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ABSTRACT High-throughput genotyping amays provide a standardized resource for plant breeding communities that are useful for ~ KEYWORDS

a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS),  linkage analysis
complex trait dissection, and studying pattems of genomic diversity among cultivars and wild accessions. We have developed the  racombination
CottonSNP63K, an lllumina Infinium array containing assays for 45,104 putative intraspecific single nucleotide polymorphism (SNP) interspecific
markers for use within the cultivated cotton species Gossypium hirsutum L. and 17,954 putative interspecific SNP markers for use with SNPs

crosses of other cotton species with G. hirsutum. The SNPs on the array were developed from 13 different discovery sets that represent intraspecific

SNPs
breeding

a diverse range of G. hirsutum germplasm and five other species: G. barbadense L., G. tomentosum Nuttal x Seemann, G. mustelinum
Miers x Watt, G. armourianum Keamy, and G. longicalyx J.B. Hutchinson and Lee. The array was validated with 1,156 samples to
generate cluster positions to facilitate automated analysis of 38,822 polymorphic markers. Two high-density genetic maps containing
a total of 22,829 SNPs were generated for two F, mapping populations, one intraspecific and one interspecific, and 3,533 SNP
markers were co-occurring in both maps. The produced intraspecific genetic map is the first saturated map that associates into 26
linkage groups corresponding to the number of cotton chromosomes for a cross between two G. hirsutum lines. The linkage maps
were shown to have high levels of collinearity to the JGI G. raimondii Ulbrich reference genome sequence. The CottonSNP63K array,
cluster file and associated marker sequences constitute a major new resource for the global cotton research community.
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Cotton (Gossypium spp.) is the world’s most important renewable
natural textile fiber crop and also a significant source of oilseed. Cotton
is grown in more than 75 countries, with more than 118 million bales
of cotton fiber produced in 2013 (National Cotton Council, www.
cotton.org). In the United States, the 2013 crop of 12.9 million bales
was valued at $5.2 billion and had an estimated overall direct economic
impact of $27.6 billion (US Department of Agriculture; National Ag-
riculture Statistics Service, www.nass.usda.gov). Approximately 75% of
cotton fiber is used for apparel products, 18% is used for home furnish-
ings, and 7% is used for industrial products (National Cotton Council,
www.cotton.org). In the past, cottonseed was often regarded as waste,
but recently it has become marketable as a protein source for livestock,
including dairy cattle and poultry, as well as for production of cotton-
seed oil, which is used in the food product industry . Although 52
different Gossypium species have been identified, including 7 tetra-
ploids designated AD, and 45 diploids classified into 8 genome desig-
nations (A-G and K) (Wendel et al. 2009; Grover et al. 2014),
contemporary cotton production relies primarily on allotetraploid
Gossypium hirsutum L. (2n = 4x = 52), which accounts for more
than 95% of the world crop. The remaining production relies
largely on G. barbadense L., another allotetraploid, and to a lesser
extent on two A-genome diploids (2n = 2x = 26), G. arboreum L. and
G. herbaceum L., primarily in Asia. Although diploid species of interest
such as G. longicalyx, an F-genome diploid, and G. armourianum, a
D-genome diploid, cannot be readily crossed with the primary culti-
vated species G. hirsutum, allotetraploid species such as G. barbadense,
G. tomentosum, and G. mustelinum can be readily intercrossed.
Allotetraploid cotton was formed approximately 1-2 million years
ago (mya) (Wendel et al. 2009) in a polyploidization event between
two diploids: one with an A-like genome and the other with a D-like
genome. The ancestral genomes resemble the genomes of extant dip-
loids G. arboreum (A;) and G. raimondii (Ds). The G. hirsutum ge-
nome is designated [AD]; and has a C-value of approximately 2.4
Gbp; the 26 chromosomes are numbered according to genome ances-
try, where chromosomes 1-13 are of A-genome origin and 14-26 are
of D-genome origin (Brown 1980; Wendel et al. 2009). Because the
ancestral genomes of cotton diverged only 5-10 mya, and because the
polyploidization event was 1-2 mya, initial efforts to develop single
nucleotide polymorphism (SNP) markers were hindered by the co-
identification of interlocus SNP variants between the two subgenomes
in the tetraploid (homeo-SNPs). Recent developments from the cotton
community including the publication of a high-quality genome refer-
ence sequence for G. raimondii (Paterson et al. 2012) and draft
sequences for G. arboreum (Li et al. 2014) and G. raimondii (Wang
et al. 2012) have aided development of large SNP data sets in gene-
based and genome-based identification efforts (Van Deynze et al. 2009;
Byers et al. 2012; Lacape et al. 2012; Rai et al. 2013; Gore et al. 2014;
Islam et al. 2014; Zhu et al. 2014; Hulse-Kemp et al. 2014; Hulse-Kemp
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et al. 2015). Increasingly larger genetic maps with greater resolution
and saturation have been generated as numbers of primarily SSR
markers increased, culminating in the recent publication of a consensus
genetic map that comprises more than 8,200 loci based primarily on
six interspecific (G. hirsutum X G. barbadense) populations (Blenda
et al. 2012). Few of the published genetic maps contain SNP markers,
and those that have included SNPs are limited to inclusion of a few
hundred SNPs with SSRs (Byers et al. 2012; Yu et al. 2012; Gore et al.
2014) to, at most, the inclusion of a few thousand SNPs (Islam et al.
2014; Zhu et al. 2014). SNPs have been difficult to develop in silico due
to low polymorphism and low divergence among polyploid genomes
(Van Deynze et al. 2009). The increasing efficiency of next-generation
sequencing and improved in silico methods has allowed SNP develop-
ment at the whole genome level, even for the 2.4-Gbp allotetraploid
cotton genome (Hulse-Kemp et al. 2015; Zhu et al. 2014).

In cultivated cotton, as well as in other crop species, there is
considerable interest in being able to genotype a large number of SNP
markers in a high-throughput manner. With advancing array technol-
ogy, large-scale genotyping can be performed in a massively parallel
fashion to assay thousands of loci simultaneously in a short time.
Genotype data obtained from the high-throughput assay can then be
utilized to evaluate genetic diversity, construct genetic linkage maps,
dissect the genetic architecture of important traits (Truco et al. 2013),
and in many more novel applications (Ganal et al. 2012). SNP arrays
for many crop species have recently been developed and have been
utilized to advance breeding and discoveries in those crop systems
(Ganal et al. 2011; Hamilton et al. 2011; Truco et al. 2013; Chen
et al. 2013; Song et al. 2013; Tinker et al. 2014; Bianco et al. 2014;
Wang et al. 2014; Dalton-Morgan et al. 2014).

