the previous day would stabilize the urine

metabolome and aid discovery of metabolite signals char-

acteristic of the specific foods ingested, as described in

previous reports (Walsh et al. 2006; Llorach et al. 2009;

Winnike et al. 2009; Llorach-Asuncion et al. 2010). High

throughput metabolomic fingerprinting (Beckmann et al.

2008) based on Flow Infusion Electrospray Ionization-

Mass Spectrometry (FIE-MS) was used to evaluate the

reproducibility of urine composition in three groups of

volunteers exposed to a standardized acute dietary inter-

vention. We were particularly concerned to determine

whether urine collected in a specific behavioral period

could be used as a ‘standardized baseline’ comparator

against which chemical changes associated with specific

dietary intake could be assessed. Thus, a practical aspect of

this study was to determine an appropriate timing of

sampling to optimize the information content and modeling

characteristics of spot urine metabolite fingerprints. Key to

protocol validation was confirmation that data mining

identified metabolite signals associated with specific com-

ponents of the standard breakfast.
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2 Subjects and methods

2.1 Ethical approval and subject recruitment

This project was approved by the Newcastle and North

Tyneside 2 Research Ethics Committee (reference number

07/H0907/136) and registered with the Newcastle upon

Tyne Hospitals NHS Foundation Trust, UK (registration

number 4392). The volunteers were recruited through word

of mouth and by advertisement in Newcastle University.

They were assessed for suitability via a screening ques-

tionnaire which included the following exclusion criteria:

aged under 18 years old, for women being pre-menopausal,

having a Body Mass Index (BMI)\18.5 or[30 kg/m2,

being a smoker, non milk drinker and/or non fish eater,

having a history of substance abuse or alcoholism (alcohol

consumption higher than 30 units/week), being allergic to

any test food, suffering from any significant health problem

and/or planning to change dietary or physical activity

habits. The volunteers were recruited at an induction visit

to the Clinical Research Facility (CRF) (Royal Victoria

Infirmary, Newcastle upon Tyne, UK), where they gave

written consent to participate, after a detailed explanation

of the study protocol.

2.2 Study design

The study was designed to help stabilize ‘background’

metabolite profiles of volunteers subjected subsequently to

a nutritional intervention study (Fig. 1). Volunteers atten-

ded either one (Study 1; 12 participants) or two identical

experimental days (Study 2 [12 participants] and Study 3

[24 participants]), which were held several weeks apart. On

the day before a test day, volunteers were asked to mini-

mize physical activity and to avoid alcohol consumption.

They were provided with a standardized evening meal to

consume between 18:00 and 20:00. This evening meal was

designed to be acceptable to a wide range of volunteers, as

‘metabolomically’ neutral as possible (i.e., relatively low

in fruits, vegetables and wholegrain foods to minimize

confounding with later dietary interventions) and easy to

replicate on many occasions over a 2 years study period.

We supplied a ready-prepared meal (450 g) consisting of a

chicken breast with carrots, peas and chunks of roasted

potatoes in an onion gravy, one 75 g chocolate éclair and

one 0.5 l bottle of still mineral water to be consumed

entirely with the meal. Volunteers were provided with a

second bottle of still mineral water (0.5 l) to be consumed

ad lib until arrival at the CRF on the morning of the study

day, and water intake was recorded. Volunteers voided

urine before consumption of the standardized evening meal

and they collected all urine produced from then until

arrival in the CRF the following morning. On each study

day, volunteers came to the CRF after a 12 h (minimum)

overnight fast. After measurement of anthropometric

variables, fasting urine and blood samples were collected.

Volunteers received a standardized breakfast and further

urine samples were collected after 3 h (Study 1), 2, 4, 6 and

8 h (Study 2) and 1.5, 3 and 4.5 h (Study 3). The standard

breakfast consisted of 200 ml orange juice, 190 ml tea with

14 ml of skimmed milk and 12 g of sugar, a 35 g butter

croissant and 25 g corn flakes with 125 g of semi skimmed

milk (1.7% fat). Study 2 volunteers received a standardized

light lunch 4 h after the breakfast which provided a second

meal challenge. This light lunch consisted of two poached

free range eggs (2 9 *50 g), two slices of pre-packed

sliced white bread (2 9 36 g) and one 500 ml bottle of still

mineral water. Urine samples were frozen immediately at

-20�C and moved to -80�C within 24 h. Full details of

the light lunch items are presented in electronic supple-

mentary material (Data S-1).

2.3 Urine collection

A number of carefully characterized urine samples were

collected from each volunteer. The first sample, identified

as the ‘PRE’ sample, was a pool of all urine produced after

consumption of the evening meal and up to, and including,

the morning void before attending the CRF. Volunteers

were provided with a plastic 500 ml jug and plastic bottle

into which to decant urine which was kept at room tem-

perature and without any preservative until brought to the

CRF. Further collections of urine were made in the CRF in

(1) the fasting state i.e., before consumption of the stan-

dardized breakfast and (2) at pre-defined intervals after the

standardized breakfast. All urine samples were processed

according to the same protocol: the urine volume was

measured and sub-samples were decanted into several pre-

labeled 1.5 ml Micro tubes and pre-labeled 40 ml Falcon�

tubes. These sub-samples were frozen immediately at

-20�C before being moved to -80�C storage within 24 h.

Full details of all laboratory consumables, which were

purchased in batches, are presented in electronic supple-

mentary material (Data S-2).

2.4 Collection and statistical analysis of metadata

Metadata were collected to characterize the volunteers

and as aids to interpretation of inter- and intra-individual

differences in metabolomic profiles. These metadata were

organized into 4 categories (Tables S-1 to S-4 in elec-

tronic supplementary material): (1) anthropometry, (2)

nutritional and inflammatory status, (3) lifestyle, and (4)

eating/drinking/urination behaviors and measured as

follows:
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1. Anthropometric characteristics (measured by a single

investigator) included height (using a telescopic mea-

suring rod (SECA, Birmingham, UK)), body mass and

body fat content (bio-impedance weighting scale

(TANITA, Middlesex, UK)), waist and hips circum-

ferences (measuring tape with automatic roll-up

(SECA, Birmingham, UK)) and blood pressure (ambu-

latory oscillometric device (Welch Allyn, Bucking-

hamshire, UK)).

