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IMPORTANCE The prevalence of early-stage non–small cell lung cancer (NSCLC) is expected to
increase with recent implementation of annual screening programs. Reliable prognostic
biomarkers are needed to identify patients at a high risk for recurrence to guide adjuvant
therapy.

OBJECTIVE To develop a robust, individualized immune signature that can estimate prognosis
in patients with early-stage nonsquamous NSCLC.

DESIGN, SETTING, AND PARTICIPANTS This retrospective study analyzed the gene expression
profiles of frozen tumor tissue samples from 19 public NSCLC cohorts, including 18 microarray
data sets and 1 RNA-Seq data set for The Cancer Genome Atlas (TCGA) lung adenocarcinoma
cohort. Only patients with nonsquamous NSCLC with clinical annotation were included.
Samples were from 2414 patients with nonsquamous NSCLC, divided into a meta-training
cohort (729 patients), meta-testing cohort (716 patients), and 3 independent validation
cohorts (439, 323, and 207 patients). All patients underwent surgery with a negative surgical
margin, received no adjuvant or neoadjuvant therapy, and had publicly available gene
expression data and survival information. Data were collected from July 22 through
September 8, 2016.

MAIN OUTCOMES AND MEASURES Overall survival.

RESULTS Of 2414 patients (1205 men [50%], 1111 women [46%], and 98 of unknown sex
[4%]; median age [range], 64 [15-90] years), a prognostic immune signature of 25 gene pairs
consisting of 40 unique genes was constructed using the meta-training data set. In the
meta-testing and validation cohorts, the immune signature significantly stratified patients
into high- vs low-risk groups in terms of overall survival across and within subpopulations
with stage I, IA, IB, or II disease and remained as an independent prognostic factor in
multivariate analyses (hazard ratio range, 1.72 [95% CI, 1.26-2.33; P < .001] to 2.36 [95% CI,
1.47-3.79; P < .001]) after adjusting for clinical and pathologic factors. Several biological
processes, including chemotaxis, were enriched among genes in the immune signature. The
percentage of neutrophil infiltration (5.6% vs 1.8%) and necrosis (4.6% vs 1.5%) was
significantly higher in the high-risk immune group compared with the low-risk groups in TCGA
data set (P < .003). The immune signature achieved a higher accuracy (mean concordance
index [C-index], 0.64) than 2 commercialized multigene signatures (mean C-index, 0.53 and
0.61) for estimation of survival in comparable validation cohorts. When integrated with
clinical characteristics such as age and stage, the composite clinical and immune signature
showed improved prognostic accuracy in all validation data sets relative to molecular
signatures alone (mean C-index, 0.70 vs 0.63) and another commercialized clinical-molecular
signature (mean C-index, 0.68 vs 0.65).

CONCLUSIONS AND RELEVANCE The proposed clinical-immune signature is a promising
biomarker for estimating overall survival in nonsquamous NSCLC, including early-stage
disease. Prospective studies are needed to test the clinical utility of the biomarker in
individualized management of nonsquamous NSCLC.
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N on–small cell lung cancer (NSCLC) accounts for ap-
proximately 85% of lung cancer, the leading cause of
death from cancer in the United States and worldwide.1

Biomarkers that can reliably estimate disease prognosis and
patient survival would have tremendous value in guiding the
management of lung cancer.2 For example, most patients with
stage I NSCLC currently do not receive adjuvant systemic treat-
ment after local therapy because several large randomized
studies3-5 have failed to show a survival benefit among unse-
lected patients, for whom the toxic effects associated with che-
motherapy may outweigh the potential benefit for many pa-
tients. Thus, identification of the subset of patients at highest
risk for recurrence and death who have the greatest need for
additional systemic therapy is needed.

