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Abstract: The paper presents the formulation of a two-phase system applied for reinforced soil media, which accounts for nonlinear
behavior of matrix phase. In a two-phase material, the soil and inclusion are treated as two individual continuous media called matrix and
reinforcement phases, respectively. The proposed algorithm is aimed to analyze the behavior of reinforced soil structures under opera-
tional condition focusing on geosynthetics-reinforced-soil (GRS) walls. The global behavior of such deformable structures is highly
dependent to the soil behavior. By accounting for mechanical characteristics of the soil in GRS walls, a relatively simple soil model is
introduced. The soil model is formulated in bounding surface plasticity framework. The inclusion is regarded as a tensile two-dimensional
element, which owns a linear elastic-perfectly plastic behavior. Perfect bonding between phases is assumed in the algorithm. For
validation of the proposed model, the behavior of several single element reinforced soil samples, containing horizontal and inclined
inclusions, is simulated and the results are compared with experiment. It is shown that the model is accurately capable of predicting the
behavior especially before peak shear strength. The proposed algorithm is then implemented in a numerical code and the behavior of a

full-scale reinforced soil wall is simulated. The results of analysis are also reasonably well compared with those of experiment.
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Introduction

Reinforced soil is a construction material in which the soil is
strengthened by reinforcing inclusions such as steel bars or geo-
synthetic sheets. This technique is actually a mechanical improve-
ment of the soil by such tensile elements through their shear
interaction. The reinforced soil mass has been regarded as a com-
posite system like other civil engineering materials (e.g., plain
concrete, reinforced concrete, mixed soil, etc.) and has been ana-
lyzed by homogenization methods which present its macrobehav-
ior based on microstructure elements (soil and inclusion). That is
due to the existence of repeated layers of soil and reinforcing
elements in a periodic manner. In this regard, an equilibrium me-
dium is introduced which behaves, at the macroscopic level, as a
homogenous but anisotropic composite material. (e.g., Harrison
and Gerrard 1972; Romstad et al. 1976; Michalowski and Zhao
1995; de Buhan et al. 1989).

In domain of theories applied for periodic media, de Buhan
and Sudret (1999) have recently proposed a new approach which
is called “multiphase model.” This approach is actually a me-
chanical framework, based on virtual work method, which ex-
plains a macroscopic description of a composite medium as the
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superposition of individual continuous media called phases. Each
point of the geometry in a multiphase material is comprised of
matrix phase (representative of the element which covers the most
part of space) and reinforcement phases (representative of axial
inclusions existing in different directions) with their own Kine-
matics. In a multiphase material, each phase has its own specific
behavior for both elastic and plastic regimes including deforma-
tional and yield characteristics. Hence, the global behavior of the
composite is the outcome of all phases’ behavior engaged with
each other through strain compatibility. In fact, this framework
can be regarded as an extension of a homogenization procedure,
in the sense that the composite is represented at the macroscopic
scale not by one single medium as in the homogenization proce-
dure, but by several superposed mutually interacting media.

The multiphase model was used for analyzing the media rein-
forced by one-dimensional elements (such as bolt, pile, etc.)
which only supported axial compression-tension forces. The me-
dium was hence considered as a two-phase material. The ex-
amples are numerical studies of a piled-raft group (de Buhan and
Sudret 2000) and a rock-bolted tunnel (Sudret and de Buhan
2001). The model was then developed in order that the flexural
(de Buhan and Sudret 2000) and shear behavior (Hassen and de
Buhan 2005) of such linear inclusions were taken into consider-
ation. All the analyses were performed with the hypothesis of
perfect bonding between phases. Although the same strain com-
patibility exists in traditional homogenization methods, the ad-
vantage of the multiphase approach is the ability to manifest the
hardening behavior of the reinforced mass due to incompatibility
among plastic strains of each phase (Sudret 1999). Later on, rela-
tive displacement between phases was considered in the formula-
tion in a simplified manner (Bennis and de Buhan 2003; de Buhan
et al. 2008). More recently, Thai et al. (2009) have numerically
studied the stability of a retaining wall in which the backfill was
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Fig. 1. Presentation of a reinforced soil in different scales of view: (a) microscopic scale in which both soil and inclusion can be recognized in
the structure; (b) Macroscopic scale where each geometrical point includes both matrix and reinforcement phases. The medium is considered as

two-phase system.

reinforced by strips. The deformational behavior of the structure
was not studied; however, by accounting for failure mechanisms
generated in the reinforced soil mass, the results have been evalu-
ated by those of upper bound limit analysis. It is mentioned that in
all the analyses mentioned above, the behavior of both soil and
inclusions was taken as linear elastic—perfectly plastic.

Apart from the stability of reinforced soil walls which is
the subject of conventional design (limit state) methods, the de-
formational behavior of such structures is an important issue to
evaluate their performance. This topic is more highlighted for
geosynthetic-reinforced soil (GRS) walls in comparison with the
walls reinforced by metallic strips. This is due to the extensibility
of geosynthetic inclusions, which influences the overall load-
deformation behavior of soil-inclusion systems (McGown et al.
1978). As a result, deformational behavior of such flexible com-
posite is highly dependent to the soil behavior. In other words, the
most important issue in design of GRS walls is the deformation
pattern during its serviceability. Karpurapu and Bathurst (1995)
demonstrated that correct modeling of the dilatant behavior of soil
is required to give accurate predictions of reinforced wall perfor-
mance. Holtz and Lee (2002) indicated that considering confining
pressure in the soil behavior is an important issue in accurately
predicting the wall face deformation. Hence, simple soil models
such as linear elastic-perfectly plastic models would not be suit-
able for simulating the GRS medium behavior and applying a
more rigorous soil constitutive model should be considered as a
priority (e.g., Helwany et al. 1999; Desai and El-Hoseiny 2005;
Ling et al. 2000).

On the other hand, when the GRS wall is under service (work-
ing stress) condition, it might be said that relative displacement
between soil and inclusion is of less importance. In fact, most of
numerical studies reported in the literature have used perfect
bonding between the soil and inclusion (e.g., Leshchinsky and
Vulova 2001; Ling and Leshchinsky 2003). Hatami and Bathurst
(2005, 2006) have constructed, instrumented and monitored sev-
eral full-scale GRS walls. The walls were then loaded up to ser-
vice surcharge. They have reported that no relative displacement
between the reinforcing layers and the soil was observed. They
obtained a good agreement between numerical simulations and
measured data by supposing a full rigid contact between rein-
forcement layers and the soil. Other researchers have performed
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the same approach in numerical analyzes of reinforced soil struc-
tures and results have been confirmed by comparing them with
experimental data (e.g., Ling et al. 2000; Holtz and Lee 2002;
Guler et al. 2007). This approach in discrete modeling of rein-
forced soil systems justifies that considering perfect bonding in a
two-phase system is acceptable when the analysis is aimed to
study the structure behavior under operational condition.