2. Fasting and postprandial plasma samples were ana-

lyzed for glucose concentration. Fasting plasma sam-

ples were analyzed for selenium concentration, fasting

serum samples for lipids (triglycerides, total, HDL,

LDL, and non-HDL cholesterol, and total/HDL cho-

lesterol ratio), high sensitivity C-reactive protein

(hsCRP), insulin and vitamin B12 concentrations,

and fasting red cells for folate concentration.

3. Habitual diet was characterized using the validated

Food Frequency Questionnaire (FFQ) employed by the

EPIC Study (Bingham et al. 1997) which was modified

slightly to include a few additional foods consumed

frequently in the North East of England. Habitual

physical activity was characterized using a Physical

Activity Questionnaire (PAQ) adapted from that of

Wareham et al. (2003) and measured using an

ActiGraphTM accelerometer device with an ActiGraph

Interface Unit and the ActiSoft software. Accelerom-

eters were worn for the 5 days prior to each study day.

4. Volunteers were provided with a form to report

starting and finishing times for their evening meal, as

well as the times of urine collection. Overnight water

consumption was recorded, and overnight, fasting and

postprandial urine samples were analyzed for creati-

nine, sodium and potassium concentrations.

Statistical analysis of metadata was performed using the

SPSS Software to calculate averages and SEM, to check

the data distribution (Shapiro–Wilk test), and to investigate

potential differences between the two studies (Study 1 and

Study 2) and gender effects (t-test for normally distributed

data, and Mann–Whitney test for non-normally distributed

data). The coefficients of variation (CV) were also calcu-

lated for both studies together.

2.5 Acquisition of mass spectrometry data

Although metabolite fingerprinting using a high accurate

mass Fourier-Transform Ion Cyclotron Resonance Mass-

Spectroscopy (FT-ICR-MS) instrument offers a direct

opportunity for m/z annotation (Southam et al. 2007), it is

considerably less sensitive than nominal mass fingerprint-

ing on a linear ion trap and, as a result, after time con-

suming and complex data pre-processing, signal intensity

can be at baseline in almost half of the mass bins in FT-

ICR-MS data. In contrast the continuous data stream in

FIE-MS (Beckmann et al. 2008) avoids any in-filling of

zeros which occurs automatically in FT-ICR-MS during

raw data acquisition. From a practical perspective, the

minimal data pre-processing requirement, much lower cost

and overall speed of nominal mass fingerprinting on an ion

Fig. 1 Schematic representation of the design of the MEDE Studies.

On pre-test day, volunteers were specified to empty their bladder and

discard their urine before consuming their standardized evening meal

between 18 and 20 h, then to collect and pool all urine produced after

consumption of the evening meal, up to and including the morning

void before attending the Clinical Research Facility (‘PRE’ sample).

On test day morning, anthropometric data were recorded, the fasting

urine samples (0 h) were collected, then the standardized breakfast

was served, and the fed biofluids samples were collected 3 h (Study 1)

or 2, 4, 6 and 8 h (Study 2) or after 1.5, 3, and 4.5 h (Study 3) after the

volunteers had finished their meal (assigned as t1.5–t8 for postpran-

dial samples in the figure)
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trap provides an excellent first pass tool for data acquisition

that is particularly suited to large samples sets ([100).

After data modeling and feature selection, any potentially

explanatory nominal mass bins could then be investigated

further by targeted analysis using an ultra high mass

accuracy LC-FT-ICR-MS instrument.

2.5.1 FIE-MS metabolite fingerprinting

FIE-MS was carried out as described previously (Beckmann

et al. 2008) with modifications to accommodate urine and

blood samples. Samples from Studies 1, 2 and 3 were ana-

lyzed independently several months apart, taking care to

randomize at all stages. Aliquots of thawed urine (50 ll)

were diluted in 450 ll of pre-chilled methanol/water [3.5/

1]. Aliquots of thawed plasma (200 ll) were diluted in

1,520 ll of pre-chilled methanol/chloroform [4/1] and

remained in a single phase. Samples were vortexed, shaken

for 15 min at 4�C and then centrifuged for 5 min at

14,0009g. For FIE-MS analysis, supernatant (60 ll) was

transferred to HPLC crimp cap glass vials containing a

200 ll micro glass insert. The vial caps were crimped and

then stored at 4�C for same day analysis. Vials were ran-

domized before injection using an autosampler (tray tem-

perature: 15�C). The diluted samples (20 ll) were injected

into a flow of 60 ll/min water–methanol (70:30 v/v) using

a Surveyor liquid chromatography system (Thermo Sci-

entific, Waltham, MA, USA). For each sample, data were

acquired in alternating positive and negative ionization

profile modes and over four scan ranges (15–110 m/z;

100–220 m/z; 210–510 m/z; 500–1,200 m/z) on a LTQ

linear ion trap (Thermo Electron Corporation, San Jose,

CA, US), with an acquisition time of 5 min in a single data

acquisition experiment. Raw infusion profiles were expor-

ted and mass spectra of all analytical runs per sample were

combined in a single intensity matrix (over all four scan

ranges, unless stated otherwise) for each ionization mode.

The resulting mass spectrum for each analysis was calcu-

lated as the mean of 20 scans about the apex of the infusion

profile. Raw data dimensionality was reduced by elec-

tronically extracting signals with ±0.1 Da mass accuracy

but data are expressed only as nearest integer to identify

target nominal mass bins for accurate mass analysis by

FT-ICR-MS. Data were Log10 transformed and normal-

ized to total ion count (TIC) before analysis (Beckmann

et al. 2008), or normalized using volunteer metadata as

stated in the text.