A number of studies have proposed gene expression–
based signatures for survival stratification in patients with
NSCLC.6-10 Unfortunately, none has been incorporated into rou-
tine clinical practice owing to issues such as overfitting on small
discovery data sets and lack of sufficient validation.11 The avail-
ability of public, large-scale gene expression data sets brings the
opportunity to identify potentially more reliable lung cancer
biomarkers.8,12,13 To use all this information effectively, how-
ever, the diversity of data also represents a daunting chal-
lenge. Traditional approaches using gene expression levels re-
quire appropriate normalization, which is a difficult task given
the potential biological heterogeneity among data sets and tech-
nical biases across measurement platforms.14 Instead, meth-
ods based on the relative ranking of gene expression levels elimi-
nate the requirement for data preprocessing, such as scaling and
normalization, and have been shown to produce robust re-
sults in various applications, including cancer classification.15-17

Various components of the immune system have been
shown to be a determining factor during cancer initiation and
progression.18,19 Evading immune destruction has been recog-
nized as an emerging hallmark of cancer.20-23 Recent immuno-
therapies targeting specific immune checkpoints such as pro-
grammed death 1 or programmed death ligand 1 have
demonstrated a remarkable, durable response in NSCLC.24,25

Certain histopathologic patterns, such as intratumoral infiltra-
tion by cytotoxic lymphocytes, have also been associated with
better prognoses in several cancer types, including NSCLC.26-30

However, the molecular characteristics describing tumor-
immune interaction remain to be comprehensively explored re-
garding their prognostic potential in NSCLC.31-34

Inthisstudy,wecombinedmultiplegeneexpressiondatasets
to develop and validate an individualized prognostic signature
for nonsquamous NSCLC based on immune-related gene pairs
(IRGPs). To leverage the complementary value of molecular and
clinical characteristics, we integrated the immune signature with
clinical factors to build a composite prognostic index, which al-
lowed improved estimation of nonsquamous NSCLC prognosis.

Methods
Study Design and Patients
We retrospectively analyzed the gene expression profiles of
frozen tumor tissue samples from 19 public NSCLC cohorts,

including 18 microarray data sets and 1 RNA-Seq data set for
The Cancer Genome Atlas (TCGA) lung adenocarcinoma co-
hort. Only patients with nonsquamous NSCLC with clinical an-
notation were included.35,36 We excluded patients who had a
positive surgical margin or had received neoadjuvant therapy,
adjuvant chemotherapy, or other pharmaceutical therapy ow-
ing to immune-modulating effects of some therapeutics.37

Overlapped patients (n = 19) between the Director’s Chal-
lenge Consortium (DCC) and a data set in Gene Expression Om-
nibus (GSE14814) were removed from the DCC data set. Over-
all, we included 2414 patients in our study (eTable 1 in the
Supplement). Details about sample preparation and RNA mea-
surement can be found elsewhere.7,8,38-52 Preprocessing of gene
expression profiles can be found in the eMethods in the Supple-
ment. This study of deidentified data was approved by the
institutional review board of Stanford University, Palo Alto,
California.

Data were collected from July 22 to September 8, 2016.
eFigure 1 in the Supplement shows the overall study design.
We selected the 3 largest individual data sets for independent
validation, namely, TCGA lung adenocarcinoma (TCGA), DCC,
and GSE30219. The remaining 16 microarray data sets were
merged into 1 meta–data set, which was randomly split ap-
proximately in half into meta-training and meta-testing data
sets. Clinical and pathologic characteristics of patients in each
data set are shown in eTable 2 in the Supplement.

Construction of an Individualized Prognostic Signature
Based on IRGPs
We constructed a prognostic signature by focusing on immune-
related genes (IRGs), which were downloaded from the
ImmPort database (https://immport.niaid.nih.gov).53 A variety
of IRGs were included, such as cytokines, cytokine receptors,
and genes related to the T-cell receptor signaling pathway,
B-cell antigen receptor signaling pathway, natural killer cell
cytotoxicity, and antigen processing and presentation
pathways. Immune-related genes measured by all platforms
were selected. The gene expression level in a specific sample
or profile underwent pairwise comparison to generate a score
for each IRGP. An IRGP score of 1 was assigned if IRG 1 was less
than IRG 2; otherwise the IRGP score was 0. This gene
pair–based approach has an important advantage because the
score is calculated based entirely on the gene expression profile

Key Points
Question Can molecular profiling of immune-related genes be
used to estimate prognosis in early-stage nonsquamous non–small
cell lung cancer?