As a main objective of the present paper, we develop the for-
mulation of the two-phase material by applying a nonlinear elas-
toplastic soil model under monotonic loading path. In the present
contribution, we focus on the numerical simulations that can be
used to predict the operational condition of reinforced soil sys-
tems rather than initiation of collapse. A model for noncohesive
granular soils is introduced within the framework of bounding
surface plasticity. The inclusion is considered as a tensile planar
element (such as geotextile and geogrid layers), which behaves as
a linear elastic-perfectly plastic material. The governing constitu-
tive equations of each element are introduced separately and then
they are used as those of their corresponding phases within the
multiphase concept. Perfect bonding is assumed between phases.
We evaluate the presented model by simulating the behavior of
several single element reinforced sand samples in which the in-
clusions are placed in horizontal as well as inclined directions. In
order to solve boundary value problems, the proposed algorithm
is implemented in a numerical code and the behavior of a full-
scale reinforced soil wall is studied.

Description of Reinforced Soil as a Two-Phase
System

Consider a reinforced soil mass in the global coordinate system
1-2-3, in accordance with Fig. 1(a), in which the planar inclusions
with thickness ¢ are placed in a periodic manner with the same
spacing h from each other. We take a local coordinate system
x-y-z for the inclusion. The y-axis of the inclusion is always con-
sidered to be parallel to the 3-axis of the global coordinate sys-
tem. As a general case, the inclusion direction may have an angle
of a with horizontal (the 1-3 plane). Such a medium can be re-
placed by a two-phase material, as shown in Fig. 1(b), which is
consisted of two continuous media (or phases) having mutual

Downloaded 19 Feb 2011 to 194.225.128.135. Redistribution subject to ASCE license or copyright. Vishttp://www.ascelibrary.org



interaction. From view of macroscopic scale, each geometrical
point of such two-phase material is decomposed into matrix phase
(labeled as m), on the one hand, which represents the soil and
reinforcement phase (labeled as r), on the other hand, which is the
macroscopic counterpart of inclusion network.

The statics equations derived from the kinematics of each
phase may be obtained by means of the virtual work method
(Sudret 1999; de Buhan and Sudret 2000). The equilibrium equa-
tions for each phase can be written separately as follows:

divefi+p"F{'+1;=0 (1)

for the matrix phase, and

divo;+p'Fi—1;=0 2)

for the reinforcement phase. o7} (resp. o7;) denotes the classical
Cauchy stress tensor defined in every point of the matrix (resp.
reinforcement) phase. The term p"F}" (resp. p'F;) indicates the
body force of the matrix (resp. reinforcement) phase. Finally, +1;
(resp. —1,) is the interaction body force exerted by the reinforce-
ment (resp. matrix) phase on the matrix (resp. reinforcement)
phase. These equilibrium equations will be completed by the cor-
responding stress boundary conditions that are prescribed on the
boundary surface of each phase separately.

By summing up Egs. (1) and (2), the global equilibrium equa-
tion for a two-phase material appears

div 3, +pF,=0 (3)

where

3

E,»j represents the global stress tensor with partial stresses of all
phases. The term pF; indicates the body force exerted to the
whole mass of the two-phase material.

For each phase, the stress-strain relationship is introduced
separately:

ij:()-;y;-l_a::j’ pF;=p"F/" +p'F; (4)

m__ ,m _m r o_ AT r
Uij_Aijklskl’ O'ij—Aijklgkz (5)

where AZ?H (resp. A;jk,) indicates the stiffness tensor of the matrix
(resp. reinforcement) phase. Besides, the evolution of stress state
in each phase is governed by its corresponding yield criterion
which defines the onset of plastic (irreversible) deformation in the
phase.

In general case, the phases may have kinematics different from
each other, resulting in different strain fields e;’; and s; for matrix
and reinforcement phases, respectively. The interaction body
force (1;) in Egs. (1) and (2) can be defined as a function of
relative displacement between phases. In the case of perfect bond-
ing, the displacement field of matrix and reinforcement phases
becomes identical. This makes the analysis less sophisticated
since there would be no need to calculate the displacement of the
phases in each geometrical point. In this case, we have

c.=s"=¢gl, (©6)
in which €;; denotes the strain tensor of the two-phase material.
By considering such strain compatibility condition, the global
stress-strain relationship can be obtained by summing up partial
stress tensors

2= A+ AL En (7

Inclusion Behavior

As mentioned before, the inclusion is considered as a planar form.
The behavior of the inclusion is described in the local coordinate
system x-y-z. The thickness in z direction is so small as to be
negligible in comparison with other dimensions in its plane. It is
assumed that the inclusion has an isotropic linear elastic-perfectly
plastic behavior with Young modulus (E™™), Poisson’s ratio (v"),
and yield stress (olic,,). Moreover, the inclusion only supports
tensile stresses whose sign is considered as negative. No shear
stress can be exerted in the x-y plane of the inclusion. The incre-
mental stress-strain relationship for a bidimensional element has
the following form according to the elasticity theory:

d.;nC Einc 1 vmc 8j‘nc (8)
pine 1 élvl'lC

- - 2

0y ) (1=v")
where o, and o, =in-plane stresses and &, and &, are correspond-
ing strains. The over dot denotes the incremental form of the
parameters. The yield function of the inclusion (/™) in a two-
dimensional space is in the form of Tresca criterion

fro 0V ) = o — o] < oyl ©)

Under the condition of plane strain (in the 1-2 plane), such as
what exists in the most reinforced soil wall analysis cases, defor-
mation in y-direction is considered to be zero. Hence, Egs. (8)
and (9) for such planar inclusion turns into one-dimensional form
as follows:

) ) ) Einc )
élHC - 0 i O-LHL = vlnC()-_lHC ()‘_IIIC - 5 émc (10)

X x X B X
mnc
1-v

finc(o_inC) — |0_inc‘ < _O-y&
(1 _ vincz)

