
 

Instructions for use

Title Development of a 3D Hybrid Finite-Discrete Element Simulator Based on GPGPU-Parallelized Computation for
Modelling Rock Fracturing Under Quasi-Static and Dynamic Loading Conditions

Author(s) Fukuda, Daisuke; Mohammadnejad, Mojtaba; Liu, Hongyuan; Zhang, Qianbing; Zhao, Jian; Dehkhoda, Sevda; Chan,
Andrew; Kodama, Jun-ichi; Fujii, Yoshiaki

Citation Rock Mechanics and Rock Engineering, 53(3), 1079-1112
https://doi.org/10.1007/s00603-019-01960-z

Issue Date 2020-03

Doc URL http://hdl.handle.net/2115/80506

Rights This is a post-peer-review, pre-copyedit version of an article published in Rock Mechanics and Rock Engineering. The
final authenticated version is available online at: http://dx.doi.org/10.1007/s00603-019-01960-z

Type article (author version)

File Information RMRE_Text - 2nd Revision - Final.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


1 

Development of a 3D Hybrid Finite-Discrete Element Simulator based on GPGPU- 1 

Parallelized Computation for Modelling Rock Fracturing under Quasi-Static and 2 

Dynamic Loading Conditions 3 

 4 

D. Fukuda a, b, M. Mohammadnejad b, c, H.Y. Liu b,*, Q.B. Zhang d, J. Zhao d, S. Dehkhoda b, c, 5 

A. Chan b, J. Kodama a and Y. Fujii a 6 

a Faculty of Engineering, Hokkaido University, Hokkaido 060-8628, Japan  7 

b College of Sciences and Engineering, University of Tasmania, TAS 7001, Australia 8 

c CSIRO Minerals Resources Business Unit, Queensland Centre for Advanced Technologies, 9 

Brisbane, QLD 4069, Australia 10 

d Department of Civil Engineering, Monash University, VIC3800, Australia 11 

 12 

 13 
Abstract 14 

As a state-of-the-art computational method for simulating rock fracturing and fragmentation, 15 

the combined finite-discrete element method (FDEM) has become widely accepted since 16 

Munzijia (2004) published  his comprehensive book of FDEM. This study developed a general-17 

purpose graphic-processing-unit (GPGPU)-parallelized FDEM using the compute unified 18 

device architecture (CUDA) C/C++ based on the authors’ former sequential two-dimensional 19 

(2D) and three-dimensional (3D) Y-HFDEM IDE (integrated development environment) code. 20 

The theory and algorithm of the GPGPU-parallelized 3D Y-HFDEM IDE code are first 21 

introduced by focusing on the implementation of the contact detection algorithm, which is 22 

different from that in the sequential code, contact damping and contact friction. 3D modelling 23 

of the failure process of limestone under quasi-static loading conditions in uniaxial 24 

compressive strength (UCS) tests and Brazilian tensile strength (BTS) tests are then conducted 25 

using the GPGPU-parallelized 3D Y-HFDEM IDE code. The 3D FDEM modelling results 26 

show that mixed-mode I-II failures are the dominant failure mechanisms along the shear and 27 

splitting failure planes in the UCS and BTS models, respectively, with unstructured meshes. 28 

Pure mode I splitting failure planes and pure mode II shear failure planes are only possible in 29 

the UCS and BTS models, respectively, with structured meshes. Subsequently, 3D modelling 30 

of the dynamic fracturing of marble in dynamic Brazilian tests with a split Hopkinson pressure 31 

 
* Corresponding author: Dr H.Y. Liu (Email: Hong.Liu@utas.edu.au and Tel: 0061 6226 2113): If you are interested in using our GPGPU-

parallelized hybrid finite-discrete element code “3D Y-HFDEM IDE” for your research or verification, please send an email to the 

corresponding author. However, we do not allow the use of the code for military and commercial purposes. 
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bar (SHPB) apparatus is conducted using the GPGPU-parallelized 3D HFDEM IDE code 32 

considering the entire SHPB testing system. The modelled failure process, final fracture pattern 33 

and time histories of the dynamic compressive wave, reflective tensile wave and transmitted 34 

compressive wave are compared quantitatively and qualitatively with those from experiments, 35 

and good agreements are achieved between them. The computing performance analysis shows 36 

the GPGPU-parallelized 3D HFDEM IDE code is 284 times faster than its sequential version 37 

and can achieve the computational complexity of O(N). The results demonstrate that the 38 

GPGPU-parallelized 3D Y-HFDEM IDE code is a valuable and powerful numerical tool for 39 

investigating rock fracturing under quasi-static and dynamic loading conditions in rock 40 

engineering applications although very fine elements with maximum element size no bigger 41 

than the length of the fracture process zone must be used in the area where fracturing process 42 

is modelled.  43 

 44 

Keywords: Rocks, 3D fracture process analysis, FDEM, Quasi-static loading, Dynamic 45 

loading, Parallel computation, GPGPU, CUDA C/C++ 46 

 47 

List of acronyms used in the paper     48 

BEM: boundary element method 49 

BTS: Brazilian tensile strength 50 

CE6: 6−node initially zero−thickness cohesive element 51 

CPU: central-processing-unit 52 

CUDA: compute unified device architecture 53 

CZM: cohesive zone model 54 

DEM: distinct element method 55 

DDA: discontinuous deformation analysis 56 

DFPA: dynamic fracture process analysis  57 

ECDA: efficient contact detection activation 58 

ECZM: extrinsic cohesive zone model 59 

FDEM: combined finite-discrete element method  60 

FDM: finite difference method 61 

FEM: finite element method 62 

FPZ: fracture process zone  63 

GPGPU: general-purpose graphic-processing-unit  64 

HPC: high-performance-computing 65 
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ICZM: intrinsic cohesive zone model 66 

IB: incident bar 67 

ISRM: International Society for Rock Mechanics 68 

MPI: message-passing interface 69 

1D: one-dimensional  70 

OpenCL: open computing language 71 

OpenMP: open multi-processing  72 

PC: personal computer 73 

SBFEM: scaled boundary finite element method 74 

SHPB: split Hopkinson pressure bar 75 

SPH: smoothed particle hydrodynamics 76 

TET4: 4−node tetrahedral finite element 77 

TB: transmission bar  78 

3D: three-dimensional 79 

TtoP: TET4 to point - contact interaction between the contactor 4−node tetrahedral finite 80 

element and the target point 81 

TtoT: TET4 to TET4 - contact interaction between the contactor 4−node tetrahedral finite 82 

element and the target 4−node tetrahedral finite element 83 

2D: two-dimensional 84 

UCS: uniaxial compressive strength 85 

 86 

1. Introduction 87 

Understanding the mechanism of the fracturing process in rocks is important in civil and 88 

mining engineering and several other fields, such as geothermal, hydraulic, and oil and gas 89 

engineering, in which rock fractures play an important role. Numerical methods have been 90 

increasingly applied to analyze the fracturing process of rocks (e.g., Mohammadnejad et al. 91 

2018). Due to the limitations of computing power/environments and the difficulty in extending 92 

some numerical techniques to three-dimension, numerous previous studies of rock fracture 93 

modelling using various numerical methods have been limited to two-dimensional (2D) 94 

analyses. However, successful simulation of the three-dimensional (3D) fracturing process is 95 

essential for better understanding and solving many practical rock engineering problems 96 

because rock fracturing essentially involves complex 3D processes. Moreover, meaningful 97 

developments and applications of 3D numerical methods for 3D rock fracture modelling have 98 
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been limited in the past, except those that had full access to the most advanced high-99 

performance-computing (HPC) environments, such as supercomputers. This situation has been 100 

dramatically improved due to the recent advancements in computer technology, such as 101 

general-purpose graphic-processing-unit (GPGPU) accelerators and the many integrated cores 102 

architecture, which can be installed even in a personal computer (PC) or a workstation and can 103 

achieve HPC environments in ordinary computer environments with relatively low costs. These 104 

improvements have allowed scientists and engineers to apply and develop 3D rock fracture 105 

computational methods that were not tractable previously. 106 

Recent advances in computational mechanics have resulted in modelling complex rock 107 

fracturing processes using various numerical approaches. Generally, these approaches can be 108 

classified mainly into continuous and discontinuous methods. In the framework of rock fracture 109 

process analysis, the continuum-based methods include the finite element method (FEM), finite 110 

difference method (FDM), boundary element method (BEM), scaled boundary finite element 111 

method (SBFEM), extended finite element method (XFEM), several mesh-less/mesh-free 112 

methods, such as smoothed particle hydrodynamics (SPH), and those based on peridynamics 113 

and phase-field method. The discontinuum-based methods include the distinct element method 114 

(DEM), discontinuous deformation analysis (DDA), lattice model and molecular dynamics. 115 

Comprehensive reviews of recent advances in computational fracture mechanics of rocks can 116 

be found in recent review articles (Lisjak and Grasselli 2014; Mohammadnejad et al. 2018). 117 

For a realistic simulation of the rock fracturing process, numerical techniques must be capable 118 

of capturing the transition of rock from a continuum to a discontinuum through crack initiation, 119 

growth and coalescence. Therefore, increasing attention has been paid in recent years to these 120 

techniques, which can combine/couple the advantages of the aforementioned continuum-based 121 

and discontinuum-based methods while overcoming the disadvantages of each method (Lisjak 122 

and Grasselli 2014; Mohammadnejad et al. 2018).  123 

The combined finite-discrete element method (FDEM) proposed by Munjiza (1995) has 124 

recently attracted the attention of many engineers and researchers in the field of rock 125 

engineering which deals with rock fracturing and fragmentation. The method incorporates the 126 

advantages of both continuous and discontinuous methods and is able to simulate the transition 127 

from a continuum to a discontinuum caused by rock fracturing. The two main implementations 128 

of the FDEM include the open-source research code, Y code (Munjiza 2004), and the 129 

commercial code, ELFEN (Rockfield 2005). Due to the open-source nature of the Y code, 130 

several attempts have been made to actively extend it, such as Y-Geo (Mahabadi et al. 2014), 131 

Y-Flow (Yan and Jiao 2018; Yan and Zheng 2017), Irazu (Lisjak et al. 2018; Mahabadi et al. 132 
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2016), Solidity (Guo 2014; Solidity 2017) and HOSS with MUNROU (Rougier et al. 2014; 133 

Rougier et al. 2011). Moreover, the authors have developed Y-HFDEM IDE (An et al. 2017; 134 

Liu et al. 2016; Liu et al. 2015; Mohammadnejad et al. 2017). In addition, using user-defined 135 

subroutines in the explicit module of the commercial software ABAQUS, Ma et al. (2018) 136 

recently implemented the FDEM to investigate the effects of different fracture mechanisms on 137 

impact fragmentation of brittle rock-like materials. The principles of all of the FDEM codes 138 

are based on continuum mechanics, the cohesive zone model (CZM) and contact mechanics, 139 

which make the FDEM extremely computationally expensive. Thus, few practical rock 140 

engineering problems can be solved using the 3D FDEM based on sequential central-141 

processing-unit (CPU)-based implementations. Therefore, it is imperative to develop robust 142 

parallel computation schemes to handle large-scale 3D FDEM simulations with massive 143 

numbers of nodes, elements and contact interactions.  144 

To date, several successful parallel implementations of FDEM codes have been reported 145 

using the message-passing interface (MPI) (Elmo and Stead 2010; Hamdi et al. 2014; Lei et al. 146 

2014; Lukas et al. 2014; Rockfield 2005; Rogers et al. 2015; Rougier et al. 2014) and shared 147 

memory programming, such as OpenMP (Xiang et al. 2016). Among these, Lukas et al. (2014) 148 

proposed a novel approach for the parallelization of 2D FDEM using MPI and dynamic domain 149 

decomposition-based parallelization solvers, and they successfully applied the parallelized Y 150 

code to a large-scale 2D problem on a PC cluster, which should be able to be applied to practical 151 

3D problems, although future developments are needed. In addition, Lei et al. (2014) 152 

successfully developed the concept of the virtual parallel machine for the FDEM using MPI, 153 

which can be adapted to different computer architectures ranging from several to thousands of 154 

CPU cores. Rougier et al. (2014) introduced the HOSS with MUNROU code, in which they 155 

used 208 processors for parallel computation controlled by MPI and developed novel contact 156 

detection and contact force calculation algorithms (Munjiza et al. 2011). The MUNROU code 157 

was then successfully applied to perform 3D simulations of a dynamic Brazilian tensile test of 158 

rock with a SHPB apparatus. ELFEN (Elmo and Stead 2010; Hamdi et al. 2014; Rockfield 159 

2005; Rogers et al. 2015) uses MPI in its parallelization scheme and has been employed 160 

successfully in 2D and 3D simulations of rock fracturing process. For example, analyses of the 161 

3D fracturing process in conventional laboratory tests using up to 3 million elements have been 162 

reported (Hamdi et al. 2014). Xiang et al. (2016) optimized the contact detection algorithm in 163 

their Solidity code and parallelized the code using OpenMP. Although they modelled a packing 164 

system with 288 rock-like boulders and achieved a speedup of 9 times on 12 CPU threads, the 165 

details of the applied algorithm and its implementation were not given. In general, MPI requires 166 
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large and expensive CPU clusters to achieve the best performance. In addition, the application 167 

of shared memory programming such as OpenMP is limited by the total number of 168 

multiprocessors that can reside in a single computer; thus, MPI is still required for large-scale 169 

problems, in which each computer uses both OpenMP and MPI to transfer the data between 170 

multiple computers. This means that the hybrid MPI/OpenMP is necessary. In all of these 171 

approaches, more than 100 CPUs are necessary to achieve a speed-up of more than 100 times 172 

compared with sequential CPU-based FDEM simulations, which results in the need for a larger 173 

space or expensive HPC environments.  174 

In addition to the CPU-based parallelization schemes, a GPGPU accelerator controlled by 175 

either the Open Computing Language (OpenCL) (Munshi et al. 2011) or the Compute Unified 176 

