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Development and validation of deep learning
algorithms for scoliosis screening using
back images
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Adolescent idiopathic scoliosis is the most common spinal disorder in adolescents with a

prevalence of 0.5–5.2% worldwide. The traditional methods for scoliosis screening are easily

accessible but require unnecessary referrals and radiography exposure due to their low

positive predictive values. The application of deep learning algorithms has the potential to

reduce unnecessary referrals and costs in scoliosis screening. Here, we developed and

validated deep learning algorithms for automated scoliosis screening using unclothed back

images. The accuracies of the algorithms were superior to those of human specialists in

detecting scoliosis, detecting cases with a curve ≥20°, and severity grading for both binary

classifications and the four-class classification. Our approach can be potentially applied in

routine scoliosis screening and periodic follow-ups of pretreatment cases without radiation

exposure.
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A
dolescent idiopathic scoliosis (AIS) is defined as a spinal
curvature of 10° or more and of unknown etiology in
persons aged 10 to 18 years. It is the most common spinal

disorder in adolescents, with a prevalence of 0.5–5.2% world-
wide1–3. Untreated scoliosis can progress before skeletal maturity,
which influences body appearance, affects cardiopulmonary
function, and even causes paralysis4–6. Consequently, school
scoliosis screening (SSS) has been advocated for early detection of
reversible spinal curves before their progression7.

SSS involves different types of assessment methods, including
appearance inspection, forward bending tests, scoliometer mea-
surements, and individual Moiré topography, which are direct
and easily accessible. However, the disadvantages of these
methods are considerable and include their susceptibility to the
subjectivity of screeners, time-consuming nature, and require-
ment for unnecessary radiography due to their low positive
predictive values (PPVs)8–11. Although the US Preventive Ser-
vices Task Force (USPSTF) changed the SSS recommendation
from negative (D grade, discourage the use of screening pro-
grams) to neutral (I grade, uncertainty regarding the balance of
the benefits and harm of the service) based on updated evidence
in 2018, the deficiencies of traditional assessment methods in SSS
remain unresolved12–14.

Computer vision is recognized as a promising approach for
image recognition in medicine due to its good performance in
image information extraction15–17. Numerous tasks have been
achieved by computer vision, including automated classification
of eye diseases18, identifying facial phenotypes of genetic dis-
orders19, and prediction of cardiovascular risk factors from fun-
dus images20. As appearance features are evaluated by human
screeners to detect scoliosis during SSS8, these features may also
be recognized by computer vision. Here, using unclothed back
images, we developed deep learning algorithms (DLAs) and
validated their feasibility and efficacy in the detection and severity
grading of scoliosis. Large numbers of adolescents can be
screened via telehealth examination and the exposure to radiation
can be avoided.

Results
Algorithm training and internal validation. The demographic
information of the training and internal validation datasets is
shown in Table 1. The entire block diagram and the architectures
of Faster-RCNN and Resnet are shown in Fig. 1. The mean
localization performance of Faster-RCNN was 100% (average
interpolated precision, the standard deviation was 0). After the
algorithms were established, five-fold cross-validation was applied
to evaluate their performance. To detect cases with a curve ≥ 10°,
algorithm 1 exhibited an average AUC of 0.946 (95% CI,

0.916–0.975), a sensitivity of 87.5% (95% CI, 81.2–93.8%), a
specificity of 83.5% (95% CI, 77.6–89.4%), and a PPV of 86.2%
(95% CI, 81.6–90.8%). For algorithm 2, the AUC, sensitivity, and
specificity to detect cases with a curve ≥ 20° were 0.951 (95% CI,
0.933–0.970), 85.7% (95% CI, 83.4–88.1%), and 89.6% (95% CI,
86.2–93.0%), respectively, with a PPV of 89.1% (95% CI,
85.8–92.5%). The average accuracy of algorithm 3 was 80.0%
(95% CI, 77.8–82.1%) for differentiating among the four groups.
The internal validation results of the DLAs are shown in Fig. 2
and Supplementary Table 1.