X X

(11)

inc ‘

In order to define macroscopic properties of the reinforcement
phase in terms of those of the inclusion, the reinforcement volume
fraction (), which is usually very small, is introduced as the ratio
of the inclusion volume (V™) to that of the soil (V*)

yine ¢
= =- 12
X="7 =7 (12)

The generalized stress tensor in the reinforcement phase, which
corresponds to the in-plane stresses, appears in the following
form:

o =0l(e] @ ef) +ej(e] ® ¢)) (13)

in which ¢/=x0"™(i=x,y). The vectors {e"}={cos a,sin a,0}
and {€*}={0,0,1} indicate the direction of reinforcement phase
in 1-2 plane and the 3-axis, respectively. In the equation above,
the symbol ® indicates dyadic product of vectors. Also, the me-
chanical properties (without any change in Poisson’s ratio) are
defined as follows:

E'=xE™, O lield = Xo'iynigld (14)

Finally, the global stiffness tensor of the reinforcement phase
(A;jx) is defined in the following form:

Ajju=E'(e; ® €] ® ¢} ® €]) (13)
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Calculation of Parameters

By applying a uniaxial extension test along x-direction on a rein-
forcing sheet with a defined width and length, Young modulus can
be determined from average slope of load-elongation curve, J,.,
expressed in units of force per unit length, divided by thickness
(¢). It means: E™=J,./t. Poisson’s ratio is usually introduced by
the manufacturer. Finally, since the lateral stress (Gi}?c) in an ex-
tension test of the sheet is zero, the yield stress (oyi¢,) equals the
yield applied force per unit length (7%M) divided by thickness,
i.e., ol =T/ 1. Procedures for measuring tensile properties of
geotextile can be found in the standard test ASTM D4595-09
(ASTM 2009).

Soil Behavior

In the literature review of soil modeling, one can encounter a
number of soil constitutive models regarding elastic and plastic
behaviors for different loading paths. A comprehensive compari-
son among different soil models can be found in Seyedi Hossei-
ninia (2008). In the present research, we introduce a simple
constitutive model for noncohesive granular soils in such a way
that: (1) the soil behavior is simulated as well as possible with the
least number of model parameters for monotonic loading paths;

(2) the parameters can be easily measured in a straightforward

manner from traditional tests; (3) the formulation can be im-

proved properly for future extensions in order to consider differ-

ent aspects of soil behavior (such as critical state, anisotropy, etc.)
and loading conditions (such as cyclic response). To these aims,
the soil constitutive model is introduced within the bounding sur-

face plasticity framework (Dafalias and Popov 1975; Krieg 1975)

whose ability has already been proven to properly predict stress-

strain relationships of geomaterials (e.g., Yang et al. 1985; Wang
et al. 1990; Li 2002). According to this framework, a yield sur-
face always places inside the other surface called as bounding

surface. The magnitude of plastic strain increment is defined as a

direct function of distance between current stress state on yield

surface from a conjugate (image) stress state defined on the
bounding surface. The proposed model is based on the following
main assumptions:

1. The model parameters are not dependent to the void ratio. In
other words, a set of parameters are presented for a specific
degree of density. This assumption is justifiable since rein-
forced soil structures (such as GRS walls) are constructed in
such a way that the granular soil layers are placed according
to a controlled procedure with a nearly constant density;

2. The model cannot predict post peak softening behavior. In
the literature review of GRS walls behavior analysis, the soil
models used are mostly chosen in such a way that they only
takes into consideration the behavior of soil up to the peak
soil strength (e.g., Guler et al. 2007; Hatami and Bathurst
2005, 2006; Helwany et al. 1999; Holtz and Lee 2002; Ling
et al. 2004). It is also worth mentioning that Bathurst et al.
(2005) have investigated separately the behavior of a full-
scale GRS wall under working stress condition as well as
that of soil samples alone and have indicated that different
parts of the wall experienced strain levels less than or around
the soil peak strength shear strains. In these strain levels,
contiguous failure zones do not generate in the reinforced
soil zone and thus, the soil does not reach its ultimate (limit)
state. In addition, Allen et al. (2003) have expressed that the
soil would not attain its post peak behavior within the struc-
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tures under working stress condition where the strain level in
the reinforced soil mass is smaller than a limited value; and
3. The peak strength of the s0il (dbpey) is assumed constant. The
same assumption is considered for the parameter ¢pr, as
explained later, which describes dilative/contractive behavior
of the soil. It is examined that the value of these parameters
changes slightly in the range of applied stress levels in rein-
forced soil structures and the error resulting from this as-
sumption is ignorable in predicting the behavior (Pastor et al.
1990; Manzari 1994; Seyedi Hosseininia 2008).
All stresses are considered as effective since the medium is under
drained condition. The stress and strain components are consid-
ered as positive in compression and negative in tension. The for-
mulation is presented in terms of principal stress and strain
components. This results in a simple and comprehensive form of
equations so that it can be easily implemented in a numerical
code.
The total strain increment is supposed to be composed of two
parts: elastic and plastic. That is

§i= &0+ (16)

where ¢; represents the strain component correspondent to prin-
cipal stress direction. Dot sign indicates incremental form of the
corresponding parameter. The superscripts ¢ and p stand for the
elastic and plastic parts of the total strain increment, respectively.
In the following subsections, elastic and plastic behavior parts are
derived and by summing them up, the global stress-strain rela-
tionship of the constitutive equation will be introduced.

Elastic Behavior

Incremental elastic strain portion is obtained from the generalized
Hooke’s law in terms of shear modulus (G) and Poisson’s ratio

(v)
1

& ——————Ph—VESdJ (17)

" 2G(1+v) i
It is assumed that the Poisson’s ratio is constant in the model.
According to empirical studies based on the measurement of elas-
tic shear modulus of granular media (e.g., Duncan and Chang

1970), a nonlinear relationship as a function of mean effective
stress (p) is considered for G

( P )n

G=Gy| — 18
|5 (18)
G, and n are positive model parameters and p, is a reference
pressure (which is considered as the atmospheric pressure
=101 kPa). The procedure how to determine these parameters are
explained in the calibration section.

Plastic Behavior

The yield surface (f) is expressed in the same form of Mohr-
Coulomb surface as a wedge-type shape

floy,03) = (0 —03) = sin @ep(0y +03) =0 (19)

where ¢,,,,=mobilized friction angle and it is representative of
the size of yield surface. o, and g5 are major and minor principal
stresses, respectively. The intermediate principal stress o, does
not play any role in the plastic behavior (63 <o, <0). A similar
surface is considered as bounding surface (F”), where the mobi-
lized friction angle of sand reaches the peak value (d)peak)
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F'(51,63) = (&) — 33) — Sin @peu (T +33) =0 (20)

The bar symbol in the above equation indicates the stress state on
the conjugate (image) point over the bounding surface which can
be defined by the mapping rule: the conjugate point correspond-
ing to the current stress point is located on the bounding surface
with the same effective mean stress (Li and Dafalias 2000).