Device Architecture (CUDA) (NVIDIA 2018) can be considered as another promising method 177 

for the parallelization of FDEM codes. Hundreds and thousands of GPU-core processors can 178 

reside and concurrently work in a small GPGPU accelerator within an ordinary laptop/desktop 179 

PC or a workstation, which also has lower energy consumption than CPU-based clusters. Zhang 180 

et al. (2013) developed a CUDA-based GPGPU parallel version of the Y code (2D) without 181 

considering the fracturing process and contact friction. Batinić et al. (2018) implemented a 182 

GPGPU-based parallel FEM/DEM that is based on the Y code to analyze cable structures using 183 

CUDA. However, none of these implementations have been employed to simulate rock 184 

fracturing. In this regard, a GPGPU-based FDEM commercial code, namely Irazu (Lisjak et al. 185 

2017; Lisjak et al. 2018), has just been developed with OpenCL and used successfully in rock 186 

fracture simulations. Irazu is the only available commercial GPGPU-based FDEM code with 187 

OpenCL that is currently capable of modelling the rock fracturing process (Lisjak et al. 2017; 188 

Lisjak et al. 2018). In addition, the authors have developed a free FDEM research code, Y-189 

HFDEM IDE (An et al. 2017; Liu et al. 2016; Liu et al. 2015; Mohammadnejad et al. 2017), 190 

and parallelized its 2D implementation using GPGPU with CUDA C/C++ (Fukuda et al., 191 

2019). This paper focuses on parallelizing the 3D implementation of the Y-HFDEM IDE code 192 

using GPGPU with CUDA C/C++, which is completely different from Irazu’s GPGPU 193 

parallelization using OpenCL. Additional studies are required to verify and validate the 194 

GPGPU-based 3D FDEM code. Furthermore, for any newly implemented GPGPU-based 195 

codes, it is desirable to describe their complete details because the implementation of any 196 

GPGPU-based code is generally different from that of CPU-based sequential codes. Most 197 

importantly, there are no freely available GPGPU-based FDEM codes, whereas the GPGPU-198 

based Y-HFDEM IDE is free to use, and the freely available GPGPU-parallelized 2D/3D Y-199 
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HFDEM IDE software may significantly contribute to researches in the field of rock 200 

engineering. 201 

  To validate and calibrate newly developed codes in the field of rock mechanics, two 202 

standard rock mechanics laboratory tests, the uniaxial compressive strength (UCS) tests and 203 

Brazilian tensile strength (BTS) tests, have often been modelled to simulate the fracturing 204 

process and associated failure mechanisms of rock materials under quasi-static loading 205 

conditions. Although the UCS and BTS tests have been actively modelled using 2D FDEM, 206 

their modelling in the framework of 3D FDEM has been very limited and less well explained. 207 

For example, UCS and BTS tests were three-dimensionally simulated using Y-Geo (Mahabadi 208 

et al. 2014) with a relatively large element size (2 mm for both tests) and a very high loading 209 

velocity (1 m/s) resulting in the appearance of dynamic effects in the model, such as multi-210 

fracture propagation around the center of the BTS models, which is also shown in the dynamic 211 

BTS simulation discussed in Section 3.3. Moreover, although Mahabadi et al. (2014) observed 212 

splitting fractures in their BTS modelling, the post-peak behavior of the stress-strain curve was 213 

not well demonstrated. Later, Lisjak et al. (2018) introduced IRAZU based on GPGPU-214 

parallelization and three-dimensionally simulated UCS and BTS tests using a finer element 215 

size (1.5 mm for both tests) and slower loading rate (0.1 m/s). In comparison with the 216 

aforementioned simulations by Mahabadi et al. (2014), many reasonable results were achieved 217 

by Lisjak et al. (2018). Mahabadi et al. (2014) may have chosen the relatively high loading rate 218 

because 3D FDEM modelling using Y-Geo is computationally demanding, which may have 219 

required them to find ways to reduce the running time and accordingly the time required for 220 

calibration, although any remedies should not significantly affect the obtained results. 221 

Moreover, Lisjak et al. (2018) claimed that the effect of their high loading rates was 222 

compensated for by the critical damping scheme. However, it should be noted that the critical 223 

damping scheme implemented in almost all FDEM simulations is intended to model the quasi-224 

static loading conditions using the dynamic relaxation method, which cannot reduce the effect 225 

of the loading rate, unlike what was claimed by Lisjak et al. (2018). Guo (2014) investigated 226 

3D FDEM modelling of BTS tests at different loading rates using the critical damping scheme 227 

and showed that both the fracture pattern and obtained peak load were affected by the loading 228 

rate when the velocity of the loading platens is higher than 0.01 m/s (i.e. loading rate = 0.02 229 

m/s). Correspondingly, the findings of Guo (2014) support the statement that “the critical 230 

damping scheme used in almost all FDEM simulations cannot reduce the effect of the loading 231 

rate”. Therefore, for an accurate simulation with quasi-static loading conditions in the 232 

framework of the FDEM, the loading rate should be selected correctly to avoid the dynamic 233 
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effects of the loading rate before selecting any input parameters, which is another strong 234 

motivation for this study to conduct 3D simulations of UCS and BTS tests using the GPGPU-235 

parallelized 3D Y-HFDEM IDE. 236 

   Furthermore, 3D FDEM simulations of dynamic fracturing processes of rock materials under 237 

dynamic loads, such as SHPB tests (e.g. Zhang and Zhao 2014), have been much more limited; 238 

in particular, 3D FDEM simulations of the full system of the SHPB test are rare. However, for 239 

any qualitative and quantitative discussion, accurate modelling and reasonable calibration of 240 

the SHPB test are paramount for any meaningful numerical simulations of the dynamic 241 

fracturing process in rock such as blasting. In fact, to date, only four peer-reviewed 242 

international journal papers have been reported for modelling SHPB tests in the framework of 243 

the 2D/3D FDEM. Using the 2D FDEM, Mahabadi et al. (2010) modelled the dynamic 244 

fracturing process of Barre granite in a dynamic BTS test with an SHPB apparatus and found 245 

good agreement between the numerical simulations and experiments. In their modelling, each 246 

of the SHPB bars was modelled as a large single triangular element, and not only was the 247 

element assigned mechanical properties, but velocities were prescribed to all nodes. This may 248 

cause the given mechanical properties except for the contact penalty and contact friction to 249 

have no meaning and the element used to model the SHPB bar to become rigid. Moreover, the 250 

mode I and mode II fracture energies cannot be distinguished, which has generally been 251 

recognized as important for reasonable simulations of rock fracturing by the current FDEM 252 

community. Using the 3D FDEM (HOSS), Rougier et al. (2014) modelled the dynamic BTS 253 

tests of weathered granite documented in Broome et al. (2012) by explicitly considering 254 

elastically deformable SHPB bars. The results showed remarkably good agreement with those 255 

from the experiment. Subsequently, although 2D HOSS was applied, Osthus et al. (2018) 256 

proposed a novel and detailed calibration procedure based on a general and probabilistic 257 

approach for numerical simulations of dynamic BTS tests of the weathered granite modelled 258 

by Rougier et al. (2014) with the SHPB apparatus. Furthermore, by targeting the same SHPB-259 

based dynamic BTS tests of the same weathered granite, Godinez et al. (2018) conducted 260 

several sensitivity analyses with different combinations of input parameters using 2D HOSS. 261 

They showed that the simulation results are most sensitive to the parameters related to the 262 

tensile and shear strengths and the fracture energies, which are valuable information. In this 263 

way, additional knowledge has gradually been accumulated for the realistic modelling of 264 

dynamic BTS tests with the SHPB apparatus in the FDEM community. However, although the 265 

target rock in previous studies (Mahabadi et al. 2010; Osthus et al. 2018; Rougier et al. 2014) 266 

was granite, in which heterogeneity and anisotropy generally play important roles, none of the 267 
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studies considered or discussed these important characteristics. In light of these results, further 268 

investigation of FDEM modelling is needed, especially for 3D modelling of dynamic fracturing 269 

of rocks of various types, because only one case of the 3D dynamic fracturing of granite in a 270 

dynamic BTS test has been modelled using the FDEM to date.  271 

Based on this background, this paper aims to first explain the theory and algorithm of the 272 

recently developed GPGPU-parallelized FDEM implemented in the 3D Y-HFDEM IDE code. 273 

The capability of the 3D Y-HFDEM IDE code in rock engineering applications is then 274 

demonstrated by modelling the fracturing process of rocks and the movements of the resultant 275 

rock fragments under a series of quasi-static and dynamic loading conditions. Thus, this paper 276 

may provide a basis for further improvement and development of the FDEM codes based on 277 

GPGPU parallelization for modelling rock fracturing, especially the dynamic fracturing of 278 

rock. Many previous publications have focused on the advantages of the FDEM. However, 279 

although the FDEM is very useful, there is currently no universal/perfect method to simulate 280 

rock fracturing/fragmentation processes, so the disadvantages of this method other than the 281 

high computational burden must also be carefully addressed. In fact, the calibration of the 282 

FDEM, which is the most fundamental procedure for any meaningful numerical simulation, 283 

tends to be more complex than in non-combined methods. Although the calibration method for 284 

the 2D FDEM has been reported in the literature (e.g., Tatone and Grasselli 2015), it was found 285 

during the development of the 3D FEM/DEM code that the calibration of 3D simulations 286 

requires more careful treatment and is more sensitive to the input parameters than the 2D 287 

counterparts. Especially in 3D simulations of the fracturing process of rocks due to dynamic 288 

loading involving significant fragmentation of hard rock, special care must be paid to avoid 289 

spurious fracture modes, which have sometimes been misunderstood or omitted/hidden in the 290 

literature. 291 

This paper is organized as follows. The theory used in the 3D FDEM, i.e. Y-HFDEM IDE 292 

code, is first introduced, and its implementation in the framework of the GPGPU parallel 293 

computation is then explained in detail. Subsequently, the accuracy and capability of the 294 

developed code are investigated by modelling several common examples in rock mechanics, 295 

including modelling the 3D fracturing process of rocks in BTS and UCS tests, which have been 296 

used to benchmark new computational methods for rock fracturing. The entire SHPB testing 297 

system of 3D dynamic BTS tests is then simulated using the newly-developed GPGPU-298 

parallelized hybrid FDEM, and the numerical results are compared with those from SHPB 299 

experiments by focusing on the dynamic fracturing process of rock in the 3D dynamic Brazilian 300 

tests. Finally, conclusions are drawn from this study.  301 
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2. GPGPU-parallelized 3D FDEM  302 

   The FDEM code “Y-HFDEM 2D/3D IDE” was originally developed using object-oriented 303 

programming with visual C++ (Liu et al. 2015) based on the CPU-based sequential open-source 304 

Y 2D/3D libraries (Munjiza 2004; Munjiza et al. 2010) and OpenGL. The Y-HFDEM 2D/3D 305 

IDE code can significantly simplify the process of building and manipulating the input models 306 

and greatly reduce the possibility of erroneous model setup, and it can also display the 307 

calculated results graphically in real time with OpenGL. The code has been successfully 308 

employed in simulations of rock fracturing in various geotechnical engineering problems (An 309 

et al. 2017; Liu et al. 2016; Liu et al. 2015; Mohammadnejad et al. 2017). Because of the nature 310 

of sequential programming, it has mainly been applied to small-scale 2D problems using 311 

relatively rough meshes. To overcome this limitation, the parallel programming scheme using 312 

the GPGPU controlled by CUDA C/C++ was implemented in the code in a recent study by the 313 

authors (Fukuda et al. 2019) for 2D modelling and in this study for 3D modelling. Because the 314 

various FDEM-based codes reviewed in Section 1 were independently developed by each 315 

research institute/organization and have different features, the fundamental features of the 3D 316 

Y-HFDEM IDE code and its GPGPU-based parallelization scheme are explained in detail in 317 

the following subsections.  318 

2.1. Fundamental theory of 3D Y-HFDEM IDE 319 

   The principles of the FDEM are based on continuum mechanics, nonlinear fracture 320 

mechanics based on the CZM and contact mechanics, all of which are formulated in the 321 

framework of explicit FEM (Munjiza 2004). Therefore, this section focuses on introducing the 322 

features of 3D Y-HFDEM IDE unavailable in other FDEMs such as the hyperelastic model, 323 

the irreversible damage during unloading, and the extrinsic cohesive zone model. Of course, 324 

these features need to be introduced in context and some of the fundamental FDEM theory is 325 

reviewed here to provide the context, which is also motivated by the fact that there are some 326 

poor, unclear and even incorrect descriptions in some literatures of the FDEM community. 327 

   The continuum behavior of materials, including rocks, is modelled in 3D by an assembly of 328 

continuum 4−node tetrahedral finite elements (TET4s) (Fig. 1(a)). Two types of isotropic 329 

elastic constitutive models have been implemented. In the first type, which was implemented 330 

in the original Y-code and has been widely used, the isotropic elastic solid obeys Eq. (1) of the 331 

neo-Hookean elastic model: 332 
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       1
 ( ,  =1, 2, 3)

2
ij ij ij ij ijJ B D i j

J J

          
 

                  (1) 333 

where σij denotes the Cauchy stress tensor, Bij is the left Cauchy-Green strain, λ and µ are the 334 

Lame constants, J is the determinant of the deformation gradient, η is the viscous damping 335 

coefficient, δij is the Kronecker delta, and Dij is the rate of deformation tensor. However, Eq. 336 

(1) cannot model anisotropic elasticity, which is important in the field of rock engineering. 337 