The objectives of this study were as follows: to utilize recently
identified SNPs to develop a standardized large-scale SNP genotyping
array for cotton; to evaluate the performance and reproducibility of the
array on a large set of samples; to develop a cluster file that can be used
to help automate genotyping for allotetraploid cotton; and to produce
high-density linkage maps based on two biparental F, populations in
an intraspecific cross (G. hirsutum X G. hirsutum) and an interspecific
cross (G. barbadense x G. hirsutum). Completion of these objectives
will enable reliable standardized high-throughput SNP genotyping on
large cotton populations for many diverse applications, including
high-density genetic mapping, genome-wide associated studies, geno-
mic selection, complete trait dissection, and studying patterns of
genomic diversity among cotton cultivars and wild accessions.

MATERIALS AND METHODS

Plant materials

Seeds for each line were planted in peat pellets (Jiffy, Canada) at Texas
A&M University, CIRAD/EMBRAPA, USDA-ARS-SPARC, USDA-
ARS-SRRC, or CSIRO greenhouses. Plants were allowed to grow until
first true leaves were available. Young true leaves were sampled and
extracted using the Macherey-Nagel Plant Nucleo-spin kit (Pennsyl-
vania) according to the manufacturer’s instructions. All DNA samples
were quantified using PicoGreen and then diluted to 50 ng/pl. The
samples included reference lines from the various SNP development
efforts, duplicated DNA samples, individual plants and plant pools
from the same seed source, individual plant samples from different
seed sources, parent/F; combinations, segregating samples from wild
Gossypium species, inbred cultivar lines, wild G. hirsutum lines, and
two mapping populations, one intraspecific and one interspecific (Ta-
ble 1). This material represented samples from most of the cross-
compatible range of G. hirsutum. Mapping samples included 93 F,
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Table 1 Samples included for array validation and cluster file
development

Sample Type No. of Samples
Inbred, G. hirsutum (cultivated) 516
Inbred, G. hirsutum (wild) 59
Intraspecific Fy 53
Intraspecific F, 157
Intraspecific backcross 31
Intraspecific RIL 34
Inbred, G. barbadense 18
Interspecific F, 69 (492)
Interspecific RIL 14
Interspecific aneuploid 21k
Wild tetraploid species 4
Synthetic tetraploid 3
Diploid species 8b
Interspecific backcross 146
Interspecific F4 20
Haploid 3b
Total 1156

@ A total of 49 interspecific F, samples were not included in cluster file de-
velopment but were genotyped using the resulting cluster file for inclusion
in linkage mapping.

These samples were used in the cluster file development, but the cluster file is
not suitable for scoring such samples because it is only optimized for
tetraploid samples.

lines from a G. hirsutum cv. Phytogen 72 X G. hirsutum cv. Stoneville
474 population designated as “PS” for intraspecific mapping and 118
F, lines from a G. barbadense doubled haploid line 3-79 X G. hirsutum
cv. Texas Marker-1 population designated as “T'3” for interspecific
mapping. Samples for the mapping populations were chosen ran-
domly from germinated seed within each population.

Array design
SNP data sets were obtained for nine intraspecific (Table 2) and four
interspecific SNP development efforts (Table 3). Classification of SNPs
into intraspecific or interspecific content on the array was based on
where the SNP was identified in our data sets (Table 2 and Table 3).
The datasets obtained included SNPs from the following: restriction
enzyme double-digest procedure in G. hirsutum between a cultivated
and wild accession (Byers et al. 2012); long-read 454 sequencing of
restriction-based genic enrichment libraries of six G. hirsutum lines
(Rai et al. 2013); genotyping-by-sequencing (GBS) mapping of a cross
between two G. hirsutum lines (Gore et al. 2014); transcriptome se-
quencing of five G. hirsutum lines (Ashrafi et al. 2015); GBS mapping
of a multi-parent population (Islam et al. 2014); transcriptome se-
quencing and restriction-based analysis of 18 G. hirsutum lines (Zhu
et al. 2014); re-sequencing of 12 G. hirsutum lines (Hulse-Kemp et al.
2015) (H. Ashrafi et al., personal communication); unclassified markers
mapped to known chromosomes (DOW AgroSciences, unpublished
data); single-copy sequence-derived SNPs between G. hirsutum and
G. barbadense (Van Deynze et al. 2009); differential expression analysis
using RNA-sequencing of G. hirsutum vs. G. barbadense (Lacape et al.
2012); transcriptome sequencing of G. barbadense, G. tomentosum,
G. mustelinum, G. armourianum, and G. longicalyx (Hulse-Kemp et al.
2014); and re-sequencing of G. barbadense (Hulse-Kemp et al. 2015).
The Iumina Infinium technology utilizes a bead-based approach
in which 50 bp oligonucleotide probes are used to hybridize to SNP-
adjacent sequences of a sample and then a single base pair extension is
performed to assay the SNP base with fluorescently labeled nucleo-
tides. The technology utilizes a two-fluorophore system, necessitating

2G3-Genes| Genomes | Genetics

the use of two beadtypes to discriminate only those SNPs that
target alleles sharing the same fluorophore (transversions) and only
one beadtype to capture all other SNP types (transitions). Based on the
Infinium technology, putative markers were filtered to maximize value
from this technology, i.e., to select for unique one-beadtype assays to
populate the array. Putative SNPs were retained based on require-
ments of design score >0.8 (Illumina, Inc), unique identity >99%
over 100 bp of flanking sequence, >99% unique identity for designed
probe sequence, with final SNPs retained based on precedent publi-
cation order in the hierarchy listed above. Subsequent filtering steps
included prioritization for the following: one beadtype (Infinium II)
assays; validated markers; experimental screening success rates; and
representation of genic and nongenic SNPs to optimally cover the
cotton genome to obtain a final set of 70,000 putative SNP markers
for inclusion on the array (Supporting Information, Table S1). All
genic-based data sets were filtered during dataset development to
eliminate SNPs near predicted intron boundaries (Hulse-Kemp
et al. 2014; Ashrafi et al. 2015; Zhu et al. 2014) so SNPs and flanking
sequences could be aligned directly with genomic-based markers to
filter putative SNPs as indicated above.