In the theory of soil plasticity, the coupling between volumet-
ric and shear plastic strain increments can be appropriately de-
scribed by dilatancy, D, which explains contractive or dilative
behavior of sand

D=—gl/s! 21)

where &)=¢f+€£ and &) =¢{ - € represent plastic volumetric and
plastic shear (deviatoric) strain increments, respectively. The di-
latancy function (D) is introduced as follows:

D =D[sin @pep = sin @pri ] (22)

where D is a positive model parameter. ¢bpyp is the mobilized
friction angle at which the sand behavior is transformed from
being contractive to dilative (e.g., Ishihara 1996). If the sand has
loose state, this parameter will get a value close to ¢ e Eq. (22)
can be regarded as the similar form of the equation introduced,
for example, by Nova and Wood (1979), Wang et al. (1990), and
Manzari (1994). In the calibration section that follows, it is shown
that the model can well predict the soil behavior in both dense

and loose states by using this simplification.
Plastic strain increment is calculated according to the nonas-

sociated flow rule
8= <>\>a—g (23)

Jo;

where g represents plastic potential function of sand and N\ is
plastic loading index. The McCauley brackets ( ) indicate (x)=x
if x>0 and (x)=0, otherwise. Instead of explicitly introducing g
function, we herein introduce its derivatives such as what has
been done in generalized plasticity (e.g., Mroz and Zienkiewicz
1984; Pastor et al. 1990; Ling and Yang 2006). To this aim, we

rewrite Eq. (23) in shear and volumetric form
&h=(\)dgldq, €,=(\)dgliq (24)

in which g=0;—035 is shear stress. Since the normality condition
exists in the octahedral (shear) plane of principal stresses (Lade

and Duncan 1973), we have: dg/dg=df/dq. Hence, by having
the derivative of yield function (f) in terms of shear stress (g),
i.e., df/dg=1 as well as using Eq. (21), one can find: &/=(\) and
&l'=—(\)D. Consequently, the plastic principal strain increments
can be calculated

=N _py N

2 2 25

It is reminded that the dilatancy function (D) is a function of
stress level in accordance with Eq. (22). At the beginning of load-
ing, the mobilized friction angle (¢,,,) is smaller than Gpr (D
<0), which represents the soil contractive behavior. The growth
in ¢, initiates the dilative behavior (D >0) by passing through
the turning point where D becomes zero at ¢, ., =bpyp. It is worth
noting that Eq. (25) is comparable with the incremental plastic
strain forms in Mohr-Coulomb model, in which D=sin {s. The
parameter {s is known as dilatancy angle and it is assumed to be
constant. As a consequence, it can be said that the present model
accounts for the plastic deformational behavior more precisely
than the Mohr-Coulomb model.

Finally, according to the definition of plastic loading index (\)
by the theory of plasticity (Dafalias 1986a), we have

1

1% 1
A= Ep(;ﬁj('ﬂ-) = Ep[(l = SiN Qo) I 1 (1 + Sin @) T3]

(26)

K, is the plastic modulus and is defined as follows (Dafalias

1986b):

sin Ppeak — sin ‘Pmob) (27)

Kp = hoG( N
S1 Ppygp

where hy=model parameter. As obvious from the above equation,
the plastic modulus is infinite (K, =) at the very beginning of
virgin loading, while its value gets close to K,=0 as far as the
mobilized friction angle reaches the bounding limit value (@0

= (Ppea.k)-

General Formulation

Referring back to Eq. (16) and combining elastic [Eq. (17)] and
plastic [Eq. (25)] parts of strain increments, the general stress-
strain relationship can be established, with some mathematical
manipulations, in the following form:

€ | K,+(1=D)(1=sin ¢,0))G  =vK, —vK,—(1=D)(1+sin @u)G ||,
Sy (= ————————— -vK K -vK ) 28
272601+ v)K, = ’ " > 2
&5 = VK, = (1 +D)(1 =sin ¢yp)G —vK, K, +(1+D)(1 +sin ;)G G5

There are totally six model parameters including v, Gy, n, Dy,
dprr, and hy. In the following subsection, we explain how to
calibrate their values from conventional tests.

Calibration of Model Parameters

By performing either drained plane strain compression (PSC) or
triaxial compression (TC) tests, in which the soil sample is under
major (applied stress) and minor (constant lateral stress) principal
stresses, all soil model parameters can be easily measured based
on curves of deviatoric stress (¢) and volumetric strain &,(=g,;

+&,+&3) versus shear strain g (=g, —&3). The proposed procedure
for calculation of each parameter is shown schematically in Fig. 2
and is explained in detail in sequel.

Poisson’s ratio (v)

Since Poisson’s ratio is a parameter in domain of elasticity, it
would be difficult to quantify it for soil because the elastic behav-
ior of soils occurs in very small strain range. However, we sup-
pose that the plastic portion of soil behavior is ignorable at the
very beginning of loading. Hence, the value of Poisson’s ratio is
estimated from the initial slope (D) of volumetric strain-shear
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Gn =—gs
) h — _35,Sindy(1-Sinb)
/.| 5, /s " (8,:2G)(1+ v)(Sind, ;Sind,)
1 /lé

ek
" :S'm'( o -0 )
i o a,

Fig. 2. Calibration method of parameters involved in the soil model
based on curves of deviatoric stress and volumetric strain versus
shear strain

strain curve at &,=0. Regarding different boundary effects in PSC
and TC tests, the Poisson’s ratio equals (see Appendix)

1-D,
+D,

v= for triaxial test (29)

1-D,

v= for plane strain test (30)

Shear Modulus Coefficients (z and G)

If at least three tests with different mean stresses (p) are con-
ducted on same sand samples, these two parameters can be deter-
mined by measuring the initial slope of deviatoric stress-shear
strain curves as S; which is equal to corresponding elastic shear
modulus. Referring to Eq. (18) and using Napierian logarithm
function [In (x)] for both sides, it can be rewritten as follows:

In $, =In G0+nln(£> 31)
Thus, by trending the best straight line through InS; and
In (p/p,), both parameters are obtainable. Alternatively, in the
absence of data, the value n=0.5 is generally acceptable for pre-
diction of sand behavior (e.g., Pastor et al. 1990; Li 2002). Then,
G, can be assessed by back calculating from ;.