Thus, in the second type, a hyperelastic solid obeying Eqs. (2) and (3) is also implemented: 338 

( , , ,  =1, 2, 3)KL KLMN MNS C E K L M N              (2) 339 

1
 ( , , ,  =1, 2, 3)ij iK KL jL ijF S F D i j K L

J
               (3) 340 

where SKL denotes the 2nd Piola-Kirchhoff stress tensor, CKLMN is the effective elastic stiffness 341 

tensor, EMN is the Green-Lagrange strain tensor, and FiK is the deformation gradient. The 342 

Einstein’s summation convention applies in Eqs. (2) and (3). By properly setting CKLMN in Eq. 343 

(2), both isotropic and anisotropic elastic behaviors can be simulated although only isotropic 344 

behavior is considered in this study since the rocks used in this study are better modelled as 345 

isotropic materials. The small strain tensor is not used in Eqs. (1) and (2); therefore, large 346 

displacements and large rotations can be simulated. Eq. (1) is used for the 3D UCS and BTS 347 

modellings presented in Section 3.2 while both Eq. (1) and Eqs. (2-3) are used for the 3D 348 

dynamic BTS modelling presented in Section 3.3 and no noticeable differences between Eq. 1 349 

and Eqs. (2-3) are observed since rock deformation is small. To simulate the deformation 350 

process of materials under quasi-static loading, η = ηcrit =2h√(ρE) is used to achieve critical 351 

damping (Munjiza 2004), where h, ρ and E are the element length, density and Young’s 352 

modulus, respectively, of the target material. The value of σij within each TET4 is converted to 353 

the equivalent nodal force fint (e.g., Munjiza et al. 2015).   354 

   Fracturing of rock under mode I and mode II loading conditions (i.e., opening and sliding 355 

cracks, respectively) is modelled using the CZM with the concept of a smeared crack (Munjiza 356 

et al. 1999). To model the behavior of the fracture process zone (FPZ) in front of the crack tips, 357 

tensile and shear softening is applied using an assembly of 6−node initially zero−thickness 358 

cohesive elements (CE6s) (Fig. 1(a)) as a function of the crack opening and sliding 359 

displacements, (o, s), respectively (Fig. 1(b)). Two methods can be used for the insertion of the 360 

CE6s. One is to insert the CE6s into all of the boundaries of the TET4s at the beginning of the 361 

analysis, which is known as the intrinsic cohesive zone model (ICZM), and the second is to 362 

adaptively insert the CE6s into particular boundaries of the TET4s with the help of adaptive 363 

remeshing techniques where a given failure criterion is met, which is referred to as the extrinsic 364 

cohesive zone model (ECZM) (Zhang et al. 2007; Fukuda et al. 2017). Many existing FDEM 365 
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codes, such as the family of Y codes that includes 3D Y-HFDEM IDE, have employed the 366 

ICZM, whereas some codes, such as ELFEN, use the ECZM. One of the advantages of the 367 

ICZM is that the implementation and application of parallel computing algorithms is 368 

straightforward, but an “artificial” intact and elastic behavior of CE6s before the onset of 369 

fracturing must be specified, which requires the introduction and correct estimation of penalty 370 

terms for CE6s and the careful selection of the time step increment, Δt, to avoid numerical 371 

instability. In the GPGPU-based 3D Y-HFDEM IDE, the normal and shear cohesive tractions, 372 

(σcoh and τcoh, respectively), acting on each face of the CE6s are computed using Eqs. (4) and 373 

(5) assuming tensile and shear softening behaviors, respectively: 374 
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                  (5) 376 

where op and sp are the “artificial” elastic limits of o and s, respectively, ooverlap is the 377 

representative overlap when o is negative, Ts is the tensile strength of a CE6, c is the cohesion 378 

of a CE6, and ϕ is the internal friction angle of a CE6. Positive o and σcoh values indicate crack 379 

opening and a tensile cohesive traction, respectively. Eq. (5) corresponds to the Mohr-Coulomb 380 

shear strength model with a tension cut-off. The cohesive tractions σcoh and τcoh are applied to 381 

the opposite directions of the relative opening and sliding in a CE6, respectively. The artificial 382 

elastic behavior of each CE6 characterized by op and sp along with ooverlap is necessary when 383 

the ICZM is used to connect the TET4s to express the intact deformation process, which is 384 

given as follows and has been used in most FDEM codes (Munjiza et al. 1999): 385 

    p s open2 /o hT P                             (6) 386 

p tan2 /s hc P                               (7) 387 

overlap overlap2 /so hT P                         (8) 388 

where Popen, Ptan, and Poverlap are the artificial penalty terms of the CE6 for opening in the normal 389 

direction, sliding in the tangential direction and overlapping in the normal direction, 390 

respectively, and h is the element length. In this paper, the terminologies “fracture penalties” 391 

for Popen, Ptan and Poverlap used in previous publications are intentionally avoided because they 392 
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should not be considered as penalties for the fracturing behavior but rather as those for 393 

controlling the artificial elastic (intact) regime of CE6. The values of Popen, Ptan and Poverlap can 394 

be considered as the artificial stiffnesses of the CE6 for opening, sliding and overlapping, 395 

respectively. Ideally, their values should be infinity to satisfy the elastic (intact) behavior of 396 

rocks according to Eqs. (1) or (2), resulting in the requirement of the infinitesimal Δt. 397 

Therefore, reasonably large values of the artificial penalty terms of CE6s compared to the 398 

Young’s modulus or Lame constants are required because it is impossible to use infinity in 399 

actual numerical simulations. Otherwise, the intact behavior of the bulk rock shows 400 

significantly different (i.e., softer) behavior from that specified by Eqs. (1) or (2), and the elastic 401 

constants used in these elastic constitutive equations completely lose their meanings. In 402 

addition, during the development of the 3D Y-HFDEM IDE code, the authors found that the 403 

sufficiently large values for the penalty terms (10 times the Young’s modulus of rock, Erock, in 404 

most cases) recommended in many previous studies that applied the FDEM are not sufficient 405 

to satisfy the continuum elastic behavior of Eqs. (1) or (2); this topic is investigated and 406 

discussed in Section 3 for both quasi-static and dynamic loading problems. Some studies argue 407 

that the artificial penalty terms are mechanical properties. However, in that case, the CE6s must 408 

be considered as joint elements, and the artificial penalty terms of the CE6s should be called 409 

joint stiffnesses to describe discontinuous media, such as preexisting joints. The function, f(D), 410 

in Eqs. (4) and (5) is the characteristic function for the tensile and shear softening curves (Fig. 411 

1(b)) and depends on a damage value D of the CE6. When 0<D<1 or D = 1 for a CE6, the CE6 412 

can be considered to be a microscopic or macroscopic crack, respectively. The following 413 

definitions of D and f(D) are used to consider not only the mode I and II fracturing modes but 414 

also a mixed mode I-II fracturing mode (Mahabadi et al. 2012; Munjiza et al. 1999): 415 
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     (10) 417 

where A, B and C are intrinsic rock properties that determine the shapes of the softening curves, 418 

and ot and st are the critical values of o and s, respectively, at which a CE6 breaks and becomes 419 

a macroscopic fracture. To avoid unrealistic damage recovery (i.e., an increase of f), the 420 

following treatment has been implemented in the code. If the trial f computed from Eq. (10) at 421 

the current time step becomes larger than that at the previous time step, fpre, a condition of f = 422 
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fpre is assigned to avoid unrealistic damage recovery. The ot and st in Eq. (9) satisfy the Mode I 423 

and II fracture energies GfI and GfII (Fig. 1(b)) specified in Eqs. (11) and (12), respectively: 424 
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where Wres is the amount of work per area of a CE6 done by the residual stress term in the 427 

Mohr-Coulomb shear strength model. Note that in the current formulation, mode II and III 428 

fracturing modes are not distinguished, and it is assumed that in-plane (mode II) and out-plane 429 

(mode III) responses of the micro cracks (i.e. CE6s) are simply described by the parameter GfII 430 

because the clear definition of crack tips and conducting reproducible/reliable mode II and 431 

Mode III fracture toughness tests are challenging. This paper uses the same f(D) with A, B and 432 

C equal to 0.63, 1.8 and 6.0, respectively (Munjiza et al. 1999), for both mode I and II fracture 433 

processes because of the lack of experimental data. However, it is worth mentioning that the 434 

recent studies by Osthus et al. (2018) and Godinez et al. (2018) using the FDEM code “2D 435 

HOSS” showed that the shape of the softening curve had minor influences on the obtained 436 

results and that the tensile and shear strengths and fracture energies are the main affecting 437 

factors. Unloading (i.e., a decrease of o or |s|) can also occur during the softening regime (i.e., 438 

o>op or |s|>sp) (see Fig. 1(b)), which is modelled based on Eqs. (13) and (14) (Camacho and 439 

Ortiz 1996): 440 
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In each CE6, the computed σcoh and τcoh are converted to the equivalent nodal force fcoh using a 443 

3-point or 7-point Gaussian integration scheme depending on the required precision of the 444 

simulation. When either ot or st is achieved in a CE6, the CE6 is deactivated, and its surfaces 445 

are considered as new macroscopic fracture surfaces that are subjected to contact processes.  446 

   The contact processes between the material surfaces, including the new macroscopic 447 

fractures created by the separation of each CE6, are modelled by the penalty method (Munjiza 448 

2004); a complete and excellent explanation of the method is given in the literature (Munjiza 449 

2004). As a brief explanation, when any two TET4s subjected to contact detection (see 450 

Subsection 2.2 for the implementation of contact detection in the framework of GPGPU) are 451 
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found to overlap each other, the contact potential due to the overlapping of the two TET4s (i.e., 452 

the contacting couple) is exactly computed. The normal contact force, fcon_n, is then computed 453 

for each contacting couple, which acts normally to the contact surface and is proportional to 454 

the contact potential. The proportional factor is called the normal “contact penalty”, Pn_con. 455 

After the normal contact force, fcon_n, and its acting point are obtained, the nominal normal 456 

overlap, on, and relative displacement vector, Δuslide, at the acting point of fcon_n are readily 457 

computed. The contact damping model proposed by An and Tannant (2007) (Fig. 2) can also 458 

be applied if the role of contact damping is very important. When this scheme is applied, the 459 

normal contact force, fcon_n, described above is regarded as a trial contact force, (fcon_n)try, and a 460 

trial contact stress (σcon_n)try is then computed by dividing (fcon_n)try by the contact area, Acon. Eq. 461 

(15) is then used to determine the contact stress σcon_n: 462 
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                (15) 463 

where T is the transition force, b is the exponent, and on_max is the maximum value of on 464 

experienced during the loading process at the contact. T limits σcon_n and defines the transition 465 

between a linearly elastic stress–displacement relationship and a ‘recoverable’ displacement at 466 

a constant contact stress. The values of T may be related to the physical properties of rocks, 467 

such as the uniaxial compressive strength. The exponent b adjusts the power of the damping 468 

function that is applied to the rebound or extension phase of the contact. The value of the 469 

exponent has an effect on the energy loss during an impact event. A similar contact damping 470 

model is implemented in the 2D Y-Geo code in the framework of the FDEM, in which only b 471 

is considered (Mahabadi et al. 2012). After σcon_n is computed using Eq. (15), it is converted to 472 

fcon_n (= Acon×σcon_n). The verification of the implemented contact damping is discussed in 473 

Section 3.1. After fcon_n is determined, the magnitude of the tangential contact force vector, 474 

||fcon_tan||, is computed according to the classical Coulomb friction law. The ||fcon_tan|| is 475 

computed based on Eq. (16): 476 

 con_tan fric con_nff                   (16) 477 

where μfric is the friction coefficient between the contact surfaces. The tangential contact force, 478 

fcon_tan, is applied parallel to the contact surface in the opposite direction to Δuslide. The 479 

verification of the implementation of the contact friction, which is important in any simulation 480 

of fracturing due to quasi-static loading, is discussed in Section 3.1. In each contacting couple, 481 

the contact force is converted to the equivalent nodal force fcon (Munjiza 2004).  482 
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    By computing the nodal forces described above, the following equation of motion, Eq. (17), 483 

is obtained and solved in the framework of the explicit FEM (Munjiza 2004): 484 

          
2

ext int coh con
2t


   


u

M f f f f                        (17) 485 

where M is a lumped nodal mass computed from the initial TET4 volume and element mass 486 

density ρ, u is the nodal displacement, and fext is the nodal force corresponding to the external 487 

load. The central difference scheme is employed for the explicit time integration to solve Eq. 488 

(17). A careful selection of the time step, Δt, is necessary to avoid numerical instability and 489 

spurious fracture modes. An excellent explanation of the reasonable selection of Δt in the 490 

ordinary FDEM can be found in Guo (2014). 491 

2.2. GPGPU-based Parallelization of 3D Y-HFDEM IDE by CUDA C/C++ 492 

   To speed up the simulation process of the 3D Y-HFDEM IDE code, a parallel computation 493 

scheme based on the NVIDIA® GPGPU accelerator is incorporated. In our case, the 494 

computation on the GPGPU device is controlled through NVIDIA’s CUDA C/C++ (NVIDIA 495 

2018), which is essentially an ordinary C/C++ programming language with several extensions 496 

that make it possible to leverage the power of the GPGPU in the computations. The CUDA 497 

programming model uses abstractions of “threads”, “blocks” and “grids” (Fig. 3). A greater 498 

degree of parallelism occurs within the GPGPU device itself. Functions, also known as 499 

“kernels”, are launched on the GPGPU device and are executed by many “threads” in parallel. 500 

A “thread” is just an execution of a “kernel” with a given “thread index” within a particular 501 

