
NOMENCLATURE

c aerofoil chord length

c1 cognitive coefficient

c2 social coefficient

cd coefficient of drag

cj constraint cost repair constant

cl coefficient of lift

cT
l target lift coefficient

clmax maximum coefficient of lift 

cm coefficient of moment

cp coefficient of pressure

cm0 coefficient of moment at zero lift

cT
p target coefficient of pressure

D problem dimension

di (x) elementary effect of input vector

dj constraint function distance metric

fp penalised fitness

K constriction factor

k number of design variables

M aerofoil chord partition size

M∞ freestream Mach number

n number of particles in the swarm

pf personal best fitness range of the swarm

pbesti
D best personal solution of the particle

pbestg best global solution of swarm

ABSTRACT

Intelligent shape optimisation architecture is developed, validated and

applied in the design of high-altitude long endurance aerofoil

(HALE). The direct numeric optimisation (DNO) approach

integrating a geometrical shape parameterisation model coupled to a

validated flow solver and a population based search algorithm are

applied in the design process. The merit of the DNO methodology is

measured by computational time efficiency and feasibility of the

optimal solution. Gradient based optimisers are not suitable for multi-

modal solution topologies. Thus, a novel particle swarm optimiser

with adaptive mutation (AM-PSO) is developed. The effect of

applying the PARSEC and a modified variant of the original function,

as a shape parameterisation model on the global optimal is verified.

Optimisation efficiency is addressed by mapping the solution

topology for HALE aerofoil designs and by computing the sensitivity

of aerofoil shape variables on the objective function. Variables with

minimal influence are identified and eliminated from shape optimi-

sation simulations. Variable elimination has a negligible effect on the

aerodynamics of the global optima, with a significant reduction in

design iterations to convergence. A novel data-mining technique is

further applied to verify the accuracy of the AM-PSO solutions. The

post-processing analysis, to swarm optimisation solutions, indicates a

hybrid optimisation methodology with the integration of global and

local gradient based search methods, yields a true optima. The

findings are consistent for single and multi-point designs.
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flights require extended regions of laminar flow to minimise cd0.
The requirement is established by specifying a velocity/pressure
distribution profile, that extends the favorable pressure gradient
downstream of the leading edge radius, to a specified aerofoil
chord station x/c. The objective function is defined by a least
square formulation, where the target pressure distribution cl

T , must
match the computed cp, along aerofoil chord x/c, at point i, over M
partitions:

The demerit of this approach is transforming the mission require-
ments to a velocity profile. ’The transformation of the desired
boundary-layer characteristics into a pressure distribution is left to
the imagination of the aerofoil designer’(1). Establishment of valid
velocity profile does not guarantee an aerodynamically feasible
shape. The generation of a ’fish-tail’ aerofoil with the upper and
lower surfaces bisecting, is a possible solution. Thus, the input
velocity profile will require re-adjustment to address the issue.
Hence, the inverse approach is not considered in this paper.

1.2 Direct design

The use of a direct method is an alternate to the inverse approach for
shape design. The methodology requires the integration of a
geometry shape parameterisation model to represent an arbitrary
aerofoil/wing, to a flow solver for aerodynamic analysis and an
optimisation algorithm for an intelligent search analysis. The compo-
nents operate in iteration for convergence based on defined objec-
tives and constraints. The objective function defined minimises the
drag coefficient cd, at cruise, by maintaining the target lift coefficient
cl

T subject to a geometrical constraint of thickness-to-chord t/c,
bounded by a lower and upper limit t/cL and t/cU respectively. This is
presented in Equation (2).

Jmin = cd

subject to: cl ≥ cT
l

: t/cL < t/c < t/cU

1.3 Background and literature survey

The DNO methodology comprises of three components: a) Aerofoil
shape parameterisation model; b) Validated flow solver; and c)
Optimisation algorithm. The components operate in iteration to
generate an optimal shape based on defined objectives and
constraints. Hence, the components are validated to ensure a feasible
solution as an output to the optimisation process. Aerofoil shape
parameterisation model defines the search space to the optimisation
problem. Aerodynamic solvers capture flow features from shock
development for transonic flows to laminar separation bubbles at
low-speeds. The limitation of the computational code must be
identified. The optimisation process is governed by the search
algorithm applied. The optimiser is developed and tuned for a valid
search process and is problem dependent. This section investigates
numerical techniques used in the DNO approach.

The earliest reported aerodynamic shape optimisation analysis,
originated in wing design by Hicks et al(2). Hicks integrated a fully
potential, inviscid aerodynamics code, coupled with a conjugate
gradient optimisation algorithm, based on the steepest descent
direction of the objective function(2). Shape parameterisation was
achieved by adding a series of sinusoidal curves (Hicks-Henne
functions), to a baseline shape to generate a new geometry.

Hicks supports the direct approach over the inverse method, as off-
design conditions are automatically considered during the optimi-
sation process(2). The study reported several recommendations for
numerical design techniques(2), including increased computational

r1 & r2 randomly generated numbers (0,1)
Rn Reynolds number
t Iteration
t/c aerofoil thickness-to-chord
vi velocity vector in dimension D
x vector of design variables
x/c aerofoil chord
xi position vector in dimension D
y output of objective function for sensitivity analysis
(y/c)approx approximate aerofoil shape
(y/c)target target aerofoil shape
α angle-of-attack
αmax angle-of-attack for maximum lift
β aerofoil trailing edge angle
Δ elementary effect step length factor
ηcon number of constraints

adverse pressure gradient

ℑ objective function
µ* absolute mean of elementary effect
µM and σM mean and standard deviation of elementary effect
ω objective weighting magnitude
ωt standard deviation of personal best solution
Φop aerofoil operating conditions
σt standard deviation of the swarm
ϕ search tolerance factor

Abbreviations

AM-PSO adaptive-mutated particle swarm optimiser
DNO direct numeric optimisation
GA genetic algorithm
GM gradient-based optimiser method
HALE high-altitude long endurance
HRN high Reynolds number (Rn > 9⋅0 × 106) 
LRN low Reynolds number (Rn ≈ 0⋅15 × 106) 
LSB laminar separation bubble
MRN medium Reynolds number (Rn ≈ 4⋅0 × 106) 
PSO particle swarm optimiser
RANS Reynolds averaged Navier Stokes
SOM self-organising map

1.0 INTRODUCTION

The process of shape optimisation is critical for development of
efficient aerial platforms to meet the stipulated aerodynamic perfor-
mance requirements. This requires a multi-disciplinary design
optimisation process, for the performance requirements in various
phases of flight profile. The planform is to be aerodynamically
efficient and structurally viable for flight maneuver loads. Wing
contour is governed by aerofoils at each span station. The acceptable
drag performance of the aerofoil is a function of Mach number,
operating cruise altitude and hence, Reynolds number and lift
requirements. The design parameters that influence aerofoil perfor-
mance are leading edge radius, camber, thickness-to-chord ratio and
trailing edge wedge angle between aerofoil upper and lower
surfaces. A shape optimisation analysis is required to establish an
aerofoil profile with acceptable aerodynamic performance. This
research focuses on developing intelligent algorithms for aerofoil
shape optimisation for a UAVs operating in a HALE environment.

1.1 Inverse design

Aerofoil design efforts include the ‘inverse’ and ‘direct’ methods.
The inverse approach requires the specification of a velocity
profile for the required mission requirements. Long endurance
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1.3.2 Flow solver

The fitness of the objective function for aerodynamic shape optimi-

sation is calculated from the flow solver. The output must be of

consistent accuracy for an acceptable optimisation. Solver types

include: a) Fully potential; b) Coupled boundary-layer; c) Euler; and

d) Viscous Navier-Stokes. The merits and demerits must be

considered for integration into optimisation architecture.

At HALE operations, viscous/inviscid interactions are critical at

low Reynolds numbers. Navier-Stokes solvers are applied as it

considers the viscous effects in the entire flow region and solves the

Reynolds Average Navier-Stokes (RANS) equations of the flow. In

laminar flow, a Laminar Separation Bubble (LSB), due to adverse

pressure gradients in the boundary layer are formed at low lift coeffi-

cients. Sophisticated RANS with turbulence modeling are applied

and validated to solve complicated flow patterns, including the LSB

developed(10–11).

1.3.3 Optimisation algorithms

The choice of optimisation architecture will influence simulation run

time and solution optimality. The two main optimiser types are: a)

gradient-based and; b) evolutionary algorithms. Aerodynamic shape

optimisation requires the stipulation of geometry and aerodynamic

constraints. The constraints are often nonlinear and the optimiser

solves the design limits to establish the minimum of a nonlinear

objective function. Thus, the search topology will consist of multiple

local minima and a robust search process becomes a requirement.

The merits and demerits of the optimiser type proposed must be

considered.

Gradient-based methods

Gradient-based methods (GM), have been widely used for aerody-

namic shape optimisation problems. The algorithm perturbs the

design variables, to minimise the objective function iteratively by

modifying the direction of the gradient vector toward a solution.

The use of GM is problem dependent. If the objective function

and constraints are continuous and differentiable and provide a

unimodal convex domain, then GM is ideal. It has been shown that

aerodynamic optimisation problems are non-smooth or non-

convex(15,16) thus, the use of GM will have issues and challenges.

Generally GM, with an ill-defined starting point, will generate a

local optimum in the neighborhood of the search initialisation point.