2.5.2 Analysis of nominal mass bins by FT-ICR-MS

and signal annotation

Selected variables revealed by FIE-MS data mining were

investigated further using targeted Nano-Flow (TriVersa

NanoMate, Advion BioSciences Ltd, UK) LTQ-FT-ICR-

MS Ultra (where Ultra referred to a high-sensitivity ICR-

cell). For each sample class, three pools of urine samples

from randomized groups of volunteers were prepared as

used for FIE-MS and reconstituted in methanol/water (80/

20, v/v). For each spray on the TriVersa Nanomate, a

sample volume of 13.0 ll was used and 2 ll of air was

aspirated after the sample. The gas pressure was main-

tained between 0.2 and 0.6 psi, with the voltage at

1.4–1.7 kV (generally higher for negative ionization mode)

to achieve currents at 80–120 nA and -100 to -60 nA in

positive and negative ionization mode, respectively.

Operating the FT-ICR-MS in narrow mode, a resolution of

100,000 was chosen and the mass range was scanned for

1 min. A minimum of three biological replicates per class

or treatment containing the specific selected mass were

required for successful accurate mass verification. The

system was calibrated routinely with LTQ FT calibration

solution prepared according to the instrument instructions.

For metabolite signal identification, the accurate mass

values were then queried against MZedDB, an interactive

accurate mass annotation tool we have developed recently,

which can be used directly to tentatively annotate signals

by means of neutral loss and/or adduct formation rules

(Draper et al. 2009).

For further metabolite signal identification FIE-MSn

was employed. For FIE-MSn analysis, the scan window

was set for 20 scans, with an isolation width of 1 m/z and

normalized collision energy of 40 V. The activation coef-

ficient ‘Q’ of 0.250 was chosen and an activation time of

30 ms, with wideband activation turned on and source

fragmentation of 20 V. Mass range settings were depen-

dent upon molecular weight of the target ion. Chemical

standards were obtained commercially at highest purity and

solvents were of HPLC–MS grade. Standards were pre-

pared by dissolving 1 mg of the metabolite standard in

1 ml of extraction solvent or in methanol/water (80/20, v/v)

if necessary.

2.6 Statistical analysis of FIE-MS data

2.6.1 Clustering and classification methods

All data mining was carried out using the FIEmspro

workflow validated previously in Aberystwyth (Enot et al.

2008) and accessible at URL http://users.aber.ac.uk/jhd/.

Principal Components Analysis (PCA) was employed to

examine data clustering without any pre-definition of

sample class membership and was used to reduce the

dimensionality with minimal information loss. Linear

Discriminant Analysis (LDA)—a supervised method which

uses sample class label information—was used to find the

linear combination of variables for best separating two or
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more classes of metabolite fingerprints. Following LDA,

plots of the first two Discriminant Functions (DFs) were

used to visualize the goodness of class separation. The

LDA Eigenvalue (Tw), defined as the ratio of the between-

and within-group standard deviations on the discriminant

variables, was used to evaluate the performance of LDA.

The larger the Eigenvalue, the greater the discriminatory

power of the model. Discrimination was considered poor

for Eigenvalues\1, weak for Eigenvalues between 1 and 2,

and good for Eigenvalues [2 (Enot et al. 2008). Two

additional classification algorithms, Random Forest (RF)

and Support Vector Machine (SVM), were also employed

in the present study. The four mass ranges (i.e., 15–110 m/z;

100–220 m/z; 210–510 m/z; 500–1,200 m/z) were initially

modeled independently and in all combinations. Pre-

liminary data analysis experiments revealed that inclusion

of masses[m/z 510 reduced classification accuracy and

contributed little to modeling power when several diverse

classes of urine samples were analyzed. Preliminary sam-

ple classification was thus based on the mass range m/z

15–510 in a merged data matrix which omitted the highest

mass range. Unless stated otherwise, feature selection was

based on the analysis of fingerprint data representing the

full mass range (m/z 15–1,200).

2.6.2 Assessment of classification robustness

Several performance assessments for classification (Enot

et al. 2008) of metabolite fingerprints were used in the

present study including (1) classification accuracy rate

(ACC), defined as the proportion of correctly classified

data points among all data points where accuracy values

range from 0 to 1 (1 equates to perfect classification), (2)

the area under the Receiver Operating Characteristic

(ROC) curve (AUC) which aggregates performance across

the entire range of trade-offs between true positive rate and

false positive rate and ranges from 0.5 (indicating random

performance) to 1.0 (denoting perfect classification) and

(3) classification margin which is defined as the proportion

of votes for the correct class minus the maximum propor-

tion of votes for the other classes—the larger the margin,

the more confidence in the classification. Average margin

values larger than 0.3 indicate adequate classification in

metabolomics experiments (Enot et al. 2008).

2.6.3 Feature selection

Feature selection techniques were applied to mass spec-

trometry data to select the mass signals which were

responsible for discriminating between different sample

classes. Three methods viz. RF Importance Scores, AUC

and the Welch’s t-test, were used in feature selection (Enot

et al. 2008). Randomized re-sampling strategies including

bootstrapping and cross-validation methods were applied in

the process of classification and feature selection to coun-

teract the effect of any unknown, structured variance in the

data. In the following data analysis, 100 bootstraps were

used for all classification and feature selection.

3 Results and discussion

3.1 Impact of inter-individual variability on modeling

characteristics of urine FIE-MS fingerprint data

To develop standardized study protocols, we used three

studies of healthy adult volunteers with samples collected

and analyzed in batches over a 2 years period. In Studies 2

and 3, each volunteer was studied on two occasions at least

a week apart. This experimental design provided an

opportunity to assess the reproducibility of protocols and

likely generalizability of results. Throughout the entire

project, non-targeted metabolite fingerprinting by FIE-MS

provided a robust, high throughput metabolomics approach

to compare compositional differences in urine samples

using powerful multivariate data classification methods.