External Validation. The diagnostic performance of the DLAs
was further evaluated using the external validation dataset, and
the demographic information of the external validation dataset is
shown in Table 1. The professional screeners required ~30 min
(range 19–40 min) to assess 400 back photos (4.5 s per photo),
which was much longer than the time required for the DLAs
(1.5 s per photo). The results showed significant differences
between the DLAs and human expert panel in detecting scoliosis,
detecting cases with a curve ≥20°, and curve severity grading; the
P values were 0.022, <0.001, and <0.001, respectively. The AUCs
of algorithms 1 and 2 were 0.811 (a sensitivity of 80.7%, a spe-
cificity of 58.0%) and 0.929 (a sensitivity of 84.0%, a specificity of
90.0%), respectively. The PPVs of these two algorithms were
85.2% and 89.4%, respectively. The DLAs exhibited higher
accuracy than the human specialists in detecting scoliosis (algo-
rithm 1, 75.0%; human, 72.4%) and identifying cases with a
curve ≥ 20°, which require a brace or surgical treatment (algo-
rithm 2, 87%; human, 81.9%). The accuracy of algorithm 3 was
55.5% for differentiating among the four groups, which was
comparable to the highest accuracy (56.8%) of the four human
experts and superior to the mean level (46.9%). The outcomes of
the external validation are shown in Figs. 3 and 4 and Supple-
mentary Table 2.

Heat maps suggested that the features contributing to
intelligent discrimination of the DLAs were primarily in the
scapular and lumbar regions (Fig. 5). The level of trunk
asymmetry revealed in the heat maps was associated with the
spinal curves of the patients. In addition, three binary classifica-
tions (20–44° and ≥45°; 25–44° and ≥45°; 0–44° and ≥45°) and
another four classes of classifications (0–9°, 10–24°, 25–44°, ≥45°)
were validated, as shown in Supplementary Fig. 1 and
Supplementary Table 3. Moreover, we developed a cloud-based
platform (Supplementary Fig. 2) embedded with the trained
DLAs for self-screening in the Django web framework21, which is
available at http://www.spinecube.cn/login/en/. Users can access
it freely.

Discussion
This study showed that DLAs can be trained to detect scoliosis,
identify cases with a curve ≥20°, and perform severity grading
using unclothed back images with an accuracy, sensitivity, spe-
cificity, and PPV that are higher or comparable to those of human
experts. Therefore, our algorithms can reduce the referral rate,
costs, and time required for traditional scoliosis screening.
Moreover, because the DLA method does not involve radiation
exposure, it has the potential to be applied as a periodic follow-up
tool for progression monitoring to avoid excessive X-ray expo-
sure. To our knowledge, this is the first large and full-coverage
(including healthy controls and various curvature severities)
study on the intelligent detection of scoliosis. The efficiency of
computer vision in the detection and classification of scoliosis was
demonstrated using unclothed back images.

Several aspects may contribute to the superiority of our model.
First, our DLAs achieve scoliosis screening using only unclothed

Table 1 Demographic information of the training, internal

validation and external validation datasets

Severity Total

number of

subjects

Male Female Average

severity

Average age

(years old)

Training and internal validation datasets

<10° 745 306 439 6.3° 15.2

10–19° 938 312 626 15.2° 13.9

20–44° 780 197 583 26.9° 15.4

≥45° 777 214 563 56.2° 16.1

External validation dataset

<10° 100 43 57 6.3° 14.6

10–19° 100 32 68 16.1° 14.1

20–44° 100 41 59 28.4° 15.3

≥45° 100 45 55 51.3° 15.7
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Fig. 1 Details of the methods. a The entire DLA workflow; b The architecture and workflow of Faster-RCNN; c The architecture of Resnet, where the yellow

squares in Restnet are the convolutional kernels in the convolutional layers and the purple squares in Resnet are pooling operations in the pooling layers
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Fig. 2 ROC curves and the accuracy, specificity, and sensitivity of the binary classification for the internal validation dataset. a The ROC curve and AUC of

the DLAs for discerning whether the severity is ≥10°; b The ROC curve and AUC of the DLAs for discerning whether the severity is ≥20°; c The confusion

matrix of the DLAs for the four classes of classifications (0–9°, 10–19°, 20–44°, ≥45°). The rows and columns represent the ground-truth label (<10°,