Findings In this multiple-cohort study that analyzed frozen tumor
tissue samples from 2414 patients, an immune signature of 25
gene pairs significantly stratified patients into low- vs high-risk
groups for overall survival across and within subpopulations at
various tumor stages (I, IA, IB, or II).

Meaning Dysregulated immune contexture may contribute to the
survival differences among patients with nonsquamous non–small
cell lung cancer.
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of a tumor sample and can be used in an individualized manner
without the need for normalization. Some IRGPs with constant
values (0 or 1) in a particular platform or data set may
be attributable to (1) platform-dependent preferential
measurement, which can cause biases and may not be
reproducible across platforms, and (2) biologically preferential
transcription, which does not provide discriminative
information about patient survivial.54 Therefore, we removed
IRGPs with constant values in any individual data set of the
meta-data set.

Prognostic IRGPs were selected using the log-rank test to
assess the association between each IRGP and patients’ over-
all survival in the meta-training data set. Prognostic IRGPs with
a familywise error rate less than 0.05 were candidates to build
the IRGP index (IRGPI). To minimize the risk of overfitting, we
applied a Cox proportional hazards regression model com-
bined with the least absolute shrinkage and selection opera-
tor (glmnet, version 2.0-5).55 The penalty parameter was es-
timated by 10-fold cross-validation in the meta-training data
set at 1 SE beyond the minimum partial likelihood deviance.55

To separate patients into low- or high-risk groups, the op-
timal IRGPI cutoff was determined by a time-dependent re-
ceiver operating characteristic (ROC) curve (survivalROC, ver-
sion 1.0.3)56 at 5 years in the meta-training data set. We used
the nearest neighbor estimation57 method to estimate the ROC
curve. The IRGPI corresponding to the shortest distance be-
tween the ROC curve and point representing the 100% true-
positive rate and 0% false-positive rate was used as the cutoff
value.

Validation of the IRGPI
The prognostic value of the IRGPI was assessed in patients with
all stages of disease and in stage-specific groups (early stages
[I/II], I, IA, IB, or II) in the meta-training, meta-testing, and in-
dependent validation cohorts in univariate analyses. We then
combined IRGPI with available clinical and pathologic vari-
ables in multivariate analyses. Age, grade, and stage were
treated as continuous variables. Grade was coded as well dif-
ferentiated (0), moderately differentiated (1), or poorly differ-
entiated (2). Stage IA was coded as 1; the range between IA and
IB, as 1.5; IB, as 2; IIA, as 3; the range between IIA and IIB, as
3.5; IIB, as 4; IIIA, as 5; the range between IIIA and IIIB, as 5.5;
IIIB, as 6; and IV, as 7. The prognostic accuracy of the biomark-
ers in continuous form was evaluated using the concordance
index (C-index), which ranges from 0 to 1.0, with 0.5 indicat-
ing random estimation. We compared the prognostic accu-
racy of the IRGPI with 2 existing multigene signatures
(eMethods in the Supplement) in terms of the C-index.58

Functional Annotation and Analysis
To gain biological understanding of the IRGPI, we conducted
enrichment analysis of its component IRGs with DAVID
(Database for Annotation, Visualization and Integrated
Discover y) Bioinformatics Resources (version 6.8;
https://david.ncifcrf.gov/).59 The background gene list con-
sists of IRGs measured by all platforms. Biological processes
of gene ontology with P < .10 were examined. In the TCGA proj-
ect, snap-frozen tissue block of the tumor was divided into top,

middle, and bottom tissue sections. The middle section was
used to derive genomic data, and the top and bottom sec-
tions underwent histopathologic examination.60 Thus, in ad-
dition to RNA-Seq data, information about immune infiltra-
tion by lymphocytes, monocytes, and neutrophils and necrosis
percentage is also available for tumor samples in the TCGA data
set. We compared those pathologic characteristics between pa-
tients in different immune risk groups according to the IRGPI
by using the Wilcoxon rank sum test.