Initial experiments aimed to examine the influence of

various anthropometric factors, nutritional and inflamma-

tion status, lifestyle and behavioral attributes on the

robustness of metabolomics data modeling. The means and

coefficients of variation (CVs) for all volunteer character-

istics are presented in Tables S-1 to S-4 (in electronic

supplementary material). Urine samples (fasting, overnight

and post-prandial) from three different volunteer studies

were used to generate FIE-MS fingerprints, in both nega-

tive and positive ionization mode. The impact on metab-

olome profile of inter-individual variability in volunteer

characteristics was investigated by PC-LDA on data rep-

resenting urine samples, using for class labeling individual,

gender, age and a range of other metadata factors

(Table 1). To do so, data were classified in at least two

groups for each factor. For some factors, groups were

obvious: each volunteer for ‘individual’, male and female

for ‘gender’, or normal weight (BMI\ 25) and overweight

(BMI[ 25) for ‘BMI’. For others involving volumes or

concentration measures, we chose ranges to define the

groups. Table 1 summarizes Eigenvalues for up to the top

three DFs associated in each PC-LDA model. The strongest

discriminating factors proved to be the timing of urine

collection in relation to meal consumption, individual and

urine volume, in both ionization modes.

Data normalization is a key part of any data pre-pro-

cessing. As a default we implemented previously validated

software routines (Enot et al. 2008) which incorporate

logarithmic (Log10) transformation of mass spectrometry

data followed by data normalization using sample total ion
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count (TIC). This benchmark method was compared with

the use of normalization factors selected from the metadata

collected in this study on Log10 transformed FIE-MS data.

Our assessment of the impact of each normalization pro-

cess was based on its effect on PC-LDA discrimination

(using Eigenvalues of the first two DFs between fasting and

2 and 4 h postprandial samples) and effect on Random

Forest classification robustness (using classification margin

values and classification accuracy between fasting and 2 h

postprandial samples only) as summarized in Table S-5.

Since creatinine concentration is used commonly for data

normalization (Saude et al. 2007) in many quantitative

clinical biochemical assays, we considered modeling per-

formance using this factor for data normalization. With the

possible exception of urine volume, normalization

approaches using different meta-data factors failed to

improve data modeling characteristics (Table S-5).

Considerable effort was invested in the collection of

metadata to assess the impact of volunteer behavior on data

quality. Despite the fact that many subject characteristics

(metadata) had relatively high CVs, this inter-individual

variability had little impact on metabolomics data model-

ing characteristics and it did not have value for normali-

zation of raw metabolite fingerprint data. Using NMR,

Saude et al. (2007) quantified the variability of 24 metab-

olites in spot urines collected either ‘mid- morning’ or mid-

afternoon (without any control of behavioral activity or diet

prior to sampling) and, as expected, reported very large

inter-sample variance. Saude et al. (2007) used the con-

centration of creatinine as a normalization factor in an

attempt to compensate for the effect of liquid consumption

and subsequent urine volume on metabolite concentrations

and concluded that that subject hydration was not a major

factor contributing to variance. However, although such an

approach assumes correctly that creatinine from endoge-

nous sources is excreted into urine at an approximately

constant rate throughout the day (Bingham and Cummings

1985), it fails to take into account the contribution that

recent dietary intake of meat-based foods makes to urinary

creatinine output (Stella et al. 2006; Walsh et al. 2006),

which presents a problem when trying to use creatinine as a

normalization factor for postprandial spot urine samples.

This fact was recognized by Walsh et al. (2006) who used

Pareto-scaled data without log transformation and showed

that creatinine concentrations differed significantly

between night and morning samples. Unsurprisingly, cre-

atinine concentrations were less variable when diet was

controlled. Our results support the cautionary advice given

by Walsh et al. (2006) on the use of creatinine as a general

normalization factor in urine metabolomics. In the present

study, urine volume was one of the few behavior-based

variables that impacted adversely on metabolomics data

quality and variance in urine volume can be reduced by

controlling water intake. In contrast, the present study

showed that several other volunteer characteristics includ-

ing gender, age and physical activity did not affect greatly

assessment of dietary exposure using metabolomics

approaches. However, for metabolite fingerprinting of

urine by FIE-MS in the negative mode high Tw values

from the PC-LDA analysis showed that there was an

influence of gender which we are investigating further.

3.2 Urine metabolite fingerprints are consistent

with a standardized volunteer handling procedure

PC-LDA was used to compare urine samples (Fig. 2) col-

lected before (PRE and fasting) and after consumption of

the standardized breakfast, from all studies, separately

(Fig. 2a, b and c) and together (Fig. 2d). A clear discrim-

ination in metabolite fingerprints between the three classes

of urine samples from Study 1 and Study 3 volunteers

(Fig. 2a, c) was observed. These results suggest that the

metabolites in urine samples collected in each class (i.e.,

Table 1 Influence of experimental factors on robustness of data

modeling after PC-LDA of urine samples

Class labeling Positive mode Negative mode

(Tw values) (Tw values)

DF1 DF2 DF3 DF1 DF2 DF3

Time point 4.61 0.60 N/A 3.95 0.92 N/A

Individual 3.32 2.94 2.30 10.38 7.74 5.85

Urine volume 2.50 0.59 0.36 3.52 0.76 0.43

Creatinine 3.12 0.84 0.40 3.98 0.72 0.46

Potassium 1.44 0.63 N/A 1.29 0.55 N/A

Evening meal duration time 0.58 0.39 N/A 0.73 0.58 N/A

Gender 1.22 N/A N/A 2.21 N/A N/A

HDL cholesterol 0.75 N/A N/A 1.06 N/A N/A

Sodium 1.54 0.45 N/A 1.49 0.63 N/A

Body fat content 1.10 0.69 0.51 1.40 1.03 0.67

CRP 1.03 0.73 0.48 1.35 1.11 0.69

Age 1.60 0.86 N/A 4.88 1.83 N/A

Habitual physical activity 1.18 0.99 0.65 1.73 1.49 1.10

Pre-test day physical activity 1.14 0.84 N/A 3.05 2.06 N/A

Habitual alcohol intake 1.64 0.58 N/A 2.28 1.23 N/A

BMI 0.60 N/A N/A 1.38 N/A N/A

Water intake 0.80 0.51 N/A 1.23 0.72 N/A

Principal components-linear discriminant analysis (PC-LDA) of data

acquired by flow infusion electrospray ionization mass spectrometry

(FIE-MS) of urine samples collected from 12 individuals from Study

2. Samples were collected ‘fasting’, after a 12 h (minimum) fast, and

at 2 and 4 h, after the consumption of the standardized breakfast. Tw,

DF Eigenvalues. Different class structures were applied, as indicated

in the table

CRP Serum C-reactive protein, HDL High-density lipoprotein, N/A

not applicable
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PRE, fasting and after breakfast) were either very different