The application of constraints further complicates the search process.

Sequential quadratic programming methods were developed to

handle objective constraints. Equality and inequality constraints are

handled in the same manner as objectives (i.e. reduced for minimi-

sation functions). Hence, the Jacobian matrix is calculated for both

the constraints and the objectives. If the objective function can no

longer be improved, without deteriorating the constraint values, the

search will stagnate and prematurely terminate.

Namgoong(15) examined the use of GM in the design optimisation

of transonic aerofoils with variations in solution starting point, for

wave drag minimisation. The results indicated disparate solutions

with respect to initial base aerofoils, thus indicating a highly multi-

modal design space with numerous local minima. Gallarat(4)

evaluates the performance of three GM tools in the design optimi-

sation of an aerofoil for morphing aircraft. It is acknowledged that

the proposed method does not guarantee a global optimum. Khurana

et al(17) established the solution space to HALE aerofoil designs, to

be highly multimodal. Despite integrating a current off-the-shelf

HALE aerofoil for search initialisation, aerodynamic performance

improvement in comparison to the baseline shape was minimal(17). It

was concluded that GM provides a local solution about the starting

point and not the true global optima(17). Thus, the development of a

global search operator is a requirement.

resources. It was concluded that a detail mesh study is required,

with minimal number of grid points, without compromising aerody-

namic data for efficient optimisation. The convergence criteria

needs close analysis to enhance the search process. The final recom-

mended conclusion was based on the development of a flexible

shape representation model(2). A limited geometry model does not

confirm a global optimal solution, thus the search capabilities of the

optimiser is limited by the deficiency of the shape model.

Research efforts for robust and efficient DNO structure devel-

opment are based on the recommendations of Hicks et al(2). A

survey of DNO components covers: a) aerofoil shape parameteri-

sation; b) validated flow solver; and c) intelligent search optimi-

sation algorithm.

1.3.1 Aerofoil shape parameterisation

Aerofoil shape representation strategies for optimisation include: a)

Knowledge-Based; and b) Free-Form. In the knowledge-based

design, an algebraic expression is applied to represent a series of

sinusoidal curves, which are multipliers to the design coefficients to

represent disparate aerofoil shapes. In the freeform methodology,

the shape is represented by a linear combination of basis functions

including splines.

The discrete approach is an obvious candidate for aerofoil repre-

sentation. The method is quick and easy to implement, with wall

surface boundary nodes used as design variables. Theoretically, the

methodology will generate infinite aerofoil classes. Thus, the issue

of a reduced solution search space, due to a limited geometry model

is avoided. Despite an enhanced search space, the methodology is

unsuitable for numerical optimisation. With each node regarded as a

design variable, the combinatorial-permutation during search

optimisation will be excessive, thus result in an inefficient search

process. The optimiser further requires the generation of random

solution for search initialisation. Randomly varying a large node

population can result in the generation of an ill-defined shape with

rapid surface concavities and abrupt changes in curvature as

reported by Keane and Nair(3).

Polynomial and spline curve interpolation methods for aerofoil

shape representation are used to address the demerit of the discrete

approach for shape optimisation(4–8). The shape nodes are partitioned

along aerofoil chord to control camber and thickness distributions.

A large population of control points, in excess of twenty are

required to generate smooth shapes. Since the chord station of the

control nodes is fixed and the degree-of-freedom restricted to y-

axis, generation of undulating shapes which are aerodynamically

unfeasible becomes a design issue. Thus, even with a large

population of control points for design flexibility, generation of

unrealistic shapes is possible.

The PARSEC aerofoil shape representation model by

Sobieczky(9), is a sixth-order polynomial function applied to

generate disparate aerofoil classes and is similar to the NACA 4-

digit generator. The methodology is characterised by eleven design

coefficients which control important aerofoil shape parameters

including: a) Leading edge radius; b) Curvature of the upper and

lower crests; c) Ordinates and abscissa of the upper and lower

surfaces; d) Trailing edge ordinate thickness and location; and e)

Trailing edge wedge angle. Variants of the original method have

been developed to model divergent trailing edge aerofoils, to further

increase the design flexibility of the shape function. Since the

parameterisation method provides direct control over important

aerofoil shape features, it is ideal for preliminary optimisation

analysis. The method has been used in the design optimisation of

transonic aerofoils, thick aerofoils for HALE operations and for low

Reynolds number operations. The process of generating aerofoil

contours, in the design of HALE aerofoils is modified in this paper,

to further increase the design flexibility of the model.
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The paper is structured as follows:

Sec. 2.0: The sub-components of the DNO structure are defined
and the desirable features for an effective search model
addressed;

Sec. 3.0: A novel variant to the original PSO algorithm is
proposed. A test development and validation analysis over
benchmark test functions is presented. Performance results are
compared against theoretical solutions to the test functions and
against published data from the literature;

Sec. 4.0: The solution space for HALE aerofoil design is defined.
An inverse shape fitting optimisation study is formulated to
determine the search bounds of the design variables. The dimen-
sionality of the problem is examined by a sensitivity analysis, to
determine the importance of each aerofoil variable on HALE
aerofoil aerodynamics;

Sec. 5.0: Aerofoil shape optimisation at single and multi-point
designs is simulated with the developed optimisation architecture.
A post-processing analysis is presented to verify the feasibility /
optimality of the final solution; and

Sec. 6.0: The research findings are summarised and a statement on
future related works is defined.

2.0 PROBLEM DEFINITION

The development of a valid DNO architecture for shape optimi-
sation is dependent on the set-up of the DNO sub-components.
The DNO modules of shape parameterisation, flow solver and
optimisation algorithm require user-defined inputs. These must
be well-defined through a design and validation study, so that
the feasibility of the optimal shape can be analysed with confi-
dence.

2.1 Aerofoil shape parameterisation

Several techniques exist for aerofoil representation (Section 1.3.1).
The key properties that must be addressed include:

● generate smooth and realistic shapes;

● mathematically efficient so that shapes are generated with
negligible computational effort;

● minimal design variable population while satisfying an
acceptable design solution space;

● provide direct control over aerofoil thickness-to-chord,
camber, leading edge radius, trailing-edge wedge angles and
trailing edge direction;

● provide ease of control for aerofoil curve editing / modifica-
tions for a given optimal shape; and

● the design variables must be intuitive to geometric interpre-
tation, so that optimisation process is guided by the shape
variables to a feasible solution.

The PARSEC shape method addresses these requirements. The
PARSEC-Original method generates profiles with upper and
lower surfaces coupled during the shape parameterisation
process. Due to the coupling effects, generation of highly-
cambered nose aerofoils becomes a design issue thus, affecting
design flexibility. The demerit of the original version is
addressed by a modified version denoted by the PARSEC-
modified approach. In this methodology, shape generation is de-
coupled with upper and lower aerofoil contours parameterised
independently. The demerit is the introduction of three additional
design variables, which adds complexity to search topology. The
performance of the two PARSEC variants for HALE shape
designs is assessed.

Adjoint methods

Post Hicks and Henne, advancements in gradient methods by the adjoint
formulation have been applied for shape optimisation. The gradient is
formulated by solving a set of adjoint partial differential equations,
instead of evaluating the derivatives using finite differencing. The
gradient of the objective function is related to the state (flow) equations.
Thus, the computational time does not depend on the number of design
variables, but is limited to the resources required to solve the flow
equations. The method has drawbacks which must be considered.
Premature convergence to local minima is an issue, hence a well-
defined starting point is a requirement. Additionally, the method
requires the derivation of an entirely new system of partial differential
equations in terms of non-physical adjoint variables and the specifi-
cation of the equating boundary conditions(15). It has also been proven
that the accuracy of the continuous adjoint method depends on the
discretisation scheme, which must be as close as possible to that used
for discretisation of the state equations(18).

Evolutionary algorithms – Global search methods

Evolutionary algorithms (EA) also referred to as global search methods
and are developed to mimic the process of natural evolution.
Theoretically, EAs have the advantage of yielding a global optima by
overcoming the limitations of the deterministic gradient-based search
methods. Candidate solutions to the optimisation problem are charac-
terised by a set of search agents or sample population, which evolve in
the search environment, to achieve an acceptable solution to the
objective function. The method is computationally demanding in
comparison to local methods, as individual search agents must be
evaluated by the fitness function. For CFD applications this leads to a
time consuming search process and the use of parallel processing
becomes a requirement.

The methodology is ideal for multimodal and discontinuous search
topologies. An assumption of a smooth and continuous search space is
not necessary, unlike local search processes. Global methods are not
guided by the differential landscape. Constraint violations are handled
with penalty functions, which are aggregates of the constraint violation
magnitude. These are added to the objective function to penalise the
search operator and to further guide the search away from ill-constraint
solution topologies. Premature convergence as a result of constraint
violation of a search agent is not an issue with global methods, since the
search patterns of the entire population is assessed, to measure the termi-
nation criterion. Comparably, GM methods converge prematurely hence
are not accurate for highly constrained aerodynamic shape optimisation
problems.

Global methods are applicable over disparate problem types. Widely
used methods include genetic algorithms (GA)(19), simulated annealing
(SA)(20), and ant colony (AC)(21). The search methods are effective for
design optimisations, but are computationally intensive due to the
implementation of time-exhaustive search operators such as crossovers
and mutations.