10–19°, 20–44°, ≥45° from top to bottom) and the predicted label (<10°, 10–19°, 20–44°, ≥45° from left to right)
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back images and perform better than experts in terms of diag-
nostic accuracy. Second, our model has a clear criterion, so its
resultant repeatability is higher than that of human experts, who
grade scoliosis empirically based on superficial inspection. Third,
our model can automatically process data and does not require
human labor, so it performs more efficiently (DLAs vs human,
1.5 s vs 4.5 s per photo). We also note that one of our DLAs,
algorithm 3, showed a moderate accuracy (55.5%) for distin-
guishing scoliosis severity, indicating the challenge of revealing
subtle changes in scoliosis severity; however, even in these sce-
narios, our model still exhibits comparable performance to that of
top human expert (56.8%). A previous study indicated that the
performance of DLAs reached a plateau when the number of
training cases increased to 60,000 (~17,000 referable images)22.
Therefore, we believe that the performance of our algorithms will
continue to improve as the number of training cases increases.

Various methods have been adopted in SSS programs to reduce
the referral rate8. In the study by Karachalios et al.23, four single-
modality screening methods were analyzed in the same cohort.
The sensitivity of these four methods ranged from 84.4% to 100%;
the specificity ranged from 78.1% to 93.4%; but the PPVs were
low (ranging from 4.8% to 13.3%). The PPV was improved when
two or more screening methods were combined as reported by
Luk et al. (forward bending test with a scoliometer and Moiré
screening, PPV= 81%) and Yawn et al. (forward bending test
with a scoliometer, PPV= 29.3%)24,25. However, more screening

devices and time are required when two or more screening
methods are adopted in combinations, especially when screening
a large population. To detect cases with curves of 20° or greater,
Luk et al. reported a PPV of 39.8%, a sensitivity of 91.0%, and a
specificity of 97.5%, and Yawn et al. reported a PPV of 17.0%, a
sensitivity of 64.0% and a specificity of 67.2%24,25. Most of these
screening methods, whether used alone or in combination, had
lower PPVs for detecting scoliosis cases (curves ≥ 10°) and cases
with a curve ≥ 20° than the DLAs tested in the present study. Our
present study using DLAs achieved PPVs of 85.2% (a sensitivity
of 80.7% and a specificity of 58.0%) and 89.4% (a sensitivity of
84.0% and a specificity of 90.0%) when identifying scoliosis and
cases with a curve ≥ 20°, which are far better than those reported
previously and are comparable to those achieved by specialists for
algorithm 1 (mean PPV 84.3%, range 77.4–87.2%) and algorithm
2 (mean PPV 90.4%, range 82.7–98.3%) in the external validation.
Therefore, these algorithms can reduce the referral rate and the
number of cases unnecessarily exposed to radiation due to false-
positive results.

The main drawback of using the Cobb angle via radiography is
the increased risk of cancer, which impedes its routine application
in scoliosis screening26–30. Several machine learning methods
have been designed to detect spinal deformity using the trunk
surface defined by various techniques, including optical digitizing
systems31–33, orthogonal maps34, the surface topography tech-
nique35, laser scanners36,37, and the Quantec system38. However,
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Fig. 3 ROC curves and the accuracy, specificity, sensitivity, NPV, and PPV of the binary classification for the external validation dataset. a The ROC curve of

the DLAs for discerning whether the severity is ≥10° and the performance of the human experts; b The accuracy, specificity, sensitivity, NPV, and PPV of

the DLAs and human experts for discerning whether the severity is ≥10°; c The ROC curve of the DLAs for discerning whether the severity is ≥20° and the

performance of the human experts; d The accuracy, specificity, sensitivity, NPV, and PPV of the DLAs and human experts for discerning whether the

severity is ≥20°
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these methods still cannot be widely applied due to small scoliosis
datasets and the lack of healthy controls, the high demand for
specialized equipment, and the time-consuming nature of these
methods. In contrast, our DLAs require only unclothed back
photos for diagnosis and do not require radiation exposure.