Determination of ¢, and dpryy,
Based on Eq. (19), the mobilized friction angle of soil in every
arbitrary stress state is assessed by

g —0
Pmob= sin“('—3) (32)
(O8] + (O

Then, by referring to the deviatoric stress and volumetric strain
curves, it is possible to find b, Where the maximum value of g
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m Dense RF Hostun Sand (Dr=85%)
10.5 -  #Loose RF Hostun Sand (Dr=25%)
1or Ln(S;) = 0.75Ln(
1) =0. Po/p,) + 8.9
— n=0.75
0 g5 | Gp=e**=73MPa
5
g -
Ln(S,) = 0.77Ln(p,/p,) + 8.2
85 ¢ n=077
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Fig. 3. Determination of elastic shear modulus parameters (G, and n)
for dense and loose RF Hostun sand

is reached and ¢py;, where the volumetric strain has changed his
trace from having a contractive behavior to being dilative.

Dilatancy Parameter (D)

Having found &pryy, it is possible to assess the value of D from
the slope (D,) of volumetric-deviatoric strain curve in strain lev-
els corresponding to around maximum shear strength (¢
=) According to Eq. (22), we have

D,

(sin Ppeak ~ sin @pry)

D, (33)

Hardening Modulus Parameter (%)

Based on Eq. (28), the incremental relationship between shear
stress and shear strain, by considering o;=cfte, can be assessed as
follows:

. 2G(1 +v)K, .
= &
1= (1)K, = 26(1 - sin @pp) !

(34)

The fraction in the right hand side in the above equation indicates
tangential slope of an arbitrary point in the deviatoric stress-strain
curve. As a consequence, the parameter A, is calculated by having
the tangential slope (S,) at any point. Considering the tangential
slope at the ¢pppy, point, for example, we obtain

_ 2S2(1 —sin “Pmob)Sin Pmob
(1 + v)(Sin ‘Ppeak —sin "Pmob) (SZ - ZG)

0 (35)

Evaluation of Soil Model

In order to show the ability of the proposed sand model, we
herein simulate the behavior of sand in plane strain condition.
Besides, the soil behavior under triaxial condition will be simu-
lated and the results will be presented in the upcoming section
where the behavior of a reinforced soil wall is studied.

Desrues and Viggiani (2004) have carried out a series of PSC
tests on dense (D,=95%) and loose (D,=25%) RF Hostun sand
under drained condition and different lateral pressures of 100,
200, 400, and 800 kPa. We have assessed all the model param-
eters based on the procedure mentioned in the calibration section.
Fig. 3 shows the relationship between In(S;) and In(p,/p,) from
which the parameters G, and n are obtained. In each curve, the
other parameters (such as bpeac and &pr) have been obtained
which are found to be almost in the same order. The mean values
of all sand parameters are reported in Tables 1 and 2 for dense
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Table 1. Model Parameters of Dense RF Hostun Sand (D,=95%)

v GO n D 0 d) PTL h() (bpeak
) (MPa) S ) (deg) ©) (deg)
0.40 7.30 0.75 1.04 30.7 0.40 45.20

and loose RF Hostun sand samples, respectively. As can be seen,
the &, value for the dense group is obtained higher than loose
group, which is reasonable. Moreover, since the loose samples
tend to dilate hardly in large strains, it can be seen that the ¢pyy,
value is assessed close t0 ¢, While this is not the case in dense
group and the transition from contractive to dilative behavior
takes places in small stress levels.

The results of experimental tests as well as the simulation of
sand behavior by the proposed formulation are demonstrated to-
gether in Fig. 4 for dense and loose samples. As can be seen, there
is a good agreement between experimental and simulation results
in stress and strain spaces for a large range of stresses (100-800
kPa), especially for dense sand which is the most case existing in
a reinforced soil medium.

Table 2. Model Parameters of Loose RF Hostun Sand (D,=25%)

v GO n D 0 (bPTL hO 4) peak
) (MPa) ) ) (deg) ) (deg)
0.40 3.60 0.77 0.80 31.80 1.48 33.30
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Numerical Implementation

The proposed formulation is implemented in the finite difference-
based code FLAC (Itasca Consulting Group 2001). Since two
types of material (matrix and reinforcement phases) exist in each
element, stress-strain calculation is performed separately for each
phase. It is first assumed that applied total strain increment on the
two-phase system is elastic. Therefore, elastic trial stresses in
both phases are calculated. Then, it is examined if the stresses
violate yield criteria. If the stress state lies outside its yield func-
tion, stress state is corrected by plastic correction procedure used
in FLAC (explicit procedure). The calculation is initially
launched for the matrix phase. The calculation then continues for
the reinforcement phase. Having found stress levels in both
phases, the global stress tensor in the mass is calculated by sum-
ming up the partial stresses of two phases [Eq. (4)].

Simulation of Reinforced Soil as a Two-Phase
System

In order to validate the proposed constitutive model by the two-
phase formulation, in this section, the behavior of several rein-
forced soil samples is simulated which are loaded in a PSC
apparatus under drained condition. This kind of test pertains to
the condition found generally in reinforced soil walls. The sample
is modeled as a single element under vertical major (%,) and

10% 12%

6%

0% 8% 14%
Axial Strain

5%
© p0=800kPa Loose RF Hostun Sand

4% | O p0=400kPa
A p0=200kPa
O p0=100kPa

1% .

0% 2% 4% 8% 8% 10% 12% 14%
Axial Strain

(b)

Fig. 4. Results of experimental tests from PSC tests [data from Desrues and Viggiani (2004)] and those of simulation by the proposed sand model
under different lateral pressures of 100, 200, 400, and 800 kPa: (a) dense RF Hostun sand; (b) loose RF Hostun sand
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Table 3. Properties of Geotextile Used in Tatsuoka and Yamauchi (1986)

Ultimate
elastic
Eine oyga U™ strain t
Geotextile (kN/m?)  (kN/m?) () (%) (mm)
Machine direction 12,000 42 0 15 4
Cross direction 5,000 18 0 15 4

constant horizontal minor (3,) principal stresses. As a first step,
the behavior of each constituent (soil and inclusion) is individu-
ally determined and then, based on the formulation of the two-
phase system, the global behavior of such composite material is
simulated. A sensitivity study on different parameters of soil and
inclusion and their effect on the global behavior of reinforced soil
can be found in Seyedi Hosseininia and Farzaneh (2008) in TC
space. In the end, the construction behavior of a GRS wall is
simulated and the results are compared with experiment.