“block”. As shown in Fig. 3, a “block” is a group of threads, and a unique “block index” is 502 

given to each “block”. The “block index” and “thread index” enable each thread to use its 503 

unique “index” to globally access elements in the GPGPU data array such that the collection 504 

of all threads processes the entire data set in massively parallel manner. The “grid” is just a 505 

group of “blocks”. Only a single “grid” system is used in this study. The concept of a GPGPU 506 

cluster with a massive number of GPGPU accelerators is also possible, although this is beyond 507 

the scope of this paper. The “blocks” can execute concurrently or serially depending on the 508 

number of streaming processors available in a GPGPU accelerator. Synchronization between 509 

“threads” within the same “block” is possible, but no synchronization is possible between the 510 

“blocks”. In each “thread” level, the corresponding code that the “threads” execute is very 511 

similar to the CPU-based sequential code (see Fukuda et al. 2019), which is one of the 512 

advantages of the application of CUDA C/C++. For example, the Quadro GP100 accelerator 513 

(in Pascal generation) used in this paper contains 56 and 3584 streaming processors and CUDA 514 
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cores (NVIDIA 2018), respectively. Higher computational performance of the GPGPU-515 

parallelized code running on the same GPU accelerator can be achieved than that of ordinary 516 

CPU-based sequential codes. The number of “blocks” per “grid” (NBpG) and the number of 517 

“threads” per “block” (NTpB) can be changed to speed up the GPGPU (Fig. 3). The current 518 

version of 3D Y-HFDEM IDE normally sets NTpB to either 256 or 512, and NBpG is 519 

automatically computed by dividing the total number of threads (Nthread) in each “kernel” by 520 

NTpB, in which an additional block is needed if Nthread /NTpB is not a multiple of NTpB. The value 521 

of Nthread is set to be equal to the total number of TET4s, CE6s, contact couples or nodes 522 

depending on the purpose of each “kernel”. 523 

   In the GPGPU implementation of 3D Y-HFDEM IDE, the computations for each TET4 (fint 524 

and M), CE6 (fcoh), contact couple (fcon) or nodal equation of motion (Eq. (17)) are assigned to 525 

each GPGPU “kernel” as shown in Fig. 4 and processed in a massively parallel manner. The 526 

CUDA code used in each “kernel” is similar to the functions/subroutines in CPU-based 527 

sequential codes, which also holds true for the computations shown in Fig. 4. Thus, most parts 528 

of the original sequential CPU-based code can be used with minimum modifications. For the 529 

computation of the contact force, fcon, “TET4 to TET4 (TtoT)” contact interaction kinematics 530 

are used in the earliest versions of the Y3D code (Munjiza 2004). This TtoT approach exactly 531 

considers the geometries of both the contactor and target TET4s, and the integration of the 532 

contact force distributed along the surfaces of the TET4s is performed analytically. Because 533 

this approach integrates the contact forces exactly, it is precise although quite time-consuming. 534 

As pointed out in the literature (Lei et al. 2014), the contact interaction in 3D can be further 535 

simplified by “TET4 to point (TtoP)” contact interaction kinematics, which make the 536 

implementation simpler and more time efficient. However, the precision of the computed 537 

contact force using the TtoP approach is less accurate unless a sufficient number of target points 538 

per TET4 is used. Thus, the TtoT approach is intentionally applied for all of the numerical 539 

simulations in this paper instead of the TtoP approach to ensure the precision of the computed 540 

contact force.  541 

   A flowchart of the GPGPU-based 3D Y-HFDEM IDE is shown in Fig. 5. One of the 542 

challenging tasks in Fig. 5 is the implementation of contact detection to identify each contacting 543 

couple only through the GPGPU without a sequential computational procedure. For sequential 544 

CPU implementation, powerful and efficient contact detection algorithms, such as No Binary 545 

Search and Munjiza-Rougier contact detection algorithms, have been proposed (Munjiza 2004; 546 

Munjiza et al. 2011), and these can achieve the fastest (i.e., linear) neighbor searches with the 547 

computational complexity of O(N), in which N is the number of elements and the required 548 
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computation for the contact detection is proportional to the number of TET4 candidates 549 

subjected to contact detection. However, these contact detection algorithms are not 550 

straightforward to be implemented in the GPGPU-based code. In the GPGPU-based 3D Y-551 

HFDEM IDE code, because the FDEM modelling requires a fine mesh that often consists of 552 

TET4s with similar sizes, the following contact detection algorithm is implemented. In this 553 

algorithm, the analysis domain comprising a massive number of TET4s is subdivided into 554 

multiple equal−sized (nx, ny, nz) cubic sub−cells (Fig. 6) along each direction, so the largest 555 

TET4 in the analysis domain is completely included in a single sub−cell. In this way, the center 556 

point of every TET4 can always belong to a unique sub−cell. Using integer coordinates (ix, iy, 557 

iz) (ix = 0, ꞏꞏꞏ, nx-1, iy = 0, ꞏꞏꞏ, ny-1, iz = 0, ꞏꞏꞏ, nz-1) for the location of each sub−cell (Fig. 6), 558 

unique hash values, h (= iz×nx×ny + iy×nx + ix), are assigned to each sub−cell. The subsequent 559 

contact detection procedure is explained using a simplified example, as shown in Fig. 7, where 560 

ten TET4 candidates with similar sizes are subjected to contact detection. First, all of the TET4s 561 

are mapped into integer coordinates (ix = 0, 1 and 2, iy = 0, 1 and 2, and iz = 0, 1 and 2) with 562 

nx = ny = nz = 3 along with the computation of the hash values in each sub−cell. In this way, 563 

the list L-1 is readily constructed using the massively parallel computation based on the similar 564 

concept shown in Fig. 4 by assigning the computation of each TET4 to each CUDA “thread”. 565 

The IDs of the TET4s in the list L-1 in Fig. 7 are then sorted from the smallest to largest 566 

according to the hash values h as keys, which generates the list L-2 in Fig. 7. The radix sorting 567 

algorithm optimized for CUDA (Satish et al. 2009) and implemented in the open-source 568 

“thrust” library is used for the key−sorting by the hash values; therefore, this procedure can 569 

also be processed in a massively parallel manner. Utilizing the list L-2 and the GPGPU device’s 570 

shared memory (NVIDIA 2018), the list L-3 in Fig. 7 is further constructed in a GPGPU 571 

“kernel”, which makes it possible to identify the first and last indices for the particular hash 572 

value in the list L-2. Therefore, with the lists L-2 and L-3, the IDs of all the TET4s included in 573 

a particular sub−cell with its unique hash value are readily available. Finally, for a particular 574 

TET4 with its sub-cell position, it is sufficient to only search its adjacent 27 sub−cells (or 14 575 

sub−cells using the concept of a contact mask (Munjiza 2004)) for contact detection, which 576 

makes it possible to achieve efficient contact detection using only the GPGPU device and 577 

without a sequential CPU procedure. When the sizes of the TET4s are completely different, 578 

the size of the cubic sub−cell is very large, resulting in very inefficient contact detection; thus, 579 

other parallel neighbor search schemes, such as the Barnes-Hut tree algorithm (Burtscher and 580 

Pingali 2011), should be used for efficient contact detection. The contact detection algorithm 581 

used in the GPGPU-based 3D Y-HFDEM IDE is similar to that applied by Lisjak et al. (2018) 582 
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in terms of the applied hash-based contact detection algorithm. However, Lisjak et al. (2018) 583 

further incorporated the hyperplane separation theorem as the 2nd step of contact detection. 584 

Unfortunately, Lisjak et al. (2018) did not discuss the algorithm used to generate the hash-table 585 

in the framework of OpenCL, which is also one of very important aspects of the performance 586 

gain, and the effect of introducing the 2nd step. Furthermore, no discussion was given for the 587 

speed up performance of Irazu for the 3D simulation. Instead, the computing performance of 588 

our GPGPU-parallelized 3D Y-HFDEM IDE is discussed in Section 3.4 of this study proving 589 

that the GPGPU-parallelized 3D Y-HFDEM IDE is very efficient in terms of contact detection 590 

and has the computational complexity of O(N).  591 

   Therefore, the GPGPU-parallelized 3D Y-HFDEM IDE code can run in a completely parallel 592 

manner on the GPGPU device, and no sequential processing is necessary, except for the input 593 

and output procedures. The data transfer from the GPGPU device to the host computer is 594 

always necessary to output the analysis results, the time of which is often negligible compared 595 

to the entire simulation time for most Y-HFDEM IDE simulations. The results can be 596 

visualized in either OpenGL implemented in the 3D Y-HFDEM IDE code (Liu et al. 2015) or 597 

in the open source visualization software Paraview (Ayachit 2015).  598 

   Finally, it should be noted that an efficient contact calculation activation approach has been 599 

applied in some publications about the FDEM in the framework of ICZM (e.g., Section 2.3.3.2 600 

along with Fig. 2.14 in Guo (2014)). In this approach, only the TET4s in the vicinity of newly 601 

broken/failed CE6s become contact candidates and are added to the contact detection list. One 602 

advantage of this approach is that the contact detection and contact force calculations are 603 

necessary only for the initial material surfaces by the time when the broken/failed CE6s are 604 

generated; thus, dramatic savings in the computational time for the contact detection are 605 

possible. This approach is called an efficient contact detection activation (ECDA) approach 606 

hereafter. However, in the ICZM-based FDEM simulation of hard rocks under compressive 607 

loading conditions, most of the TET4s can overlap during the progress of compression even 608 

before the generation of broken/failed CE6s. In this case, if the amount of overlap is not 609 

negligible when broken CE6s are generated, this ECDA approach generally results in the 610 

sudden application of the contact force like a step-function, which can easily cause numerical 611 

instability and result in unrealistic/spurious fragmentation. To avoid the numerical instability 612 

and spurious fracturing modes, an infinitesimally small Δt must be used, which makes the 613 

simulation intractable. One way to avoid this instability is to monitor the overlapping of the 614 

CE6s. If a significant overlap is detected in a CE6, the TET4s in the vicinity of the CE6 are 615 

immediately considered as new candidates for the contact detection although the threshold of 616 
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this “significant overlap” is problem-dependent. Another simple remedy is to add all of the 617 

TET4s as contact candidates. This approach is called the brute-force contact detection 618 

activation approach. Although it is too time consuming, the brute-force contact detection 619 

activation approach can work as a remedy for a wide range of rock conditions, including very 620 

hard rock, which is used for the 3D dynamic BTS modelling of marble with the split Hopkinson 621 

pressure bar (SHPB) testing system. It should be noted that all FDEM simulations must deal 622 

with this problem carefully to avoid inaccurate simulation results, although it has not been 623 

reported in the literature. Otherwise, the obtained fracture patterns may be spurious. 624 

3. Numerical tests and code validation 625 

  This section aims to verify and validate the GPGPU-parallelized 3D Y-HFDEM IDE code by 626 

conducting several numerical simulations. All of the numerical simulations in this section are 627 

conducted using the GPGPU-based code.  628 

3.1. Verifications of contact damping and contact friction 629 

To assess the accuracy of the contact damping model implemented in Section 2.1, a simple 630 

impact test is modelled (Fig. 8(a)) using the GPGPU-parallelized 3D Y-HFDEM IDE. The 631 

model is the extension of the 2D model reported by Mahabadi et al. (2012) to 3D, and the 632 

obtained results are discussed. The model consists of a spherical elastic body with a radius of 633 

0.1 m impacting a fixed rigid surface vertically. The elastic body is not allowed to fracture in 634 

this model. Following the study (Mahabadi et al. 2012), gravitational acceleration is neglected, 635 

the density of the elastic body is 2,700 kg/m3, and the initial total kinetic energy of the elastic 636 

body, E0
kin, before the impact event is 565.5 J. Because the Lame constants λ and µ for the 637 

elastic body are not available in that study (Mahabadi et al. 2012), it is simply assumed that λ 638 

= µ = 5.0 GPa and that the viscous damping coefficient η = 0 for internal viscous damping. 639 

Contact friction is also neglected. Thus, energy dissipation is only due to the contact damping 640 

to make it simple to discuss the effect of the contact damping. Parametric analyses are 641 

conducted by changing the exponent b, the transition force T in Eq. (15) and the normal contact 642 

penalty Pcon_n between the elastic body and the rigid surface. The normalized total kinetic 643 

energy of the elastic body by E0
kin as a function of time is monitored during the parametric 644 

analyses. 645 

 Fig. 8(b) compares five cases with b values equal to 1, 2, 5, 20 and 30 when T = ∞ (very 646 

large value, i.e. 1.0e+30 Pa) and Pcon_n = 0.1 GPa. The case with b = 1 corresponds to an elastic 647 

contact; thus, no energy dissipation occurs due to the contact, although a very small decrease 648 
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in the kinetic energy actually occurs after the impact because a small amount of the kinetic 649 

energy is converted to the strain energy of the elastic body. As the value of b increases, the 650 

amount of kinetic energy dissipates from the system increases. This behavior is similar to that 651 

reported in the literature (Mahabadi et al. 2012) using a sequential 2D  FDEM. The cases with 652 

different values of Pcon_n (= 0.1 GPa and 10 GPa) but constant b = 2 and T= ∞ show that the 653 

same b does not result in the same energy dissipation when Pcon_n is different. This is a 654 

reasonable outcome because the maximum value of the nominal normal overlap on_max in Eq. 655 

(15) during the impact event changes for different values of Pcon_n (Munjiza 2004). However, 656 

this important fact has not been reported in the literature (Mahabadi et al. 2012). Likewise, the 657 

two cases with different values of T (= ∞ and 1 MPa) but constant b = 2 and Pcon_n = 0.1 GPa 658 

show different amounts of energy dissipation, which can be also explained by the change in 659 

on_max. These expected results verify that the contact detection and computation of fcon are 660 

properly processed in the GPGPU-based code, although this paper does not consider contact 661 

damping in the following numerical simulations because the calibration of these parameters 662 

against rock fall experiments is beyond the scope of this paper. 663 

To assess the accuracy of the contact friction model implemented in Section 2.1, a simple 664 

sliding test, which was originally suggested by Xiang et al. (2009) as a 2D problem, is modelled 665 

as a 3D problem, and the obtained results are compared with those from theoretical analyses. 666 