An alternate heuristic methodology inspired from the notion of
‘collective intelligence’ in biological populations, is the Particle Swarm
Optimiser (PSO), by Kennedy et al(22). The method is developed to
address the demerits of a time-exhaustive search process of the GA
methods by avoiding the use of reproductive population generators by
crossovers and mutation. Test simulation comparisons over disparate
problems have shown that PSO exhibits accelerated convergence to the
global solution in comparison to GA.

1.4 Scope

The design development and validation of a DNO architecture
applied for HALE aerofoil shape design has not been covered in
detail. Thus, the feasibility of the final solution cannot be assessed
with confidence. The sub-components of the DNO structure are
problem based and must be defined for HALE aerofoil shape design.
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3.0 PARTICLE SWARM OPTIMISER

The PSO methodology is based on the evolution of nature to emulate
a swarm behavior of insects, to a flock of birds or school of fish,
which operate collaboratively to position food sources in the most
efficient manner. In PSO, each search member is referred to as the
particle, which represents a candidate solution to the problem.

Consider an ith member of the population, represented by its
position as x i

D = (x i
1 , x i

2 , ..., x i
D) and velocity v i

D = (vi
1 , vi

2 ,..., vi
D) in the

solution search space. Unlike GM, a PSO does not require the
gradient information of the objective function to establish the search
direction. The method is easily facilitated in standard programming
language using only primitive mathematical operators. The method
also does not require an initial starting point with the initial swarm
randomly generated, followed by an iterative search process which
updates the position and velocity of the agents based on personal and
global best search patterns of the particle and swarm respectively.
Thus, the ambiguity of selecting an acceptable starting point, a trait
in GM structures, is not a design issue.

The design variables represent the dimensional positioning of the
particles and stored in position vector x i

D. The PSO operators update
the velocity v i

D at iteration t, as:

v i
D(t) = K[v i

D (t − 1) + c1r1(pbest i
D − x i

D (t − 1)) + c2r2 (pbestg − x i
D (t − 1))]

Where:

x i
D position vector;

v i
D velocity vector: randomly generated at search initialisation;

pbest i
D best solution achieved by the particle and represented by

vector:  pbest i
D = (pbest i

1 , pbest i
2 ,..., pbest i

D];

pbestg global best solution collectively achieved by the swarm;

c1 & c2 stochastic acceleration terms that pull each particle toward
pbest i

D and pbestg positions respectively;

r1 & r2 random numbers in the uniform range [0,1]; and

K constriction factor introduced by Shi and Eberhart(24) and
applied as a inertia weight term to balance global and local
search capabilities of the particles. A large weight factor
promotes global search patterns and a small value facilitates a
local search process. Shi and Eberhart(24) propose K as:

Through empirical studies, Shi and Eberhart performed test experi-
ments over benchmark test functions and proposed c1 and c2 = 2·05
thus, φ = 4·10 and K = 0·72925.

The update of position vector at iteration t is:

x i
D(t) = x i

D (t − 1) + v i
D(t) . . . (5)

Equations (3-5) have the effect of accelerating the particles towards
the weighted sum of the personal and global best with an element of
randomness. The iterative search process continues until the user-
defined termination criteria is achieved.

The difference between GA and the PSO methodology is that the
swarm process does not implement mutation and crossovers, which
require additional function evaluations thus, increasing computa-
tional time to convergence. Performance comparison between GA
and PSO has shown that PSO is sensitive to premature convergence
due to the presence of local sub-optima solutions for complex multi-
modal problems. Stagnant optimisation simulations are due to ineffi-
cient solution diversity in the search population. The issue is
addressed by increasing the population size of the swarm, but does
not guarantee global optima. This option is not preferred as
additional function calls are required. Thus, the original PSO search
algorithm must be modified to address this demerit.

Aerofoil shape parameters must be controlled intelligently
during the optimisation process to avoid unwanted flow features.
Thus, the search algorithm determines a valid combinatorial-
permutation set of design variables, that provide an acceptable
solution to the problem. The leading edge radius must be
controlled to avoid sudden changes in curvature at the joins of the
nose region. Hence, early flow separation is avoided. Upper and
lower crest curvatures at the maximum surface thickness point,
must be controlled to avoid early transition to premature
separation, which will have an unfavorable effect on drag. The
optimisation algorithm will dynamically modify the shape
variables through an intelligent and iterative search process, to
minimise the unwanted flow features, as a result of shape modifi-
cation.

2.2 Flow solver

Navier-Stokes simulations are required to model the viscous effects
in separated flow. The aerofoil shape optimisation problem
considered is at cruise thus, attached flow is assumed. Hence, panel
methods are applied and calculate the effects of viscosity due to the
development of a boundary layer, at low Reynolds numbers with
acceptable accuracy. For attached flow, XFOIL provides
acceptable agreement to published experimental data. The solver is
prone to errors if surface geometry node distribution is not
adequate. A convergence study was defined to determine the
influence of node population, on the aerodynamic forces and the
resulting errors. Empirical experiments were formulated and it was
concluded that a population of 160 points, on aerofoil surface is
required for acceptable aerodynamic convergence. Differences
between computational and experimental data level-off at this
point. Hence, a further increase in node population has a negligible
effect on the aerodynamic forces. The calculated panel distribution
is further recommended by the developers for computation at
HALE conditions(23).

The aim of the presented analysis is to validate the proposed
shape optimisation model. Panel methods are ideal for prelim-
inary design developments, due to rapid computational turnover
hence, the robustness of the proposed search algorithm can be
assessed efficiently. Since 2-dimensional shapes with attached
flow are examined, XFOIL is applied and provides acceptable
accuracy with negligible computing resources. The solver is well
suited for optimisation algorithm design application and
validation.

2.3 Optimisation algorithm

The optimiser type significantly affects the search capabilities and
the validity of the final solution. If the algorithm is limited, then a
sub-optimal solution is probable. The following points must be
taken into consideration when applying a search agent for aerofoil
shape optimisation:

● number of design variables: Large population of variables
result in an computationally time excessive optimisation run,
especially if high-fidelity flow solvers are used;

● dynamic range of each dimension/variable: This equates to the
search region that will be mapped by the optimiser;

● impose design variable constraints: Avoid mapping regions
that result in ill-poised solutions;

● optimisation model: Provide global search behavior with the
flexibility to parallelise the search process through distributed
computing cluster; and

● validation: Evaluate the robustness of the selected optimi-
sation model. Benchmark mathematical functions, where the
global solution is known, can be used to test the robustness of
the optimiser.
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3.1.1 Numerical experimental results

To validate the effectiveness of the developed search model,

numerical experiments are simulated over disparate test problems.

Functions applied for validation incorporate both uni and multi-modal

solution topology. The Ackley, Michalewics, Rosenbrock and Schwefel

functions (Table 1) are included in the numerical validation studies.

For each function, 30 trials are applied and comparisons between

the proposed AM-PSO model and the variants developed in the liter-

ature(27,29) are made. The standard deviations of the global fitness and

iteration to convergence, represent the robustness of the algorithm

and is assessed to measure the performance of the developed method.

The result of the simulation trials over the four test functions is

presented in Table 2. A comparative analysis between the perfor-

mances of the AM-PSO (Table 2) and the reported solutions in the

literature(27,29), indicate the superior search mechanisms of the

developed algorithm. The success rate from the 30 runs is 100% for the

multimodal Ackley, Michalewics and the Schwefel model (Table 2).

The standard deviation of the best solution from the 30 simulations is

close to zero, thus signifying the consistency at which AM-PSO

converges to the global point. A low iteration standard deviation (Table

2) further shows the consistency at which AM-PSO accelerates to the

optimal solution. The test simulations have confirmed that the AM-

PSO is well suited for multimodal problems and exhibits acceptable

convergence characteristics than the algorithms reported in literature.

3.1 Adaptive-mutation particle swarm optimiser

Variants of the original PSO model have been developed and
assessed through empirical simulations(26–42). Search diversity as a
function of time has been recognised as a design requirement.
Position and velocity vectors are updated with user-defined
strategies. A new methodology is proposed which exploits the
search experiences of the individual agents in an adaptive
sequence.