First Series of Simulation (Tatsuoka and Yamauchi
1986)

Tatsuoka and Yamauchi (1986) performed a series PSC tests on
reinforced dense Toyoura sand. The sand was reinforced by one
geotextile layer, placed horizontally at the middle. The sample
had the height and length of 75 and 80 mm and width of 40 mm.

20

# Reinforced by Geotextile (Machine Direction)
18 [ o Reinforced by Geotextile (Cross Direction)
16 -£- Unreinforced Sand

-
r

Stress Ratio (Za/Z,)
=

8
6
4 F
2
0 I 1 I
0% 2% 4% 6% 8% 10%
Axial Strain
2%
Simulation
1%
0% o

#

Volur.netrlc Strain

-4 Relinforced by tile (Machine Direction)
4% o Reinforced by ile (Cross Direction)
-5 Unreinforced Sand
-5% . : : ! L
0% 2% 4% 6% 8% 10%
Axial Strain

()

The sample was loaded in a strain control manner with a lateral
confining pressure of 3; =49 kPa. The geotextile had higher stiff-
ness in its machine direction than the cross direction. The prop-
erties are according to Table 3. In order to show the significance
of the present development in the two-phase material, we first
simulate the global behavior of such composite by considering the
original soil model as linear elastic-perfectly plastic with Mohr-
Coulomb criterion. The elastic soil parameters include Young
modulus (E=12 MPa) and Poisson’s ratio (v=0.4), while the
plastic behavior is expressed as nonassociated with dilatancy
angle y=9.5° and friction angle ¢b=48.3°. We have estimated the
parameters according to the procedure mentioned in Brinkgreve
(2005).

The results of simulation and experimental tests of unrein-
forced and reinforced soil samples are shown in Fig. 5(a) in terms
of stress ratio (2,/%;) and volumetric strain along axial strain.
The nonlinear growth in stress ratio of all samples is estimated by
two straight lines. The first line has the same slope for all samples
while the latter shows a specific slope which is related to the
stiffness of inclusion. On the other hand, the results of laboratory
tests show that the stress level of reinforced samples reaches a
peak value in large axial strain. However, the growth in stress
level in the simulations does not stop and the increase continues.
This is due to the fact that no interface failure is considered in the
model. Thus, the model overestimates the ultimate strength of
samples reinforced by extensible inclusions. This part of behavior

- Reinforced b textile (Machine Direction)

18 | o Reinforced by Geotextile (Cross Direction)
—f Unreinforced Sand

16 -

14 Simulation

Experiment

Stress Ratio (Z,/T,)
=]

1]

0% 2%

4% 6% 8%
Axial Strain

10%

- Reinforced by Geotextile (Machine Direction)
-4% -&- Reinforced by Geatextlle (Cross Direction)
-=- Unreinforced Sand
59, . . . . . . . L
0% 2% 4% 6% 8% 10%
Axial Strain

(b)

Fig. 5. Presentation of experimental and simulation results of tests on unreinforced and reinforced Toyoura sand under lateral pressure of 70 kPa
[data from Tatsuoka and Yamauchi (1986)]. The inclusion is geotextile with different stiffnesses in direction. (a) Simulation by linear soil model,

(b) simulation by proposed soil model.
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Table 4. Model Parameters of Dense Toyoura Sand

v GO n D 0 ¢ PTL hO (bpeak
) (MPa) © G (deg) ©) (deg)
0.40 8.00 0.50 0.70 27.00 0.25 48.30

at large axial strain is out of scope of the two-phase model. Re-
ferring to volumetric strain variation, it can be seen that all simu-
lated samples show a high reduction in volumetric strain until the
soil becomes plastic, where contractive behavior turns into being
dilative. As can be seen, there is not a good agreement between
the simulations and the experiment. In other words, the linear soil
model is not liable to predict accurately the deformational regime
of the samples.

Now, we simulate the behavior of Toyoura sand by the pro-
posed model. We have calculated the parameters based on the
procedure mentioned in the calibration section and they are stated
in Table 4. The parameter n is assumed to be 0.5 and the G is
back-calculated. Fig. 5(b) presents the results of simulation and
experimental behavior of unreinforced and reinforced soil
samples. Despite the previous simple soil model, the results of
simulation with nonlinear soil model are well fitted on the experi-
mental results for both unreinforced and reinforced samples be-
fore the stress ratio of samples reaches the maximum value. This
satisfactory agreement can be found both in stress ratio and volu-
metric strain. The result is less satisfactory for the machine direc-
tion, though. Referring to both experimental and simulation
results, as expected, since the geotextile is stiffer in machine di-
rection, the stress ratio grows rapidly in comparison to the sample
including deformable geotextile (cross direction). Similarly, it is
shown that the sample including the geotextile with stiffer direc-
tion has the least tendency in dilation among all samples.

Second Series of Simulation (Cividini 2002)

Cividini (2002) performed several PSC tests on reinforced
samples with different inclusion inclinations. The cell had width
and length of 40 mm and 80 mm, and height of 140 mm. The soil
used was dense Ticino sand (D,=70%). According to the proce-
dure mentioned in the calibration section, we have obtained the
soil model parameters from the test results which were performed
on sand alone under different confining pressures of 50, 100, and
200 kPa. The values of parameters are listed in Table 5. Among
them, the parameters n and G, have been derived from Fig. 6.
In addition, we have simulated the soil behavior by the linear
Mohr-Coulomb model with following parameters: E=30 MPa,
v=0.25, $=41.8°, and $=19.2°. The behavior of unreinforced
samples, obtained from experimental tests and simulations, is
demonstrated in Fig. 7 in terms of stress difference (2,-2,) and
volumetric strain versus axial strain. The comparison between
experiment and simulation expresses good agreement before soft-
ening behavior by the proposed model while the linear soil model
only gives us a rough estimation in trend but far from reality.
The degree of discrepancy is much higher for the variation of
volumetric strain. First series of reinforced samples included
specimens with horizontal inclusions with the same spacing of

Table 5. Model Parameters of dense Ticino Sand (D,=70%)

v Gy n D, bprL ho ‘bpeak
) (MPa) ©) ©) (deg) ) (deg)
0.25 10.6 0.615 2.30 30.00 0.61 41.20