Due to limited prior validation, 500 markers were randomly
selected for inclusion from the UC-Davis/TAMU Genomic Set 2 and
386 markers were selected from the CSIR-NBRI data set, including
252 that were chosen randomly and 134 markers that were selected
for inclusion based on overlap as identified with BLAST to have 100%
identity with markers from other data sets over the entire length of
SNP and flanking sequences. For USDA Set 2, markers were primarily
included for contigs that had low missing data and were detected
across multiple lines with minor allele frequency greater than 0.1. The
markers chosen from the CIRAD set primarily represent markers
from the most highly differentially expressed transcripts identified
between G. hirsutum and G. barbadense. From the TAMU/UC-Davis
Inter RNA-Seq data set, as many SNPs as possible that are common
between the five species represented and G. hirsutum were selected for
inclusion, as well as sets of private SNPs unique to each of the five
species (Figure 1).

Genotyping with the array

Standardized DNA at 50 ng/pl for each of the cotton lines described
above was processed according to Illumina protocols and hybridized
to the CottonSNP63K array at Texas A&M University or CSIRO.
Single-base extension was performed and the chips were scanned
using the Illumina iScan. Image files were saved for cluster file anal-
ysis. All image files were uploaded into a single GenomeStudio project
containing 1156 individual samples. Of the 70,000 SNPs targeted for
manufacture on the array, 6942 markers failed to meet standards for
bead representation and decoding metrics during the array construc-
tion process at Illumina and were removed from the manifest. Data
for the remaining markers were clustered using the GenomeStudio
Genotyping Module (V 1.9.4, Illumina, Inc.). All markers were viewed
and manually curated, taking into account the sample type and known
segregation ratios, for construction of the best cluster file for genotyp-
ing tetraploid cotton (available at http://www.cottongen.org/node/
add/cotton-cluster-file-request).

Reproducibility and call rate in a diverse set of

cotton samples

Three technical replicates (running the same DNA on different
genotyping runs) were processed for an individual DNA sample of
G. hirsutum cultivar TM-1, G. barbadense inbred line 3-79 and for the
F, individual from a G. hirsutum (TM-1) by G. barbadense (3-79) cross.

Volume 5 June 2015 | Cotton SNP63K Array | 1189
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Table 2 Datasets utilized in intraspecific content design on the CottonSNP63K array

Data Set Name Authors/Reference

Lines

Brigham Young University Byers et al. (2012)

CSIR-NBRI Rai et al. (2013)
USDA Set 1 Gore et al. (2014)
UC-Davis/TAMU GH RNA-seq Ashrafi et al. (2015)
USDA Set 2 Islam et al. (2014)
CSIRO Zhu et al. (2014)

TAMU/UC-Davis Intra Genomic Set 1 Hulse-Kemp et al. (2015)

UC-Davis/TAMU Intra Genomic Set 2 Ashrafi et al. (unpublished)

DOW AgroSciences DAS (unpublished)

Acala Maxxa, TX2094

JKC703, JKC725, JKC737, JKC770, MCU-5, LRA5166

TM-1, NM24016

TM-1, FM832, Sealand 542, PD-1, Acala Maxxa

Acala Ultima, Pyramid, Coker 315, STV825, FM966, M-240 RNR,
HS26, DP-90, SG747, PSC355, STV474

MCU-5, Delta Opal, Sicot 70, Siokra 1-4, DP-16, Tamcot SP37,
Namcala, Riverina Poplar, LuMein 14, Sicala 3-2, Sicala 40, Sicala
V-2, Sicot 81, Sicot 71, Sicot 189, Sicot F-1, Deltapine 90, Coker 315

M-240 RNR, TM-1, HS26, SG747, STV474, FM832, Sealand542,
PD-1, Coker 312, Tamcot Sphinx, TX231, Acala Maxxa

M-240 RNR, TM-1, HS26, SG747, STV474, FM832, Sealand542,
PD-1, Coker 312, Tamcot Sphinx, TX231, Acala Maxxa

Unreleased

A total of 50K putative single nucleotide markers were used to produce the 45,104 intraspecific assays on the array after production. DAS, DOW AgroSciences.

Different individual plants from the same line (cultivar or accession)
were analyzed for 11 lines where the individual plants were obtained
from the same seed source and for 11 lines where the individual
plants were obtained from different seed sources. Genotypes from
these lines were compared to determine similarity across technical
replicates, individuals from different seed sources, and individuals
from the same seed source. Multiple individuals (12) were pooled
into the same DNA sample and then compared to the genotype from
a single individual to determine variability within a seed source as
well as percent residual heterozygosity. Polymorphic SNPs were
classified based on Illumina GenTrain score (proximity of clusters)
and call frequencies across samples. Minor allele frequencies of poly-
morphic markers were determined using only inbred line samples.

Genetic linkage analysis: intraspecific and interspecific
Genotyping data were transformed into mapping data format
(“ABH”) for the 93 intraspecific PS F, samples and the 118 interspe-
cific T3 F, samples. Only markers that had opposite homozygous allele
calls between parental samples and behaved co-dominantly were
retained. Subsequently, the data files were initially mapped with
JoinMap 4.0 (Van Ooijen 2006) with respect to verification of segre-
gation patterns, the formation of linkage groups, and the preliminary
map position of the markers on the chromosomes using the default
grouping settings and the maximum likelihood mapping algorithm.
The map data resulting from the initial mapping analysis were
manually curated to identify and remove problematic markers that
caused elevated numbers of double crossovers and expansions in the
length of the linkage group. After removing the problematic markers
from the ABH mapping data file in Microsoft Excel, the revised ABH
mapping data file was used to construct the final linkage groups in
MapManager QTX (Manly, Cudmore, and Meer 2001) with the fol-
lowing settings: linkage evaluation F,, search linkage criterion P =

0.05, map function Kosambi, and line cross cross-type. Markers were
eliminated from the final mapping if they caused unexpected expan-
sion of the linkage group because of too many crossovers because this
is likely the result of low scoring quality of the individual marker
analysis, i.e., markers with low GenTrain score and/or call frequency.
The final maps were drawn with MapChart version 2.2 (Voorrips
2002) with one marker per centimorgan (cM) to allow easier visual-
ization; positions for all markers are listed in Table SI1. Linkage dis-
equilibrium and visualization of crossovers for each determined
linkage group were plotted using the CheckMatrix software (www.
atgc.org/XLinkage/) to analyze the mapping population genotypes.
The correlation between the interspecific and intraspecific map orders
was visualized using MapChart. Discordant linkage groups in the in-
terspecific map identified using CheckMatrix and MapChart were
remapped in MapManager using a framework map from the corre-
sponding intraspecific linkage group. The number of recombination
events per each F, individual was calculated for both the intraspecific
and the reordered interspecific linkage maps. Average numbers of
recombination bins across both linkage maps were also calculated.
Recombination bins were considered as the interval between one re-
combination breakpoint and the next breakpoint within the mapping
populations.