A probability of mutation method is introduced, which is propor-
tional to the relative positioning of the particles in the swarm. At
solution initialisation, the lack of search diversity is not an issue,
due to a high sampling space of the particles, thus the probability
of mutation is low. As the search progresses and the particles
converge to a common region, mutation is adapted proportionally
to account for the reduced search diversity. Theoretically, if the
swarm is converging to a local region, then mutation will offset
this demerit. Alternately, if the swarm is converging to a global
region, then mutation will have no influence on the search progress
and the positioning of the particles will remain unchanged. Thus,
mutation is initiated based on the relative positioning, hence the
search experiences of the particles. The original variant of the PSO
model is modified and an adaptive time-variant, mutation based
PSO algorithm is proposed (AM-PSO). Numeric simulations are
performed to validate this concept and to further finalise the
following condition.
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Table 1
Benchmark validation test functions

Function Dimensional Search Space Particle Initialisation Range Theoretical Global Minima

Ackley –32·768 ≤ xi ≤ 32·768, i = 1,2,...,n –32·768 ≤ xi ≤ 16 X∗ = (1,...,1), f (x∗) = 0
Michalewics 0 ≤ xi ≤ π, i = 1,2,...,n 0 ≤ xi ≤ π X∗ = (2·201 , ..., 1·5710 ), f (x∗) = –9·66
Rosenbrock –2·048 ≤ xi ≤ 2·048, i = 1,2,...,n –2·048 ≤ xi ≤ 2·048 X∗ = (1,...,1), f (x∗) = 0

Schwefel –500 ≤ xi ≤ 500, i = 1,2,...,n –500 ≤ xi ≤ 500 X∗ = (1,...,1), f (x∗) = 0

Table 2
Test function simulation results

Function Ackley Michalewics Rosenbrock Schwefel

Worst fitness 4·44e–015 –9·66 3·98 1·97e–004

Fitness 4·44e–015 –9·66 4·30e–002 1·27e–004

Success rate (%) 100 100 97 100

Average fitness

● Best in literature 3·75e–01529 –9·66e+00027 6·98e–00129 029

● AM–PSO 4·44e–015 –9·66e+000 2·15e–001 2·14e–005

Fitness standard deviation

● Best in literature 2·13e–01429 1·58e–00327 1·46e+00029 029

● AM–PSO 0 4·88e–005 7·13e-001 2·41e-005

Maximum iteration

● Literature 30,00029 20,00027 30,00029 30,00029

● AM-PSO(standard + mutation) 18,459 6,257 28,623 6,164

Standard PSO operation 9,809 3,792 20,000 3,184

Mutation 8,650 2,465 8,623 2,980

Minimum iteration 1,840 814 1,171 538

Standard PSO operation 975 472 659 306

Mutation 865 342 512 232

Average iteration 2,067 1,844 5,763 1,487

Iteration standard deviation 2,280 911 3,856 769



PARSEC Variant One: Establish: rle, yte, teg, tew, xu, yu, yxxu, xl, yl, yxxl

PARSEC Variant Two: Establish: rleup, rlelow, yte, tegup, teglow, tewup,

tewlow, xu, yu, yxxu , xl, yl, yxxl

To graphically illustrate the relationship and data scatter between

geometry variables and the intent design goals of the target

aerofoil, disparate profile sections are used in the inverse shape

optimisation analysis. Aerofoil types examined are classified into

five categories: a) HALE: High Reynolds Number (HRN); b)

HALE: Medium Reynolds Number (MRN); c) NACA 5-6 series

type including symmetrical and non-symmetrical profiles; d) Low

Reynolds Number (LRN) sections used in Micro UAVs; and e)

HRN at high transonic speeds. The aerodynamic operating perfor-

mance range and the t/c of the base aerofoils for each category are

summarised in Table 3. Shape geometry is correlated with

operating conditions φop, which is the summation of aerofoil

4.0 DESIGN VARIABLES PRE-SCREENING

The aerofoil shape variables for HALE design are analysed. The

proposed test methodology is set-up as follows: a) Establish the

search space of each variable with an inverse shape optimisation

analysis; and b) Establish the importance of each geometry variable

to aerofoil aerodynamics hence, the objective function by a quanti-

tative measure.

4.1 Solution search space

The search domain of each variable for HALE aerofoil design is

defined to ensure an efficient optimisation simulation. An inverse

optimisation process is simulated with the developed AM-PSO

algorithm. The inverse process applies a geometrical fitting

technique to compute the shape variables of the PARSEC and

PARSEC-Modified functions. The objective function J, is defined to

minimise the absolute error and is calculated from the permutation

of shape variables that Jminimise, the geometrical difference between

target (y/c)target and approximate (y/c)approx shape at each aerofoil

chord station Mi, in Equation 6.
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. . . (6)

Table 3
Aerofoil category types for solution space mapping

Aerofoil Type
[Machmin , M achmax] [Rnmin , Rnmax] × 106 [t/cmin , t/cmax] [cldesign,min , cldesign,max]

a) HALE: HRN 0·10 – 0·50 9.0 – 10·0 0·14 – 0·15 0·10 – 0·46
b) HALE: MRN 0·10 – 0·60 3.80 – 4.0 0·15 – 0·17 0·40 – 0·56
c) NACA 0·70 – 0·75 9.0 – 10·0 0·12 – 0·15 0·30 – 0·70
d) LRN 0·10 – 0·55 0·15 – 0·50 0·073 – 0·15 1·00 – 1·10
e) HRN: High–Speed 0·70 – 0·73 7.0 – 11·0 0·12 – 0·13 0·25 – 0·79
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Figure 1. Mapping of solution search space.



assumption that the objective function is deterministic. The
algorithm calculates the effect of each variable and establishes the
correlation type between input-output as: a) Negligible; b) Linear
and additive; or c) Non-linear or involved in interactions with other
factors(45).

The algorithm measures the sensitivity of the ith variable to
aerofoil aerodynamic coefficient as output. Each geometry variable
is perturbed one-factor-at-a-time for a discrete number levels p,
along each dimension within the defined interval range. Consider a
k-dimensional input vector xi, over a p-level factorial grid,
normalised into a unit cube of (0, 1)k. The components of xi , are a
set of values such that xi ∈/ {0, 1/(p − 1), 2/(p − 1), ..., 1}, for i = 1,
..., k. The output of the objective function y, is established for the
baseline value x ∈ D and the elementary effect di(x) of the ith input
factor calculated in Equation (8):

Where:

y function output/aerodynamic coefficient from flow solver

k number of design variables

Δ ξ/(p − 1); ξ ∈ I N*, elementary effect step length factor; p = number
of discrete levels along dimension x ∈ D such that xi ≤ 1 − Δ

The distribution of di(x) for each xi is measured at different parts
of the design space, to indicate the relative importance of the
shape variable of the parameterisation model to aerofoil aerody-
namics. The mean µm and standard deviation σm, of di(x) are used
as distribution parameters. A large µm indicates the shape variable
has an important influence on an equating output aerodynamic
coefficient. Large σm suggests simultaneous interactions between
two variables have a strong influence on aerofoil aerodynamics.

4.2.1 Quantitative measure of sensitivity

Morris proposed ranking the importance of variables by the µm of di

(x). Campolongo et al(46) introduced a ranking measure µ∗, which is
calculated from the mean of the distribution of the absolute values
of the elementary effects, such that µ∗ = |di(x)|. The proposed
methodology addresses the misrepresentation of the magnitude of
sensitivity, as a result of opposite signs of the elementary effects for
a non-monotonic model.

The effect of PARSEC original and PARSEC-Modified shape
variables on aerofoil cd and clmax, is examined. Morris’s screening
measures of µM and Campolongo’s µ∗ from Equation 8, are applied
in Table 5 to rank the importance of aerofoil variables on cd and
clmax.

Since xu influences the chordwise location of the boundary layer
transition point, results of the ranking process indicate, xu has a
major influence on cd, with the trailing edge wedge having minimal
influence (Table 5). The variance of PARSEC coefficients on clmax

indicates the importance of the leading edge radius to mitigate early
separation leading to premature stall. The variable applied to
control the curvature of the crest on the lower surface has minimal
activity on clmax (Table 5). The proportion of variance of µ∗ (Table 5)
of each variable on cd and clmax is shown in Fig. 2.

The data presented in Table 5 and Fig. 2 is applied to eliminate
variables. For HALE aerofoil design, the maximisation of aerody-
namic efficiency is a requirement, thus drag minimisation a
primary goal. This is also coupled with the goal of attaining
acceptable maximum lift performances with transition located
about the leading edge. Thus, clmax is not dependent on the
achievement of laminar flow and is also related to take-offs from
short runways and safety considerations to stall at landing speeds.
The pre-screening analysis indicated that tew is least important to
cd, while the differences between the 10th and 11th ranked

characteristics from Table 3 as:

φop = |Mach + Rn + t/c + cldesign| . . . (7)

The term φop is originally calculated for each aerofoil, as a
function of four operating conditions at the base value. Due to the
large deviation in the magnitudes of the four operating units
(Equation 7), with Rn measured in 106 and M∞, t/c and cldesign of
order one, the results are normalised to range (0,1) for ease-of-
inspection. From φop aerofoil characteristics are related to the
shape parameterisation variable. High-speed aerofoils are charac-
terised with sharp nose regions, thus a low rle is expected to avoid
premature flow transition about the leading edge due to peak
negative pressure coefficients followed by rapid adverse pressure
gradients. Thus, aerofoils operating under disparate operating
conditions are introduced, with the intention of identifying data
dispersion in the mapping analysis as function of φop. Platforms
for HALE missions operate at disparate Reynolds numbers. Thus,
the search bounds are established by mapping regions corre-
sponding to HALE-MRN to HRN environments, shaded in Fig. 1.

The bounds are further defined with tolerance to avoid the gener-
ation of fish-tailed profiles. It is observed that high-speed sections
are characterised with low rle as expected. Low speed sections
operating at LRN for Micro-UAV applications require large rle, thus
the solution space is not mapped in this region (Fig. 1). A cluster of
aerofoils at 0·40-0·50 for xu is observed for LRN aerofoils. The
coefficient is mapped to incorporate the variances of HALE-MRN
sections, which are at the extreme ends of the variable range (Fig.
1). The search domain for yu, yxxu, xl, yl, yxxl, teg, tew (Table 4) is estab-
lished to integrate HALE aerofoils with MRN to HRN perfor-
mances, with tolerance to address undulating sections.