Construction and Validation of a Composite
Immune-Clinical Prognostic Index
Based on the results of multivariate analyses, we integrated
age, stage, and IRGPI risk score to a composite immune-
clinical prognostic index (ICPI) by applying Cox proportional
hazards regression in the meta-training data set. The prognos-
tic performance of continuous ICPI score was compared with
that of the IRGPI in terms of C-index and revealed by the re-
stricted mean survival (RMS) curve.61 RMS represents the life
expectancy at 10 years for patients with different risk scores.
Similar to the aforementioned method for defining the cutoff
of IRGPI, the cutoff value for ICPI was estimated by time-
dependent ROC curve in the meta-training data set. The per-
formance of binary IRGPI and ICPI was assessed in terms of
the RMS time ratio between low- and high-risk groups.62 A
higher RMS time ratio corresponds to a larger prognostic
difference.

Statistical Analysis
All statistical analyses were performed using R (version 3.3.1;
https://www.r-project.org/). Univariate analysis of the asso-
ciation of IRGPI and other clinical pathologic factors with over-
all survival was evaluated using log-rank test. For factors
significantly associated with overall survival in univariate
analyses, multivariate analysis was performed with the Cox
proportional hazards regression model. The C-index was cal-
culated with survcomp (version 1.22.0) and compared with
compareC (version 1.3.1) packages.63 The RMS curve and RMS
time ratio were estimated with survival (version 2.41-2) and
survRM2 (version 1.0-2) packages.62 Statistical significance was
defined as P < .05 unless specified otherwise.

Results
Construction and Definition of the IRGPI
A total of 2414 patients with nonsquamous NSCLC (1205 men
[50%], 1111 women [46%], and 98 of unknown sex [4%]; me-
dian age [range], 64 [15-90] years) were included in the analy-
sis. Among 1443 IRGs from the ImmPort database, 524 IRGs
were measured by all platforms and 137 026 IRGPs were con-
structed. We removed 126 615 IRGPs (92.4%) with constant or-
dering in any meta-data sets. The possible cause for constant
ordering IRGPs was analyzed in the eResults in the Supple-
ment. No statistically significant difference was observed be-
tween meta-training and meta-testing data sets in terms of
clinical and pathologic factors (eTable 2 in the Supplement).
The association of the 10 411 IRGPs with overall survival was
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assessed in the meta-training cohort, resulting in 281 prog-
nostic IRGPs. We then constructed an IRGPI consisting of 25
IRGPs by using L1-penalized Cox proportional hazards regres-
sion on the meta-training data set. Robustness of the 25 IR-
GPs against 1000 randomizations of the meta cohort was as-
sessed (eMethods in the Supplement). The 25 IRGPs of the
IRGPI were selected at a significantly higher frequency
(P < 1.7 × 10−14) than were those by different randomizations
(eResults in the Supplement). The IRGPI consisted of 40 unique
IRGs, of which 28 were cytokines or cytokine receptors (eTable
3 in the Supplement). On the basis of time-dependent ROC
curve analysis, the optimal cutoff for the IRGPI to stratify pa-
tients into the high or the low immune risk group was deter-
mined to be 0.988 (eFigure 2 in the Supplement).

