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Abstract

The glycaemic and insulin indices assess postprandial glycaemic and insulin response to foods, respectively, which may not reflect the long-

term effects of diet on insulin response. We developed and evaluated the validity of four empirical indices to assess the insulinaemic potential

of usual diets and lifestyles, using dietary, lifestyle and biomarker data from the Nurses’ Health Study (NHS, n 5812 for hyperinsulinaemia,

n 3929 for insulin resistance). The four indices were as follows: the empirical dietary index for hyperinsulinaemia (EDIH) and the empirical

lifestyle index for hyperinsulinaemia (ELIH); the empirical dietary index for insulin resistance (EDIR) and the empirical lifestyle index for

insulin resistance (ELIR). We entered thirty-nine FFQ-derived food groups in stepwise linear regression models, and defined indices as

patterns most predictive of fasting plasma C-peptide, for the hyperinsulinaemia pathway (EDIH and ELIH), and of theTAG:HDL-cholesterol

ratio, for the insulin-resistance pathway (EDIR and ELIR). We evaluated the validity of indices in two independent samples from NHS-II and

Health Professionals Follow-up Study (HPFS) using multivariable-adjusted linear regression analyses to calculate relative concentrations of

biomarkers. The EDIH is comprised of eighteen food groups; thirteen were positively associated with C-peptide and five were inversely

associated. The EDIR is comprised of eighteen food groups; ten were positively associated with TAG:HDL-cholesterol and eight were

inversely associated. Lifestyle indices had fewer dietary components, and included BMI and physical activity as components. In the validation

samples, all indices significantly predicted biomarker concentrations – for example, the relative concentrations of the corresponding

biomarkers comparing extreme index quintiles in the HPFS were EDIH, 1·29 (95% CI 1·22, 1·37); ELIH, 1·78 (95% CI 1·68, 1·88); EDIR, 1·44

(95% CI 1·34, 1·55); and ELIR, 2·03 (95% CI 1·89, 2·19); all Ptrend< 0·0001. The robust associations of these novel hypothesis-driven indices

with insulin response biomarker concentrations suggest their usefulness in assessing the ability of whole diets and lifestyles to stimulate and/or

sustain insulin secretion.
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Hyperinsulinaemia and insulin resistance are considered

important underlying mechanisms linking poor dietary and

lifestyle behaviours to the development of multiple chronic

diseases and conditions. For example, studies suggest that

hyperinsulinaemia is associated with higher risk of colorectal

adenomas(1) and colorectal cancer independent of adiposity(2,3),

and insulin resistance has been consistently linked to

obesity, inflammation, heart disease and type 2 diabetes(4–6).

Although specific dietary factors have been shown to influence

insulin resistance and secretion(7,8), dietary patterns or indices

that include multiple dietary factors and account for the

complex interactions among nutrients and foods may be more

predictive of diet–disease associations(9,10). Other lifestyle

factors that have been linked to hyperinsulinaemia and insulin

resistance are body weight and physical activity (PA)(11–14).

PA plays an important role in the prevention of insulin
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insensitivity(14), whereas increased body weight has a direct

association with insulin resistance(11). Therefore, combining diet,

exercise and body weight in a lifestyle index would likely be

more predictive of hyperinsulinaemia and insulin resistance than

each of these factors considered separately.

At present, the most common dietary index used to assess the

ability of diets to stimulate insulin secretion is the glycaemic

index (GI). The GI classifies carbohydrate-containing foods by

their ability to raise postprandial blood glucose concentration

relative to glucose or white bread(15), and therefore indirectly

assesses immediate insulin responses to food intake. However,

it neglects dietary factors such as proteins and fats that are also

important in insulin secretion. Moreover, the GI does not

quantify the long-term effects of diet on glycaemia. As an

improvement on the GI, our group previously developed a

food insulin index to directly quantify postprandial insulin

response(16). However, this index was not predictive of

C-peptide concentrations(16). The lack of predictive ability may

be because the insulin index, similar to the GI, assesses post-

prandial insulin response to the intake of specific foods, and

therefore is limited to quantifying short-term insulin response

rather than the long-term effects of whole diets on insulinaemia.

Hence, we developed dietary and lifestyle patterns that assess

the insulinaemic potential of usual diets and lifestyles to reflect

long-term insulin exposure and overall insulin resistance, the

more relevant exposure for chronic disease prevention.

Previously, our group derived a dietary pattern associated

with hyperinsulinaemia and found this pattern to be

significantly associated with colorectal cancer risk(17). However,

the sample size used to derive this pattern was small (n 833),

and the pattern was applied in the same cohort. The objectives

of our current study were 3-fold: first, we updated the pre-

viously developed dietary pattern using the currently available

larger sample of women and additionally developed separate

dietary and lifestyle patterns predictive of hyperinsulinaemia, as

well as insulin resistance; second, in validation studies, we

evaluated how well these patterns predicted concentrations of

insulin response biomarkers in independent samples of men

and women; and, third, we examined the joint influence of diet,

body weight and PA on clinically relevant hyperinsulinaemia

and insulin resistance.

Methods

Study populations

The Nurses’ Health Study (NHS), the Nurses’ Health Study-II

(NHS-II) and the Health Professionals Follow-up Study (HPFS)

are ongoing prospective cohorts established in 1976, 1989 and

1986, respectively. The NHS (n 121 701) enrolled female

registered nurses aged 30–55 years, whereas the NHS-II

(n 116 430) enrolled younger female registered nurses aged

25–42 years(18). The HPFS (n 51 529) enrolled male health

professionals aged 40–75 years. Blood samples were collected

from subpopulations of the NHS (n 32 826) in 1989–1990, of the

NHS-II (n 29 611) between 1996 and 1999 and of the HPFS

(n 18 225) from 1993 to 1994(19). Blood sample collection

was conducted using similar protocols for all cohorts.

The procedures including collection, handling and storage have

been previously summarised(20). In the current study, we used

data from previous matched case–control studies nested within

each of the three cohorts that measured fasting concentrations

of plasma C-peptide, TAG and HDL-cholesterol. In the NHS,

5812 women with C-peptide data and 3929 women with data

on TAG and HDL-cholesterol were included in the develop-

ment of the dietary and lifestyle indices. For the validation

studies, there were 4002 men with C-peptide data and 3559

men with TAG and HDL data in the HPFS cohort, and there

were 1717 women with C-peptide data and 1008 women with

TAG and HDL data in the NHS-II cohort. The Institutional

Review Boards at Brigham and Women’s Hospital and at

Harvard T.H. Chan School of Public Health approved this study.

Biomarker assessment

For the current analysis, we utilised fasting plasma C-peptide

concentrations to assess hyperinsulinaemia. Compared with

insulin, C-peptide has proven to be a better measure of

β-cell secretory activity as it is not extracted by the liver, has a

slower metabolic clearance rate and does not cross-react with

antibodies of insulin(21). To assess insulin resistance, we utilised

the ratio of fasting TAG:fasting HDL-cholesterol, which has

been shown to be significantly correlated with insulin

resistance(22). TAG:HDL-cholesterol is also a simple and

clinically useful measure to identify apparently healthy indivi-

duals who are insulin resistant(23–25).