For yte, a cluster of profiles with zero variances are observed
with extremum profiles limited to a search envelope of (−0·0002,
0·0027). It has been shown that yte has a strong influence on
aerofoil (cl/cd) at HALE conditions(43). Thus, the search envelope
is arbitrarily set at (−0·02, 0·02) to exploit the aerodynamic
merits of yte to maximise aerofoil efficiency (Table 4). Similarly,
a cluster of aerofoils are characterised with zero thickness at the
trailing edge with extremum points at 0·0030, for HALE profiles
at MRN to HRN operating conditions, thus tte is set accordingly.
The search domain of the PARSEC method is summarised in
Table 4.

Table 4
PARSEC mapping solution space

Shape Parameter Minimum Maximum

rle leading edge radius 0·0065 0·0230

xu crest of upper surface’s x abscissa 0·2873 0·5343

yu crest of upper surface’s y ordinate 0·088 0·125

yxxu curvature at the crest of upper surface –1·05 –0·620

xl crest of lower surface’s x abscissa 0·310 0·450

yl crest of lower surface’s y ordinate –0·073 –0·0307

yxxl curvature at the crest of lower surface 0·370 0·980

yte trailing-edge ordinate –0·020 0·020

teg trailing-edge direction (degrees) –16·04◦ –6·88◦

tte thickness at trailing-edge 0 0·0030

tew trailing-edge wedge angle (degrees) 1·15◦ 14·73◦

4.2 Design variables measure of importance

With the search limits of the design coefficients established, the
importance of each variable to HALE aerofoil design is established.
The screening technique developed by Morris(44) is applied, with the
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1. The clmax at Rn = 3·0 × 106 must be greater then 1·76. The
maximum lift coefficient should not decrease with transition
fixed at the leading edge due to surface contamination by insect
remains; and

2. Obtain low profile drag-coefficients at Rn = 4·0 × 106 for cruise
target lift coefficient of 0·40 and climb lift coefficients of c1

T =
0·50 − 1·00.

The following constraints were applied in the design:

1. Extent of the favorable pressure gradient dcp/dx < 0, on aerofoil
upper surface at cruise cl must not exceed 30-percent chord;

2. Aerofoil t/c must be greater than 12%; and

3. Pitching-moment coefficient at zero lift cm0, must be cm0 ≥ −0·10

A favorable pressure gradient on the upper surface is required up
to the maximum extent allowed by the constraint of (x/c)up ≤
0·30. Aft of 0·30c, a short region of slightly adverse pressure
gradient is required to promote efficient transition from laminar to
turbulent flow. This ensures that the initial slope of the pressure
recovery is relatively shallow. This short region is then followed
by a steeper, concave pressure recovery, which produces lower
drag and has less tendency to separate than the corresponding
linear or convex pressure recovery.

The extent of aerofoil camber is limited by the pitching-moment
constraint (cm0 ≥ −0·10), which is defined to maximise clmax.

variable for clmax relating tew and yxxl respectively is minimal (Table
5). As drag minimisation is assumed to be a primary design
objective and with tew indicating minimal influence on cd and clmax

the parameter is eliminated from shape optimisation simulations.
The trailing edge thickness is also eliminated due to its minimal
contribution to drag (Table 5 and Fig. 2). More importantly, the
variable is omitted to simplify the geometry meshing process and
the optimisation computation performance. A finite thickness will
require greater number of cell elements to resolve aerofoil wake,
which will significantly increase the computation time to conver-
gence. Thus, a low contribution to cd and to avoid a large grid cell
count, tte is eliminated from the optimisation simulation.

Similarly the quantitative measure of sensitivity is also applied
to the PARSEC-Modified method. The trailing edge angle on the
lower surface teglow, is identified as least important. A contri-
bution of 4% to cd and 9% variance to clmax is computed. Thus,
teglow is eliminated from the design space by the PARSEC-
Modified method.

5.0 AEROFOIL OPTIMISATION

The target validation aerofoil is NASA’s NLF(1)-0416 planform
designed for light, single-engine, general aviation airplanes. The
planform was designed with the following objectives:
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Table 5
PARSEC variables measure of importance on cd and clmax

PARSEC µM µ∗ σM Ranked µ∗ PARSEC µM µ∗ σM Ranked µ∗

xu 0·0005 0·01 0·0231 1 rle 0·1208 0·4749 1·1325 1

yu 0·0004 0·0042 0·0119 2 yl –0·0862 0·3584 1·2426 2

teg –0·0015 0·0042 0·0325 3 xu 0·0774 0·3464 1·2963 3

rle –0·0001 0·003 0·0109 4 yxxu –0·1869 0·3015 2.1501 4

yte –0·001 0·0028 0·0109 5 yu 0·0863 0·2856 1·8901 5

yl 0·0017 0·0027 0·0312 6 yte –0·0591 0·2371 1·2486 6

yxxu 0·0002 0·0021 0·0061 7 tte –0·0095 0·2344 1·0978 7

yxxl –0·0001 0·0017 0·0084 8 xl –0·0147 0·2317 0·8413 8

xl 0·0008 0·0014 0·0072 9 teg –0·017 0·1899 0·4878 9

tte –0·0001 0·0009 0·0069 10 tew 0·0245 0·1709 0·6499 10

tew 0·0003 0·0009 0·0059 11 yxxl 0·0292 0·158 0·5396 11
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⇒ t/cmax (x) ≥ 0·12

At Rn = 3·0 × 106

⇒ Subject to: clmax (x, αmax , M∞ ≥)1·76

Constraints are applied by penalty functions to the objective function
to ensure minimum drag performance is not compensated by a
constraint violated design. A static penalty function is introduced and is
normalised to (0,1) if the aerodynamic and/or geometric constraints
(Section 5) are violated such that:

Where:

fp fitness as a result of penalty

cj expected maximum cost to repair constant j (i.e alter x so it is
feasible); normalised to (0,1)

ηcon number of constraints

At each search evolution the aerodynamic and geometric quantities of
the candidate solution are calculated. The summation of cj for each
constraint is added to the overall fitness to penalise the particle for
respective constraint violation.

5.3 HALE optimisation with AM-PSO

HALE aerofoil optimisation with single and multi-point designs are
simulated. Single-point performances minimise drag at cruise c1

T = 0·40.

5.1 Parallel computing set-up

Automated computing optimisation architecture, with the integration of
the DNO components is developed. Heuristic search models are
adaptable to parallelism and an efficient computation model is
developed to accelerate AM-PSO simulation with MATLAB’s
distributed computing toolbox. Shell scripts are prepared in MATLAB
to distribute each particle to a processing unit on a super-computing
facility.

5.2 Optimisation set-up

The solution to aerofoil design problem is represented by a vector of
shape variables x, for the PARSEC and PARSEC-Modified functions.
The angle-of-attack α, is not treated as a design variable, since XFOIL
has a built-in trimming function that calculates the angle required for
target lift.

The shape optimisation problem for validation is defined as a single
objective, with drag minimisation a primary requirement, with
constraint on clmax. The design objectives and constraints for the NLF(1)-
0416 design (Section 5), are transformed into the search algorithm as
follows:

At Rn = 4·0 × 106

minimise cd

Subject to:

⇒ dcp/dx (x, α, M∞) ≤ 0·30c

⇒ cm0 (x, α, M∞) ≥ −0·10
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minimal. Thus, the effect of eliminating tew from the pre-screening
analysis due to a low drag contribution is validated. Overall, the original
PARSEC method indicates a drag reduction in excess of ≈ 20%
compared to the base validation aerofoil.

The modified variant of the PARSEC method, with thirteen variables
exhibits the lowest drag (cd = 0·00390), equating to a reduction of ≈ 22%
in comparison to the base aerofoil. Drag increases slightly (cd =
0·00392) with the elimination of teglow (Table 6) with a percentage
difference of ≈ 0·50% between the full and reduced sets. The minimal
difference validates the proposed design variable pre-screening test
methodology (Section 4.2.1).

The effect of varying the polynomial order of the aerofoil shape
function, on clmax is observed (Table 6). An increase in design variable
population size has the merit of increasing the clmax of the optimised
aerofoils (Table 6). The original PARSEC model with a full set of
design variables matches the clmax of the base aerofoil with a minimal
increase of ≈ 0·50% (Table 6). By the sensitivity analysis, it was shown
that tew has a variance of 6% to clmax compared to the least important
factor, yxxl which exhibits a 5% contribution (Fig. 2(b)). The coefficient
tew was eliminated based on the minimal contribution to drag only (Fig.
2(a)). The equating influence of tew on clmax was not considered. As a
result, the clmax of the PARSEC reduced-set decreases to 1·72 in
comparison to 1·76 with full ten design variables. This equates to a
percentage difference of ≈ 2% between the two sets. The clmax of the
reduced method violates the constraint clmax > 1·76 (Section 5.2). Thus, a
design compromise of reduced drag and clmax, by eliminating tew is estab-
lished.

The PARSEC-Modified function with a full set of design variables
exhibits the highest clmax and equates to an increase of ≈ 1% in
comparison to the validation profile (Table 6). For the reduced set, clmax

is marginally lower than the full set, yet greater than the base aerofoil.
Since teglow simultaneously exhibits the lowest variance to cd and clmax,
the percentage differences of the aerodynamic performances, between
the full and reduced sets is minimal.