Validation of the IRGPI as a Stage-Independent
Prognostic Factor
The IRGPI significantly stratified patients into low- vs high-
risk groups in terms of overall survival (eTable 4 and eFigure

3 in the Supplement). It remained as an independent prognos-
tic factor in multivariate analyses, after adjusting for clinical
and pathologic factors such as age, sex, smoking status, tu-
mor stage, and tumor grade (hazard ratio [HR] range, 1.72 [95%
CI, 1.26-2.33; P < .001] to 2.36 [95% CI, 1.47-3.79; P < .001])
(eTable 4 in the Supplement). Furthermore, the IRGPI strati-
fied patients with early-stage (I and II) nonsquamous NSCLC
into significantly different prognostic groups (eFigure 4A-E in
the Supplement). When considering patients with stage I dis-
ease only, the IRGPI remained highly prognostic for the meta-
testing data set (HR, 2.89; 95% CI, 1.95-4.29; P = 3.03 × 10−8)
and independent validation cohorts (HR, 2.04; 95% CI, 1.53-
2.73; P = 8.87 × 10−7) (Figure 1A and B). When further re-
stricted to patients with stage IA or IB disease, the IRGPI could
stratify patients into subgroups with significantly different
prognoses in the meta-testing and/or independent validation
cohorts (eFigure 5 in the Supplement). Similarly, a higher IR-
GPI was correlated with significantly worse prognosis pa-
tients with stage II disease in meta-testing (HR, 1.73; 95% CI,

Figure 1. Kaplan-Meier Curves of Overall Survival Among Patients With Stages I and II Nonsquamous Non–Small-Cell Lung Cancer (NSCLC)

80

60

40

20

0
0

144
240

180

1
0

216144

2
2

108

15
7

76

72

44

Su
rv

iv
al

 P
ro

ba
bi

lit
y,

 %

Month

No. at risk
Low risk

Low immune risk

Low immune risk
Low immune risk

Low immune risk

High risk

High immune risk

High immune risk
High immune risk

High immune risk

36

187
95

IRGPI in stage I of meta-testingA

HR, 2.89 (95% CI, 1.95-4.29)
P < .001

80

60

40

20

0
0

293
306

216

4
1

180

9
4

252144

20
14

108

40
24

80

72

75

Su
rv

iv
al

 P
ro

ba
bi

lit
y,

 %

Month
36

169
141

IRGPI in stage I of independent validationB

HR, 2.04 (95% CI, 1.53-2.73)
P < .001

80

60

40

20

0
0

55
46

180144

0
1

108

1
1

9

72

10

Su
rv

iv
al

 P
ro

ba
bi

lit
y,

 %

Month

No. at risk
Low risk
High risk

36

28
24

IRGPI in stage II of meta-testingC

HR, 1.73 (95% CI, 1.03-2.92)
P = .04

80

60

40

20

0
0

132
57

180

1
2

216

0
1

144

3
3

108

4
6

6

72

17

Su
rv

iv
al

 P
ro

ba
bi

lit
y,

 %

Month
36

18
38

IRGPI in stage II of independent validationD

HR, 3.39 (95% CI, 1.80-6.37)
P < .001

100 100

100100

Patients are stratified by immune-related gene pair index (IRGPI) (low vs high
risk). A and C, Overall survival among patients with stages I and II nonsquamous
NSCLC in meta-testing. B and D, Overall survival among all patients with stages I

and II nonsquamous NSCLC in 3 independent validation data sets. Hazard ratios
(HRs) and 95% CIs are for high vs low immune risk. P values comparing risk
groups were calculated with the log-rank test.

Research Original Investigation Individualized Immune Prognostic Signature in Early-Stage Nonsquamous NSCLC

1532 JAMA Oncology November 2017 Volume 3, Number 11 (Reprinted) jamaoncology.com

© 2017 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/26/2022

http://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaoncol.2017.1609&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2017.1609
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaoncol.2017.1609&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2017.1609
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaoncol.2017.1609&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2017.1609
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaoncol.2017.1609&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2017.1609
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaoncol.2017.1609&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2017.1609
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaoncol.2017.1609&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2017.1609
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaoncol.2017.1609&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2017.1609
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaoncol.2017.1609&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2017.1609
http://www.jamaoncology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2017.1609


1.03-2.92; P = .037) and in independent validation cohorts (HR,
3.39; 95% CI, 1.80-6.37; P = 5.53 × 10-5) (Figure 1C and D) and
patients with more advanced stage III to IV disease (HR, 1.56;
95% CI, 1.14-2.15; P = .005) (eFigure 4F in the Supplement).
Overall, the IRGPI appears to estimate overall survival inde-
pently of stage in nonsquamous NSCLC (Figure 2).