The model consists of a simple cube sliding along a fixed plane with a friction coefficient of 667 

μfric = 0.5. The cube is assigned an initial velocity, which varies from 1 m/s to 6 m/s. With each 668 

initial velocity, the cube slows and stops due to the friction between the sliding cube and the 669 

rigid base. Theoretically, the sliding distance can be defined as a function of the initial velocity 670 

(vi), gravitational acceleration (g) and the friction coefficient (μfric) through Eq. (18).  671 

 2

fric/ 2iL v g                                 (18) 672 

   Figure 9 shows an excellent agreement between the numerical simulation and the theoretical 673 

solution from Eq. (18), which validates the accuracy of the implemented contact friction model.  674 

3.2 3D FDEM modelling of the failure process of rock under quasi-static loading 675 

conditions 676 

    In this subsection, two standard rock mechanics laboratory tests, the UCS test and BTS test, 677 

of a relatively homogeneous limestone are modelled to investigate the capabilities of the 678 

GPGPU-parallelized 3D Y-HFDEM IDE for simulating the fracturing process and associated 679 

failure mechanism of the rock under quasi-static loading conditions.  680 
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  The numerical models for the 3D FDEM simulations of the UCS and BTS tests are shown in 681 

Fig. 10, in which the diameter of both specimens is 51.7 mm, and the height and thickness of 682 

the specimens are 129.5 mm and 25.95 mm, respectively. The rock specimens are placed 683 

between two moving rigid loading platens. Flat rigid loading platens are used in the UCS 684 

model, whereas curved rigid loading platens are used in the BTS model, whose curvature is 1.5 685 

times the diameter of the BTS disk, as suggested by the International Society for Rock 686 

Mechanics (ISRM). It is important to note that in the FDEM simulation with the CZM, it is 687 

essential to use an unstructured mesh to obtain reasonable rock fracture patterns because the 688 

FDEM only allows the fractures to initiate and propagate along the boundaries of the solid 689 

elements. Moreover, the use of a very fine mesh is the key to reducing the mesh dependency 690 

of the crack propagation paths, which is why most 2D FDEM simulations in previous studies 691 

used very fine meshes. However, if very fine meshes are used in 3D models, the number of 692 

TET4s and CE6s can easily exceed several million, which makes the 3D modelling become 693 

intractable in terms of memory limitations and the simulation time required for the calibration 694 

process using FDEM codes parallelized by a single GPGPU accelerator. Thus, fine meshes 695 

comparable to those investigated by Lisjak et al. (2018) are used in the 3D FDEM models. 696 

Accordingly, the average edge length of the TET4s in both models is set to 1.5 mm, and the 697 

UCS and BTS models contain 695,428 TET4s and 1,298,343 CE6s and 187,852 TET4s and 698 

348,152 CE6s, respectively. According to a recent study on 2D FDEM modelling conducted 699 

by Liu and Deng (2019), the effect of the element size can be negligible if there are not less 700 

than 27-28 meshes in the length corresponding to the diameter of the specimen and the 701 

maximum element size should not be longer than the length of fracture process zone of the 702 

CZM. The UCS and BTS models used in this study satisfy these requirements. Based on the 703 

review of the effects of the loading rate presented above, a constant velocity of 0.01 m/s is 704 

applied on the loading platens to satisfy the quasi-static loading conditions, as suggested by 705 

Guo (2014). Moreover, our preliminary sensitivity study of 3D UCS and BTS modellings under 706 

various loading rates confirms the quasi-static loading conditions can be achieved with the 707 

platen velocity of 0.01 m/s, which further shows little difference can be noticed from 3D UCS 708 

modelling even if the platen velocity is increased to 0.05 m/s although slightly higher peak 709 

loads and spurious fragmentations around the loading areas are observed from 3D BTS 710 

modelling with the platen velocity increasing. 711 

   The physical/mechanical properties of the limestone are obtained from laboratory 712 

measurements, which are used to determine the input parameters for the numerical modelling 713 

(Table 1). As introduced in Section 2, the intact behavior of the numerical model follows Eq. 714 
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(1), and the elastic parameters are determined in such a way that the elastic region of the stress-715 

strain curve from the 3D FDEM simulation of the UCS test agrees well with that of the 716 

laboratory experiment. Our preliminary investigation showed that the experimentally obtained 717 

elastic parameters can be directly used as the input parameters if sufficiently large artificial 718 

penalty terms of the CE6s are used. The penalty terms for the contacts and CE6s are determined 719 

as multiples of the elastic modulus of the rock (i.e., Erock). The value of the contact penalty 720 

(Pn_con) is set as 10Erock. However, higher values are required for the artificial penalty terms of 721 

the CE6s (i.e., 100Erock for Popen and Ptan and 1000Erock for Poverlap) to allow the artificial 722 

increase in the compliance of the bulk rock to become negligible. Because the artificial elastic 723 

regime of the CE6 in Eqs. (6)-(8) can also be influenced by the strength parameters, an artificial 724 

increase in the bulk compliance of the rock becomes non-negligible if the artificial penalty 725 

terms for the CE6s are not set to be sufficiently large. In other words, smaller artificial penalty 726 

terms for the CE6s can result in non-negligible changes in the artificial elastic response of the 727 

CE6s during the calibration process, in which the strength parameters are also varied. This fact 728 

has not been pointed out by any studies of the development and/or application of the FDEM. 729 

Then, after setting the penalty terms of the CE6s, the strength parameters (i.e., tensile strength 730 

Ts_rock, cohesion crock and internal friction angle φrock) and the fracture energies, GfI_rock and 731 

GfI_rock, of the numerical model are calibrated by trial and error. To do this, a series of FDEM 732 

simulations was conducted to achieve a reasonable match between the numerical and 733 

experimental results so the peak load and fracture patterns from the numerical simulations 734 

agree well with those from the experiments. The same input parameters shown in Table 1 are 735 

also used for the numerical modelling of the BTS test. The friction coefficients, μfric, of the 736 

contact between the platens and the rock, and, that between rock surfaces generated by broken 737 

CE6s are assumed to be 0.1 and 0.5, respectively, as in Mahabadi (2012). The ECDA approach 738 

introduced in Section 2.2 is used in these simulations because the rock can be considered to be 739 

relatively soft, and no spurious modes are observed in this case. The concept of mass scaling 740 

(Heinze et al. 2016) with the mass-scaling factor = 5 is applied to increase Δt in such a way 741 

that the quasi-static loading condition is still satisfied. Thus, Δt = 4.5 and 9 nanoseconds are 742 

used for the simulations of the BTS and UCS tests, respectively. Further details about the mass 743 

scaling concept can be found in the literature (Heinze et al. 2016). The critical damping scheme 744 

(η = ηcrit =2h√(ρE) in Eq. (1)) is also used in all of the FDEM simulations in this section. 745 

Hereafter, compressive stresses are considered negative (cold colours), whereas tensile stresses 746 

are regarded as positive (warm colours). 747 
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  Figure 11(a)-(c) shows the modelled 3D progressive rock failure process in terms of the 748 

distributions of the minor principal (mostly compressive) stress (upper row) and the damage 749 

variable (i.e., D in Eq. (9); lower row) at different loading stages (points A, B and C in Fig. 750 

11(d)) in the FDEM simulation of the UCS test. Fig. 11(d) shows the obtained axial stress 751 

versus axial strain curve. Fig. 11(a) shows the stress and damage distribution in the sample at 752 

the stage before the onset of nonlinearity in the axial stress versus axial strain curve (point A 753 

in Fig. 11(d)). As the loading displacement continues, the growth of unstable microscopic 754 

cracks commences and continues until the peak stress of the stress-strain curve is reached (point 755 

B in Fig. 11(d)). Subsequently, the microscopic cracks coalesce to form macroscopic cracks, 756 

which results in the loss of bearing capacity of the bulk rock, and the axial stress begins to 757 

decrease with increasing strain. Finally, the formed macroscopic cracks propagate further, 758 

resulting in the complete loss of the bearing capacity of the rock (point C in Fig. 11(d)). Fig. 759 

12(a) compares the final fracture patterns obtained from the FDEM simulation and the 760 

laboratory experiment. The resulting fracture patterns (Fig. 12(a)) and the peak loads (Fig. 761 

11(d)) from the numerical simulation and laboratory experiment are in good agreement. 762 

Although the formation of the shearing planes is evident in Fig. 12(b), it must be noted that 763 

mixed mode I-II fractures are the dominant mechanism of rock fracturing, as shown in Fig. 764 

12(c), which will be explained in detail later. Therefore, the obtained results demonstrate that 765 

the developed GPGPU-parallelized 3D Y-HFDEM IDE is able to reasonably model the 766 

fracturing process of rock in UCS tests.   767 

  Figure 13(a)-(c) illustrates the modelled 3D progressive rock failure process in terms of the 768 

distributions of the horizontal stress, σxx, (upper row) and the damage variable D in Eq. (9) 769 

(lower row) at different stages (points A, B and C in Fig. 13(d)) in the FDEM simulation of the 770 

BTS test. Fig. 13(d) shows the obtained indirect tensile stress versus axial strain curve. As the 771 

loading displacement gradually increases, a uniform horizontal (tensile) stress (σxx) field 772 

gradually builds up around the central line of the rock disk. Fig. 13(a) shows that although 773 

some microscopic damage, D<<1, appears in the rock disk near the loading platens due to stress 774 

concentrations, there is no macroscopic crack (i.e., CE6s with D = 1). Once the peak indirect 775 

tensile strength of the rock (point B in Fig. 13(d)) is reached, macroscopic cracks form around 776 

the central diametrical line of the rock disk due to the coalescence and propagation of 777 

microscopic cracks. As shown in Fig. 13(b), the macroscopic crack that causes the splitting 778 

failure of the rock disk nucleates slightly away from the exact center of the disk. The reason 779 

for the nucleation of this vertically off-center macroscopic crack is that the curved loading 780 

platens provide a relatively narrow contact strip; accordingly, an off-center horizontal stress 781 
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concentration first develops within the rock disk, which is consistent with the location of the 782 

macroscopic crack nucleation in Fig. 13(b). This phenomenon was also addressed by Fairhurst 783 

(1964) and Erarslan et al. (2012), who further pointed out that a wider contact strip was required 784 

to ensure near-center crack initiation in a BTS test with curved loading platens. Moreover, Li 785 

and Wong (2013) conducted strain-stress analyses of a 50-mm-diameter rock disk in BTS tests 786 

using FLAC3D and pointed out that the maximum indirect tensile stress and strain were located 787 

approximately 5 mm away from the two loading points along the central loading diametrical 788 

line of the rock disk. Nearly the same results are observed in Fig. 13(b); most importantly, the 789 

vertically off-center macroscopic cracks are captured explicitly. Moreover, following Lisjak et 790 

al. (2018), Fig. 13(e) compares the simulated stress distributions along the diameter of the rock 791 

disk in the middle and on the surface (i.e., lines AB and CD, respectively) with the analytical 792 

solution of Hondros (1959), where y and r represent the vertical distance from the center and 793 

the radius of the rock disk, respectively. It can be seen from Fig. 13(e) that the stress distribution 794 

on the surface of the rock disk differs from that in the middle plane, which is consistent with 795 

Hondros’ solution based on the plane strain assumption. In other words, Hondros’ solution is 796 

invalid for the stress distributions on the surface of the rock disk, especially for the tensile stress 797 

concentrations in the regions near the loading platens, which are clearly depicted in Fig. 13(e). 798 

The local tensile stress concentrations in the regions near the loading platens on the surface of 799 

the rock disk explain the nucleation of the off-center macroscopic cracks modelled in Fig 13(b), 800 

which will not be possible if 2D plane-strain modelling is conducted. As the loading platens 801 

continue to move toward each other, the resultant macroscopic cracks propagate and coalesce 802 

to split the rock disk into two halves (Fig. 13(c)), and the stress-strain curve decreases toward 803 

zero during the post-peak stage (i.e., line BC in Fig. 13(d)). These results show that mixed 804 

mode I-II failure is the dominant mechanism during the nucleation, propagation and 805 

coalescence of the splitting macroscopic cracks (Fig. 14(a)), which is due to the unstructured 806 

mesh used in the FDEM modelling. To clarify this point, Fig. 14(b) shows the modelled failure 807 

pattern of the rock disk using the FDEM simulation with a structured mesh, in which the 808 

loading diametrical line aligns with the boundaries of the TET4 elemental mesh. The splitting 809 

fracture forms exactly along the loading diametrical line, and the mode I failure is the only 810 

failure mechanism. Fig. 14(c) and (d) show the topological relationships between the horizontal 811 

indirect tensile stress (blue arrows in the x direction) and the TET4s in the cases of the 812 

unstructured and structured meshes used in Fig. 14(a) and (b), respectively. In Fig. 14(d), the 813 

normal directions of the planes A and A' of the CE6 located between the two TET4s exactly 814 

aligns with the direction of the indirect tensile stress (i.e., the x direction). Therefore, pure mode 815 
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I cracks preferably develop along the CE6s on the loading diametrical line in terms of the most 816 

efficient energy release due to fracturing. On the other hand, when the unstructured mesh in 817 