Procedures for the measurement of fasting plasma insuli-

naemic markers (C-peptide, TAG and HDL) in the NHS, NHS-II

and HPFS have previously been described(26,27). C-peptide was

measured by ELISA (Diagnostic Systems Laboratories/Beckman

Coulter). HDL-cholesterol and TAG were measured by

standard methods with reagents from Roche Diagnostics and

Genzyme(26,27). The intra-assay CV from blinded quality control

samples were <12% for C-peptide and <1·8% for TAG and

HDL across batches.

In nested case–control studies in which these biomarkers

were measured, samples from cases and their matched controls

were analysed in the same batch. Quality control samples were

randomly interspersed among case–control samples, and

laboratory personnel were blinded to quality control and

case–control status for all assays. Biomarkers were measured in

multiple batches over several years. There may be differences

in mean biomarker levels by batch due to different reagents,

technicians or laboratories, but also due to differences in the

participants in each batch. We therefore used a three-step

method, previously described by Rosner et al.(28), to re-calibrate

biomarker concentrations across several batches to the value of

an ‘average batch’, accounting for true variability across bat-

ches, because of different distributions of predictors of the

biomarker across batches: (i) we constructed a linear regression

model with biomarker levels as the dependent variables and

batch indicators as well as variables that may vary by biomarker

levels and by batch (regular aspirin/non-steroidal anti-

inflammatory drugs (NSAID) use, age at blood sample

collection, PA, smoking status, diabetes, other chronic diseases/

conditions and case–control status, as well as menopausal
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status and postmenopausal hormone use in women) as the

independent variables; (ii) next, we calculated the average

batch β coefficient by summing the batch indicator β and

dividing by the total number of batches; and (iii) finally, we

calculated the difference between each batch β and the

average β and re-calibrated biomarker concentrations by

subtracting this difference from the original biomarker

concentration. The re-calibrated biomarkers were then used in

the analyses. The correlation between the re-calibrated and the

uncalibrated TAG:HDL-cholesterol was 0·96 and 0·85 for

C-peptide in the NHS; therefore, we used the uncalibrated

TAG:HDL-cholesterol and calibrated C-peptide in the primary

analyses and conducted sensitivity analyses with the

re-calibrated TAG:HDL-cholesterol and uncalibrated C-peptide.

Assessment of dietary and non-dietary data

Dietary data are updated every 4 years in the NHS (since 1980),

the NHS-II (since 1991) and in the HPFS (since 1986) with a

validated, semi-quantitative FFQ that assessed diet intake during

the previous 1 year(29–31). We used dietary data from the ques-

tionnaires closest to the blood draw – that is, the 1990 FFQ for the

NHS, the 1999 FFQ for the NHS-II and the 1994 FFQ for the HPFS.

Participants with excessive missing items (≥70) in the FFQ or with

implausibly low or high energy intakes (<2510 or >14 644kJ/d

(<600 or >3500kcal/d) for women and <3347 or >17 573kJ/d

(<800 or >4200 kcal/d) for men) were excluded(32).

All three cohorts collected non-dietary data (e.g. medical

history and health practices) and updated the data through

biennial, self-administered questionnaires. We calculated parti-

cipants’ BMI (kg/m2) using height (metres) reported at baseline

for each cohort and weight (kg) reported in the questionnaire

closest to blood draw. Participants reported their smoking status

(never, former, current), and we calculated PA, expressed in

metabolic equivalent (MET)-h/week, by summing the average

MET-h/week for the following activities: tennis/squash/

racquetball, rowing, calisthenics, walking, jogging, running,

bicycling and swimming. The reproducibility and validity of the

PA questionnaire have been evaluated previously(33,34). Regular

use of aspirin or other NSAID was defined as use of ≥2 standard

tablets (325-mg) of aspirin or ≥2 tablets of NSAID/week. We

derived a chronic disease co-morbidity score by summing the

presence= 1/absence= 0 of the following chronic diseases/

conditions: hypercholesterolaemia, cancer, high blood pres-

sure, heart disease and rheumatoid/other arthritis.

Development of the indices of lifestyle and dietary

insulinaemic potential

We developed four indices to assess the insulinaemic potential

of whole diets and lifestyles: the empirical dietary index for

hyperinsulinaemia (EDIH) and the empirical lifestyle index for

hyperinsulinaemia (ELIH), which also include BMI and PA as

components; the empirical dietary index for insulin resistance

(EDIR) and the empirical lifestyle index for insulin resistance

(ELIR), which also include BMI and PA as components.

Of the three cohorts, the NHS had the largest sample of

participants with biomarker data; therefore, we used dietary,

lifestyle and biomarker data (C-peptide, TAG and HDL) in the

NHS to develop the indices, and based the scores on food

groups rather than on nutrients to approximate how people

perceive dietary intake. We first calculated daily intakes

per 4184 kJ (1000 kcal) of thirty-nine previously defined food

groups(32) from the 1990 FFQ. The grouping scheme was

based on the similarity of the nutrient profiles or culinary usage

among the foods(32). We then used four separate stepwise

multivariable-adjusted linear regression analyses to identify the

most important component food groups and lifestyle factors

contributing to hyperinsulinaemia (with C-peptide concentra-

tions as the dependent variable) and to insulin resistance (with

TAG:HDL-cholesterol as the dependent variable), with the

thirty-nine food groups as independent variables, and a

significance level of P= 0·1 for entry into and retention in the

model. BMI and PA were added to the list of the thirty-nine food

group predictors in models to develop the lifestyle indices.

Intakes of the food groups identified in the stepwise linear

regression analyses were weighted by the regression coeffi-

cients derived from the final stepwise linear regression model

and then summed to constitute the indices. All four index scores

assess the insulinaemic potential of diet on a continuum from

maximally low insulinaemic potential to maximally high insulin-

aemic potential, with higher (more positive) scores indicating

higher insulinaemic diets or lifestyles (hyperinsulinaemia or

insulin resistance) and lower (more negative) scores indicating

low insulinaemic or insulin-sensitive diets or lifestyles.

Sensitivity analyses

In the sensitivity analyses, we created three potential alternative

versions of both the EDIH and the EDIR by (i) using uncali-

brated C-peptide and calibrated TAG:HDL-cholesterol, (ii) using

unweighted components, thus assuming that all components

contribute equally to the total score, and (iii) by constructing

indices only for control subjects of the nested case–control

studies (although all the nested case–control studies that

generated data for the current study used pre-diagnostic blood

samples from chronic disease-free participants).

In addition, we compared the predictive ability of the

previously developed C-peptide dietary pattern. This pattern

was high in red meat, high-energy beverages, fish and creamy

soup intakes and low in coffee, high-fat dairy and wholegrain

intakes(17). Finally, we compared the predictive ability of the

EDIH and the EDIR with that of the previously developed

insulin index. The insulin index has been described previously;

its values compare the postprandial plasma insulin response

of a specific food relative to a reference food(16).

Statistical analysis

Where it is not explicitly stated, the analyses described for the

EDIH and the EDIR were also applied to their respective life-

style versions. We described participants’ characteristics using

mean values and standard deviations for continuous variables

or geometric means and CV for log-transformed variables and

frequencies (%) for categorical variables. Concentrations of

all biomarkers were back-transformed to their original units
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(ex, where x is the transformed biomarker value) because

biomarkers were log-transformed using natural logarithms

before analyses.