Synteny analyses

All SNP marker sequences were aligned to the high-quality JGI
G. raimondii (Ds) reference genome (Paterson et al. 2012) using
Burrows Wheeler Alignment (BWA) software in GALAXY (Goecks,
Nekrutenko, and Taylor 2010) with default parameters. Linkage map
positions were plotted against D5 alignment position for both the
interspecific and intraspecific mapped markers. The corresponding
allotetraploid chromosomes of the linkage groups were identified us-
ing mapped markers (Dow AgroSciences, unpublished data) (Yu et al.

Table 3 Datasets utilized in inter-specific content design the CottonSNP63K array

Data Set Name Authors/Reference

Lines

UC-Davis Inter
CIRAD
TAMU/UC-Davis Inter RNA-seq

Van Deynze et al. (2009)
Lacape et al. (2012)
Hulse-Kemp et al. (2014)

TAMU/UC-Davis Inter Genomic Hulse-Kemp et al. (2015)

G. barbadense (3-79), G. hirsutum (TM-1)

G. barbadense (VH8-4602), G. hirsutum (Guazuncho Il)

G. barbadense (3-79), G. tomentosum, G. mustelinum,
G. armourianum, G. longicalyx

G. barbadense (3-79)

A total of 20K putative single nucleotide markers were used to produce the 17,954 inter-specific assays on the array after production.
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Figure 1 SNP markers shared across five species included on the
CottonSNP63K array from TAMU/UC-Davis Inter RNA-seq discovery
set (Hulse-Kemp et al. 2014).

2014; Blenda et al. 2012) and Ds alignment information. Linkage
groups were oriented using the cotton consensus map that incorpo-
rated SSR marker chromosome assignment information available
(Blenda et al. 2012). All markers were also aligned to the BGI
G. arboreum (A,) draft sequence (Li et al. 2014) and plotted.

RESULTS

Genotyping array content
An Tllumina Infinium genotyping array was developed targeting
70,000 putative SNP markers (File S1). The 70,000 putative markers
represent 50,000 SNPs that have been identified for use in intraspecific
crosses between G. hirsutum lines and 20,000 SNPs for use in in-
terspecific crosses between G. hirsutum and other Gossypium species,
such as G. barbadense, G. tomentosum, G. mustelinum, G. armouria-
num, and G. longicalyx. The intraspecific set was developed from an
initial set of 1,658,397 putative SNP markers; however, the largest data
set (UC-Davis/TAMU Intra Genomic Set 2) had not been experimen-
tally validated previously and another large data set (CSIR-NBRI) had
limited validation, so only small random samples of SNPs for these
sets were included. Therefore, selection of the intraspecific markers for
the array was based primarily on 91,953 markers. All markers were
submitted through the Illumina Design Tool to determine assay de-
sign scores for each marker. The data set was filtered to retain only
Infinium II, or one-bead type assays that assay one SNP per bead, and
those with design scores greater than 0.8. This resulted in 69,306 SNPs
or 75.4% retention. Results of probe design for each of the data sets are
shown in Table S2. Duplicated SNPs were eliminated, as noted in
Materials and Methods. All available SNP markers (18,348) within
genes (genic) and a randomly selected set of genomic sequence-
derived markers (31,396) were included, for a total of 50,000 in-
traspecific markers. The resulting intraspecific set comprises 36.7%
genic SNPs, 62.8% nongenic SNPs, and 0.5% unclassified SNPs.
The same selection and filtering method was used for the inter-
specific data set. The SNP selection process started with 314,894
potential markers. After the initial step of filtering based on assay
design score and one-bead type markers, there were 234,370 markers.
As many previously mapped markers as possible were included. When
feasible, a single marker was selected per reference sequence or gene
sequence. Additional markers were randomly selected from the
filtered data set to complete the final set of 20,000 interspecific assays.

2G3-Genes| Genomes | Genetics

A total of 14,689 markers in genes were included and 5311 genomic-
derived markers were included. The interspecific final set comprises
73.5% genic SNPs and 26.5% nongenic markers. Within the in-
terspecific set, the TAMU/UC-Davis Inter RNA-seq markers were
selected to contain the maximum number of markers with poly-
morphism across multiple species (relative to G. hirsutum) as possible
and approximately 2000 markers unique to each of the wild species.
This allowed for a maximum number of markers that can be used for
introgression breeding efforts while occupying as few beads as possible
for cost purposes (Figure 1). Approximately 18% of the interspecific
set is composed of markers chosen to support work for multiple
species of germplasm introgression into G. hirsutum.

Together, the selected intraspecific and interspecific sets resulted in
70,000 SNP markers submitted to manufacturing for inclusion on the
array. All of these SNPs have been deposited in the CottonGen
database (Yu et al. 2014; www.cottongen.org). Based on the character-
istics of the utilized Illumina array format, a total of 90,000 beads can
be assayed per sample; therefore, it is possible to add up to 20,000
assays, which can be included as private add-on content to allow for
adaptability of the array.