Fig. 14(a) is used, few CE6s have planes exactly on the loading diametrical line, as illustrated 818 

in Fig. 14(c), in which two CE6s (i.e., planes A-A’ and B-B’) contributing to the fracturing 819 

process are depicted, and none of their normal directions are aligned with that of the indirect 820 

tensile stress (blue arrows in the x direction). In this case, it is obvious that a pure mode I crack 821 

cannot form due to the topological restriction, and a combination of mode I (opening) and mode 822 

II (sliding) cracks can always form resulting in a macroscopic fracture. This is why mixed 823 

mode I-II fracturing is the main failure mechanism in the FDEM simulations of the BTS tests 824 

with unstructured meshes. Tijssens et al. (2000) conducted a comprehensive mesh sensitivity 825 

analysis for the CZM and concluded that the fractures tended to propagate along dominant 826 

directions of local mesh alignment. Guo (2014) further commented that unstructured meshes 827 

should be used in the numerical simulation using the CZM to reduce mesh dependency but 828 

fracture paths were still dependent on local mesh orientation in the unstructured meshes. 829 

Accordingly, when the CZM is applied to model material failure, it is unrealistic to pursue a 830 

pure mode I splitting fracture in the simulation of the BTS test with an unstructured mesh 831 

regardless of the numerical approach and 2D/3D modelling. In this sense, any intentional 832 

reduction of the mode-I fracture energy GfI_rock and tensile strength Ts_rock to capture the 833 

unreasonable pure mode I fracture pattern prevalent in studies of the FDEM should be 834 

considered a manipulation of the input parameters. The same explanation is valid for the 835 

dominant mixed-mode I-II failures along the macroscopic shear fracture plane modelled in the 836 

UCS test. The boundaries of the TET4s will not exactly align with the macroscopic shear stress 837 

direction at each location; thus, mixed mode I-II failure along the macroscopic shear fracture 838 

plane, rather than pure mode II failure, is the natural consequence.  839 

 840 

3.3. Full 3D modelling of the fracturing process of rock under dynamic loads in SHPB 841 

tests  842 

   In this subsection, the GPGPU-parallelized Y-HFDEM IDE is applied to model the dynamic 843 

fracturing of Fangshan marble, which is much more isotropic and homogeneous than granite, 844 

in dynamic BTS tests while considering the entire SHPB testing system. 845 

  The 4th and 5th authors of this paper conducted dynamic BTS tests of Fangshan marble with a 846 

SHPB apparatus (Zhang and Zhao 2013). The marble consists of dolomite (98%) and quartz 847 

(2%), and the size of the minerals ranges from 10 μm to 200 μm with an average dolomite size 848 
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of 100 μm and an average quartz size of 200 μm (Zhang and Zhao 2013). The marble can be 849 

considered as a homogeneous and isotropic rock, which is ideal to avoid the complexity 850 

intrinsic to highly anisotropic rocks such as granite. The detailed procedure of the dynamic 851 

BTS test can be found in the literature (Zhang and Zhao 2013), and the test is briefly 852 

summarized here. As illustrated in Fig. 15(a), a metal projectile called a striker is first 853 

accelerated by a gas gun, and the striker impacts one end of a long cylindrical metal bar called 854 

an incident bar (IB). Upon the impact of the striker on the IB, a dynamic compressive strain 855 

wave (εinci) is induced in the IB. The εinci propagates toward the other end of the IB, on which 856 

the target marble disk is placed. When the εinci arrives at the interface between the IB and the 857 

marble disk, some portion is reflected as a tensile strain wave (εrefl), and remaining portion is 858 

transmitted into the marble disk as a compressive strain wave (εtans_rock). The εtans_rock then 859 

propagates toward the interface between the marble disk and one end of another long 860 

cylindrical metal bar called a transmission bar (TB). When the εtans_rock arrives at the interface, 861 

the marble disk is subjected to dynamic loading (i.e., compressed by the IB and the TB). In 862 

addition, a compressive strain wave (εtans) generated in the TB propagates toward the other end 863 

of the TB. The diameter and thickness of the marble disk used in the experiment were 50 mm 864 

and 20 mm, respectively. The lengths of the IB and the TB were 2 m and 1.5 m, respectively, 865 

and the diameter of both the IB and the TB was 50 mm. Strain gauges are attached on the 866 

surfaces of the IB and TB at 1 m from the interfaces between the marble disk and each bar to 867 

measure the time history of the axial strain in the IB (to measure εinci and εrefl) and the TB (to 868 

measure εtrans). Assuming one-dimensional (1D) stress wave propagation in each bar without 869 

wave attenuation, the axial stresses on the metal bars (i.e., σinci, σrefl and σtans) are calculated by 870 

multiplication of the measured axial strains (εinci, εrefl and εtrans) by the Young’s modulus of 871 

each bar. In practice, the axial compressive force fIB in the IB is calculated from the 872 

superposition of the wave shapes corresponding to σinci and σrefl, whereas the axial compressive 873 

force fTB in the TB is directly calculated from σtans (Fig. 15(b)). Thus, the axial compressive 874 

forces fIB and fTB can be obtained by multiplication of (σinci-σrefl) and σtans by the cross-sectional 875 

areas of each bar. By ensuring that the time histories of the axial compressive forces fIB and fTB 876 

are nearly equal up to the peak, the dynamic indirect tensile stress can be defined at the center 877 

of the marble disk using the theory applied to the BTS test due to quasi-static loading 878 

conditions. Satisfying these conditions is equivalent to achieving dynamic stress equilibrium 879 

in the marble disk. The experimental results in Fig. 15(b) satisfy the dynamic stress equilibrium 880 

state, and the corresponding loading rate is approximately 830 GPa/s (Zhang and Zhao 2013). 881 

The peak value of the dynamic indirect tensile stress is called the dynamic indirect tensile 882 
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strength. Due to this dynamic indirect tensile stress, the marble disk is dynamically split into 883 

two halves due to the formation of blocky fragments near the diametrical center line and 884 

numerous shear fractures near the impact region by the IB and the TB. The dynamic indirect 885 

tensile strength calculated under these conditions was 32 MPa, which was significantly higher 886 

than the quasi-static indirect tensile strength of 9.5 MPa (Zhang and Zhao 2013). The fracture 887 

pattern obtained after the test is shown in Fig. 15(c). This paper attempts to model the test 888 

condition.  889 

    Fig. 16 shows the 3D FDEM numerical model for the dynamic BTS test of the marble with 890 

the entire SHPB testing apparatus modelled explicitly, which consists of 647,456 nodes, 891 

179,022 TET4s and 314,689 CE6s. The average edge length of the mesh for the rock disk is 892 

1.3 mm. The experimental evaluation by Brooks et al. (2012) indicates that the sizes of the 893 

FPZs for Carrara marble (typical grain size 300 μm) and Danby marble (typical grain size 520 894 

μm) are approximately 2~3 mm and 6 mm, respectively, based on nanomechanical and 895 

environmental scanning electron microscopic observations. In other words, the size of the FPZ 896 

is correlated well with the typical grain size. Thus, it can be estimated that the FPZ size of 897 

Fangshan marble is on the order of 1 mm because the grain size of the dominant mineral (i.e., 898 

dolomite) is approximately 100 μm, as described above. Thus, the FDEM mesh with an average 899 

edge length of 1.3 mm used to simulate the Fangshan marble should be fine. Moreover, it 900 

should be noted that this mesh is finer than the 90,000 TET4s used by Rougier et al. (2014) in 901 

a 3D numerical simulation of SHPB-based dynamic BTS tests, and the size of the rock disk is 902 

similar. In the model, the striker is not explicitly modelled, and the prescribed velocity 903 

corresponding to the impact of the striker is instead applied to the nodes on the left end of the 904 

IB (Fig. 16). Once the prescribed velocity reaches zero after the peak, the corresponding nodes 905 

are considered to be free nodes; otherwise, an unrealistic stress wave is generated in the IB. 906 

The shape of the prescribed velocity profile is determined by the time history of the measured 907 

axial strain profile, εinci, of the strain gauge on the IB. Based on the measured density (7,697 908 

kg/m3) and dilatational wave speed (5,600 m/s) of the SHPB bars, the dynamic Young’s 909 

modulus used for the simulation is determined assuming that 1D stress wave theory (i.e., zero 910 

Poisson’s ratio) is approximately applicable for stress propagation in the IB and the TB. This 911 

assumption should be acceptable to the first approximation; otherwise, all of the previous 912 

publications on dynamic rock experiments using the SHPB lose their meanings. For the elastic 913 

parameters of the marble, homogeneous and isotropic elasticity is assumed in Eq. (2); therefore, 914 

the effective elastic stiffness CIJKL in Eq. (2) is merely given by the Lame constants λ and μ. 915 

The measured wave speeds of the dilatational wave (6,000 m/s) and shear wave (2,800 m/s) of 916 
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the marble along with its measured mass density (2,800 kg/m3) are used to determine λ and μ. 917 

Thus, the approach for the determination of the elastodynamic parameters is clearly different 918 

from that used by Mahabadi et al. (2010) and Rougier et al. (2014), who used the Young’s 919 

modulus and Poisson’s ratio of rock obtained from the quasi-static tests reported by Iqbal and 920 

Mohanty (2006) and Broome and Pfeifle (2012), respectively, as the input parameters for their 921 

FDEM simulations. In the case of dynamic simulations, the intact stress wave and its wave 922 

speed are the most important, and it must be emphasized that the dynamic fracturing is just the 923 

outcome of the intact stress wave propagation. Thus, the most reasonable approach to 924 

determine the input elastic parameters should be based on the measured wave speeds of the 925 

target rock instead of quasi-statically obtained elastic parameters, which often result in 926 

incorrect wave speeds. In addition, the values of the artificial penalty terms used for the CE6s 927 

are not explicitly given in the publications described above. As mentioned in Sections 2 and 928 

3.2, the artificial penalty terms Pf, Ptan, and Poverlap of the CE6s must be set reasonably high; 929 

otherwise, the input elastic properties lose their meaning. Based on a recent study conducted 930 

by the authors (Fukuda et al., 2019), the conditions of Poverlap = 100Edyn and Pf = Ptan = 50Edyn 931 

(Edyn is the dynamic Young’s modulus of the marble calculated from the aforementioned 932 

measured wave speeds of the marble) are used. The reason for using the smaller penalty terms 933 

of the CE6s than those used for the case of quasi-static loading discussed in Section 3.2 is that 934 

using the high values can cause spurious modes in dynamic fracturing simulations, whereas the 935 

adopted penalty values of the CE6s here ensure that the aforementioned measured wave speeds 936 

of the marble result in a negligible numerical error. Following Mahabadi (2012), the contact 937 

penalty Pcon_n = 10Edyn is used for the rock surfaces generated by broken CE6s and the surfaces 938 

between rocks and loading platens. The damping factor η in Eq. (3) is assumed to be 104 Pa∙s 939 

to filter out waves with excessively high frequencies that result in spurious modes. It should be 940 

noted that even η = ηcrit does not result in significant damping in the time range of interest in 941 

the current dynamic simulation, and the effect of η can be considered as a filtering function of 942 

high-frequency noise that results in spurious modes. Similar to Rougier et al. (2014), a dynamic 943 

Coulomb type friction law is used for the contact friction. The dynamic friction coefficients 944 

μfric_dyn on the rock surfaces generated by broken CE6s and the surfaces between rocks and 945 

loading platens are assumed to be 0.6 and 0.1, respectively, according to Mahabadi et al. (2010) 946 

and Rougier et al. (2014).  947 

   In the FDEM simulation of dynamic fracturing, the most challenging task is to correctly set 948 

the parameters governing the rock fracturing process, and the lack of experimental evidence is 949 

still significant, especially for the Mode II parameters. The approach used in some previous 950 
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studies (Mahabadi et al. 2010; Rougier et al. 2014) for modelling the dynamic fracturing of 951 

rock using the FDEM, in which the input parameters such as strengths were obtained from 952 

quasi-static tests, should be reviewed carefully. In fact, a significant amount of experimental 953 

evidence (e.g., Zhang, 2016) clearly shows that with increasing loading rate, both inter-grain 954 

fractures (weaker portions of the rock) and intra-grain fractures (stronger portions of the rock) 955 

occur, which indicates that the nominal input strengths for the FDEM simulation should be 956 

increased. On the other hand, increasing the values of the critical opening and sliding 957 

displacements ot and st in Eqs. (11) and (12) too much can result in physically unrealistic 958 

situations in which cohesive tractions still act on the macroscopic (i.e., almost visible) fracture 959 

surfaces, whereas the CZM is mainly for the modelling of the micro-cracking in the FPZ of 960 

rocks. In fact, the experimental evidence reported by Sato and Hashida (2006) showed that ot 961 

is roughly 100 μm in the case of Iidate granite. For marble, the linear elastic fracture mechanics 962 

relation GfI = (KIC)2/Estatic can be used to estimate the value of GfI to be 26.5 J/m2 considering 963 

its quasi-static Young’s modulus (85 MPa) and quasi-static mode I fracture toughness KIC (1.5 964 

MPa∙m1/2). Hence, with the aforementioned quasi-static tensile strength (9.5 MPa), a rough 965 

estimate of ot in Eq. (11) is 10 µm in the quasi-static loading case. Then, it is simply assumed 966 

that the range of ot is expected to be on the order of 10 μm ~ 100 µm in the calibration. Because 967 

no experimental evidence is available for the value of st in Eq. (12) to the best of the authors’ 968 

knowledge, the relation ot = st is assumed following Rougier et al. (2014). Based on the loading 969 

rate independence of φ (e.g., Yao et al. (2017)), the internal friction angle φ is set to 59° from 970 

the quasi-static test. Finally, we varied the values of the tensile strength Ts and cohesion c under 971 

the conditions of various ot (= st = 10 µm ~ 100 µm) so the values of εinci, εrefl and εtrans in the 972 

SHPB bars obtained from the FDEM simulation reasonably match those in the experiment 973 