In the NHS, we calculated correlation coefficients between

the EDIH or the EDIR, their alternative versions and the

insulinaemic markers. We also assessed the distribution of the

absolute average concentrations of C-peptide across quintiles

of EDIH and TAG:HDL-cholesterol across quintiles of EDIR,

stratified by joint categories of BMI and PA as follows: lean and

active (BMI< 25 kg/m2 and PA≥median PA), lean and seden-

tary (BMI< 25 kg/m2 and PA<median PA), overweight/obese

and active (BMI≥ 25 kg/m2 and PA≥median PA), and over-

weight/obese and sedentary (BMI≥ 25 kg/m2 and PA<

median PA). The multivariable models were adjusted for the

following covariates: age at blood draw (years, continuous), PA

(MET-h/week, continuous), smoking status (never, former,

current), regular aspirin/NSAID use (yes/no), case–control

status, history of diabetes (yes/no), chronic disease

co-morbidity score and additionally for menopausal status and

postmenopausal hormone use. BMI was not controlled for in

the multivariable models because it has been shown to

mediate(35,36) and/or modify(17) the association between diet

and insulin markers; thus, controlling for BMI could result in

attenuation of true associations or loss of statistical power to

detect true associations.

In the validation studies in which we evaluated how well the

indices predicted concentrations of insulin response biomarkers

in the HPFS and NHS-II samples, we calculated scores for the

EDIH and EDIR and their potential alternative versions, as

well as estimated correlations among the index scores and

biomarkers (C-peptide for hypersinsulinaemia and TAG:HDL-

cholesterol for insulin resistance). In addition, we assessed the

distribution of the absolute average concentrations of C-peptide

across quintiles of EDIH and TAG:HDL-cholesterol across

quintiles of EDIR, stratified by joint categories of BMI,PA

described above. To determine whether there were clinically

relevant differences in the insulinaemic potential of diet

between these categories, we used clinically relevant cut-off

points – 1·8 ng/ml for C-peptide(37,38) and 3 for TAG:HDL-

cholesterol(25,39) (values considered to be the upper limit of

normal) to dichotomise the biomarkers. Participants with

values ≥1·8 ng/ml were classified as having high C-peptide

concentrations, whereas those with TAG:HDL-cholesterol >3

had high TAG:HDL-cholesterol ratio. We then calculated pro-

portions of participants with clinically high levels of biomarkers

across dietary index quintiles in each category of BMI,PA.

The associations between the EDIH or EDIR and their

respective outcome biomarkers were assessed in multivariable-

adjusted linear regression models using relative concentrations

of the biomarkers predicted in higher EDIH or EDIR quintiles,

with the lowest quintile as the reference (e.g., concentration in

quintile 5/concentration in quintile 1). We used the continuous

index adjusted for multiple covariates to assess the trend of

biomarker concentrations across quintiles of the categorised

index. All multivariable models were adjusted for the previously

described potential confounding variables.

In sensitivity analyses, we applied each of the three

alternative versions of the EDIH or EDIR (scores developed

using uncalibrated C-peptide and calibrated TAG:HDL-choles-

terol, scores developed using unweighted components, scores

developed in control subjects only) in multivariable-adjusted

linear regression models to predict relative concentrations of

the biomarkers. In addition, we compared the predictive ability

of the previously developed C-peptide dietary pattern and the

insulin index with that of the EDIH and EDIR. Although parti-

cipants were free from diabetes at blood sample collection, we

excluded participants identified to have diabetes during the

nested case–control studies, and compared findings with those

from all participants.

All analyses were conducted using SAS version 9.3 for UNIX.

All tests were two-sided, and 95% CI not including 1 were

considered to indicate statistically significant results.

Results

Of the thirty-nine food groups examined, eighteen were iden-

tified as significant contributors to the EDIH, with thirteen of

them positively associated and five of them inversely associated

with C-peptide concentrations (Table 1). The ELIH had fourteen

components: seven components including BMI were positively

associated with C-peptide, whereas the remaining seven

components including PA were inversely associated with

C-peptide concentrations. Common to both dietary and lifestyle

hyperinsulinaemia indices were red meat, margarine, creamy

soups and butter (positive associations) as well as high-fat dairy

products, wine, coffee and whole fruit (inverse associations).

The EDIR had eighteen components: ten were positively

associated with TAG:HDL-cholesterol, whereas eight were

inversely associated with TAG:HDL-cholesterol. The ELIR had

seventeen components: eleven including BMI were positively

associated with TAG:HDL-cholesterol, whereas the remaining

six including PA were inversely associated with TAG:

HDL-cholesterol. Common to both dietary and lifestyle insulin-

resistance indices were margarine, red meat, refined grains,

processed meat, tomatoes, other vegetables and low-energy

beverages (positive associations) as well as coffee, wine, high-

fat dairy products, liquor and green leafy vegetables (inverse

associations) (Table 1). The potential alternative versions were

similar and mainly differed from the EDIH and the EDIR in the

number of components (online Supplementary Table S1).

In the NHS, the proportion of overweight women in the highest

quintile of both the EDIH and the EDIR was approximately

2 times higher than the proportion in the lowest quintile. Similarly,

the proportion of lean and active participants was highest in

quintile 1 and lowest in quintile 5. The proportion of participants

with ≥3 chronic diseases/conditions in the highest quintile was

>2 times higher than that in the lowest quintile (Table 2). Both

dietary indices showed moderate correlations with biomarkers.

For example, the Spearman’s correlation coefficient was 0·21 for

the EDIH and C-peptide and 0·32 for the EDIR and TAG:HDL-

cholesterol. The correlations were stronger for the two lifestyle

indices, with correlations coefficients of 0·47 between the ELIH

and C-peptide and 0·46 between the ELIR and TAG:HDL-

cholesterol (Table 3). In addition, the EDIH and the EDIR were

highly correlated with their potential alternative versions, but

correlations with the insulin index were low – for example,
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Table 1. Components of the indices to assess the insulinaemic potential of diet and lifestyle; the Nurses’ Health Study, 1990

Empirical dietary index for hyperinsulinaemia Empirical lifestyle index for hyperinsulinaemia Empirical dietary index for insulin resistance Empirical lifestyle index for insulin resistance

Food group* Weight† R
2
‡ Food group* Weight† R

2
‡ Food group* Weight† R

2
‡ Food group* Weight† R

2
‡

Positive associations Positive associations Positive associations Positive associations

Red meat 0·250 0·008 BMI (kg/m2) 0·051 0·187 Low-energy beverages 0·116 0·014 BMI (kg/m2) 0·047 0·151

Low-energy beverages 0·053 0·004 Margarine 0·041 0·001 Margarine 0·121 0·013 Refined grains 0·076 0·003

Cream soups 0·787 0·003 Liquor 0·072 0·001 Red meat 0·328 0·009 Red meat 0·181 0·003

Processed meat 0·199 0·002 Cream soups 0·536 0·001 Refined grains 0·102 0·006 Margarine 0·099 0·003

Margarine 0·054 0·002 Butter 0·058 0·001 processed meats 0·327 0·004 Tomatoes 0·135 0·002