Automated genotype calling through cluster definition
From the 70,000 markers sent into production, 63,058 markers passed
Mlumina manufacturing and quality control and were analyzed on
1156 samples for amenability to automated genotyping. Detailed
analyses of the diversity and population structure represented by the
germplasm used in this project are underway and will be reported
separately. The proportion of samples amenable to genotyping, or
“call frequency,” across all markers on the chip could be grouped into
four distinct types (Figure 2, A-D) based on all 1156 samples that
were included for cluster file development; the distribution of markers
within the four types were examined (Figure 2E). Importantly, the
polymorphic markers have an average call frequency of 0.99. The first
type of classification represents failed markers that did not amplify in
the majority of samples (Figure 2A). The second type consists of
markers that had many samples with uncalled genotypes and there-
fore had a call frequency between 0.50 and 0.99 (Figure 2B), which
may be caused by the presence of an additional null allele. Type 3
includes markers in which only a few samples remain uncalled (Figure
2C). The last type is those markers in which all samples are called and
are highly reproducible (Figure 2D). Call frequency distribution of all
synthesized SNP markers on the chip are shown in Figure 2E.
Successful markers primarily produced six distinct clustering
patterns (Figure 3, A-F). In the first pattern type, essentially all sam-
ples fall in a single cluster. This type represents probe sequences that
detect a monomorphic locus or loci (Figure 3A). The second pattern
type represents markers that are detecting two monomorphic loci,
which are each homozygous for a different allele (Figure 3B). Markers
in this category appear to be heterozygous in all lines and correspond
to intergenomic SNPs or “homeo-SNPs,” which are differences be-
tween the two subgenomes of cotton and are often identified as false
positives in SNP discovery. Polymorphic markers are attributed to the
remaining four patterns; they can be classified according to their
GenTrain score. Pattern type 3 are markers that showed three clearly
definable clusters and behaved as a traditional co-dominant, diploid-
like marker with three possible genotypes (AA, AB, BB) and homo-
zygous genotype clusters located near 0 and 1 (Figure 3C). These types
of markers did not require any significant manual adjustment of
marker positions. Similarly, the fourth pattern type (Figure 3D)
showed three clearly identifiable clusters, but the clusters were shifted
toward one side of the plot with one homozygous cluster at 0.5 on the
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X-axis. Pattern 4 markers represent markers that detect two loci, most
likely from the homeologous chromosomes: one polymorphic and one
monomorphic resulting in three possible genotypes (AAAA, AAAB,
AABB). Pattern 5 markers represent a pattern in which the three
clusters are quite close together and likely represent three or more
loci with one polymorphic locus and multiple monomorphic loci in
the background (Figure 3E). Finally, pattern 6 markers represent
markers that show extremely close clusters due to assaying a large
number of loci (Figure 3F). Marker patterns 4 and 5 typically required
manual adjustment of locus positions, whereas pattern 6 markers were
frequently set as failed.

After evaluating and manually curating all markers, a total of
55,201 of the markers produced successful assays. The successful
assays were further characterized into 38,822 polymorphic markers,
10,314 monomorphic markers, and 6065 intergenomic markers. Thus,
the overall success rate of the chip is represented by a minimum of
38,822 polymorphic markers (in the samples assayed) out of the
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Figure 2 Types of call frequency of SNP

markers. NormTheta or relative amount of each

of the two fluorophore signals is plotted on the

X-axis, whereas NormR or signal intensity is

- . — plotted on the Y-axis. (A) Failed marker with call
frequency = 0. (B) Call frequency 0.500-0.990
with major sample deviations. (C) Call frequency
0.990-0.999 with few uncalled samples. (D) Call
frequency = 1 with all called samples. (E) Distri-
bution of call frequencies for all SNP markers on
the array.

(7 1022 |

63,058 markers that were synthesized on the chip (61.6%) that will be
useful for genotyping cotton samples. Analysis of minor allele
frequency (MAF) across polymorphic markers using only inbred
samples showed that 66.8% of the polymorphic markers have MAF
above 0.05, 55.8% have MAF above 0.10, and 40.0% have MAF
above 0.2. The average MAF among polymorphic markers on the
CottonSNP63K array was found to be 0.17. Distribution of minor
allele frequencies of polymorphic markers in inbred samples is
shown in Figure 4.

Table 4 shows the distribution of the final markers and their
success rates across the designed data sets. Although most data sets
had a success rate of 50% or more, some had a much lower success
rate. Discovery sets that did not have previous validation or had
limited validation with PCR-based assays frequently resulted in lower
success rates, e.g,, CSIR-NBRI and USDA Set 1. In the CSIR-NBRI
data set, low success is likely due to homeo-SNPs because it showed
the highest percentage of markers classified as 33.82% intergenomic
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markers. The other data set that had a low success rate of 8.65% was
the USDA Set 1 containing markers previously mapped by GBS (Gore
et al. 2014). Although the CSIR-NBRI data set showed elevated levels
of intergenomic markers, the USDA Set 1 was primarily found to have
monomorphic markers (77.88%). Because these markers had been
previously mapped, and because their map positions correlate with

2 G3:Genes | Genomes | Genetics

Figure 3 Classification of scorable SNP markers
according to lllumina GenTrain score. Norm-
Theta or relative amount of each of the two
fluorophore signals is plotted on the X-axis,
whereas NormR or signal intensity is plotted on
the Y-axis. (A) Monomorphic marker. (B) Inter-
I genomic or homeo-SNP marker. (C-F) Classifica-
i) tion of polymorphic markers based on Illumina
GenTrain score. (C) Genome-specific marker rep-
. resenting a single polymorphic locus with GenTrain

score >0.60. (D) Marker with GenTrain score 0.30-

0.59 on half the plot representing two genomes,

one monomorphic and one polymorphic locus.
Wi (E) Marker with GenTrain score 0.21-0.29 rep-
resenting multiple monomorphic loci and one
polymorphic locus. (F) Marker with GenTrain
score less than 0.20 representing many monomor-
phic loci and one polymorphic locus. (G) Distribu-
tion of cluster types in polymorphic markers based
on GenTrain score.

|
>0.6 ‘

alignment positions on JGI D5 genome (Gore et al. 2014), these are
likely true markers that are of very low MAF or specific to the in-
dividual bi-parental population used in their identification (Gore et al.
2012). Although lines for the parents of the population were included
in the study, this population has been shown to contain nonparental
derived alleles (Gore et al. 2012). Thus, without lines that represent
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Figure 4 Distribution of minor allele frequencies of all polymorphic
SNPs on the CottonSNP63K array. Minor allele frequencies were
determined using only inbred line samples; mapping samples and
other noninbred line samples used for cluser file development were
excluded from this analysis.

the nonparental derived alleles, polymorphism would not be able to be
identified and this would lead to the monomorphic classification of
these markers.