Another argument against SSS is the requirement for man-
power, equipment, and financial resources. The screening costs
include the expenditure for training screeners, salaries of
screeners, and purchasing screening devices39. The screening cost
is from USD 1.81 to USD 13.61 per student in different SSS
programs40,41. The cost increased when students were followed

up before their skeletal maturity. A Rochester study showed that
the cost increased to USD 34.40 per student when follow-up was
included39. Luk et al. reported that the average cost of screening
one student for the whole adolescent period was USD 17.94,
which increased to USD 20.02 and USD 54.63 per student when
diagnostic and medical care costs were included10. Our web-
based self-screening approach will greatly reduce screening costs,
as only network maintenance or a simple screening device with
DLAs is needed.

Clinical signs of unevenness on back images, including
shoulder height, scapular prominence, and truncal shift, can serve
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Fig. 4 The confusion matrix of the four classes of classification and their accuracy in the external validation dataset. The rows and columns represent the

ground-truth label (<10°, 10–19°, 20–44°, ≥45° from top to bottom) and the predicted label (<10°, 10–19°, 20–44°, ≥45° from left to right). a The

confusion matrix of the DLAs for classifying the severity (four classes of classifications: <10°, 10–19°, 20–44°, ≥45°); b–e The confusion matrix of the
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classifying the severity (four classes of classifications: <10°, 10–19°, 20–44°, ≥45°)
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as important clues indicating the need for referral of a scoliosis
patient to radiography24. Our heat map (Fig. 5) showed that the
scapular and lumbar regions are critical for the predictive accu-
racy of the DLAs, providing a theoretical basis for screening and
classifying scoliosis according to body surface characteristics. This
predictive method is similar to human screening practice and has
the capacity to distinguish scoliosis severity between two or more
categories. Moreover, further study of surface parameters recog-
nized by DLAs may help improve current manual screening
methods.

This study has several limitations. First, all scoliosis cases in the
training set were verified by experts to ensure the diagnosis of
idiopathic scoliosis, and only those who underwent corrective
surgery received detailed examinations (whole-spine MRI, CT, or
electrophysiological examination). Therefore, the cases screened
out by the DLAs may have mixed etiologies, such as congenital
scoliosis, Marfan syndrome, or neuromuscular scoliosis. Second,
whole-spine X-rays of a healthy population (Cobb angle < 10°)
were substituted by full-spine ultrasound images to avoid radia-
tion exposure because a large dataset of X-ray images from a
healthy population was unavailable. Third, the accuracy of the
algorithm needs to be improved with more training data or
multidimensional photos, and the application of the DLA plat-
form requires further validation in multicenter and multiethnic
trials.

Methods
Data collection. The training dataset included images from 3240 patients
(including 1029 male and 2211 female) with labeled back images and whole-spine
standing posterior-anterior X-ray images or ultrasound images from the databases
of three institutions (including ~1.2 million screened school students, with 6500
conservatively treated and 2000 surgically treated patients with scoliosis). Of these
images, 2495 were obtained from subjects with scoliosis and 745 were obtained
from normal controls. All the subjects were Chinese with an age range from 10 to
20 years old, subjects with nontrue scoliosis (such as scoliosis caused by pain or by
leg discrepancy, etc.), other spine diseases or some other back abnormalities (such
as soft tissue mass, thoracic cage diseases, etc) were excluded. The datasets used for

external validation consisted of data from 400 individuals, including 100 normal
cases and 300 scoliosis cases.

This study was approved by the Ethics Committee of Xinhua Hospital, Xinmiao
Spine Clinic, and the 1st Affiliated Hospital of Sun Yat-sen University. The test
between the DLAs and the orthopedists was registered with ClinicalTrials.gov
(identifier: NCT03773458). The back images for algorithm training and validation
were collected from patients screened or treated for scoliosis at these three
institutions. All back images were obtained with the subjects standing naturally and
disrobing above the hip. Various cameras were used for image acquisition. The
requirement for informed consent was waived because of the retrospective nature
of the fully anonymized images. Our study was approved by the institutional review
board (IRB: XHEC-KJB-2018–024) and was conducted in accordance with the
Declaration of Helsinki.