in metabolite content or that the concentrations of the

metabolites were very different from those measured in

urine samples collected at the other pre-determined times

of the feeding cycle. Similar to our findings from Study 1

and Study 3, there was good discrimination between PRE,
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Fig. 2 Discrimination of behavioral phase and individual urine

samples following analysis by metabolite fingerprinting. Flow

Infusion Electrospray-ionization Mass Spectrometry (FIE-MS) data

(negative mode; m/z 15–600) derived from analysis of urine samples

were subjected to Principal Components-Linear Discriminant Anal-

ysis; a Study 1, b Study 2, c Study 3 and d all studies together.

Classes are labeled with symbols according to the timing of urine

collection in relation to meal consumption. Urine collections: the pre-

test day evening/night urine samples collected in Study 1 and 3

(‘PRE’), and in Study 2 on visit A and B (‘PREA’ and ‘PREB’,

respectively); the fasting spot urine samples collected after a 12 h

(minimum) fast in Study 1 and Study 3 (‘0’), and in Study 2 on visit A

and B (‘0A’ and ‘0B’, respectively); the postprandial urine samples

collected after the consumption of the standardized breakfast at 3 h in

Study 1 (3 h); at 2 and 4 h in Study 2 (where A denoted the first visit

and B denoted the second visit) and at 1.5, 3 and 4.5 h in Study 3. PC-

LDA performed on FIE-MS fingerprints (negative ion mode,

100-510 m/z) of fasting (e) and ‘PRE’ (f) urine samples of nine

volunteers who attended 2 of the 3 studies, using volunteer

identification (ID 1–9) and Study (labeled as a or b) as the class

structure. Eigenvalues (Tw values) for discriminant functions (DF)

are given in brackets
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fasting and postprandial urine samples for volunteers in

Study 2 (Fig. 2b). Importantly, and in addition, metabolite

fingerprints from urine samples taken on two independent

test days (A and B in Study 2) clustered well, indicating

that the protocols which we adopted for volunteer handling

minimized extraneous variation between repeat study days

within each subject. The values obtained for three inde-

pendent measures of modeling robustness (classification

accuracy, margin, and AUC value) after using the classi-

fication algorithms Random Forest (RF) and Support

Vector Machine (SVM) to compare metabolite fingerprints

of fasting urine samples and post-prandial urine samples

collected after consumption of the standardized breakfast

are represented in Figs. S-1 and S-2 (in electronic supple-

mentary material). These data indicate that margin values

in all pair-wise comparisons were between 0.5 and 0.9

and thus well above the 0.3 threshold for adequate sepa-

ration (Enot et al. 2008). Similarly both AUC values and

classification accuracies (ACC) were extremely high, pro-

viding further confidence that all the models were very

robust.

Five volunteers took part in both Study 1 and Study 3

whilst there were four volunteers in common between

Study 2 and Study 3. This overlap between studies pro-

vided an opportunity to examine the reproducibility of

fasting and PRE urine samples on multiple visits for nine

volunteers in a PC-LDA. Good sample discrimination by

individual volunteer was evident in the majority of fasting

samples (Fig. 2e) whilst PRE samples from different visits

grouped well in seven of the nine volunteers (Fig. 2f). With

each volunteer acting as their individual control, this result

suggests that a small number of ‘fasting’ spot urine sam-

ples could be used to provide a stable baseline for universal

comparisons to examine dietary exposure, to obtain bio-

marker leads indicative of specific food types.

For a specific type of biological sample to have value for

assessment of recent dietary exposure it is important to be

able to identify characteristic metabolite changes against a

potentially large background of variance in metabolite

signals. In this study we focused on protocol components

which addressed the control of unwanted variance associ-

ated with measurements made on urine. This biofluid is of

interest since it can be collected non-invasively and may

have particular utility in epidemiological (and other larger)

studies. Recent studies using spot urines (Gika et al. 2007;

Dunn et al. 2008) demonstrated good metabolite stability in

the absence of preservatives for 20–24 h provided that

samples were chilled to 4�C. Further work by Maher et al.

(2007) using NMR demonstrated that urine displayed

minimal changes in metabolite composition, even after

24 h at room temperature. Particularly relevant to future

studies is the fact that the metabolite patterns in PRE urine

collected without preservatives or refrigeration in the

MEDE study could not be discriminated from equivalent

PRE urine samples derived from a completely different

study of volunteers also exposed to the same pre-evening

meal in the GrainMark study (www.grainmark.org) in

which samples were stored in a cool pack for up to 12 h

(data not shown). These observations suggest that the

volunteer handing and sampling methods outlined in the

present study are robust and may have value in larger-scale

nutrition studies. Specifically, the collection of a spot urine

similar to the PRE sample described in the present study is

minimally intrusive for study participants (e.g., compared

with the collection of 24 h urine) but provides useful

information on recent dietary exposure. However, it is

accepted that the provision of a standardized meal on the

evening before sampling increases costs and adds com-

plexity to study logistics and its potential value in reducing

intra- and inter-person variability needs to be explored

further.