Functional Annotation of the IRGPI
Enrichment analysis of the 40 unique IRGs identified 6
overrepresented biological processes in gene ontology
(eTable 5 in the Supplement). Most biological processes
were chemotaxis. Chemotaxis of various immune infil-
trates, such as neutrophils, monocytes, and macrophages,

was observed. In the TCGA data set, we found that the per-
centages of necrosis and neutrophil infiltration were sig-
nificantly different between IRGPI risk groups (Figure 3).
The mean level of necrosis in the IRGPI high-risk group
was 3-fold that in IRGPI low-risk group in the bottom (6.5%
v s 2 .1% ; P = 2 .3 9 × 1 0 − 6 ) a n d t o p (4 .6% v s 1 . 5% ;
P = 6.29 × 10−13) sections. Patients with a higher IRGPI
also had significantly higher neutrophil infiltration in their
tumors in the bottom (4.8% vs 1.3%; P = .002) and top
(4.3% vs 1.6%; P = .001) sections. However, no statistically
significant difference in lymphocyte or monocyte infiltra-
tion was observed between the 2 IRGPI risk groups in the
TCGA data set.

Figure 3. Immune Infiltration Status of Immune-Related Gene Pair Index (IRGPI) Risk Groups in The Cancer
Genome Atlas (TCGA) Data Set
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Figure 2. Forest Plot for the Hazard Ratios (HRs) of High vs Low Immune-Related Gene Pair Index (IRGPI)
Risk Groups

Favors
High Risk

Favors
Low RiskSource Low Risk High Risk

Meta-training
HR (95% CI)

All 4.38 (3.37-5.70)385 344
Early (stage I and II) 4.39 (3.15-6.10)320 197
Stage I 4.36 (2.92-6.50)265 143
Stage II 3.91 (2.16-7.07)55 54

Meta-testing
All 2.21 (1.75-2.79)372 344
Early (stage I and II) 2.66 (1.94-3.63)286 199
Stage I 2.89 (1.95-4.29)240 144
Stage II 1.73 (1.03-2.92)46 55

DCC
All 2.00 (1.41-2.84)135 188
Early (stage I and II) 1.81 (1.22-2.68)122 160
Stage I 1.43 (0.91-2.25)108 116
Stage II 2.33 (0.97-5.61)14 44

GSE30219
All 3.72 (2.43-5.70)74 133
Early (stage I and II) 3.83 (2.37-6.18)70 91
Stage I 3.34 (2.03-5.52)66 64
Stage IIa NA4 27

TCGA
All 2.15 (1.46-3.16)210 229
Early (stage I and II) 2.23 (1.37-3.63)171 174
Stage I 1.69 (0.90-3.17)132 113
Stage II 3.00 (1.15-7.83)39 61

8.01.00.5
HR (95% CI)

No. of Patients

Univariate Cox proportional hazards
regression was applied to estimate
HRs between IRGPI high and low risk
in each data set within stage
subgroups. Early represents patients
with stage I and stage II
nonsquamous non–small-cell lung
cancer (NSCLC). The length of
horizontal line corresponds to the
confidence interval, and the size of
the HR data marker is inversely
proportional to the confidence
interval. Vertical dotted line indicates
HR of 1.0. DCC indicates Director’s
Challenge Consortium; NA, not
applicable; TCGA, The Cancer
Genome Atlas.
a Hazard ratio is not reported because