Reproducibility and call rate in different cotton samples

Replicates of samples were analyzed to determine reproducibility across
genotyping runs as well as reproducibility across seed sources. To do
this, four different types of replicates were used: technical replicates
running the same DNA on different genotyping runs; individual plants
from the same seed source; individual plants from different seed
sources; and pooled DNA from multiple plants from the same seed
source. The three technical replicates (three samples from each
G. hirsutum line TM-1, G. barbadense line 3-79, and their F;) showed
negligible inconsistencies between runs with average similarity of
99.93% = 0.0007. Therefore, allele calls are highly reproducible across
runs. Individual plants from the same seed source showed a range of
similarity from 100% for Coker 315 provided by CSIRO to 73.39% for
Lu Mien 14 samples provided by CSIRO. A larger inconsistency was
seen with duplicated samples from different seed sources. The amount

of inconsistency varied considerably across different lines, from 66.61%
for VIR-6615/MCU-5 samples provided by USDA-ARS (College Sta-
tion) and CSIRO to 99.36% for Stoneville 474 samples provided by
USDA-ARS (New Orleans) and CIRAD. When DNA of a pool of
individual plants developed from the same seed source was analyzed,
the percentage of similarity varied between lines from 79.48% for
LuMien 14 to 99.84% for Sicot 189. Rates determined for individual
lines and replications of different types are shown in Table 5.

Genetic map construction

An intraspecific map was generated from 93 F, samples from a cross
between G. hirsutum lines Phytogen 72 and Stoneville 474. A total of
7171 SNP markers were mapped in 26 linkage groups representing
3499 cM (Figure 5). These represent 6938 markers from the G. hirsu-
tum set and 235 markers from the other species sets. An average of
254 markers per linkage group was mapped on A-subgenome chro-
mosomes and 298 markers per linkage group of the D-subgenome.
These correspond to an overall average of 55 bins with 4.98 markers/
bin per chromosome, 51 bins with 4.59 markers/bin for A-subgenome
chromosomes, and 60 bins with 5.40 markers/bin for D-subgenome
chromosomes.

An initial interspecific map was generated using 118 F, samples
from a single interspecific cross between G. barbadense line 3-79 and
G. hirsutum standard line TM-1. A total of 19,198 markers mapped into
26 linkage groups initially representing 4439.6 cM. Markers were largely
distributed across the genome with a few moderately sized gaps. Corre-
lation analysis between the initial interspecific map and the intraspecific
map showed that the moderately sized gaps were associated with
inverted marker orders compared to the intraspecific map in nine link-
age groups corresponding to chromosomes: Chr06, Chrl3, Chrl5,
Chr18, Chr20, Chr21, Chr22, Chr23, and Chr26. Linkage disequilibrium
and recombination plots of these linkage groups showed incorrect or-
dering near the gaps (see Chr06 example in Figure 6). The most likely
correct orientation is found in the intraspecific linkage groups, where the
gaps are smaller. For example, in Figure 6, it is likely that the interspecific
map is inverted due to low linkage across the gap but the intraspecific
map does not have a corresponding gap and is likely the correct orien-
tation. To correct this issue, the intraspecific map was used as a frame-
work map to reorder the problematic interspecific linkage groups.

The final map includes the reordered linkage groups and contains
19,191 markers mapped to 26 linkage groups that collectively encom-
pass 3854.3 cM (Figure 7). This map represents a reduction in size of

Table 4 Distribution of classified SNPs across the discovery sets and success rates of these SNPs on the CottonSNP63K array

Failed Successful Assays (No.)

Data Set SNPson Array  Njg, % Monomorphic  Intergenomic  Polymorphic Success Rate (%)
Brigham Young University 185 23 1243 16 5 141 76.22
CSIR-NBRI 343 41 11.95 84 116 102 29.74
USDA-Set1 104 10 9.62 81 4 9 8.65
UC-Davis/TAMU GH RNA-Seq 938 153 16.31 81 66 638 68.02
USDA Set 2 2223 474 21.32 193 372 1184 53.26
CSIRO 17,230 2048 11.89 4325 772 10,085 58.53
TAMU/UC-Davis Intra Genomic Set 1 23,418 3509 14.98 4639 3565 11,705 49.98
UC-Davis/TAMU Intra Genomic Set 2 445 48 10.79 5 41 351 78.88
DOW AgroSciences 218 13 5.96 1 0 204 93.58
UC-Davis Inter 143 10 6.99 0 1 132 92.31
CIRAD 145 20 13.79 14 27 84 57.93
TAMU/UC-Davis Inter RNA-Seq 13,055 913 6.99 374 307 11,461 87.79
TAMU/UC-Davis Inter Genomic 4611 595 12.90 501 789 2726 59.12
Total 63,058 7857 12.46 10,314 6065 38,822 61.57
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Table 5 Percent similarities for technical and biological replicates of lines

Percent Similarity

Individual Plants

Percent Residual

Line Technical Replicates  gume Seed Source  Diff. Seed Source Line Pool Heterozygosity in Pools
TM-1 100.002 — 89.77 — —
3-79 99.90 (+0.0006) — — — —
F1(TM-1x3-79) 99.87 (+0.0006) — — — —
Coker 315 — 100.00 89.32 99.67 (+1.83E-5) 0.33
Delta Opeal — 97.86 — 96.16 (+0.0015) 3.51
Deltapine 16 — 96.23 95.54 94.62 4.96
Deltapine 90 — 99.74 95.68 99.47 (+0.0023) 0.57
LuMien 14 — 73.39 — 79.48 (+0.1688) 19.40
MCU-5 — 99.52 (+0.0020) 66.61 99.42 (+0.0019) 0.64
Namcala — 97.17 — 95.92 2.72
Riverina Poplar — — — 80.52 10.82
Sicala 40/Fibermax 966 — — 97.59 (+0.0202) 99.25 0.57
Sicala V-2/Fibermax 989 — — — 99.60 0.38
Sicot 189 — — — 99.84 0.15
Sicot 71 — — — 98.92 1.06
Sicot 81 — — — 99.29 0.67
Sicot F-1 — — — 92.53 6.63
F1(TM-1xim) — 99.97 — — —
F1(DP5690xLi2) — 99.87 — — —
F1(STV474xHS26) — — —

Acala Maxxa —
Stoneville 474 — —
Guazuncho I —_ —_
Coker 312 — —
Tamcot SP37 — —

88.16 — —
99.36 — —
89.19 — —
84.20 — —
89.28 — —

Standard deviations (SDs) are listed for comparisons with three samples; when no SD is listed, comparisons are between two samples.