Solution termination is measured by the search performance of pbestg
including the personal best fitness range pf. The quantity pf is computed
by the absolute fitness difference of the worst and best performing
particles in the swarm. To further incorporate the search patterns of the
population, a third measure based on the fitness spread of the swarm is
presented, by σt. The proposed termination measures are defined to
balance between a premature and conservative search process.

In Fig. 4, an extended region of a stagnant global best solution as a
function of iteration time is observed. Concurrently, pf and σt deviate
simultaneously thus, illustrating an active search history within the
swarm. For the PARSEC original method with a full set of design
variables (Fig. 4(a)), the three termination quantities pbestg, pf and σt

indicate a stagnant search process from the 705th iteration. Repeat of the
simulation with tew eliminated indicates stagnation from the 522nd gener-
ation (Fig. 4(b)). Thus, convergence is achieved with ≈ 26% fewer itera-
tions between the full and reduced sets (Figs 4(a)-4(b)).

As fitness for constraint violation is normalised to range (0,1), the
magnitude of cd is manipulated to reflect an even contribution of the
objective term, relative to the penalty magnitude. Thus, a multiple of
100 to cd is applied to ensure the contribution of drag is not diminished
by the normalised magnitude of the penalty magnitude. The objective is
substituted into the search algorithm in Equation (10):

minimise: 100 × cd . . . (10) 

For multi-point designs, drag minimisation at the operating spectrum of
the lift coefficient envelope for climb and cruise coefficients is used.
The flight points selected are cruise c1

T = 0·40 and climb c1
T = 1·00. The

objective function in relation to the search algorithm is defined as
follows:

minimise: 100 × cdcruise + 100 × cdclimb . . . (11)

5.3.1 Single-point optimisation

The single-point optimisation (Equation (10)) is simulated with AM-
PSO. Aerofoil geometry (Fig. 3(a)) and aerodynamic performance
comparisons (Fig. 3(b)-3(d)) between validation NLF(1)-0416 profile
and shape optimisation simulations is presented in Fig. 3.

A direct comparison between validation and AM-PSO aerofoil
shapes shows that simulation results are characterised with extended xu

and yl coefficients (Fig. 3(a)). The trailing edge ordinate is also unique
for each shape (Fig. 3(a)). The results are representative of the
theoretical principles of HALE aerofoil design, with the maximum
thickness point in excess of 0·50c (Fig. 3(a)). Thus, extended regions of
adverse pressure gradients are observed (Fig. 3(b)). Transition is
delayed and is in excess of 0·60c on both upper and lower surfaces
compared to 0·43c and 0·57c on suction and pressure surfaces respec-
tively for the NLF(1)-0416 (Fig. 3(b)). Delayed transition with extended
xu, minimises skin-friction drag. The drag performances are compared in
Fig. 3(c). A ‘drag bucket’ at objective cl

T of 0·40 is observed (Fig. 3(c)).
Drag at the specified flight condition is the ‘global’ solution to the
single-point problem and is minimal compared to the validation case.
Elsewhere drag is significantly higher with rapid performance degra-
dation at off-design conditions (Fig. 3(c)). The performance is related to
the demerits of the single-point based design approach. The aerody-
namic and geometrical properties of the base and optimised aerofoils is
summarised in Table 6.

The results indicate that the geometrical constraint of t/c > 0·12 is
satisfied by all designs. The maximum camber of the simulation shapes
is lower than the validation profile and a higher AOA is required to
compensate for the low camber to achieve target cruise cl (Table 6). A
reduction of drag in excess of 20% is observed across the simulation
data (Table 6). With an increase of polynomial order for aerofoil shape
representation, drag decreases proportionally. A full set of PARSEC
variables has lower drag (cd = 0·00398) compared to the analysis with tew

eliminated (cd = 0·00399). A percentage difference of ≈ 0·25% is
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Table 6
Single-point optimisation results

Aerofoil t/c Max cl AOA cd % cd clmax %clmax dcp/dx Cm0

Camber Gain Rn = 3 × 106 Gain

NLF(1)-0416 0·16 0·025 0·40 –0·695 0·00502 – 1·7500 – 0·2493 –0·0994

PARSEC (Full Set) 0·16 0·016 0·40 1·432 0·00398 –↓20·72 1·7589 +↑0·51 0·0388 –0·0822

PARSEC

(Reduced Set – tew ) 0·163 0·016 0·40 1·989 0·00399 –↓20·52 1·7165 –↓1·91 0·0408 –0·0839

PARSEC – Split

(Full Set) 0·160 0·014 0·40 0·203 0·00390 –↓22·31 1·7717 +↑1·22 0·0542 –0·0639

PARSEC – Split

(Reduced Set – teglow ) 0·165 0·019 0·40 0·910 0·00392 –↓21·91 1·7661 +↑0·91 0·0432 –0·0969
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optimisation results at Rn = 3·0 × 106. 



reduction of ≈ 7·5% is computed with the PARSEC-Modified method
utilising the full set of thirteen variables (Table 7). Drag improvement in
comparison to baseline shape is reduced to 6% with the elimination of
teglow (Table 7).

The clmax for multi-point designs is ≈ 0·5% lower than the baseline
profile. Thus, the performance of clmax is sensitive to drag minimisation
at multiple flight conditions as opposed to single-point designs. The
PARSEC original method with full and reduced set of design coeffi-
cient, exhibit lower clmax than the equivalent variant model. Thus, an
increase in the order of the polynomial shape function, increases clmax of
the optimal shape accordingly (Table 7).

The constraint relating to the extent of the favorable pressure gradient
is observed to converge about the baseline value of the NLF(1)-0416
aerofoil for all cases examined (Table 7). For three out of the four
simulations, the minimum chord location of dcp/dx constraint (Section 5),
is violated with minimal deviation from the user-specified design
requirement (Table 7). The dcp/dx has shifted aft of the leading edge in
comparison to single-point designs to compensate for delayed flow
transition at two disparate flight conditions instead of a uni-based design
operation. Thus, multi-point designs are characterised by aft pressure
loadings (Fig. 5(b)) relative to single-stage designs (Fig. 3(b)), for chord
regions bounded by x/c ≈ 0·70 − 1·00. 

The flight performance at climb cl
T is presented in Table 8. A

maximum reduction of ≈ 7·50% is observed with the full set of design
variables by the PARSEC- Modified function (Table 8). Drag at climb
is lower with the PARSEC-Modified method in comparison to the
original parameterisation model. Thus, an increase in design variable
population size has an effect of decreasing drag accordingly.

For the PARSEC-Modified functions, the effect of eliminating teglow

from the optimisation analysis has an effect of increasing drag at climb
(Table 8) and cruise (Table 7), in comparison to the original set. At
climb, a drag rise of ≈ 0·20% is calculated by a simulation with twelve
design coefficients (cd = 0·00613) compared to an optimisation with
thirteen variables (cd = 0·00612). The percentage difference is assumed
to be negligible. At cruise, the percentage increase as a result of variable

By eliminating teglow in the PARSEC-Modified method, the global
best stagnates at the 420th iterate, pf at 398th and finally σt at 523rd gener-
ation (Fig. 4(d)). By eliminating teglow, the aerodynamics of the final
solution is compromised by ≈ 0·50% (Table 6) in comparison to the full
set, for cd and clmax. The potential computational time savings are signif-
icant thus, validating the effectiveness of eliminating un-important
design variables by a pre-screening study.

5.3.2 Multi-point optimisation

To address the demerits of the single-point design approach, a multi-
point methodology is applied to minimise drag over an extended lift
coefficient flight envelope covering climb and cruise. The problem is
formulated by taking the summation of the drag performances at the
extremum flight conditions (Equation (11)). Drag minimisation at climb
and cruise is specified which equates to a cT

l of 1·00 and 0·40 respec-
tively. The importance of drag at each cT

l is weighted equally (wi = 1).
Similar to the single-point analysis, the effect of applying the PARSEC
and PARSEC-Modified functions with a full and reduced set of design
variables is examined and the results presented in Fig. 5.

The aerofoil shapes (Fig. 5(a)) of the multi-point design match
closely to the validation case. This suggests that multi-point designs are
adapting to the flight conditions of the baseline shape; minimise
drag over an extended lift coefficient envelope. In comparison to the
baseline shape, multi-point exhibits delayed flow transition (Fig. 5(b))
but not to the extent observed in single-point designs (Fig. 3(b)). The
observed performance indicates a design compromise between the two
flight conditions.

The overall effect of the multi-point design on drag is presented in
(Fig. 5(c)). An extended ’drag bucket’ is observed in comparison to
single-point design, which was localised about the cruise cT

l (Fig. 3(c)).
In multi-point simulations, favorable drag performance is observed over
an extended input cT

l range covering climb and cruise. The drag perfor-
mances of all aerofoils achieved by the AM-PSO simulations are lower
than the baseline shape (Fig. 5(c)). Thus, the merit of the multi-point
approach on aerofoil drag minimisation is validated. At off-conditions
for cl < 0·40 and cl > 1·00 (Fig. 5(c)), the performance degrades signifi-
cantly. The aerodynamic and geometrical properties of the base and
optimised aerofoils is summarised in Table 7.

A drag reduction of 1% ∼ 7% is observed across the optimal shapes
generated at cruise cl

T in comparison to the validation aerofoil. The
overall drag reduction magnitude does not match single-point designs
where drag minimisation in excess of ≈ 20% was computed. The results
established signify a design compromise between the two flight condi-
tions. The best drag at cruise cT

l with multi-point design by the PARSEC-
Modified variant (cd = 0·00464) is ≈ 16% greater than the minimum
drag performance by the single-point design (cd = 0·00390). Thus, a
design compromise between multi and single-point designs is evident.