Annotation Process. Summaries of each dataset are shown in Supplementary
Table 4. Each subject had a definitive diagnosis based on a whole spine standing
posterior-anterior radiograph or a full-spine ultrasound image obtained with a
Scolioscan system (Model SCN801; Telefield Medical Imaging Ltd, Hong Kong).
Normal cases in this study were recruited volunteers who were diagnosed by
ultrasound images (VPI-SP method) in radiation-free evaluations, which showed a
low mean difference (d=−1.9°) compared with Cobb’s method for X-ray film in
mild to moderate scoliosis.41 Cobb angles of the spine in all datasets were measured
by two separate spine surgeons with 10 years’ experience based on medical images,
and a senior spine specialist, who has been treating AIS for more than 25 years, was
consulted if unanimous agreement was not achieved. Meanwhile, all back images
were labeled with tool (https://github.com/tzutalin/labelImg). The intraobserver
and interobserver correlation coefficients for the measurement of Cobb angles were
0.974 and 0.917, respectively. The subjects were divided into different groups
according to curve severity: Group 1, Cobb angle < 10°; Group 2, 10° ≤ Cobb angle
< 20°; Group 3, 20° ≤Cobb angle < 45°; and Group 4, Cobb angle ≥ 45°. Group 1
represented nonscoliotic subjects, and the other groups represented patients with
scoliosis. Patients in groups 2, 3, and 4 were candidates with different management
strategies (Group 2, periodic observation or physiotherapy; Group 3, bracing; and
Group 4, corrective surgery).

Architecture of the DLAs. The regions of interest (from neck to hip) were first
automatically localized using Faster-RCNN42. Resnet with 101 layers43 was
developed to recognize the characteristics of each group43. The preprocessed
images were then input into the Resnet to extract high-level features for binary
classifications and multiclass classifications based on the groups mentioned above.
The diagrammatic sketches of Faster-RCNN and Resnet with 101 layers are shown
in Fig. 1c and Supplementary Fig. 3a. Moreover, the architectures of the residual
block and batch normalization block are shown in Supplementary Fig. 3b, c. Deep
learning is a type of neural network that can imitate the information summarizing
ability of the human brain via multilayer connections among neurons. The DLAs
were trained to differentiate the unseen images. Algorithm 1 was trained to dis-
tinguish scoliotic (groups 2, 3, and 4) from nonscoliotic (group 1) subjects; algo-
rithm 2 was used to identify potential subjects in need of a brace or surgical
treatment (groups 3 and 4); and algorithm 3 was designed to divide the multiclass
classifications of sorting images into 4 groups (0–9°; 10°–19°; 20°–44°; ≥45°). The
examples (unclothed back, X-ray and ultrasound images) of these four severities
are provided in Supplementary Fig. 4.

Statistics and reproducibility. The algorithms were assessed independently for
each purpose. The k-fold cross validation (k= 5) technique was used to evaluate
the capacity of the trained DLAs to correctly classify the back images. The external
validation dataset was used to further determine the performance of the neural
network. The performances in image classification were compared between the
DLAs and four professional screeners with an external validation dataset, which
was registered with ClinicalTrials.gov (identifier: NCT03773458). The detailed
information of these four screeners is shown below:

Professor Junlin Yang (senior spine specialist). Professor Yang is a famous
orthopediac surgeon in China, and has engaged in clinical and basic orthopedic
research for ~30 years (with spinal deformity experience ~20 years). He has per-
formed >2000 scoliosis surgeries, >5000 conservative scoliosis treatment and more
than 20,000 of scoliosis outpatient consultations.

Doctor Zifang Huang and Jingfan Yang (two junior spine surgeons). Doctors
Huang and Yang are both spine surgeons with more than ten-year experience in
screening, conservative treatment and surgery in spinal deformity. They have
participated in >500 scoliosis surgeries, >1000 conservative scoliosis treatments and
>3000 of scoliosis outpatient consultations.