Poultry 0·183 0·002 Red meat 0·089 0·001 Tomatoes 0·145 0·002 Low-energy beverages 0·051 0·002

Butter 0·094 0·001 Fruit juice 0·042 0·001 Other vegetables 0·126 0·001 Fruit juice 0·068 0·001

French fries 0·581 0·001 Inverse associations Other fish 0·155 0·001 Potatoes 0·160 0·001

Other fish 0·172 0·001 Coffee −0·020 0·002 Fruit juice 0·052 0·001 Processed meat 0·124 0·001

High-energy beverages 0·104 0·001 Whole fruit −0·029 0·002 Creamy soups 0·519 0·001 Other vegetables 0·070 0·001

Tomatoes 0·095 0·001 Wine −0·071 0·002 Inverse associations Tea 0·027 0·001

Low-fat dairy products 0·025 0·001 Physical activity (MET-h/week) −0·001 0·001 Coffee −0·070 0·018 Inverse associations

Eggs 0·124 0·001 High-fat dairy products −0·054 0·001 Wine −0·261 0·011 Coffee −0·041 0·007

Inverse associations Snacks −0·024 0·001 Liquor −0·204 0·006 Wine −0·171 0·004

Wine −0·165 0·009 Salad dressing −0·059 0·001 Beer −0·210 0·002 Liquor −0·122 0·002

Coffee −0·035 0·005 Green leafy vegetables −0·076 0·001 High-fat dairy products −0·064 0·001

Whole fruits −0·029 0·003 High-fat dairy products −0·066 0·001 Physical activity (MET-h/week) −0·001 0·001

High-fat dairy products −0·046 0·001 Dark yellow vegetables −0·103 0·001 Green leafy vegetables −0·064 0·001

Green leafy vegetables −0·055 0·001 Nuts −0·078 0·001

* The food groups (servings/d) retained were defined as follows: red meats (4–6 oz beef, 4–6 oz pork, 4–6 oz lamb, 1 patty hamburger); processed meat (1 piece or 1 slice processed meat, 2 slices bacon, 1 hot dog); low-energy

beverages (1 glass, 1 bottle or 1 can of low-energy cola, other low-energy carbonated beverages); cream soups (1 cup chowder or cream soup); 1 pat margarine; poultry (4–6 oz chicken or turkey with or without skin); high-energy

beverages (1 glass, 1 bottle or 1 can of cola with sugar, other carbonated beverages with sugar, fruit punch drinks); 1 pat butter; 4-oz French fries; other fish (3–5 oz canned tuna, shrimp, lobster, scallops, fish and other seafood other

than dark meat fish); low-fat dairy products (8-oz glass skimmed or low-fat milk, 1/2 cup sherbet or ice milk, 1 cup yogurt); tomatoes (1 fresh tomato, 1 small glass of tomato juice, 1/2 cup of tomato sauce); 1 egg; cruciferous vegetables

(1/2 cup of broccoli, coleslaw and uncooked cabbage; cooked cabbage; cauliflower; Brussels sprouts; kale, mustard and chard greens; sauerkraut); wine (4-oz glass of red wine, white wine); 1 cup coffee; high-fat dairy products (8-oz

glass whole milk, cream, 1 tablespoon sour cream, 1/2 cup ice cream, 1oz cream cheese, 1 oz or 1 slice other cheese); green leafy vegetables (1/2 cup spinach, serving of iceberg or head lettuce, serving of romaine or leaf lettuce);

whole fruit (1-oz or small-pack raisins, 1/2 grapes, 1 avocado, 1 banana, 1/4 melon cantaloupe, 1 slice watermelon, 1 fresh apple or pear or 1/2 cup canned, 1 orange, 1/2 grapefruit, 1/2 cup strawberries, 1/2 cup blueberries, 1 fresh or

1/2 canned peaches, 1 fresh or 1/2 canned apricots or plums); dark yellow vegetables (1/2 cup carrots, 1/2 cup yellow (winter) squash, 1/2 cup yams, 1/2 cup sweet potatoes); snacks (1 small bag or 1-oz potato chips, corn chips or

popcorn, 1 crackers); 1 pat butter; fruit juice (1 small glass of apple juice or cider, orange juice, grapefruit juice, other fruit juice); liquor (1 drink or 1 shot whiskey, gin, etc.); salad dressing ( 1 tablespoon oil and vinegar salad dressing);

refined grains (1 slice white bread, 1 English muffins, 1 bagel or roll, 1 muffin or biscuit, 1 cup white rice, 1 cup pasta, 1 serving of pancakes or waffles); beer (1 glass, 1 bottle or 1 can); 1 cup coffee; 1 cup tea (not herbal tea); potatoes

(1 baked or boiled, 1 cup mashed); other vegetables (4-inch stick celery, 1 fresh, cooked or canned mushroom, 1/2 green pepper, 1 ear or 1/2 cup frozen or canned corn, 1/2 cup mixed vegetables, eggplant, 1/2 cup zucchini, 1/2 alfalfa

sprouts, 1/4 cucumber); whole grains (1 cup cooked oatmeal, 1 cup other cooked breakfast cereal, 1 slice dark bread, 1 cup brown rice, 1 cup other grains, 1 tablespoon bran added to food, 1 tablespoon wheat germ).

† Weights are regression coefficients derived from the final step of the stepwise linear regression models. Each weight represents the contribution of the corresponding index component to the total weighted index score.

‡ The partial R 2 represents the proportion of variance in biomarkers explained by the index component.
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although the EDIH had a correlation coefficient of 0·90 with the

version developed in control subjects, its correlations with

the insulin index was –0·07. Corresponding correlations for the

EDIR were 0·89 and 0·14, respectively (online Supplementary

Table S2).

In multivariable-adjusted models in the NHS, the EDIH and

the EDIR were significantly associated with C-peptide and TAG:

HDL-cholesterol. The C-peptide concentration of women in the

highest quintile of the EDIH was 40% (95% CI 34, 46%;

Ptrend< 0·0001) higher than that of women in the lowest

quintile. Similarly, women in the highest quintile of the EDIR

had a 67% (95% CI 55, 80%; P< 0·0001) higher concentration

of TAG:HDL-cholesterol than women in the lowest quintile. The

corresponding contrasts for the ELIH and the ELIR were 97%

(95% CI 89, 106%) and 127% (95% CI 111, 145%), respectively

(Table 4). Multivariable-adjusted analyses excluding women

with diabetes were not materially different (online Supple-

mentary Table S3). In stratified analyses, there were large

differences in C-peptide concentrations in EDIH quintiles

across combinations of BMI,PA. Women in the overweight/

obese and sedentary categories had the highest concentrations

of C-peptide, whereas those in the lean, active category had the

lowest concentrations. In addition, there were significant trends

of increasing TAG:HDL-cholesterol concentrations within joint

strata of BMI and PA (Fig. 1).