An increase in the polynomial order applied for aerofoil shape gener-
ation, increases the magnitude of drag reduction (Table 7). Drag
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Table 7
Multi-point optimisation results

Aerofoil t/c Max cl AOA cd % cd clmax %clmax dcp/dx Cm0

Camber Gain Rn = 3×106 Gain

NLF(1)-0416 0·16 0·025 0·40 –0·695 0·00502 – 1·7500 – 0·2493 –0·0994

PARSEC (Full Set) 0·165 0·022 0·40 0·675 0·00479 –↓4·58 1·7084 –↓2·38 0·2909 –0·0951

PARSEC

(Reduced Set – tew ) 0·163 0·024 0·40 0·355 0·00495 –↓1·40 1·7137 –↓2·07 0·3049 –0·1037

PARSEC – Split

(Full Set) 0·175 0·027 0·40 –1·396 0·00464 –↓7·57 1·7440 –↓0·34 0·3056 –0·0901

PARSEC – Split

(Reduced Set – teglow ) 0·170 0·026 0·40 –0·484 0·00473 –↓5·78 1·780 +↑1·69 0·3017 –0·0978

Table 8
Multi-point optimisation results – flight condition at cl

T = 1·00

Aerofoil Max cl AOA cd % cd  
Camber Gain

NLF(1)-0416 0·025 1·00 4·479 0·00661 —–

PARSEC (Full Set) 0·022 1·00 5·798 0·00648 –↓1·97

PARSEC
(Reduced Set – tew) 0·024 1·00 5·496 0·00635 –↓3·93

PARSEC – Split 0·027 1·00 3·677 0·00612 –↓7·41
(Full Set)

PARSEC – Split
(Reduced Set – teglow ) 0·026 1·00 4·60 0·00613 –↓7·26



verified. The shape coefficients of the final aerofoil are perturbed one-

factor-at-a-time, within an identified test envelope, over user-defined

test increments. The flow solver is simulated and the aerodynamic and

constraint data stored. A data-mining technique is applied to qualita-

tively represent solution topology about the optima region by self-organ-

ising maps (SOMs), proposed by Kohonen(47) and implemented in

Viscovery SOMine software package(48). From the maps, a two-dimen-

sional representation of multi-dimensional data is presented. Thus,

solution topology with minimum drag conforming to user-defined

constraints, about the established optima is qualitatively established. A

comparative analysis between cdmin, by the AM-PSO and the pertur-

bation method is performed to assess the validity of the AM-PSO

solution.

The aerodynamic and constraint performance in the maps is ordered

by the Kohonen algorithm(47), where data clustering is assigned by

prioritising important shape and flow features. In aerofoil shape optimi-

sation, the objective function relating to cd, with constraint on clmax is

prioritised. Thus, the equating PARSEC-Modified shape variables are

clustered based on the similarity of the attribute values, to the important

design features. Hence, the quantities cd and clmax influence the clustering

cp, cm0 and flow transition on upper and lower surfaces. The equating

constraint violation magnitudes are also grouped accordingly. Thus, the

maps will qualitatively represent regions with minimum cd and high

clmax, relative to the identified features, through two-dimensional maps.

The feasibility of the AM-PSO solution is further evaluated by a

hybrid optimisation process. The solution by the global AM-PSO

method is integrated as search initialisation, into a gradient based

optimiser. Minimum drag performance by the hybrid approach is

assessed and compared to stand-alone AM-PSO simulation. The optima

solution to the hybrid approach, is re-validated by the proposed data-

mining technique to further verify the feasibility of the solution.

elimination is ≈ 2%. Even with design variable elimination, the drag
performances of the optimal shape generated by the AM-PSO method
are favorable in comparison to the baseline NLF(1)-0416 aerofoil. The
effect of variable elimination, on search iteration to convergence is
examined in Fig. 6. 

The PARSEC methodology with a full set of design variables (Fig.
6(a)) converged at the 716th iterate. The global best and pf converged at
the 410th and 659th iterate respectively, followed by the convergence of
σt at the 716th iteration (Fig. 6(a)). A stagnant global best solution
extending over 219 iterations from the 190th − 409th evolution is
observed (Fig. 6(a)). If solution convergence based on the performance
of pbestg only is defined, then this will result in premature convergence
and the generation of a sub-optima solution. Thus, the novel approach of
integrating multiple convergence measures, based on the search patterns
of the swarm, to avoid premature search termination is validated.

The termination measures for the PARSEC methodology with tew

eliminated, converged at the 544th iterate (Fig. 6(b)). In comparison to a
simulation with a full set of design variables, 172 fewer (716-544), itera-
tions are required.

The PARSEC-Modified method with thirteen variables converges at
the 774th iterate (Fig. 6(c)). The defined termination parameters remain
constant from the 774th evolution up to the maximum iteration count of
800 (Fig. 6(a)) thus, indicating a converged state. In comparison, the
simulation with twelve design coefficients converges at the 661st search
evolution (Fig. 6(d)). A reduction of 113 design iterations between the
two simulations (774 – 661), results in significant computational time
savings. Thus, the effectiveness of eliminating un-important design
variables on computational time to convergence, is validated.

5.4 Validation of AM-PSO optimisation results

The accuracy of the AM-PSO optimisation results (Section 5.3) is
validated with the resolution of the variable values about the optima,
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cluster B (Fig. 7(a)). From the maps, it is established that the solution in

cluster B is not the true optima as aerofoils with lower cd are present in

cluster A. Hence, the variables of the AM-PSO require further

validation.

The perturbation method indicates solution region with lower cd

(cluster A), which have not been exploited by the global optimiser. The

aerofoil with the lowest cd by the perturbation method is represented in

cluster A. Aerofoil contour variations between the AM-PSO generated

solution and the profile in cluster A, is isolated to changes in xu and yxxu

(Fig. 7(c-d)). The profile in cluster A has lower drag due to an extended

xu in comparison to the shape in cluster B, which has the affect of

delaying flow transition thus, maintaining extended regions of laminar

flow on the upper surface. The variable yxxu, has also not converged to

the true optima in the AM-PSO simulations. Low drag aerofoil in cluster

A (Fig. 7(a)), corresponds to an increase in yxxxu, in comparison to the

shape presented in cluster B, where yxxxu is lower (Fig. 7(d)). Sensitivity

analysis indicates that yxxu is highly ranked on the level-of-importance

scale, in the contribution to cd. Thus, acceptable convergence of the

variables is required so that the optimal shape can be validated.

5.4.1 Single-point design

A. Qualitative representation of AM-PSO results

The PARSEC-Modified variables to the single-point solution in Table 6,

are applied in the perturbation methodology. Since low-fidelity solvers

are applied, a large population of test aerofoils are examined, with

acceptable computation turn-over. A test matrix of 9,261 aerofoils are

generated, by independently perturbing each coefficient over 21

intervals within the search limits from Section 4.1· Non-converged

simulations are excluded to avoid misinterpretation of the search

topology. The clustering of cd and clmax , relative to the shape parameters

xu and yxxu are qualitatively represented in Fig. 7.

The maps are clustered by partitioning cd of the test aerofoils into six

groups (A-F). Aerofoils in cluster A are characterised with a low

minimum/maximum drag ratio performance (Fig. 7(a)). The magnitude

of the lower and upper limits of cd increases as the data spans from the

lower right (cluster A) to the upper left (cluster F) of the map in Fig.

7(a). The equating relationship of cd in the clusters, to clmax and shape

variables xu and yxxu , is represented in Figs 7(b-d) respectively. The

solution of the AM-PSO method to single-point design (Table 6) is in
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Table 9
Single-point results by AM-PSO, AM-PSO Perturbation and hybrid optimisation approach

Method t/c Max cl AOA cd % cd clmax %clmax dcp/dx Cm0

camber Gain Rn = 3×106 Gain

NLF(1)-0416 0·16 0·025 0·40 –0·695 0·00502 —– 1·7500 —– 0·2493 –0·0994
AM-PSO 0·160 0·014 0·40 0·203 0·00390 –↓22.31 1·7717 +↑1·22 0·0542 –0·0639
AM-PSO Perturbation 0·160 0·015 0·40 0·016 0·00376 –↓25 1·7804 +↑1·71 0·0658 –0·0697
Hybrid AM-PSO / GM 0·160 0·019 0·40 0·495 0·00362 –↓28.88 1·7467 –↓0·20 0·0978 –0·0969



B. Results validation by hybrid optimisation

Qualitative representation of AM-PSO results (Section 5.4.1), indicates
the solution is within a search topology bounded by low cd performance
(Fig. 7(a)). The global search method does not converge to the true
optima with aerofoils in cluster A ignored during the search optimi-
sation process (cluster A in Fig. 7(a)). Gradient based methods are
applied to address this issue. A constrained minimisation algorithm
using a trust region method is introduced. The AM-PSO single-point
result is integrated into the gradient based approach, for search initiali-
sation. Aerofoil performance by the AM-PSO, including the pertur-
bation of the AM-PSO solution (Section 5.4.1) and the hybrid
optimisation approach, is presented in Table 9:

The hybrid optimisation approach indicates a ≈ 7% reduction in cd

(0·00362), from the stand-alone AM-PSO method (0·00390) and ≈ 4%
reduction from the AM-PSO perturbation method (0·00376). The clmax

by the hybrid approach (1·7467) is compromised by ≈ 1% from the AM-
PSO method (1·7717), but is comparable to the baseline NLF(1)-0416
profile (1·75), with a percentage difference of ≈ 0·20% considered negli-
gible. The constraints relating to dcp/dx and cm0 are satisfied by the hybrid
algorithm. Thus, the benefits of incorporating a coupled global-local
search optimisation methodology, for drag minimisation is validated.