of unstable estimation of Cox
proportional hazards regression
model.
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Comparison With Other Gene Expression Signatures
We compared the IRGPI with 2 clinical applicable and com-
mercialized biomarkers, including a 14-gene biomarker for
stages I to III nonsquamous NSCLC and a 31-cell cycle progres-
sion (CCP) gene biomarker for early-stage (I and II) NSCLC
(eMethods in the Supplement).6,9,64 Only TCGA and GSE13213
included all 14 genes needed to construct the 14-gene bio-
marker. For both data sets, the IRGPI achieved a higher C-
index compared with the 14-gene biomarker (eFigure 6A in the
Supplement). Of note, for patients with stages I to III disease
in the TCGA data set, the C-index of the IRGPI was signifi-
cantly different from random estimation (C-index, 0.62; 95%
CI, 0.55-0.69; P < .001), whereas the 14-gene biomarker was
not (C-index, 0.50; 95% CI, 0.44-0.56; P = .93). Similarly, in 3
of 4 data sets, the IRGPI showed a higher C-index than the CCP
biomarker (eFigure 6B in the Supplement). Overall, the mean
C-index weighted by cohort size was 0.64 for IRGPI vs 0.53 for
the 14-gene biomarker and 0.61 for the CCP biomarker in
respective comparisons.

We used the same 1000 random splits of the meta-cohort
to further assess the accuracy and variability of survival esti-
mation for different biomarkers (eMethods in the Supple-
ment). The IRGP-based models showed a higher median
C-index of 0.65 and lower variation (SD, 0.015) in the meta-
testing cohorts compared with CCP and the 14-gene bio-
marker, with median (SD) C-indexes of 0.57 (0.020) and 0.56
(0.025), respectively.

Integrated Prognostic Index by Combining
the IRGPI With Clinical Factors
In multivariate analysis (eTable 4 in the Supplement), age, stage
and IRGPI were independent prognostic factors in at least 3 data
sets, suggesting their complementary value. To further im-
prove accuracy, we combined age, stage, and IRGPI score to
fit a Cox proportional hazards regression model using the meta-
training data set and derived an ICPI as (0.0265 × age) +
(0.267 × stage) + (1.917 × IRGPI score). An optimal cutoff of
0.116 for stratifying patients was determined based on time-
dependent ROC curve analysis in the meta-training data set
(eFigure 7A in the Supplement). Significantly improved esti-
mation of survival was achieved by the continuous form of
ICPI relative to IRGPI (mean C-index, 0.70 vs 0.63 in the
validation data set; P < .005) (eFigure 7B in the Supplement
and Figure 4). Similar results were observed in binary form
of the ICPI relative to the IRGPI (eFigure 8 and eTable 6 in
the Supplement).

We also compared our ICPI with a commercialized clinical-
molecular composite biomarker mPS, which integrates stage
with CCP score, in patients with early-stage disease (eMethods
in the Supplement). Our ICPI achieved a higher accuracy of sur-
vival estimation in all validation data sets (mean C-index, 0.68
for ICPI vs 0.65 for mPS; eFigure 9 in the Supplement).

Discussion
Patients with early-stage NSCLC are at substantial risk for re-
currence and death, even after complete surgical resection. The

use of adjuvant therapy in early-stage, particularly stage I,
NSCLC remains controversial, because previous randomized
trials have not demonstrated a consistent survival benefit.
Reliable prognostic biomarkers are critically needed to select
patients who are at highest risk for recurrence and who might
benefit from additional systemic therapy. Significant re-
search on gene expression–based prognostic signatures6-10 has
led to recent commercialization of 2 biomarkers in lung
adenocarcinoma,6,9 but their accuracy of survival estimation
remains limited. In this study, we developed a prognostic sig-
nature based on 25 immune-related gene pairs for nonsqua-
mous NSCLC and validated it in multiple independent data sets
across different platforms. Our prognostic immune signature
can further stratify clinically defined groups of patients (eg,
early-stage [I/II] and stages I, IA, IB, and II nonsquamous
NSCLC) into subgroups with different survival outcomes. In
benchmark comparisons, our signature achieved higher ac-
curacy than 2 commercialized molecular biomarkers. We fur-
ther leveraged the complementary value of molecular and clini-
cal characteristics and showed that combining both could
provide a more accurate estimation of overall survival in non-
squamous NSCLC.