98
# Dense Ticino Sand (Dr=70%)
986
94
%)
z 9.2
-
g Ln(Sy) = 0.615Ln(p,/p;) + 8.3
n=06&15
G, =e**=106 MPa
B8 - *
86 = - 1 L 1 .
-08 06 04 -02 0 0.2 04 06 0.8

Ln(po/pr)

Fig. 6. Determination of elastic shear modulus parameters (G, and n)
for dense Ticino sand

20 mm from each other. The inclusion layers used were poly-
propylene, nonwoven geotextile P-TS10. The properties are re-
ported in Table 6. The samples were conducted under the same
confining pressures as the unreinforced ones. The results of stress
difference (2,-,) versus axial strain from experimental as well
as simulation tests are illustrated in Fig. 8. The variation of volu-
metric strain of samples is not shown here since local values of
strains were measured in laboratory during the tests which seems
not to be representative of the characteristics of the whole sample.
Referring to Figs. 8(a and b), the simulated behavior of samples
with linear and nonlinear soil models shows almost the same
trend of growth in stress level as the experiment. However, it is
possible to distinguish different initial slopes of curves with the
nonlinear soil model while the simulation with linear soil model
indicates the same slope for all samples. It is again reminded that
the present model cannot predict the peak value of the composite
with such extensible inclusions since no failure is considered in
the contact surface (interface).

In the second part of laboratory tests, the specimens were pre-
pared in such a way that the inclined inclusions were laid at the
inclined angle of 15°, 30°, and to 45° from horizontal direction.
The tests were conducted with different inclusion spacing of 20
and 30 mm under confining pressure of 100 kPa.

The preparation of reinforced samples were in such a way that,
not only the inclusion layers, but also the tamped soil layers were
placed in an inclined direction. In other words, the soil would be
under an anisotropic stress loading regarding the bedding angle.
Since we did not have the behavior of soil samples alone (and
thus soil model parameters) under such bedding angles, we have
used the same parameters derived from Fig. 7 in modeling the
behavior of reinforced samples with inclined inclusions.

The behavior of samples for both groups (spacing=20 and
30 mm) is illustrated in Fig. 9 in terms of stress differences (2,
-3). In accordance with the simulation results in each group,
although the same soil model parameters, regardless the inclina-
tion effect, have been applied for all samples, it can be found that
the model can well predict the trend in stress level in different
angles so that the samples have smaller tendency in shear strength
growth as the inclination increases. Such consistency between
results indicates that stress field in the two-phase system is as-
sessed with acceptable precision. Moreover, it can be figured out
that the reinforcement volume ratio can have influence on the
composite strength, since the stress level of reinforced soil
samples with spacing of 20 mm is assessed higher than the
samples with spacing of 30 mm.
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Fig. 7. Presentation of experimental and simulation results of tests on unreinforced dense Ticino sand (D,=70%) under lateral pressure of 50,
100, and 200 kPa [data from Cividini (2002)]: (a) simulation by linear soil model; (b) simulation by the proposed soil model

Table 6. Parameters of Geotextile Used in Cividini (2002)
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Third Series of Simulation (McGown et al. 1978)

As the last series of single element tests, the results of several
PSC tests on reinforced sand, performed by McGown et al.
(1978), are referred here. The samples were tests under constant
confining pressure of 70 kPa with different types of inclusion.
The sand used was dense Leighton Buzzard (D,=65%). The unit
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Fig. 8. Presentation of experimental and simulation results of tests on reinforced Ticino sand (D,=70%) under lateral pressure of 50, 100, and
200 kPa [data from Cividini (2002)]: (a) simulation by linear soil model; (b) simulation by proposed soil model
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Fig. 9. Variation of stress difference for experimental and simulation tests on reinforced Ticino sand under lateral pressure of 100 kPa with
different reposed angle of soil and inclusion [data from Cividini (2002)]: (a) with a spacing of 20 mm; (b) with a spacing of 30 mm

cell in the tests had the width and height of 102 mm with length
of 152 mm. A horizontal inclusion layer was used to reinforce the
sand.

In spite of previous series of tests where geosynthetic-type
inclusions were used in the samples (high deformability), the in-
clusions of the present study consisted of nonwoven fabric
(T140), aluminum mesh, and aluminum foil. The first type of
inclusion was extensible, while the latter two ones were of inex-
tensible type; T140 had a large deformability but the other ones
had very limited range of extension. The properties of inclusions
as well as soil model parameters are listed in Table 7 and 8,
respectively. We have simulated the behavior of samples by
considering the linear soil model too in which Young modulus
is regarded as E=52 MPa. In the reference paper, the curve of
volumetric strain versus axial strain was not reported for unrein-
forced sand. Thus, some assumptions for values of Poisson’s ratio

Table 7. Properties of Inclusions Used in McGown et al. (1978)

Ultimate
elastic
Jave Tvield i strain t
Geotextile (kN/m) (kN/m) ) (%) (mm)
Fabric (T140) 30 3.0 0 15.0 1
Aluminum mesh 200 4.0 0 2.0 1
Aluminum foil 560 1.4 0.1 0.25 1

(v=0.3) and dilatancy are considered: dilatancy (D) is defined as
a constant value equal to sin { in which §i=21°.

The obtained experimental data as well as two sets of perdi-
tions of unreinforced and reinforced sand samples are shown in
Fig. 10. As figured out, the simulation with linear soil model
shows several breaks in the curves in addition that all samples
have the same initial stiffness. However, the simulated curve of
each sample with the proposed soil model is specifically distin-
guished by their initial slopes. For instance, the slope of sample
with T140 is located between unreinforced and aluminum foil
samples such as that observed in laboratory.

It is here interesting to note that the samples with aluminum
foil and mesh have reached the ultimate strength in small strain
level which indicates that both soil and reinforcing element have
yielded as reported in laboratory too. The maximum stress ratio
has been estimated with good precision too. However, such as
what was observed in previous series of tests, the stress level in
the sample with extensible element (T140) continues to increase

Table 8. Model Parameters of Dense Leighton Buzzard Sand (D,
=65%)

v GO n ll’ hO d)peak
Q) (MPa) &) (deg) “) (deg)
0.30 62.90 0.50 21.00 0.86 51.00
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Fig. 10. Stress ratio versus axial strain diagrams for reinforced
Leighton Buzzard sand samples with horizontal inclusions under lat-
eral pressure of 70 kPa: (a) experimental data; (b) simulation by
linear soil model; and (c) simulation by proposed soil model

in a gentle manner. Hence, it can be concluded that the two-phase
system can predict the ultimate strength of composite only if in-
extensible inclusions are used in the system.