The feasibility of the design coefficients by the hybrid approach is
verified by the perturbation method from Section 5.4. The data is
clustered with priority to drag to determine if lower cd solution regions
exist about the hybrid optimal shape. The equating influence on clmax and
aerofoil shape coefficients is presented in Fig. 8. 

The lowest cd performance by the perturbation process, matches the
optimal magnitude by the hybrid approach (cd = 0·00362). Thus, the
solution is within a validated search topology. The drag contour magni-
tudes in Fig. 8(a) are restricted to the computed minimum drag perfor-
mance. Thus, darker contour regions correspond to profiles with drag
performances higher than the established optima. By restricting the drag
contour magnitudes to low values, nine aerofoils with cd = 0·00362,
matching the hybrid shape are observed in the search topology (Fig.
8(a)). The shapes are comparable, with variations restricted to the nose
radius curvature on the lower surface (Fig. 8(c)).

When the drag performance between aerofoils is the same, preference
to shape with higher clmax, subject to all design constraints satisfied, is
set. The variation in clmax between the nine sections in Fig. 8(b), indicates
the hybrid approach with the highest clmax is ≈0·50% greater than the
perturbation shape. The clmax decreases as the search topology shifts
towards the top-right corner of the SOM in Fig. 8(b). The sample
aerofoil is computed with the lowest clmax, but the variation is restricted
to ≈1% less than the optimal shape. Thus, aerofoil shape design coeffi-
cients by the hybrid optimisation approach, are validated through the
qualitative representation of the solution topology.

C. Multi-point design

The validation approach in single-point designs, is applied for multi-
point analysis. Aerofoil performance by the AM-PSO, perturbation of
the AM-PSO, hybrid-based optimisation and post-processing of the
hybrid profile by independent variable manipulation, is presented in
Table 10 and 11 at cruise and climb cl

T of 0·40 and 1·00 respectively.
The hybrid optimisation approach yields lower cd at cl

T =0·40 and cl
T

=1·00 (Table 10-11), than the initial AM-PSO solution (Table 7-8). The
design validation analysis indicates aerofoil shape variables by the AM-
PSO methodology, did not converge to a global optima. The hybrid
optimisation approach reduces drag by ≈ 7% and ≈ 11% at cruise and
climb, in comparison to the solution by the AM-PSO method (Table 7-
8). The clmax increased by ≈ 1·00%, with all constraints satisfied (Table
10). Further, validation of the perturbation solution to the hybrid profile,
indicates no design improvement in cd. The clmax by the perturbation
approach is marginally greater (1·7738 vs 1·7605 in Table 10) than the
hybrid shape optimisation profile, but at the expense of higher drag
(0·00472 vs 0·00468 at cl

T = 0·40 & 0·00604 vs 0·00590 at cl
T = 1·00 in

Table 11), at the two flight conditions examined.
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● The effect of design variable elimination by the proposed pre-

screening method, on objective function and iterations to conver-

gence is established. A minimal effect on drag with significantly

fewer iterations to convergence was established for single-point

design optimisation;

● The results of the multi-point design are comparable to the baseline

shape. Drag is significantly lower for the specified cl
T range, than

the theoretical validation aerofoil;

● The effect of design variable elimination for multi-point designs,

increases drag slightly while significantly reducing the computa-

tional time to convergence. The aerodynamic performance devia-

tions of the optimal solution by the full and reduced set of shape

variables, is minimal; and

● A hybrid optimisation approach by the integration of a gradient

based solver is introduced. The final solution by the AM-PSO

method is applied for search initialisation to the GM solver. The

true optimum is established with minimal drag performance, in

comparison to a global based optimisation simulation. A novel

technique with self-organising maps is applied to validate the

optimality of the final solution. The qualitative approach confirms

the scope of the search topology. Hence, the feasibility of the

proposed solution is validated.

Future design studies will focus on:

● Increasing the sample size of the aerofoils examined in the inverse

shape fitting process for solution space mapping;

● Verifying the convergence of the solution search space, by

increasing the design variable population size. The CST method by

Kulfan(49) will be applied;

● A robust shape optimisation process will be formulated to address

the uncertainty of selecting flight point for optimisation in multi-

point designs. A similar concept has been developed by Huyse(50,51);

● A high-fidelity flow solver will be integrated into the DNO process

to enhance viscous drag prediction; and

● The developed AM-PSO model will be integrated to a surrogate

model in the form of neural networks(43) and Kriging(8,52) to further

reduce the computational time to convergence.

The variance of aerofoil shape variables rleup , rlelow, yte , tegup, teglow ,
tewup, tewlow, xu, yu, yxxu, xl, between the hybrid optimisation and the
equating perturbation approach is limited to ≈ <0·50%. Shape modifi-
cation thus, performance differences between the final hybrid and
perturbation solution is limited to ≈1% for yl and yxxl (Fig. 9). The
convergence of yl and yxxl by the AM-PSO, perturbation of the AM-
PSO, hybrid AM-PSO / GM and the equating perturbation approach,
is validated in Fig. 9.

Variable magnitude differences of yl and yxxl between the AM-PSO
and the equating perturbation validation approach is significant.
Relatively the variances between the AM-PSO/GM optimisation
approach and the pre-processing validation process, is minimal (Fig.
9). Thus, it is concluded that the hybrid optimisation approach, has
converged to a global solution for the DNO modules applied.

6.0 CONCLUSION AND FUTURE WORK

An intelligent shape optimisation architecture for HALE aerofoil
shape design is developed and validated. The optimisation architecture
is defined to facilitate efficient optimisation search simulations for
solution feasibility. The following is a summary of findings:

● The gradient based method is sensitive to multimodal search
topologies associated with aerofoil design problems and will
generate a sub-optima solution. The search method yields a local
solution to the starting point and not the true optima. To address
the identified demerits, global search evolutions strategies are
applied;

● A variant of the original PSO model is proposed with an
adaptive-mutation operator. The method introduces mutation
thus, search diversity in a time-iteration based process;

● The performance of the AM-PSO algorithm is assessed on several
uni and multi-modal benchmark mathematical test functions. The
results converge to the global optima with fewer design iterations
in comparison to the best algorithm reported in the literature;

● The efficiency of the search process for aerofoil shape design, is
enhanced by defining the search limits of the design variables. A
novel, inverse shape fitting design study is developed;

● A sensitivity study is applied to determine the effect of shape
variables on aerofoil aerodynamics hence, the objective function.
The design variables are ranked in order of importance and the
lowest ranked coefficient is identified and eliminated;

● Aerofoil shape optimisation with the developed AM-PSO model
is initiated. The objective function minimises drag at specified cl

T

with the constraint on clmax , t/c, cm0 and dcp/dx. Convergence of
solution search space is examined by varying aerofoil shape
parameterisation type and design variable population size;

● The results of the single-point design optimisation indicated a
global solution about the input cl

T at cruise. Elsewhere drag is
high thus, indicating the demerits of the single-point approach.
The variant of the PARSEC method with thirteen variables
indicated a ≈ 2% reduction in drag compared to the original
method with eleven variables;
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Table 10
Multi-point results by AM-PSO, AM-PSO perturbation, hybrid optimisation and hybrid perturbation approach at cl

T = 0·40

Method t/c Max cl AOA cd % cd clmax %clmax dcp/dx Cm0

Camber Gain Rn = 3×106 Gain

NLF(1)-0416 0·16 0·025 0·40 –0·695 0·00502 —– 1·7500 —– 0·2493 –0·0994

AM-PSO 0·175 0·027 0·40 –1·396 0·00464 –↓7.57 1·7440 –↓0·34 0·3056 –0·0901

AM-PSO Perturbation 0·166 0·028 0·40 –0·885 0·00466 –↓7.17 1·7725 +↑1·27 0·2913 –0·0902

Hybrid AM-PSO/GM 0·166 0·033 0·40 –2.220 0·00468 –↓6.77 1·7605 +↑0·60 0·295 –0·0984

Hybrid Perturbation 0·174 0·030 0·40 –2.270 0·00472 –↓5.97 1·7738 +↑1·34 0·2931 –0·0988

Table 11
Multi-point results by AM-PSO, AM-PSO perturbation, hybrid

optimisation and hybrid perturbation approach at cl
T = 1·00

Method Max cl AOA cd % cd  
Gain

NLF(1)-0416 0·025 1·00 4·479 0·00661 —–
AM-PSO 0·027 1·00 3·677 0·00612 –↓7·41
AM-PSO Perturbation 0·028 1·00 4·187 0·00610 –↓7·72
Hybrid AM-PSO/GM 0·033 1·00 2·820 0·00590 –↓10·74
Hybrid Perturbation 0·030 1·00 2·763 0·00604 –↓8·62
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