In the validation studies using HPFS and NHS-II data, we

observed similar trends in participant characteristics as in the

NHS. Concentrations of C-peptide and TAG:HDL-cholesterol

increased monotonically across quintiles of their respective

dietary and lifestyle indices. For example, between extreme

index quintiles in the HPFS, there was a 25 and 82% increase in

C-peptide for the EDIH and the ELIH respectively, and a 60 and

132% increase in TAG:HDL-cholesterol for the EDIR and the

ELIR, respectively (online Supplementary Table S4 for the EDIH

and the EDIR and online Supplementary Table S5 for the ELIH

and the ELIR). Moreover, we found similar correlation patterns

for the indices and biomarkers in the HPFS and NHS-II samples

as in the NHS – that is, moderate correlations between dietary

indices and biomarkers, stronger correlations between lifestyle

indices and biomarkers (Table 3) and very strong correlations

between dietary indices and potential alternative versions, but

low-to-moderate correlations with the insulin index and the

Table 2. Participant characteristics in quintiles (Q) of the insulin response dietary patterns; the Nurses’ Health Study, 1990

(Mean values and standard deviations; numbers and percentages)

Empirical dietary index for hyperinsulinaemia (n 5812) Empirical dietary index for insulin resistance (n 3929)

Q1 (n 1162)

(−0·57 to <0·09)

Q3 (n 1162)

(0·16 to <0·21)

Q5 (n 1162)

(0·28 to 0·75)

Q1 (n 785)

(−1·15 to <0·06)

Q3 (n 786)

(0·19 to <0·28)

Q5 (n 786)

(0·39 to 1·25)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Fasting C-peptide (ng/ml)* 1·8 0·9 2·2 0·9 2·6 0·9 NA NA NA NA NA NA

Fasting TAG:HDL-cholesterol* NA NA NA NA NA NA 1·62 1·0 2·29 1·0 3·19 1·1

Insulin index 42·5 5·8 43·0 4·8 41·8 4·3 40·4 6·3 43·4 4·3 42·9 4·1

Age (years) 59·3 6·5 58·2 6·9 56·2 7·4 59·2 6·1 59·6 6·3 58·8 6·7

Physical activity (MET-h/week) 18·6 18·7 17·5 30·5 12·9 21·4 17·4 18·7 15·2 19·7 13·5 18·4

Alcohol (servings/d)† 0·7 1·0 0·4 0·7 0·3 0·7 1·1 1·3 0·3 0·5 0·1 0·3

BMI (kg/m2) 24·0 3·6 25·7 4·3 27·7 5·6 24·3 3·9 26·3 5·1 29·3 6·0

n % n % n % n % n % n %

Overweight/obese (≥25 kg/m2) 373 32·1 570 49·1 728 62·7 279 35·5 396 50·4 578 73·5

Current smokers 125 10·8 116 10·0 146 12·6 247 31·5 165 21·0 123 15·7

Regular aspirin/NSAID users 393 33·8 436 37·5 484 41·7 277 35·3 289 36·8 321 40·8

BMI–physical activity combinations‡

Lean and active 479 41·2 334 28·7 203 17·5 281 35·8 198 25·2 102 13·0

Lean and sedentary 310 26·7 258 22·2 231 19·9 225 28·7 192 24·4 106 13·5

Overweight/obese and active 211 18·2 272 23·4 259 22·3 165 21·0 188 23·9 229 29·1

Overweight/obese and sedentary 162 13·9 298 25·7 469 40·4 114 14·5 208 26·5 349 44·4

Chronic disease/conditions

co-morbidity score§

No chronic disease/condition 517 44·5 521 44·8 517 44·5 356 45·4 283 36·0 218 27·7

1 chronic disease/condition 415 35·7 376 32·4 374 32·2 261 33·3 260 33·1 238 30·3

2 chronic diseases/conditions 184 15·8 183 15·8 199 17·1 116 14·8 173 22·0 191 24·3

≥3 chronic diseases/conditions 46 4·0 82 7·1 72 6·2 52 6·6 70 8·9 139 17·7

Diabetes (yes) 6 0·5 17 1·5 23 2·0 46 5·9 108 13·7 259 33·0

Postmenopausal women 1024 88·1 974 83·8 889 76·5 726 92·5 714 90·8 697 88·7

Postmenopausal hormone user 679 58·4 633 54·5 535 46·0 490 62·4 455 57·9 424 53·9

NSAID, non-steroidal anti-inflammatory drugs.

* Geometric means (CV) are presented for the biomarkers (fasting plasma samples) because all biomarkers were log-transformed before analyses; the Quan-Zhang formula;

CV= (eSD− 1)1/2(40) was used to calculate CV.

† Alcohol intake was the sum of wine (4 oz glass), beer (1 bottle, can or glass) or liquor (1 drink or shot) intakes.

‡ Categories of BMI and physical activity (PA) combinations were created as follows: lean and active (BMI< 25kg/m2 and PA≥median PA), lean and sedentary (BMI< 25kg/m2 and

PA<median PA), overweight/obese and active (BMI≥25 kg/m2 and PA≥median PA) and overweight/obese and sedentary (BMI≥25 kg/m2 and PA<median PA). Median

PA=10·2 MET-h/week for women with C-peptide data and 9·10 MET-h/week for those with TAG:HDL-cholesterol data.

§ Chronic diseases/conditions included in the score were hypercholesterolaemia, cancer, diabetes, high blood pressure, heart disease and rheumatoid/other arthritis.
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previously developed C-peptide dietary pattern (online

Supplementary Table S2). The insulin index was inversely

correlated with C-peptide and with the EDIH. In the HPFS, the

correlation between the EDIH and the EDIR was 0·63.

All four indices were significantly associated with their

respective biomarkers in HPFS and NHS-II, with stronger

associations observed for the two lifestyle indices than their

diet-only counterparts (Table 4). For example, in the HPFS, the

relative concentration of C-peptide was 29% (95% CI; 22%,

27%; Ptrend< 0·0001) higher in the highest quintile of the EDIH

compared with the lowest quintile, whereas the concentration

of TAG:HDL-cholesterol was 44% (95% CI; 34%, 55%;

Ptrend< 0·0001) higher in quintile 5 of the EDIR compared with

quintile 1. Corresponding associations for the lifestyle indices

were as follows: 78% (95% CI 68, 88%; P< 0·0001 for the ELIH

and 103% (95% CI 89, 119%; Ptrend< 0·0001) for the ELIR

(Table 4). Excluding participants with diabetes did not materi-

ally change these findings (online Supplementary Table S3). In

the HPFS, there were differences in concentrations of C-peptide

and TAG:HDL-cholesterol across index quintiles and in cate-

gories of BMI,PA, with overweight/obese and sedentary men

having the highest biomarker levels compared with over-

weight/obese and active men or lean, active or sedentary men

(Fig. 2). The proportion of participants with clinically

high C-peptide concentrations across each EDIH quintile was

1·5–2 times higher among overweight/obese and sedentary

men than among lean and active men, whereas the proportion

with high TAG:HDL-cholesterol levels was 2 to 3 times higher

across each EDIR quintile among overweight/obese and

sedentary men than among lean and active men. Among men

classified as lean and active, a higher proportion of those

consuming diets with high insulinaemic potential had clinically

high biomarker levels than those consuming insulin-sensitive

diets (Fig. 3).