Simulation of a Full-Scale Reinforced Soil Wall

Finally, in order to demonstrate the accuracy and performance of
the presented algorithm, the construction behavior of a monitored
full-scale reinforced soil wall is analyzed. The wall was con-
structed and instrumented by the Public Works Research Institute
(PWRI) in Tsukuba, Japan. Basic information of PWRI Wall has
been reported by Tajiri et al. (1996). The geometry and the instru-
mentation of the PWRI wall is shown in Fig. 11(a). It was con-
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structed directly on a concrete floor inside a test pit with the
height of 6 m. The wall was constructed using six primary and
five secondary geosynthetic layers, each 3.5 and 1.0 m long, re-
spectively. The geosynthetic layers were bolted to the concrete
modular blocks using the nuts and metal frame. The wall face
consisted of a total of 12 concrete blocks with 50 cm high and
30 cm wide, except for the top and bottom blocks which were 45
and 55 cm high, respectively. The horizontal displacement of wall
face was measured at 12 points along the height. Also, the strain
gauges were used to measure the elongation of geogrid layers.
The lateral stress behind the wall as well as vertical stress at the
bottom of the wall were measured too.

The backfill used was a silty sand (Ds;=0.42 mm, vy
=16.0 kN/m?>, C,=4.6). In order to investigate the soil behavior,
three drained TC tests with confining pressures of 25, 50, and 100
kPa were applied. The proposed soil model is used to simulate the
behavior and the parameters are calculated based on the calibra-
tion procedure mentioned before. The soil parameter values are
depicted in Table 9. The results of experiment as well as simula-
tions of TC tests are shown in Fig. 12 in terms of deviatoric stress
and volumetric strain versus axial strain. As obvious, the model
can well simulate the soil behavior obtained from triaxial tests
too. For the reinforcing layers, polyethylene (HDPE) geogrid was
used. The strength of the geogrid is 55 kN/m and the stiffness is
taken as 800 kN/m (secant stiffness at 1.5% strain). Using large-
scale direct shear tests, the interface friction angles for block-
block and soil-block interactions were obtained as 8=19.6° and
16.5°, respectively.

The grid used in the numerical simulation, as shown in
Fig. 11(b), consists of 589 elements. Different parts of the grid
include concrete floor, concrete blocks, backfill (soil alone repre-
sented by one single phase), reinforced zones (as two-phase ma-
terial) with different reinforcement volume fraction ratios, and the
interface elements between dissimilar materials. The concrete
floor and concrete blocks are assumed to have linear elastic be-
havior with the properties E=2 GPa, v=0.17, and y=23 kN/m?.
For interface elements, a value of 2.4 X 10” Pa/m and 107 Pa/m
is used for normal stiffness (k,) and shear stiffness (k), respec-
tively. It is here noted that Ling et al. (2004) have analyzed the
wall as a discrete model by considering separately the soil (using
a generalized plasticity soil model) and reinforcement layers
(using a bounding surface model). In addition, the interaction
between soil and geogrid was considered by interface elements.
The model was composed of 2314 elements including 115 bar
elements for the inclusions. It would be of interest to say that the
obtained results in the present study are very close to those of the
analysis performed by Ling et al. (2004).

For brevity, the results of analysis are compared with mea-
sured data in terms of face horizontal displacement as well as
strains in primary geogrids. Fig. 13 presents the wall face defor-
mation profile in each stage of construction. As seen, there is a
good agreement between the measured and analyzed results for
the construction height of 4 m and above. The patterns are well
replicated. It is noted that since each concrete block in the face
has been represented by two nodes, the simulated results seems to
be fluctuating. The strain distributions along the primary geogrid
layers are depicted in Fig. 14 from both experiment and the analy-
sis. In a general sense, it can be said that the calculated strains
from the analysis have the same trend as the measured data and
they match up satisfactorily to each other. According to Ling et al.
(2004), the observed difference in the strain pattern could be at-
tributed to the possible stress concentration due to uncommon
connection (bolt and nut) of geogrid to blocks as well as creep in
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Table 9. Model Parameters of Silty Sand Used in PWRI Wall

the geogrid that were not considered in the model. The similarity
between the results of the present study with those of the analysis
by Ling et al. (2004) implies that the perfect bonding hypothesis
in the present analysis could have little influence on the results.
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©) (MPa) &) ) (deg) Q) (deg)
0.20 11 050 160 3300 037 39.00 Summary and Conclusions
In the present contribution, the formulation of a two-phase system
is introduced, in which a nonlinear elastoplastic constitutive
model was considered for the matrix phase. The algorithm was
Pty gbvisid layer Secotdaiy geognd tayer aimed to analyze the behavior of GRS walls under operational
(a) . 15 035 condition rather than collapse state.
(P : il By paying attention to the soil characteristics within reinforced
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Fig. 13. Horizontal deformation of PWRI wall for different construc-
tion heights
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Fig. 14. Strain distribution of primary inclusions at final height
(H=6 m)

predict the nonlinear prepeak behavior of single element rein-
forced soil samples with reasonable precision. Simulation of a
full-scale reinforced soil wall indicated that the simplifications
used in the soil model as well as the hypothesis of perfect bond-
ing between phases does not considerably influence the simula-
tion results of structures under operational conditions.

For reinforced soil systems under considerable loadings, the
present algorithm should be improved. In this regard, the soil
model should be able to consider post peak behavior.

Furthermore, an improvement should be accounted for inter-
face behavior by considering relative displacement and/or contact
failure between phases. The model can also be upgraded for the
analysis of reinforced soil walls under cyclic loadings.

Appendix

According to Hook’s law [Eq. (17)], the incremental form of elas-
tic shear strain (£7) equals

1
2691793 (36)

g, =€ —&5=
Regarding the different boundary conditions in triaxial and plane
strain tests, incremental volumetric strain &, is defined by

1-2v
£ =€{+2€5= ﬁ(d1 +203) in triaxial test  (37)
1-2v
£ =€]+€5= g(dl +2073) in plane strain test (38)

2G

Since the minor principal stress is constant in the tests, i.e.,
d3=0, the ratio &;/&; can be assessed accordingly as follows:
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& 1-2v  1-D, . . |
D =—"= =7V in triaxial test (39)
g, 1+v 2+ D,
& -
Di=—=1-2v=v L in plane strain test  (40)
€
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