3.3 The standardized evening meal may confer a stable

baseline for detection of metabolome differences

following acute dietary exposure

If the changes in urine metabolite fingerprint associated

with exposure to the standardized evening meal and stan-

dardized breakfast were consistent between the repeated

studies, then it would be expected that the data features

responsible for the discrimination of the different sample

types should also be conserved. Thus, for all three Studies

we compared the mass signals (in both ionization modes)

responsible for discrimination between the fasting and the

PRE urine samples (Table S-6 and S7 in electronic sup-

plementary material). A combination of three methods for

feature selection (RF Importance Scores, AUC and the

Welch’s t-test) was used to produce an average rank for all

features (m/z values) based on the statistics generated by

each approach (Enot et al. 2008). To maximize predict-

ability, re-sampling using bootstrapping was applied. For

positive mode it can be seen that there are 13 discrimina-

tory metabolite signals (shown in bold) common to all

three studies and eight common signals for negative mode.

These data confirm the supposition that the ‘PRE’ samples

are compositionally consistent both within and between

studies with the caveat that Studies 2 and 3 had four vol-

unteers in common. Despite the impact of individual

habitual diet prior to the evening meal, this observation

further validates the suggestion that such an overnight

pool may have value for monitoring general dietary

exposure.

Metabolite signals responsible for the discrimination

between fasting from ‘PRE’ urine samples within each study

would be expected to be derived from specific components

of the evening meal that are excreted both before and after
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the influence of fermentation by colonic microbes. A cor-

relation analysis was performed on the top 35 nominal mass

(1 amu) discriminatory signals for each study to determine

the relationship between the positive ion mode m/z signals.

Similar correlations between signals were seen for each

study (data not shown) and the mathematical relationship

between masses suggested the presence of possible isotopes

(difference of 1 amu m/z) and salt adducts (Na adduct

?22 amu, K adduct ?38 amu, compared with [M ? H]1?)

in the top explanatory signals. These high ranked mass bins

were investigated in detail by Ultra-high mass resolution

mass spectrometry using FT-ICR-MS. Table 2 summarizes

the accurate mass FT-ICR-MS analysis of the top 10

explanatory mass bins in ‘PRE’ samples. Querying the

identity of the accurate mass signals against MZedDB

(Draper et al. 2009) suggested that three of the top four

explanatory signals distinguishing ‘PRE’ urine from fasting

urine were ionization products of the dipeptide, anserine, a

metabolite present at high concentration in chicken breast

meat (Aristoy and Toldra 2004; Yeum et al. 2010) and

known to be excreted, largely without biotransformation, in

humans (Yeum et al. 2010). FIE-MS2 was employed to

provide further confirmation that these observed signals

were adducts and isotopes of anserine (Fig. 3a–c). Chicken

breast was the meat component of the standardized evening

meal consumed by study participants. Although we have no

direct evidence that data modeling characteristics were

improved by adoption of a standardized evening meal

(Walsh et al. 2006; Llorach et al. 2009; Winnike et al. 2009;

Llorach-Asuncion et al. 2010), the analysis of ‘PRE’ urine

samples confirmed that the foods chosen were low in phy-

tochemicals, particularly polyphenols, which can often

dominate urine metabolite fingerprints. The box-plots in

Fig. 3d and e show that the two highest ranked positive

signals (m/z 241 andm/z 242) are both increased in the ‘PRE’

urine samples and decreased in the fasting ones. Pheny-

lacetylglutamine was also identified tentatively as a signal

explanatory of chemical differences between fasting and

‘PRE’ urine samples (Table 2). The discovery of pheny-

lacetylglutamine in ‘PRE’ urine might be partially explained

by the action of colonic microflora on protein-derived

phenylalanine following exposure to the high protein con-

tent of the standardized evening meal (Clayton et al. 2009),

but could also reflect the microbial fermentation of aromatic

components from previous dietary phytochemical intake

(Holmes et al. 2008), or from the chocolate component of the

evening meal chocolate éclair (Rezzi et al. 2007). Despite

the fact that spectra were aggregated into nominal mass bins,

this rapid metabolite fingerprinting method highlighted very

efficiently potential explanatory mass bins that could be

investigated further by targeted accurate mass analysis.

These observations provide a clear validation of the bio-

logical link between recent dietary exposure and the con-

clusions derived from modeling of metabolite fingerprint

data.

3.4 Urine composition is consistent in a time window

of 2–4 h after breakfast consumption

Postprandial spot urine samples were collected 3 h (Study 1),

2, 4, 6 and 8 h (Study 2) and 1.5, 3 and 4.5 h (Study 3)

after the standardized breakfast. A light lunch was con-

sumed 4 h after the test breakfast by the Study 2 volunteers

only. To decide the optimum time to collect a representa-

tive postprandial urine after exposure to the standard

breakfast (i.e., producing strong models in terms of

Table 2 FT-ICR-MS analysis of positive ionization signals in nominal mass bins representing the top 10 features discriminating a‘PRE’ from
bfasting urine samples in three replicated studies

Nominal mass Average rank cMajor detected

signal in FT-ICR-MS

Putative metabolite (1 ppm) Ionisation product

241 1 241.12958 Anserine [M ? H]1?

242 2 242.13293 Anserine 13C isotope of [M ? H]1?

361 3 361.32742 13C isotope of m/z 360 ?

263 4 263.11159 Anserine [M ? Na]1?

113 5 No signal ? ?

213 6 212.99970 Uric acid [M ? 2Na–H]1?

341 7 341.03038 Phenylacetylglutamine [M ? 2 K–H]1?

160 8 160.09674 4-Hydroxy-proline betaine [M ? H]1?

285 9 285.09363 Anserine [M ? 2Na–H]1?