Results from the sensitivity analyses in both men and women

showed that the associations between dietary patterns devel-

oped only in control subjects and those with uncalibrated

C-peptide and uncalibrated TAG:HDL-cholesterol with bio-

markers were reasonably similar to the associations obtained

with the EDIH or the EDIR. However, associations for the

unweighted versions and the previously developed C-peptide

pattern were smaller in magnitude. In contrast, the insulin index

was not predictive of C-peptide concentrations in both men

and women. The relative concentrations were as follows: 0·94

(95% CI 0·89, 1·00; Ptrend= 0·03) for men and 0·99 (95% CI 0·91,

1·09; Ptrend< 0·90) for women, comparing extreme index

quintiles, although there was a trend towards an inverse asso-

ciation in men. The insulin index, however, had a direct (but

smaller compared with the EDIR) association with TAG:HDL-

cholesterol in men, 1·20 (95% CI 1·11, 1·29; Ptrend< 0·0001), but

not in women, 1·12 (95% CI 0·99, 1·26; Ptrend= 0·06), comparing

extreme index quintiles. The previously developed C-peptide

dietary pattern also had direct associations (although smaller in

magnitude) with C-peptide concentrations in both men and

women (online Supplementary Table S6).

Discussion

We developed two dietary and two lifestyle indices in a large

cohort of women and evaluated their validity in two large

independent cohorts of men and women. In all cohorts, the

indices were predictive of both the absolute and the relative

concentrations of the insulin response biomarkers, although the

lifestyle indices were more predictive than the dietary indices.

When we applied cut-off points that have been shown to dis-

criminate between clinically high and low biomarker con-

centrations in adults, we found a consistently higher proportion

of participants with high biomarker concentrations across index

quintiles within subgroups defined by joint categories of BMI,

PA and across BMI,PA categories within index quintiles. These

dietary indices assess the long-term insulinaemic potential of

whole diets, which is in contrast to the assessment of the acute

postprandial glycaemic or insulinaemic potential of specific

foods, as has been carried out previously. In addition, the use of

the TAG:HDL-cholesterol ratio to derive the insulin-resistance

dietary pattern is novel. Although our group previously used

C-peptide concentrations to derive a hyperinsulinaemia dietary

pattern(17), in the current study, we updated and strengthened

this pattern by validating it in two independent cohorts of men

and women. Several sensitivity analyses supported the robust-

ness of the EDIH and the EDIR.

The dietary patterns, although empirical, align well with

current knowledge. In concordance with the inverse associa-

tions found for whole fruits, green leafy vegetables and coffee

with hyperinsulinaemia, other studies have shown that higher

intakes of coffee as well as a plant-based diet that is high in

Table 3. Spearman’s correlations coefficients among the insulinaemic

dietary and lifestyle patterns and fasting plasma biomarker concentrations

in the three cohorts

C-peptide

Empirical dietary indices for hyperinsulinaemia NHS NHS-II HPFS

C-peptide 1 1 1

EDIH 0·21 0·20 0·14

ELIH 0·47 0·43 0·36

Unweighted EDIH 0·16 0·16 0·09

Unweighted ELIH 0·28 0·24 0·19

EDIH in controls 0·20 0·19 0·14

EDIH with unadjusted C-peptide 0·20 0·21 0·13

Previously developed C-peptide dietary pattern 0·11 0·12 0·09

Insulin index −0·03 −0·03* −0·06

TAG:HDL-cholesterol

Empirical dietary indices for insulin resistance NHS NHS-II HPFS

TAG:HDL-cholesterol 1 1 1

EDIR 0·32 0·16 0·21

ELIR 0·46 0·35 0·39

Unweighted EDIR 0·28 0·10 0·19

Unweighted ELIR 0·27 0·24 0·16

EDIR in controls 0·28 0·16 0·18

EDIR with adjusted TAG, HDL 0·31 0·18 0·21

Insulin index 0·06 0·07 0·05

NHS, Nurses’ Health Study, 1990; NHS-II, Nurses’ Health Study-II, 1999; HPFS,

Health Professional Follow-up Study, 1994; EDIH, empirical dietary index for

hyperinsulinaemia; ELIH, empirical lifestyle index for hyperinsulinaemia; EDIR,

empirical dietary index for insulin resistance; ELIR, empirical lifestyle index for

insulin resistance.

* P >0·05.
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Table 4. Adjusted* relative concentrations† of biomarkers in quintiles of insulinaemic dietary and lifestyle patterns in the three cohorts

(Relative concentration and 95% confidence intervals)

Quintile 2 Quintile 3 Quintile 4 Quintile 5

Quintile 1

(Ref.)

Relative

concentration 95% CI

Relative

concentration 95% CI

Relative

concentration 95% CI

Relative

concentration 95% CI Ptrend‡

Empirical dietary index for hyperinsulinaemia

C-peptide (NHS, n 5812)

Age-adjusted 1 1·09 1·04, 1·15 1·20 1·14, 1·25 1·28 1·23, 1·35 1·44 1·38, 1·51 <0·0001

Multivariable-adjusted 1 1·09 1·04, 1·14 1·18 1·13, 1·24 1·27 1·21, 1·32 1·40 1·34, 1·46 <0·0001

C-peptide (HPFS, n 4002)

Age-adjusted 1 1·13 1·07, 1·20 1·16 1·09, 1·23 1·21 1·14, 1·29 1·29 1·22, 1·37 <0·0001

Multivariable-adjusted 1 1·12 1·06, 1·19 1·16 1·09, 1·23 1·22 1·15, 1·29 1·29 1·22, 1·37 <0·0001

C-peptide (NHS-II, n 1717)

Age-adjusted 1 1·05 0·96, 1·15 1·15 1·05, 1·26 1·19 1·09, 1·30 1·37 1·25, 1·50 <0·0001

Multivariable-adjusted 1 1·05 0·96, 1·15 1·13 1·04, 1·24 1·16 1·06, 1·27 1·32 1·21, 1·45 <0·0001

Empirical lifestyle index for hyperinsulinaemia

C-peptide (NHS, n 5812)

Age-adjusted 1 1·10 1·06, 1·15 1·26 1·21, 1·32 1·54 1·48, 1·60 2·04 1·96, 2·13 <0·0001

Multivariable-adjusted 1 1·10 1·05, 1·14 1·25 1·19, 1·30 1·51 1·44, 1·57 1·97 1·89, 2·06 <0·0001

C-peptide (HPFS, n 4002)

Age-adjusted 1 1·20 1·13, 1·27 1·31 1·24, 1·38 1·46 1·38, 1·54 1·83 1·73, 1·94 <0·0001

Multivariable-adjusted 1 1·19 1·12, 1·25 1·29 1·22, 1·36 1·43 1·35, 1·51 1·78 1·68, 1·88 <0·0001

C-peptide (NHS-II, n 1717)

Age-adjusted 1 1·16 1·06, 1·26 1·31 1·21, 1·43 1·41 1·29, 1·54 1·96 1·80, 2·14 <0·0001

Multivariable-adjusted 1 1·16 1·06, 1·26 1·31 1·21, 1·43 1·41 1·29, 1·54 1·90 1·74, 2·08 <0·0001

Empirical dietary index for insulin resistance

TAG:HDL-cholesterol (NHS, n 3929)

Age-adjusted 1 1·19 1·11, 1·28 1·41 1·32, 1·52 1·56 1·45, 1·67 1·98 1·84, 2·12 <0·0001

Multivariable-adjusted 1 1·18 1·10, 1·26 1·34 1·25, 1·44 1·43 1·33, 1·54 1·67 1·55, 1·80 <0·0001