Complete identity, i.e., no SD between the three samples.

585.3 cM (13%) from the initial interspecific map. The mapped SNPs
represent 11,452 markers from the G. hirsutum set and 7746 markers
from the other species data sets (6785 for G. barbadense; 614 for G.
tomentosum; 280 for G. mustelinum; 39 for G. armourianum; and 28 for
G. longicalyx). The map contained an average of 162 recombination
bins with 4.55 markers/bin per chromosome across the linkage groups,
with an average of 166 bins with 4.52 markers per bin and 159 bins with
4.60 markers per bin in the A- and D-subgenome chromosomes, re-
spectively. The average overall number of markers per linkage group
was 738, with an average of 718 for A-subgenome chromosomes and
759 for D-subgenome chromosomes.

In the intraspecific and interspecific maps, the observed map
lengths (cM) for the A-subgenome chromosomes (137.5 cM, 152.8
cM) were on average very similar to but slightly larger than those for
the D-subgenome chromosomes (131.7 cM, 143.7 cM), respectively.
For cotton chromosomes, accurate estimates and comparisons of
genetic size with physical distance, e.g., cM/Mbp, are not yet available.
Accurate cytological estimates for individual allotetraploid chromo-
some sizes are not available. Although a BAC-by-BAC reference
sequence for the Ds is available, highly repetitive regions are under-
represented, including subtelomeric and large peri-centromeric
regions. Therefore, a Ds-based estimate would be limited in scope
and would underestimate physical size. However, the genomes of the
closely related extant diploids, G. arboreum and G. raimondii, have
been estimated to be 1600 and 800 Mb, respectively; sizes of those
genomes and chromosomes correspond well cytologically with absolute
and relative sizes of chromosomes in the G. hirsutum subgenomes.
Using the G. arboreum and G. raimondii estimates as a guide for
A- and D-subgenome sizes, 1 cM in the intraspecific map represents an

2G3-Genes| Genomes | Genetics

average of 895 kb in A-subgenome chromosomes and 467 kb in
D-subgenome chromosomes. In the interspecific map, 1 ¢cM represents
an average physical distance of 805 kb in A-subgenome chromosomes
and 428 kb in D-subgenome chromosomes. Although sizes and physical
distances in A- and D-subgenome chromosomes differ approximately
two-fold, the rate of crossing over does not, reflecting that most cross-
overs occur in nonheterochromatic regions or gene space.

Segregation distortion has been previously reported in cotton
populations and, not unexpectedly, a number of markers in both the
intraspecific and interspecific maps showed significant distortion from
expected F, segregation ratios. In the intraspecific map, 612 markers
of the 7171 (8.5%) mapped markers showed significant segregation
distortion (P < 0.05). Of these distorted markers, 256 (41.8%) show
a decrease in amount of heterozygotes. Overall, when one parental
allele is favored, generally an excess of the female parental allele (Phy-
togen 72) was observed at a 3.45-to-1 ratio. In the interspecific map,
3475 markers of the 19,191 (18.1%) mapped markers showed signif-
icant segregation distortion (P < 0.05). Unlike the intraspecific markers,
when one parental allele is favored, there is not a large bias toward
one parent, and a favored ratio of 1.13 is observed for a male parent
plant (G. hirsutum) to female parent (G. barbadense) comparison. A
skew toward the G. barbadense parent was observed in work by
Lacape et al. (2003). The amounts of distorted markers in these
populations are within the range of previous reported studies from
8.5% to more than 50% (Lacape et al. 2003; Shen et al. 2007).

Distribution of recombination events
The high density of markers mapped in this study allowed the
identification of almost all of the recombination events present in

Volume 5 June 2015 | Cotton SNP63K Array | 1195

220z 1snbny 9| uo Jasn sonsnr Jo Juswedad "S'N A9 6225209/281 1/9/S/21o1de/jeulnole6/woo dnotoiwspeoe)/:sdyy Wwolj papeojumod



AD Chr 01

AD Chr 02 AD Chr 03 AD Chr 04 AD Chr 05

P 0.0~— "\ ——i03066Gh
— 1 103086Gh
=] = RN 20— 103100Gh
50—y | — uss03Gn
103120Gh
7.0 70— [—i03132Gh
10. 1Gh
120 102939Gh
13.0————— 02937Gh
15.0 i37093Gh
16.0———f—— i14751Gh
17, 103160Gh
00— | —ios11Gn 103167Gh
21 1Gh
20—~ 130343Gh
300 1284856h
3o 103192Gh
a7
40
420 ~———f— 02842Gh
A3 Q=T 27626Gh
24355Gh
e 460
= - 470
1486Gh
[~ is403Gn Rgmeh
—— i57a26h 103228Gh
H4978Gh o S o e
40— [T i23814Gh
70
720 '972Gh
760 3
77.0—————102439Gh
9 1 740 22043Gh
750 23538Gh
105033Gh
8s. 3Gh
a7.0— 8.
88.0—————102375Gh 105036Gh
85,0 ——}—}—105031Gh
6.0 05018Gh
{05004Gh
9. 104397Gh
100.0——_{—i31143Gh
101
102 0= T——102333Gh
104 104Gh
105.0—————i02330Gh Rach
102.0 i22751Gh
1 16h 1030 100163Gh
1130 102246Gh 4888GhH
114 0—f—F——i18375Gh \J
186Gh
10— —

0.1 132077Gh
2 1057036
7 056826h
25 {a56426h
47.0 25819Gh
agu%\_f\amwcn
500 Z7343Gh
51 D\'_'40552\Gn
52 0~ 05505Gh
53.0——T—F— 40377Gh
22657Gh