360 10 360.32407 ? ?

a ‘PRE’, pool of the pre-test day over-night urine voids
b Fasting, spot urine sample after a 12 h (minimum) fast
c The tentatively identified metabolite is generally the most abundant signal

478 G. Favé et al.
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Fig. 3 Identification of

anserine (calculated accurate

mass m/z 241.12952

[M ? H]1?) and signal levels in

‘PRE’ and fasting urine

samples. a FT-ICR-MS accurate

mass window of masses from

m/z 240.80 to 241.20 in a fasting

urine sample pool; b FIE-MS2

of mass bin m/z 241 from a

fasting urine sample pool;

c FIE-MS2 of an authentic

sample of synthetic Anserine

[M ? H]1?. Box plots of

explanatory metabolite signals

with the mass to charge ratio

(m/z) 241 d and isotopic signal

m/z 242 e where the box

indicates the interquartile range;

the horizontal bar, the median;

vertical bars, the maximum and

minimum values up to

1.59 interquartile range; ‘PRE’,

the pool of the pre-test day over-

night urine voids; ‘Fasting’, the

spot urine sample (0 h)

collected after a 12 h

(minimum) fast (n = 12

volunteers, P\ 0.005 for both,

(d) and (e), Welch’s t-test)
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validation characteristics), the ‘explanatory’ mass signals

discriminating fasting urine samples from postprandial

ones were selected, using RF, AUC and the Welch’s t-test.

Examination of the average rank order of signals presented

in Table S-8 and S-9 revealed that postprandial urine

composition was very consistent between 2 and 4 h when

C20 of the top 30 features were common between three or

more time points for the positive and negative ionization

mode data. The list of explanatory masses from the 1.5 and

8 h urine collections (timed from the end of the con-

sumption of the standardized breakfast) shared fewer of

these common signals in both ionization modes. Although

it is possible that the 8 h urine samples will contain

metabolites derived from the light lunch, it is expected that

postprandial samples collected at this time will also contain

metabolites derived from colonic fermentation of the

breakfast. Although the observed nutrikinetic behavior

(van Velzen et al. 2009) is specific to the standardized

breakfast used in the present report, we suggest that sam-

pling postprandial urines within a specific time window

might prove beneficial, particularly in large scale dietary

intervention studies attempting to link dietary chemistry

exposure to desirable health outcomes. In this context, the

need for behavioral constraints and the normalizing impact

of a standardized evening meal on the day prior to sam-

pling remain to be investigated.

3.5 Validation of methodology by analysis of expected

orange juice signals in postprandial urine samples

Orange juice, a component of the standardized breakfast,

is rich in phytochemicals including the flavonoid glyco-

sides hesperidin (hesperetin-7-rutinoside) and narirutin

(naringenin-7-rutinoside) (Kawaii et al. 1999; Brett et al.

2009). The absorption of hesperidin and narirutin takes

place in the colon only after hydrolysis by rhamnosidases

originating from microflora and so provides distinctive

urinary excretion markers to indicate the onset of colonic

fermentation. Dietary flavonoid glycosides appear subse-

quently in plasma/urine as glucuronidated and sulfonated

conjugates of the flavonoid aglycone, due to the action

of phase II conjugating and detoxifying enzymes

(Bokkenheuser et al. 1987; Choudhury et al. 1999; Rechner

et al. 2004; Brett et al. 2009). Consequently mass bins

expected to contain glucuronidated and sulfonated

hesperetin and naringenin signals were analyzed using

FT-ICR-MS to determine whether the effects of colonic

fermentation could be identified. As expected, signals

typical of hesperetin and naringenin in the glucuronidated

and sulfonated forms were found only in 6 and 8 h post-

prandial urines with a trace amount of naringenin mono-

glucuronide present in some samples at 4 h (Table 3).

Signal identities were further confirmed by comparison of

FIE-MS2 and FIE-MS3 spectra with those derived from

analysis of chemical standards. As an example, the analysis

of hesperetin sulfate [m/z 318 [M – H]1-) in urines from a

pool of four randomly selected volunteers is shown in Fig.

S-3 (in electronic supplementary material). These data

suggest that urine samples collected up to 4.5 h after

consumption of the standard breakfast will contain only

few (if any) detectable metabolites resulting from bio-

transformations by colonic microbes. Indeed in ongoing

work (unpublished) we have already shown that urine

sampling prior to the onset of colonic fermentation can

provide robust dietary exposure biomarker leads for several

different foods of high public health importance. However,

it is likely that many food components would also give rise

to additional colonic biotransformation products with

potential value as intake biomarkers, but differences in

bacterially derived metabolites resulting from the diversity

in human colonic microflora populations (Wikoff et al.

2009) may further complicate their utility as biomarkers.

Table 3 Accurate mass analysis by FT-ICR-MS of glucuronidated and sulfonated hesperetin and naringenin in ‘PRE’, fasting and postprandial

urine samples from Study 2

Expected metabolite signal Theoretical mass Accurate mass detected by FT-ICR-MS analysis

PREa Fastingb Postprandial samplesc

2 h 4 h 6 h 8 h

Hesperetin sulfate [M - H]1- 381.02858 N/D N/D N/D N/D 381.02854 (Dppm 0.10) 381.02848 (Dppm 0.26)

Hesperetin-monoglucuronide [M - H]1- 477.10385 N/D N/D N/D N/D 477.10382 (Dppm 0.07) 477.10384 (Dppm 0.02)

Naringenin monoglucuronide [M - H]1- 447.09329 N/D N/D N/D Trace 447.09336 (Dppm 0.16) 447.09318 (Dppm 0.24)

a ‘PRE’, pool of the pre-test day over-night urine voids
b Fasting, spot urine sample after a 12 h (minimum) fast
c Urine samples (h postprandial) after the standardized breakfast

N/D not detected, Dppm part-per-million difference compared with the theoretical mass
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3.6 Investigation of explanatory mass bins

discriminating 2–3 h postprandial urines

from fasting urine samples highlights proline

betaine derived from standard breakfast

The top 30 positive ion mode features responsible for dis-

crimination between fasting and 2–3 postprandial spot urine

samples from Studies 1, 2 and 3 are shown in Fig. 4a. The

explanatory mass signals common to all three comparisons

are color coded. TheRandomForest (RF) algorithmprovides

the most robust classifier and as a ‘rule of thumb’ we have

shown, using a range of other FIE-MS data sets, that the

threshold for significance in a pair-wise analysis lies within

an Importance Score range of 0.0015–0.003 (Enot et al.