TAG:HDL-cholesterol (HPFS, n 3559)

Age-adjusted 1 1·09 1·01, 1·18 1·24 1·15, 1·34 1·35 1·25, 1·45 1·59 1·48, 1·72 <0·0001

Multivariable-adjusted 1 1·11 1·03, 1·19 1·21 1·13, 1·30 1·29 1·20, 1·39 1·44 1·34, 1·55 <0·0001

TAG:HDL-cholesterol (NHS-II, n 1008)

Age-adjusted 1 1·02 0·90, 1·14 1·12 0·99, 1·26 1·32 1·17, 1·49 1·32 1·17, 1·49 <0·0001

Multivariable-adjusted 1 0·98 0·87, 1·10 1·08 0·96, 1·22 1·23 1·09, 1·38 1·19 1·05, 1·34 0·001

Empirical lifestyle index for insulin resistance

TAG:HDL-cholesterol (NHS, n 3929)

Age-adjusted 1 1·24 1·15, 1·32 1·57 1·46, 1·68 1·98 1·85, 2·12 2·60 2·43, 2·78 <0·0001

Multivariable-adjusted 1 1·24 1·16, 1·33 1·54 1·44, 1·65 1·84 1·72, 1·98 2·27 2·11, 2·45 <0·0001

TAG:HDL-cholesterol (HPFS, n 3559)

Age-adjusted 1 1·28 1·19, 1·37 1·58 1·47, 1·70 1·92 1·79, 2·06 2·34 2·18, 2·52 <0·0001

Multivariable-adjusted 1 1·23 1·15, 1·32 1·49 1·39, 1·60 1·76 1·64, 1·89 2·03 1·89, 2·19 <0·0001

TAG:HDL-cholesterol (NHS-II, n 1008)

Age-adjusted 1 1·12 1·00, 1·26 1·29 1·15, 1·44 1·64 1·46, 1·83 1·90 1·69, 2·13 <0·0001

Multivariable-adjusted 1 1·06 0·95, 1·19 1·21 1·08, 1·36 1·49 1·32, 1·68 1·67 1·48, 1·89 <0·0001

Ref., referent values; NHS, Nurses’ Health Study, 1990; NHS-II, Nurses’ Health Study-II, 1999; HPFS, Health Professional Follow-up Study, 1994.

* Multivariable-adjusted models were adjusted for regular aspirin/non-steroidal anti-inflammatory drugs use, age, physical activity, smoking status, diabetes, other chronic diseases/conditions and case–control status; NHS and NHS-II

models were additionally adjusted for menopausal status and postmenopausal hormone use.

† Values are relative concentrations of fasting plasma biomarkers (i.e. ratio of concentration in higher index quintiles to concentration in the lowest quintile 1 as reference). All values were back-transformed (ex, where x is the transformed

biomarker value) as all biomarkers were transformed using natural log before analyses.

‡ The P-value for trend was the P-value of the index as a continuous variable, adjusted for all covariates listed in footnote*.
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fibre, fruits and wholegrains are associated with lower con-

centrations of C-peptide(7,8,41). The dietary pattern predictive of

insulin resistance is simultaneously influenced by factors that

affect both TAG and HDL-cholesterol. We found margarine,

refined grains, processed meats, creamy soups and fruit juice to

be positively associated with insulin resistance, whereas nuts,

alcohol and green leafy vegetables were inversely associated

with insulin resistance. Similarly, in previous studies, diets

consisting of refined carbohydrates and sweeteners as well

as large amounts of SFA and trans fats (as in many cream-based

sauces) have been associated with higher TAG concentrations,

whereas higher intake of n-3-fats such as in nuts and the

moderate use of alcohol have been linked to higher levels of

HDL-cholesterol(7,42).

We found clinically relevant differences in biomarker con-

centrations both across dietary index quintiles and across BMI,

PA categories. For example, 73% of overweight/obese and

sedentary men consuming the most pro-insulinaemic diets had
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Fig. 1. Multivariable-adjusted biomarker concentrations across quintiles (Q) of (a) the empirical dietary index for hyperinsulinaemia (EDIH) and (b) the empirical

dietary index for insulin resistance (EDIR), stratified by joint categories of BMI and physical activity (PA) in the Nurses’ Health Study (NHS), 1990. Values are back-

transformed (ex, where x is the transformed biomarker value) predicted mean fasting plasma biomarker concentrations, obtained from linear regression models,

adjusted for regular aspirin/non-steroidal anti-inflammatory drugs (NSAID) use, age at blood draw, smoking status, PA, menopausal status, postmenopausal hormone

use, diabetes, other chronic diseases/conditions and case–control status. The P-value for trend was the P-value of the dietary index as a continuous index variable

adjusted for all covariates. Categories of BMI and PA combinations were created as follows: lean and active (lean,act; BMI< 25 kg/m2 and PA≥median PA), lean and

sedentary (lean,sed; BMI< 25 kg/m2 and PA<median PA), overweight/obese and active (owt/ob,act; BMI≥ 25 kg/m2 and PA≥median PA) and overweight/obese and

sedentary (owt/ob,sed; BMI≥25 kg/m2 and PA<median PA). Median PA= 10·2 MET-h/week for women with C-peptide data and 9·10 MET-h/week for those with TAG:

HDL-cholesterol data. a: , Lean,act (Ptrend< 0·0001); , lean,sed (Ptrend< 0·0002); , owt/ob,act (Ptrend< 0·0001); , owt/ob,sed (Ptrend<0·0001);

b: , Lean,act (Ptrend< 0·0001); , lean,sed (Ptrend< 0·0001); , owt/ob,act (Ptrend< 0·0001); , owt/ob,sed (Ptrend< 0·0001).
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Fig. 2. Multivariable-adjusted biomarker concentrations across quintiles (Q) of (a) the empirical dietary index for hyperinsulinaemia (EDIH) and (b) the empirical

dietary index for insulin resistance (EDIR), stratified by joint categories of BMI and physical activity (PA) in the Health Professional Follow-up Study (HPFS), 1994.

Values are back-transformed (ex , where x is the transformed biomarker value) predicted mean fasting plasma biomarker concentrations, obtained from linear

regression models, adjusted for regular aspirin/non-steroidal anti-inflammatory drugs (NSAID) use, age, smoking status, PA, diabetes, other chronic diseases/

conditions and case–control status. The P-value for trend was the P-value of the dietary index as a continuous index variable adjusted for all covariates. Categories of

BMI and PA combinations were created as follows: lean and active (lean,act; BMI< 25 kg/m2 and PA≥median PA), lean and sedentary (lean,sed; BMI< 25 kg/m2 and

PA<median PA), overweight/obese and active (owt/ob,act; BMI≥ 25 kg/m2 and PA≥median PA) and overweight/obese and sedentary (owt/ob,sed; BMI≥ 25 kg/m2

and PA<median PA). Median PA= 28·1 MET-h/week for men with C-peptide data and 24·8 MET-h/week for men with TAG:HDL-cholesterol data. a: , Lean,act

(Ptrend< 0·09); , lean,sed (Ptrend< 0·0002); , owt/ob,act (Ptrend< 0·001); , owt/ob,sed (Ptrend< 0·0001); b: , Lean,act (Ptrend< 0·0001);