Xiaoling Xuan. As a trained nurse screener, Xiaoling Xuan has engaged in more
than three years of school scoliosis screening in Guangdong Province, and screened
for scoliosis in >10,000 adolescent students.

Thoracic curve

0–9°

10–19°

20–44°

0–9°

10–19°

20–44°

≥45° ≥45°

Lumbar curve

Fig. 5 Heat maps illustrating which parts of the body contributed to the

classification results. Heat maps suggested that the features contributing to

intelligent discrimination by the DLAs were primarily in the scapular and

lumbar regions. The level of trunk asymmetry revealed in the heat maps

was associated with the spinal curves of the patients
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For 5-fold cross validation and external validation, the sensitivity, specificity,
accuracy, and area under the receiver operating characteristic (AUC) curve of the
DLAs were calculated. The number of true-positive (TP), true-negative (TN), false-
positive (FP), and false-negative (FN) cases were counted, and the corresponding
PPV and negative predictive value (NPV) were calculated44,45. The values can be
obtained as follows:

Accuracy ¼ TPþ TNð Þ= Pþ Nð Þ

Sensitivity TPR true positive rateð Þð Þ ¼ TP= TPþ FNð Þ ¼ TP=P

Specificity ¼ TN= TNþ FPð Þ ¼ TN=N

NPV negative predictive valueð Þ ¼ TN= TNþ FNð Þ

PPV positive predictive valueð Þ ¼ TP= TPþ FPð Þ

where, N and P are the numbers of negative samples and positive samples,
respectively. The threshold for calculating the accuracy, sensitivity, specificity, NPV
and PPV was 0.5. In binary classification problem, if the largest one out of two
classification probabilities for a sample is larger than 0.5, then the predicted label
for this sample was the class corresponding to this largest probability. The
performances of the DLAs in the external validation were compared with those of
professional screeners using descriptive statistics. All of the statistical tests in our
study were 2-sided, and a P-value less than 0.05 was considered significant. All
analyses were performed with MATLAB (Version R2016a, MathWorks, http://
www.mathworks.com).

The performances of all four screeners and DLAs were independently evaluated
with 400 samples (unclothed back images) in three different scenes using the above
mentioned performance measurements. Screeners were told that the options
included <10° and ≥10° in the first scene. Similarly, Screeners were told that the
options included <20° and ≥20° in the second scene and that options included
<10°, 10–19°, 20–44° and ≥45° in the third scene.

Contribution analysis and website building. We also analyzed the contributions
of body parts to the discriminative capacity of the DLAs using class activation
mapping (CAM)46. Regions of interest are shown as colored areas on heat maps.
Additionally, a self-screening website (https://www.spinecube.cn) was built for free
access. A user can upload his/her back image according to the instructions on the
website, and the output report includes a screening result and a referral recom-
mendation (radiography or online follow-up).

All the methods mentioned above were carried out with the Berkeley Vision and
Learning Center (BVLC) deep-learning framework (Caffe47) on a computer with
four TITAN Xp graphical processing units. For Faster-RCNN, the localization
performance was evaluated with average precision (AP48,49) and four-fold cross-
validation. For Resnet, the classification performance was evaluated by assessing
the accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curve,
and AUC curve, as well as by five-fold cross-validation. All DLAs were fine-tuned
from pretrained models, specificially, the hyperparameters of all DLAs were
initialed from an existing model that were trained with IMAGENET dataset50. We
trained Alexet, VGG16, Inception-V4 and Resnet-101 with the same dataset, and
we chose Resnet-101 to complete this task.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current study are available

from the corresponding author on reasonable request. Correspondence and requests for

data materials should be addressed to JLY (yjunlin@126.com). All training datasets are

available at Baidu Netdisk (https://pan.baidu.com/s/1z9ipKpy0H09ceZtBDaJ09Q). The

source data underlying Figs. 2–4 are shown in Supplementary Data 1 and Supplementary

Tables 2, 5–10. The source data underlying Supplementary Fig. 1 are presented in

Supplementary Data 1 and Supplementary Table 11.

Code availability
The code and algorithms can be accessed at GitHub (https://github.com/Hugo0512/

Spinecube).
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