2008). In the present data set, the curve inflection occurring

at*0.002 showed that the top 15–20 of[1,000 m/z signals

provided most (80%) of the explanatory power of recent

dietary exposure (Fig. 4b). A correlation analysis was per-

formed on the top signals for each study separately to

determine the relationship between the positive ionmodem/z

signals. Several signals were found to be strongly correlated

and the mathematical relations between masses suggested

the presence of both isotopes and salt adducts in the top

ranked explanatory signals (Fig. 4c). These highly ranked

nominal mass bins were investigated in detail by FT-ICR-

MS analysis.

Querying the accurate mass signals against MZedDB

(Draper et al. 2009) suggested that the majority of the

explanatory signals were ionization products and isotopes of

proline betaine and a related metabolite, hydroxy-proline
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Fig. 4 Overview of signals discriminating 2 and 3 h postprandial

urine samples from fasting urines. a Top 30 signals in flow infusion

electrospray-ionization mass spectrometry (FIE-MS) data (positive

ion; m/z 15–1,200) responsible for discriminating postprandial urine

samples taken after the consumption of the standardized breakfast

(3 h from Study 1 and Study 3 and 2 h from Study 2) from ‘fasting’

urine samples. Signals are color-coded to compare average relative

ranking in each Study after applying a combination of three machine

learning methods; Random Forest, area under the receiver operating

curve (AUC) and Welch’s t-test (see also Table S-8/9 for details).

b Random Forest Importance Scores of the pair-wise comparion

between FIE-MS data of fasting and 3 h postprandial urine samples

(Study 3) plotted against feature rank order. c Correlation cluster of

the top features discriminating fasting from postprandial urine

collected 3 h after consuming the standard breakfast (Study 3)
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betaine (Table 4). These results were further confirmed

using FIE-MS2 and will be reported elsewhere (Lloyd et al.

2011). The fact that several of the explanatory mass bins

contained isotopes, salt adducts or different biotransforma-

tion products of proline betaine, provided confidence of a

statistically significant relationship between the ingested

food (orange juice in the standard breakfast) and this urinary

biomarker. There was a rapid rise in the level of all signals

associated with proline betaine and hydroxy-proline betaine

as early as 2 h after consumption of the standardized

breakfast (Fig. 5). This result is in accord with Atkinson

et al. (2007) who demonstrated, using LC–MS techniques,

that urinary proline betaine increased markedly after

drinking orange juice, peaking at 2 h after consumption.

4 Conclusion

We developed well characterized, practical (i.e., acceptable

to volunteers and researchers) and reproducible protocols

for volunteer handling and sampling in human nutrition

studies; the SOP is available on the NuGO website

Table 4 Many explanatory mass signals discriminating fasting from 2 to 3 h post-test breakfast urines are ionization products of proline betaine

and 4-hydroxy-proline betaine

m/za Rankb Detected massc Putative metabolite Ionization product Theoretical mass Dppmd

166 1 166.08377 Proline betaine [M ? Na]1? 166.08385 0.49

167 2 167.08713 Proline betaine 13C isotope of [M ? Na]1? 167.08721 0.48

182 3 182.05772 Proline betaine [M ? K]1? 182.05779 0.36

183 4 183.06109 Proline betaine 13C isotope of [M ? K]1? 183.06114 0.29

145 5 145.10518 Proline betaine 13C isotope of [M ? H]1? 145.10526 0.55

144 8 144.10187 Proline betaine [M ? H]1? 144.10191 0.22

184 10 184.05585 Proline betaine 41K isotope of [M ? K]1? 184.05591 0.30

198 6 198.05269 4-hydroxy-proline betaine [M ? K]1? 198.05270 0.18

160 15 160.09674 4-hydroxy-proline betaine [M ? H]1? 160.09682 0.51

a m/z, nominal mass detected using Flow Infusion Electrospray-ionization Mass Spectrometry (FIE-MS)
b Rank calculated from the average ranking in three replicated studies (1, 2 and 3)
c Accurate mass detected using Fourier-Transform Ion Cyclotron Resonance Mass-Spectroscopy (FT-ICR-MS)
d Dppm, part-per-million difference compared with the theoretical mass
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Fig. 5 Flow Infusion Electrospray ionization Mass Spectrometry

intensity plots of ions indicative of proline betaine and 4-hydroxy-

proline betaine in a urine time course. PB proline betaine, 4-HPB

4-hydroxy-proline betaine; Log10/TIC, normalization using sample

total ion count (TIC) and logarithmic transformation of data; ‘PRE’,

pool of the pre-test day over-night urine voids; ‘0’, fasting spot urine

sample after a 12 h (minimum) fast; ‘2’, ‘4’, ‘6’ and ‘8’, postprandial

urine samples (with a light lunch consumed after the 4 h sample

collection)
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(http://www.nugo.org/sops/40878/41026). Using this pro-

tocol we demonstrated that metabolite profiles of urine

collected at different times of the day, viz. overnight, fasted

before the standardized breakfast and at intervals after the

standardized breakfast, were distinctly different. Such dif-

ferences were robust and highly reproducible within indi-

viduals on separate occasions (weeks or months apart). We

suggest that if food components are consumed habitually

then either overnight pools or postprandial urine samples

(in a 2–4 h time window after a main meal) collected on

random days could prove highly informative of general

diet. This procedure would have minimal interference with

the volunteer’s normal daily activities. Indeed, by substi-

tution of one component of the standard breakfast (i.e.,

cornflakes) with different foods deemed of high public

health significance we have evidence that metabolite fin-

gerprinting can efficiently highlight metabolites which are

associated with specific dietary components and that may

be used as targets for the future development of biomarkers

of dietary exposure (Lloyd et al. 2011).
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