, lean,sed (Ptrend< 0·0001); , owt/ob,act (Ptrend< 0·001); , owt/ob,sed (Ptrend< 0·0001).
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high C-peptide concentrations (≥1·8 ng/ml) compared with

only 37% of lean and active men consuming the least

pro-insulinaemic diets. In addition, 72% of overweight/obese

and sedentary men consuming the most insulin-resistant diets

had high TAG:HDL-cholesterol levels (>3) compared with only

19% of lean and active men consuming the most insulin-

sensitive diets. These differences further strengthen the idea

that these dietary indices can be useful in identifying popula-

tions at risk of hyperinsulinaemia or insulin resistance. Our

approach to create lifestyle indices (ELIH and ELIR) is com-

plementary to the stratification of the diet-only indices (EDIH

and EDIR) by BMI,PA combinations. Lifestyle indices assess the

joint influence of diet, body weight and PA on hyper-

insulinaemia and insulin resistance, which is important for

public health interventions. The indices assess the insulinaemic

potential of diet/lifestyle on a continuum from maximally low

insulinaemic to maximally high insulinaemic potential with no

optimal cut-off point for classifying individuals as absolutely

high or low. Stratifying the diet-only indices by BMI,PA com-

binations according to established clinically relevant biomarker

cut-off points provides further insight on subgroups to target

with specific dietary and/or lifestyle interventions to reduce

hyperinsulinaemia and/or insulin resistance.

Differences between participants with clinically high and low

biomarker levels within quintiles of the dietary indices were

observed, despite the low-to-moderate correlations between

the indices and the biomarkers. In previous studies, hypothesis-

driven dietary patterns have shown low-to-moderate correla-

tions with the biomarkers used to derive the patterns; however,

these dietary patterns have shown robust associations with

disease risk in independent populations(43,44). For example,

Fung et al.(17) reported a correlation coefficient of 0·23 between

the dietary pattern predictive of C-peptide and the C-peptide

concentrations in NHS, although the pattern showed a

significant positive association with colon cancer risk.

In addition, a dietary inflammatory index showed low correla-

tions with inflammatory markers, yet strong associations with

chronic diseases including cancer(45–47). This suggests that

correlations with biomarkers may not be a direct assessment of

the performance of the dietary pattern in disease prediction or

clinical significance. For example, among lean and active men,

comparing the highest quintile of EDIR to the lowest, the pre-

valence of clinically high TAG:HDL-cholesterol levels can

potentially be reduced by >50% through diet interventions,

even though the EDIR had a low correlation (r 0·15) with TAG:

HDL-cholesterol. A low/moderate correlation may also be due

to the dietary patterns not capturing other lifestyle behaviours

that are associated with the biomarker. Interestingly, when

lifestyle factors such as BMI and PA were included, the corre-

lations between the lifestyle indices and the biomarkers were

>2 higher than that between the diet-only indices and the

biomarkers.

Our group previously created the dietary insulin index to

quantify the short-term (postprandial) insulin-secreting ability of

specific foods(16). This index was associated with higher TAG

and lower HDL levels, with an indicative inverse association

with C-peptide concentrations(16). In the current study, we

compared the predictive ability of the four indices with the

insulin index in sensitivity analyses. The insulin index was

directly associated with TAG:HDL-cholesterol, which is expec-

ted in the context of prevalent insulin resistance, but the cor-

relation was much lower than that of our empirical indices with

TAG:HDL-cholesterol. Moreover, the index also showed an

inverse trend of association with C-peptide concentrations,

which at first seemed counterintuitive but may be understood in

the context of our cross-sectional study design using fasting

plasma samples – for example, in participants who may usually

be consuming a high EDIH/high GI diet; such a diet will elicit

higher insulin secretion to reduce the acute postprandial

glycaemia. The lowered glucose level will down-regulate
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Fig. 3. Distribution of participants (%) with clinically high levels of biomarkers in quintiles (Q) of dietary indices and in joint categories of BMI/physical activity (PA)

combinations in the Health Professionals Follow-up Study (HPFS), 1994. Categories of BMI and PA combinations were created as follows: lean and active (lean,act;

BMI< 25 kg/m2 and PA≥median PA), lean and sedentary (lean,sed; BMI< 25 kg/m2 and PA<median PA), overweight/obese and active (owt/ob,act; BMI≥ 25 kg/m2

and PA≥median PA) and overweight/obese and sedentary (owt/ob,sed; BMI≥ 25 kg/m2 and PA<median PA). Median PA=28·1 MET-h/week for men with C-peptide

data and 24·8 MET-h/week for men with TAG:HDL-cholesterol data. a: , Lean,act (n 965); , lean,sed (n 775); , owt/ob,active (n 1038); , owt/ob,sed (n 1224);

b: , Lean,act (n 746); , lean,sed (n 660); , owt/ob,active (n 830); , owt/ob,sed (n 1166).
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further insulin secretion(48), and blood drawn a couple of

hours into the fasting period will therefore show an

inverse association (temporarily) between the insulin index

(postprandial insulinaemia) and insulin secretion (C-peptide

concentration), which may not persist longitudinally.

Our study is not without limitations. We only had one mea-

surement of the insulin markers, which may underestimate

validity assessed by correlation coefficients(49). Given that food

intake was self-reported, some measurement error is inevitable,

although the validation data showed reasonably good correla-

tions between FFQ and diet records, suggesting that dietary

intake is generally well measured in our cohorts(29–31). The

composition of food groups may not be uniform across studies,

which would limit the ability to apply the indices across studies

in a standardised manner, although investigators may be able to

create unified food groups in pooled analyses of primary data or

in multi-centre studies, and thus enhance the usefulness of these

hypothesis-driven dietary patterns in large-scale epidemiological

studies. Study participants in all three cohorts are mostly

Caucasian health professionals, but the distributions of most

participant characteristics in the three cohorts are generally

similar to that of the larger US multi-racial/ethnic population. It is

important, however, to further apply the indices in multi-racial/

ethnic populations. Other lifestyle factors include smoking and

exogenous hormone use, but we focused mainly on BMI and PA

in the lifestyle indices because these have been shown to be

strongly associated with circulating insulin markers(11–14). We

adjusted for a large number of potential confounding variables

including a history of diabetes and other chronic diseases/

conditions, but these variables were self-reported, thus allowing

the possibility of residual confounding. However, results from

the age-adjusted and multivariable-adjusted models were very

similar in all cohorts, suggesting that any confounding would

have been very minimal.

Conclusion

These novel hypothesis-driven empirically derived dietary and

lifestyle indices assess dietary and lifestyle quality on the basis

of insulinaemic potential. Their robust associations with the

insulin response biomarkers in independent samples suggest

their usefulness in assessing the ability of whole diets and

lifestyles to stimulate and/or sustain insulin secretion. These

indices can be useful in identifying populations at high risk for

hyperinsulinaemia or insulin resistance. In addition, the indices

may be calculated in a standardised and reproducible manner

across different populations, thus circumventing a major limi-

tation of dietary patterns derived from the same study in which

they are applied. Moreover, studies without insulin markers

data may calculate the index scores to investigate associations

between dietary and lifestyle insulinaemic potential and

disease outcomes.
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