(Zhang and Zhao 2013). For the initial guesses of Ts and c, we started from Ts = 32 MPa from 974 

the dynamic BTS (Zhang and Zhao 2013) and c = 42.5 MPa from the dynamic shear strength 975 

(Yao et al. 2017), both of which correspond to a loading rate of 830 GPa/s. Here, the 976 

experimental evidence is used, in which the dynamic shear strength shows a similar loading 977 

rate dependency to the dynamic BTS (i.e., dynamic shear strength ≈ 0.025 × loading rate × 978 

static shear strength (= 21.7 MPa)). By trial and error, we found that the calibrated conditions 979 

of Ts = 30 MPa and c = 65 MPa with ot =st =10 µm results in a good match, including the 980 

obtained fracture pattern between the FDEM simulation and the experiment; therefore, only 981 

the simulation results for these conditions are presented. The ECDA approach described in 982 

Section 2.2 is not used because it can easily result in spurious modes, as shown in the following 983 

paragraphs. Thus, the brute-force contact detection activation approach is used instead; i.e., all 984 
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of the TET4s corresponding to the marble disk are added to the contact list from the beginning 985 

of the simulation. In this case, approximately 8,242,000 contact couples (i.e., a tremendous 986 

number of contact force calculations) must be processed in each time step due to the GPGPU 987 

parallelization. 988 

   Figure 17 shows the modelled dynamic fracturing process of Fangshan marble in the SHPB-989 

based dynamic BTS test using the GPGPU-based 3D Y-HFDEM IDE with the calibrated input 990 

parameters. The stress wave propagation in the bars is not shown here to save space. In Fig. 991 

17, the spatial distribution of σzz (left column), the macroscopic fracture pattern (damage D = 992 

1; middle column) and the spatial distribution of D (right column) in the rock disk are shown, 993 

in which t = 0 is set when the non-negligible strain/stress waves in the IB arrive at the interface 994 

between the IB and the rock disk. The warmer and colder colors of σzz correspond to tensile 995 

and compressive stresses, respectively. The impact between the IB and the rock disk results in 996 

stress propagation from the IB side of the rock disk toward the TB side (t = 35 μs). After the 997 

arrival of the stress wave at the interface between the rock disk and the TB, the dynamic indirect 998 

tensile stress field begins to develop due to the dynamically increasing loads from both the IB 999 

and TB sides, and the stress field shows approximate symmetries with respect to the y and z 1000 

directions across the center of the disk (t = 70 μs). It is notable that the micro-cracking is 1001 

initiated at this stage in the vicinity of the IB and TB. Then, due to the dynamically induced 1002 

indirect tensile stress field, macroscopic fractures (tension-dominant mode I-II fractures) begin 1003 

to nucleate away from the center of the disk (i.e., the IB side) and propagate approximately in 1004 

the y-direction (t = 83 μs). In fact, using the digital image correlation technique, Zhang and 1005 

Zhao (2013) evaluated the dynamic strain field that developed on one surface of a marble disk, 1006 

which showed that the large strains (i.e., a macroscopic crack) began to develop not from the 1007 

exact center of the disk but rather slightly away from the center toward the IB side (see Fig. 1008 

11(f) for the result of the digital image correlation data at 48 μs in Zhang and Zhao (2013)). 1009 

The FDEM modelling shows a similar trend to the experimental observations. Local crack 1010 

branching also occurred during microscopic crack propagation from the IB and TB sides (t = 1011 

83 μs) along with the commencement of macroscopic crack propagation from the TB side. It 1012 

can be seen that the front of the propagating cracks from the IB and TB are far from flat which 1013 

shows another importance of the 3D modelling. In the 2D dynamic simulation conducted by 1014 

Mahabadi et al. (2010), Osthus et al. (2018) and Godinez et al. (2018), all the surface waves 1015 

on the positive and negative x-planes in Fig. 17 cannot be considered, which makes the 1016 

interpretation of the 2D simulations very difficult. Finally, these microscopic and macroscopic 1017 

cracks coalesced and formed the resultant splitting macroscopic fracture plane (t = 98 μs). 1018 
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Furthermore, in contrast to the BTS test under quasi-static loading, in which stress can be 1019 

released through the opening of splitting fractures, the induced stress in the dynamic BTS test 1020 

cannot be released completely in such a short time due to the high-speed loading by the IB and 1021 

TB. In addition, the shear-dominant mixed mode I-II fractures result in the formation of 1022 

crushed zones near the IB and TB, which contribute to the stress release process. The reason 1023 

for the formations of shear-dominant mixed mode I-II fractures in the unstructured mesh was 1024 

discussed in Section 3.2. With the splitting fractures interacting with the crushed zones, a 1025 

blocky rock fragment is also generated (t = 98 μs), which was not found in the BTS test under 1026 

quasi-static loading conditions. The comparison of the resultant fracture pattern at t = 98 μs 1027 

with the experimental pattern in Fig. 15(c) indicates that the FDEM modelling shows a good 1028 

correspondence with the experiment in terms of the formation of the splitting central cracks, 1029 

the crushed zones near the IB and TB and the blocky rock fragments along the centerline.  1030 

   Figs. 18(a) and (b) compare the time histories of εinci and εrefl in the IB and εtrans in the TB 1031 

obtained from the experiment and the calibrated FDEM simulation. Because the momentum 1032 

bar is not modelled in the FDEM simulation, the profile of εtrans in the TB is only shown at the 1033 

time when εtrans drops to zero after the 1st peak; a comparison between the FDEM simulation 1034 

and the experiment after this time has no meaning. The calibration and comparison are 1035 

performed using the axial strains instead of the axial stress/force because the authors have 1036 

difficulty in interpreting the Young’s modulus used for the conversion from the strain to stress 1037 

in the IB and TB. In the FDEM, the elastodynamic parameters (i.e., the Lame constants) that 1038 

satisfy the wave speed of the SHPB bars are used; thus, the stress should be interpreted as the 1039 

dynamic stress. In contrast, the quasi-statically obtained Young’s moduli of the IB and the TB 1040 

have conventionally been used for the most SHPB experiments to convert the measured axial 1041 

strain to the axial stress. However, if we use the quasi-statically obtained Young’s moduli of 1042 

the IB and the TB for the FDEM simulation, the wave speed in the FDEM simulation becomes 1043 

incorrect. Therefore, the axial strains in the IB and the TB are used for the calibration. The 1044 

results show that the FDEM simulation is well calibrated against the measured strain profile, 1045 

which demonstrates that the modelled results of the SHPB-based dynamic BTS test from the 1046 

GPGPU-parallelized Y-HFDEM agree well with those from the experiment.  1047 

   Finally, Fig. 19 shows the results of applying the ECDA approach (Guo 2014) described in 1048 

Section 2.2 to model the SHPB-based dynamic BTS test. In this model, only the TET4s 1049 

corresponding to the surfaces of the IB and the TB as well as the rock disk surface in the vicinity 1050 

of the IB and TB are registered as contact candidates at the onset of the FDEM simulation (red 1051 

regions in Fig. 19(a)). Then, with the generation of macroscopic cracks, the TET4s in the 1052 
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vicinity of the macroscopic cracks are adaptively registered as contact candidates. This 1053 

approach is much faster in terms of the total run time compared with the case using the brute-1054 

force contact detection activation approach. However, when the same mesh with the same input 1055 

parameters except for the ECDA approach is applied, the simulation can easily result in 1056 

spurious modes, as shown in Fig. 19(b), in which too many unrealistic fragmentations are 1057 

generated. Using a smaller time step Δt may solve this problem. However, the authors could 1058 

not find a time step Δt in which the total run time of the ECDA approach is less than that for 1059 

the brute-force contact detection activation approach. This spurious mode (i.e., numerical 1060 

instability) could be due to the use of a very high value of the internal friction angle as well as 1061 

the target loading rate being very high. In fact, our quasi-static simulation presented in Section 1062 

3.2 used the ECDA approach, but no unstable results were obtained. Interestingly, this finding 1063 

has not been pointed out in any previous studies that used the 3D FDEM and can be regarded 1064 

as the most valuable information. For example, in the case of the FDEM simulation of the 1065 

“penetration problem”, which is important in impact engineering to understand the dynamic 1066 

fracturing of rock, the aforementioned spurious mode can easily occur if the ECDA approach 1067 

is used. One of the most serious problems is that the fragmentation due to penetration always 1068 

occurs in this kind of simulation; therefore, judicious judgement must be used in evaluating 1069 

whether the obtained fragmentation is an artificial fracture due to the spurious mode or not. In 1070 

this sense, the brute-force contact detection activation approach can solve or alleviate the 1071 

spurious mode. 1072 

 1073 

3.4 Computing performance of the GPGPU-parallelized 3D FDEM 1074 

   This section discusses the computing performance of the GPGPU-parallelized 3D Y-1075 

HFDEM IDE, mainly in terms of its improvement compared with the sequential 1076 

implementation of the 3D Y-HFDEM IDE and its performance on several GPGPU accelerators. 1077 

To accomplish this goal, the modeling of the rock failure process in the 3D UCS test, as 1078 

discussed in subsection 3.2, is selected as a benchmark because it is a computationally 1079 

demanding simulation. To make the computation become further intensive, the brute-force 1080 

contact detection activation approach introduced in Section 2.2 is used in the 3D modelling of 1081 

the UCS test to evaluate the computing performance of the GPGPU-parallelized 3D Y-HFDEM 1082 

IDE. Moreover, since the performance of GPGPU-parallelized code is significantly dependent 1083 

on the applied GPGPU accelerators, the GPGPU-parallelized 3D Y-HFDEM IDE is run using 1084 

several NVIDIA® GPGPU accelerators, i.e., Quadro GV100, Titan V and Quadro GP100 to 1085 

investigate its performance. The developed GPGPU-parallelized 3D Y-HFDEM IDE can be 1086 
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run in all these GPGPU accelerators without any modifications. At the same time, an Intel® 1087 

Xeon® Silver 4112 processor (2.60 GHz and 32.0 RAM) is used to run our sequential CPU-1088 

based 3D Y-HFDEM IDE. Table 2 shows the number of TET4s, CE4s and nodes, and the 1089 

initial number of contact couples in each model. It is evident that the mesh discretization with 1090 

the average element size have = 1.3 mm results in tremendously massive computation. The list 1091 

of actual runtimes required for 500 calculation time steps is shown at the bottom of Table 2 for 1092 

several values of have, in the cases of the GPGPU-based code using the Quadro GV100 1093 

accelerator and the sequential CPU-based code (i.e. the original Y3D code). The results show 1094 

that 134,943 s (37.5 hours) are required to solve the 500 time steps in the sequential CPU-based 1095 

code for have = 1.3 mm, which means that solving the problem with this level of fine 1096 

discretization is too computationally expensive using the sequential code. Fig. 20 shows the 1097 

speed-up times of the GPGPU-parallelized 3D Y-HFDEM IDE relative to the CPU sequential 1098 

code running on a single thread for the 3D modelling of the UCS test with 695,428 TET4s and 1099 

187,852 CE6s. In Fig. 20, the vertical axis shows the quotients of the total run time using each 1100 

GPGPU accelerator divided by that using the CPU sequential code, which, thus, correspond to 1101 

the speed-up times of the GPGPU-parallelized 3D Y-HFDEM IDE relative to the CPU 1102 

sequential code. Clearly, the GPGPU-parallelized 3D Y-HFDEM IDE  run on all GPU 1103 

accelerators has achieved significant speed-up times compared with the CPU sequential code, 1104 

and the Quadro GV100 accelerator shows the maximum speed-up times of 284 , which is even 1105 

better than the maximum speed-up times of 128.6 achieved by the authors’ GPGPU-1106 

parallelized 2D Y-HFDEM IDE (Fukuda et al., 2019) and much higher than the maximum 1107 

speed-up times of 100 achieved by Irazu’s parallelization using OpenCL (Lisjak et al., 2018). 1108 

Moreover, the relative speed-up times between the GPGPU-parallelized code and the CPU 1109 

sequential code depend on the number of TET4s used in the numerical model, which are 1110 

illustrated in Fig. 21(a). As can be seen from Fig. 21 (a), the relative speed-up times initially 1111 

increase with the number of TET4s increasing, which reveals that, in this case, keeping all the 1112 

GPGPU cores busy is the most important factor in achieving the best performance of the 1113 

GPGPU-parallelized code. However, after the number of TET4s increases to a certain value, 1114 

which is about 430,000 TET4s in this study, the relative speed-up times slightly decrease with 1115 

the number of TET4s increasing. In other words, there is a model limit of the maximum speed-1116 

up times for a single GPU accelerator to achieve the best performance and multiple GPU 1117 

accelerators may be needed to lift the limit. Compared with the limit of the model size of 1118 

294,840 TET4s in Irazu’s parallelization using OpenCL (Lisjak et al., 2018),  the limit of the 1119 

model size for the maximum speed-up times of the GPGPU-parallelized 3D FDEM increases 1120 
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significantly. Therefore, as long as currently available publications are concerned, our 3D 1121 

GPGPU-parallelized FDEM using CUDA has much better performance than Irazu’s 1122 

parallelization using OpenCL in terms of both the maximum speed-up times and the limits of 1123 

the model sizes. Furthermore, no performance report of CUDA version of Irazu-software is 1124 

unavailable in any publications. In addition, as illustrated in Fig. 21 (b), the computation time 1125 

of the GPGPU-parallelized 3D Y-HFDEM IDE linearly increases with respect to the number 1126 

of TET4s. Therefore, the computational complexity of the GPGPU-parallelized 3D Y-HFDEM 1127 

IDE is O(N), i.e. the amount of computation is proportional to the number of elements, which 1128 

proves the high computational efficiency of the GPGPU-parallelized 3D Y-HFDEM IDE. The 1129 

implementation of the hyper separating theorem into the contact detection algorithm (e.g. 1130 