To identify reliable biomarkers of nonsquamous NSCLC
prognoses, we combined gene expression profiles from mul-
tiple data sets and used methods that are specifically de-
signed to perform robustly given technical biases inherent
across different platforms with microarray or RNA-Seq
technologies.65,66 Our prognostic signature is based on the rela-
tive ranking of gene expression values and only involves pair-
wise comparison within the gene expression profile of a
sample, thus eliminating the need for data normalization. As
such, our prognostic signature can serve as an individual-
ized, single-sample estimate of survival of NSCLC and may be
readily translated to clinical practice.

Prognostic or predictive biomarkers related to the tumor
immune microenvironment may hold great promise for iden-
tifying novel molecular targets and improving patient man-
agement in the era of immunotherapy.2 Suzuki et al67 discov-
ered that stromal rather than tumor nest FoxP3:CD3 ratio and
tumor expression level of certain cytokines (interleukin 12 re-
ceptor β2 and interleukin 7 receptor) were correlated with re-
currence in stage I lung adenocarcinoma. Because gene ex-
pression profiles used in the present study were derived from
a core sample of tumor tissue, we did not observe significant
differences in lymphocyte infiltration between low- and high-
risk IRGPI groups, which is consistent with the previous find-
ings. Similarly, most genes contained in our immune signa-
ture were also cytokines and cytokine receptors, which play
key roles in chemotaxis, angiogenesis, and inflammatory
processes.68 An increased inflammatory microenvironment
has been shown to be a consistent component of neoplastic
process and tumor progression.68,69 Different from apopto-
sis, which is immunologically and inflammatorily silent,70 ne-
crosis can release proinflammatory intracellular content into
the tumor microenvironment and induce an inflammatory
response involving a diverse set of immune cells such as
neutrophils and macrophages.71 In addition, tumor-
associated neutrophils have been shown to be associated with
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poor prognoses in a variety of cancer types.19,72-75 We found
significantly increased level of necrosis and infiltration of neu-
trophils consistently in the high immune–risk group in the
TCGA data set. On the basis of the aforementioned findings,
dysregulated immune contexture might be the reason for the
survival differences observed between patient groups as
defined by our signature.

Limitations
Limitations of our study include its retrospective nature, al-
though we tried to include as many data sets as possible for
more rigorous validation of our biomarker. Similar to other
studies,76,77 gene expression signatures are subject to sam-
pling bias caused by intratumor genetic heterogeneity. Al-
though we excluded IRGPs with constant ordering to reduce

certain cross-study batch effects, their complex nature im-
plies that not all batch effects can be addressed, and some may
remain.14 Future studies will integrate diverse biological
processes, which could provide a more complete molecular
picture of the tumor.

Conclusions
The proposed immune-related gene pair–based signature is a
promising prognostic biomarker in nonsquamous NSCLC, in-
cluding early-stage disease. Prospective studies are needed to
further validate its analytical accuracy for estimating progno-
ses and to test its clinical utility in individualized manage-
ment of nonsquamous NSCLC.
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Figure 4. Restricted Mean Survival (RMS) Curves for Continuous Signature Values in Validation Cohorts
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The RMS curve for immune-related gene pair index (IRGPI) and immune-clinical
prognostic index (ICPI) scores was plotted for (A) meta-testing, (B) Director’s
Challenge Consortium (DCC), (C) Gene Expression Omnibus (GSE30219), and
(D) The Cancer Genome Atlas (TCGA) data sets. Each point represents the RMS

time of corresponding IRGPI and ICPI scores. The RMS curves showed a larger
slope in all data sets for ICPI, indicating the superior estimation of survival with
ICPI. Concordance index (C-index) for IRGPI and ICPI was also provided. P value
represents the difference between IRGPI and ICPI in terms of C-index.
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