Lisjak et al., 2018) may be able to further enhance the computational performance of the 1131 

GPGPU-parallelized 3D Y-HFDEM IDE.  1132 

4. Conclusion and future work 1133 

This paper developed a general-purpose graphics-processing-unit (GPGPU) - parallelized 1134 

combined finite-discrete element method (FDEM) based on the authors’ former sequential two-1135 

dimensional (2D) and three-dimensional (3D) Y-HFDEM IDE codes using compute unified 1136 

device architecture (CUDA) C/C++. The algorithm of the developed 3D GPGPU-parallelized 1137 

code was first presented in detail, which can provide a basis for further improvement and 1138 

progress of the FDEM codes reviewed in the introduction section based on GPGPU 1139 

parallelization. It should be noted that a different contact detection algorithm from that used in 1140 

the sequential code was implemented in the 3D GPGPU-parallelized code because the 1141 

algorithm in the sequential code is not suitable for GPGPU parallelization. Contact damping 1142 

and contact friction were then implemented and verified although further verification may be 1143 

needed. After that, the GPGPU-parallelized 3D Y-HFDEM IDE code was applied to 3D 1144 

modelling of the failure process of limestone in a uniaxial compression strength (UCS) test and 1145 

a Brazilian tensile strength (BTS) test to demonstrate its capability in modelling rock 1146 

engineering applications under quasi-static loading conditions. The 3D modelling results  1147 

demonstrate that for the FDEM simulations with the cohesive zone model (CZM) using 1148 

unstructured meshes, mixed-mode I-II failures are the dominant failure mechanisms along the 1149 

shear and splitting failure planes in the UCS and BTS tests, respectively, whereas pure mode I 1150 

failure along the splitting failure plane in the BTS test and pure mode II failure along the shear 1151 

failure in the UCS test are only possible in models with structured meshes. Moreover, 1152 

compared with 2D models of the BTS test, new insights about the nucleation locations of 1153 
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macroscopic tensile splitting cracks were gained from the 3D model of the BTS test. Moreover, 1154 

the GPGPU-parallelized 3D Y-HFDEM IDE code was implemented to model dynamic 1155 

fracturing of a relatively isotropic and homogeneous marble in a split Hopkinson pressure bar 1156 

(SHPB) - based dynamic Brazilian test to investigate its applicability in modelling rock 1157 

engineering problems under dynamic loading conditions. Thanks to the GPGPU 1158 

parallelization, the entire SHPB system was modelled using the 3D Y-HFDEM IDE code. The 1159 

physical-mechanical parameters and computing parameters, including the penalty terms and 1160 

dynamic strengths, were carefully selected for the 3D FDEM simulation, and the limitations of 1161 

previous studies in the parameter selection were discussed. The modelled failure process, final 1162 

fracture pattern and time histories of the dynamic compressive strain wave, reflective tensile 1163 

strain wave and transmitted compressive strain wave were compared with those from 1164 

experiments, and good agreements were achieved between them. In addition, the spurious 1165 

fracturing mode in the form of unrealistic fragmentation, which can occur when the efficient 1166 

contact detection activation approach is used, is highlighted because it has not been pointed out 1167 

in previous FDEM studies. Finally, the computing performance of the GPGPU-parallelized 3D 1168 

Y-HFDEM IDE run on various GPGPU accelerators was discussed against that of the 1169 

sequential CPU-based 3D Y-HFDEM and other GPGPU parallelization of 2D FDEM using 1170 

OpenCL since the computing performance of the GPGPU parallelization of 3D FDEM using 1171 

OpenCL is not available in any publications. 1172 

The following conclusions can be drawn from this study:  1173 

− A GPGPU-parallelized 3D Y-HFDEM IDE code was developed to model the fracturing 1174 

process of rock under quasi-static and dynamic loading conditions. In addition to GPGPU 1175 

parallelization, robust contact detection, contact damping and contact friction were 1176 

implemented in the 3D Y-HFDEM IDE code and were verified and validated through a series 1177 

of numerical simulations under quasi-static and dynamic loading conditions. The computing 1178 

performance analysis shows the GPGPU-parallelized 3D HFDEM IDE code is 284 times faster 1179 

than its sequential version and can achieve the computational complexity of O(N).  1180 

− The 3D models of the failure processes of limestone in UCS and BTS tests demonstrated 1181 

the capability of the GPGPU-parallelized 3D HFDEM IDE code in simulating rock engineering 1182 

applications under quasi-static loading conditions. Moreover, important findings and new 1183 

insights were obtained from the 3D modelling: 1) the selection of penalty terms for cohesive 1184 

elements in any FDEM simulation with the intrinsic cohesive zone model (ICZM) is crucial to 1185 

reasonably model rock continuous behaviour before fracturing, which has been overlooked in 1186 

the literature. 2) For all FDEM simulations with the CZM using unstructured meshes, mixed-1187 
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mode I-II failures are the dominant failure mechanisms along the shear and splitting failure 1188 

planes in the UCS and BTS tests, respectively, whereas pure mode I failure along the splitting 1189 

failure plane in the BTS test and pure mode II failure with shear failure in the UCS test are only 1190 

possible with structured meshes. Because rock is a collection of mineral grains, whose structure 1191 

generally corresponds to that of an unstructured mesh in FDEM simulations, the results 1192 

indicated that the mixed-mode I-II failures may be the possible failure mechanisms in 1193 

experiments of the UCS and BTS tests. 3) Compared with 2D models of the BTS test, the 3D 1194 

model of the BTS test results in different stress distributions along the loading diametrical lines 1195 

in the middle plane and on the surface of the Brazilian disk as well as different nucleation 1196 

locations of macroscopic tensile splitting cracks. 1197 

− The GPGPU-parallelized 3D Y-HFDEM IDE code can consider the entire SHPB testing 1198 

system and successfully model the dynamic fracturing of marble in the SHPB-based dynamic 1199 

BTS test. The modelled failure process, final fracture pattern and time histories of the dynamic 1200 

compressive strain wave, reflective tensile strain wave and transmitted compressive strain 1201 

wave are compared with those from experiments, and good agreements are achieved between 1202 

them. Therefore, the 3D modelling of dynamic fracturing of marble in the SHPB-based 1203 

dynamic BTS test demonstrates the capability of the GPGPU-parallelized 3D Y-HFDEM IDE 1204 

code in simulating rock engineering applications under dynamic loading conditions.  1205 

Therefore, with careful calibration and insights, the FDEM, including the newly developed 1206 

GPGPU-parallelized 3D Y-HFDEM IDE code in this study, is a valuable and powerful 1207 

numerical tool for investigating the failure process of rock under quasi-static and dynamic 1208 

loading conditions in rock engineering applications although very fine elements with maximum 1209 

element size no bigger than the length of the fracture process zone must be used in the area 1210 

where fracturing process is modelled.  1211 
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Table caption 1427 

Table 1. Physical-mechanical properties of rock and computational parameters used in the 1428 

FDEM simulations of the UCS and BTS tests (Subsection 3.2). 1429 

Table 2. Model details for several have values. 1430 

 1431 

Figure captions 1432 

Fig. 1 Two types of finite elements (TET4 and CE6) and the mechanical behaviors of CE6 1433 

during the failure process: (a) two TET4s surrounding a CE6, (b) tensile/shear softening curves 1434 

in the ICZM.  1435 

Fig. 2. Elastic–inelastic power function model for contact damping (modified after An and 1436 

Tannant (2007)) 1437 

Fig. 3. Concept of the CUDA programming model using the abstractions of “threads”, 1438 

“blocks” and “grid”. 1439 

Fig. 4. Concept of massively parallel computation for each CUDA “kernel” for particular 1440 

computational purposes. 1441 

Fig. 5. Flowchart of the GPGPU-parallelized 3D Y-HFDEM IDE code. 1442 

Fig. 6. Concept of hash values assigned to each cubic sub-cell (left) and a TET4 included in a 1443 

particular sub-cell (right). 1444 

Fig. 7. GPGPU-based contact detection algorithm implemented in the GPGPU-parallelized 1445 

3D Y-HFDEM IDE code. 1446 

Fig. 8. Contact damping verification: (a) 3D model configuration (modified after Mahabadi et 1447 

al. (2012)), (b) comparison between numerical and theoretical results. 1448 

Fig. 9. Contact friction verification: (a) 3D model configuration (modified after Xiang et al. 1449 

(2009)), (b) comparison between numerical and theoretical results. 1450 
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Fig. 10. 3D numerical models for analysis of the fracturing process of rock under quasi-static 1451 

loading. (a) UCS test, (b) BTS test. 1452 

Fig. 11. 3D modelling of the UCS test under quasi-static loading. (a) Initiation and 1453 

propagation of microscopic cracks before the peak stress, (b) unstable crack propagation at 1454 

the peak stress, (c) post-failure fracture pattern, and (d) axial stress versus axial strain curve. 1455 

Fig. 12. Comparison of the final rock fracture patterns in the UCS test from the numerical 1456 

simulation and experiment: (a) comparison of the final fracture patterns, (b) final fracture 1457 

pattern with pure mode II damages highlighted, (c) final fracture pattern with mixed mode I-1458 

II damages highlighted.  1459 

Fig. 13. 3D simulation of the fracturing process of rock in the BTS test under quasi-static 1460 

loading: (a) distributions of the horizontal stress and microscopic damage before the peak 1461 

stress, (b) distributions of the horizontal stress, microscopic damage and macroscopic cracks 1462 

at the peak stress, (c) distributions of the horizontal stress and macroscopic fracture pattern in 1463 

the post-failure stage, (d) Brazilian indirect tensile stress versus axial strain curve and (e) 1464 

comparison between the simulated stress distributions and those from Hondros’ solution 1465 

along the loading diametrical line in the middle plane and on the surface of the disk.   1466 

Fig. 14. Modelled fracture patterns of rock in the BTS tests with unstructured and structured 1467 

meshes. (a) Dominant mixed mode I-II fractures in the BTS test with an unstructured mesh, 1468 

(a) dominant pure mode I fracture in the BTS test with a structured mesh, (c) schematic 1469 

sketch of the tensile fracturing mechanism in a structured mesh, (d) schematic sketch of the 1470 

tensile fracturing mechanism in an unstructured mesh.      1471 

Fig. 15. Overview of the SHPB-based dynamic BTS test simulated by the GPGPU-1472 

parallelized 3D Y-HFDEM IDE code. (a) Configuration of the SHPB system (after Fig. 3 in 1473 

Zhang and Zhao (2013) with minor additions), (b) achievement of dynamic stress equilibrium 1474 

between the axial forces in the IB and the TB (after Fig. 11(d) in Zhang and Zhao (2013) with 1475 

minor additions) and (c) failure patterns of the marble specimen at a dynamic loading rate of 1476 

830 GPa/s (after Fig. 12(b) in Zhang and Zhao (2013)). 1477 

Fig. 16. 3D FDEM model for the SHPB-based dynamic BTS test with velocity boundary 1478 

conditions applied on the one end of the IB.  1479 

Fig. 17. 3D modelling of the dynamic fracturing process of marble in the SHPB-based 1480 

dynamic BTS test: distribution of σzz (left column), distribution of macroscopic cracks 1481 

(damage D = 1) (middle column) and distribution of damage D (right column). Note that t = 0 1482 

is set when the stress wave in the IB arrives at the interface between the IB and the rock disk.    1483 

Fig. 18. Comparison between numerically simulated and experimentally measured axial 1484 
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strains (εinci, εrefl and εtrans) in the IB and the TB.  1485 

Fig. 19. Spurious fracture caused when the ECDA approach is used instead of the brute-force 1486 

contact detection activation approach. (a) Highlighted contact candidates from the onset of 1487 

the simulation for the ECDA, (b) unrealistic fragmentation due to the ECDA approach. 1488 

Fig. 20. Relative speed-up of the GPGPU-parallelized 3D Y-HFDEM IDE compared with the 1489 

sequential CPU-based code.  1490 

Fig. 21 Computing performance of the GPGPU-parallelized 3D Y-HFDEM IDE: (a) Variation 1491 

of relative speed-up with the increase of the number of TET4s and (b) Variation of 1492 

computation time with the increase of the number of TET4s.  1493 

 1494 

 1495 

 1496 

 1497 

Table 1 1498 

Parameter Unit   Value 

Density (ρrock) kg/m3 1,800 

Young’s modulus (Erock) GPa 12.2 

Poisson’s ratio (νrock) - 0.25 

Tensile strength (Ts_rock) MPa 1.2 

Cohesion (crock) MPa 4.2 

Internal friction angle (φrock) ° 25 

Mode I fracture energy (GfI_rock) J/m2 2 

Mode II fracture energy (GfII_rock) J/m2 26.5 

Normal contact penalty (Pn_con) GPa 122    

Artificial stiffness penalty (Popen, Ptan) GPa 1,220 

Artificial stiffness penalty (Poverlap) GPa 12,200 

 1499 

 1500 

Table 2 1501 

have(mm) 1.3 1.5 1.9 2.9 3.9 8 

The number of nodes 200,525 129,244 82,382 31,327 19,471 1,741 

The number of TET4s 1,106,054 695,428 430,290 146,554 81,932 7,383 

The number of CE6s 2,113,582 1,298,343 773,545 213,792 86,740 12,266 

The initial number of 

contact couples. 

65,447,009 40,561,982 24,753,231 7,881,957 4,093,472 384,582 
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Simulation time (sec) 

for sequential CPU-

based code /500 steps 

134,943 82,755 51,598 16,563 8,318 8,318 

Simulation time (sec) 

for GPUGU-based 

code (Quadro GV100) 

/500 steps 

491 291 178 59 34 8 

 1502 
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