55,0 ———J—— i00360Gh
560—"] | - i15507Gh
s00—_] | —i12186n
80.0————— i06391Gh
s20~_] | —i2ieach
630 ——]—— i053136h
640 1052666h
85.0—J—J-—— i03326Gh

g
\
IINEE

800
700 103446Gh
10— ioaasocn
75.0— o 03454Gh
76 uf § 103480Ch
o 10:481Gh
8 103493Gh
89 0 ——f—}— [33374Gh
80.0——1—T1— i00715Gh
6 {32361Gh
980——f | — 03564Gh
103571Gh
100.0——]" [ i29786Gh
1024 i03581Gh
105.0 ——f—f— 103563Gh
106.0 ———f—— 120610Gh
1120 03625Gh
113.0 03628Gh
116.0 ——f—f—103640Gh
117.0 —T——— i28704Gh
118 103657Gh
122 03678Gh

0. - 110434Gh

20 120907Gh

30——TT—10426Gh

a0 131359Gh

a0 218956h
28 0 =——td— 22281Gh
20 0———— 21623Gh
0—) | —ico273ch
340 2027260
380~ | —i37354Gh
370—J—1" p104sch
38,0 ———}—— 31054Gh
38 0—] [~ i24786Gh
a2 127456h
4 1354486
51.0: 112798Gh
520 100134Gh
57.0 N4120Gh
& 1284260
63 22515Gh
65 12861Gh
7 112885Gh
74 12907Gh
76, 125349Gh
80—y | —i12812Gh
78, 112916Gh
80,0 —X_——35007Gh

00 00408Gh
To—f—t— in24130h
112405Gh

40—~ | —it23056h
(12406Gh

60—~ 129106Gh
T0—"] [ - i0064Gh
29817Gh

00231Gh

00— | —i00s69Gh
a3 12533Gh
o—T[——i12537Gh
500 201626h
510 112626Gh
54, 125027Gh
57 22350Gh
590 32081Gh
0.0 ——— 119612Gh
L 142837Gh
84 (20678Gh
670~ | —i24067Gh
8.0 00821Gh
89.0———f——114177Gh
700—"] [~ i278%0Gh
74 i09811Gh
760 109904Gh
770 00156Gh
a4, 25715Gh
80— | —i25837Gh
85.0 i32176Gh
890—F—T" i44734Gh
09771Gh

1.0 ——J—J——i09767Gh
820" |~ iooresch
4.0 — [~ 28633Gh
o7 00441Gh
09743Gh

101.0 109741Gh
1020 09726Gh
107. 20618Gh
1200 00330GH
1210 109645Gh
1250 ——f—f— 01076Gh
1260 ATTB3IGh
133.0——}—}— i09563Gh
1340 ———f—— 100260Gh
1380—~— | — 408026k
23851Gh
140.0——~—00185Gh
00508Gh

09375Gh

156 09335Gh
1620 108310Gh
1650~ 09296h
54.0 =g }—148326Gh
1650 ——}— i#4084Gh
1660 101086Gh
167.0—"] | ~~-i00614Gh
1720 09193Gh
173.0 ———[— i09185Gh
175.0 ——j—f— i19549Gh
1760 ————— i09150Gh
183 09109Gh
i09103Gh

09036Gh

1920 09061Gh
193.0 ~——F—— ar27Gh
194 100533Gh
1850 ——J~— 00176Gh
196.0—" 08876Gh
19, 08907Gh
201 08898Gh
208 08841Gh

L

AD Chr 06 AD Chr 07

Q0 ™ _—119991Ch
To—f—}— iit3rs0n
2 111374Gh
30—~ i322876h
40— | ™= 31086Gh
110 =————f— (11345Gh
12.0————— i20815Gh
250~—] L —1113026h
1 111300Gh
27.0—~—i13908Gh
340~—p | —icozso6h
00346Gh

30— i112336h
a1 21904Gh
“ 4110160
i21845Gh

630 i10781Gh
640 22405Gh
10775Gh
1010—d | —i10625G6h
10 i25483Gh
103.0——T[——1343176h
110612Gh
107.0—~—y__|—ii05836h
Y 110578Gh
1000 — T~ i00271Gh
it (o 10525h

)

ap—~—f | —iwezsan

5 102154Gh
TOo—~—~4__}—02151Ch
20 @4681Gh
100" i14508Ch

1
120—] [~ t2142Gh

320~ | — 183556k

3.
3ag—T [ i02103Gh
aro—~—] L — 020816

300—] [~ i02083Gh

——1
eo.n/ [N f14ssach
100 A— - s2s2at

720 ™~ ot7osen

(a6e0Gh

81 0——f—f— 210261
820

80. B4TT2Gh

1294 101345Gh
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each F, individual. We calculated the number of crossovers per F,
using all markers in both the intraspecific and interspecific linkage
maps. In the intraspecific map, the number of crossovers across all
chromosomes of an individual varied from 44 to 97, with an av-
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erage of 67.5, ignoring two individuals with an abnormally high
number of crossovers on a couple of linkage groups. These indi-
viduals were ignored; although they showed a normal number of
crossovers across most chromosomes, they had much higher than
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Figure 5 Continued.

two-times the number of crossovers as all other samples for one or
more linkage groups. One individual had 34 crossovers on Chrl3
and another individual had 24, 34, and 38 crossovers on Chr05,
Chr19, and Chrl4, respectively. An average of 2.65 crossovers per
linkage group occurred across all individuals. Distribution of cross-
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177.0——X_J—i07671Gh

overs in the intraspecific population across linkage groups is shown
in Figure 8A.

In the interspecific map, the number of crossovers per individual
ranged from 54 to 97, with an average of 75.8 (ignoring a single
individual that had an abnormally high number of crossovers in
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Figure 5 Continued.
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Figure 6 Inconsistencies between initial de novo interspecific map and the intraspecific map. (A) Initial plots of interspecific map order and correlation
with intraspecific map show area of incorrect placement in center of the linkage group. (B) Corrected interspecific linkage group and final plots.
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Chr14). Similar to the intraspecific mapping population, there was an
average of 2.92 crossovers per linkage group across individuals. The
distribution of crossovers in the interspecific population across linkage
groups is shown in Figure 8B.

Analyses of synteny

All of the 70,000 putative SNP markers that were used for production
of the CottonSNP63K array were aligned to the D5 reference genome
using BWA in Galaxy; 59.7% of the markers produced alignments to
the reference. Synteny was detected for a total of 4521 and 12,027
mapped SNPs for the intraspecific and interspecific maps, respectively.
Dot plots of the linkage maps vs. the D5 reference genome show high
collinearity across linkage groups and chromosomes as expected,
except for four A-subgenome chromosomes, which are known to
contain translocations relative to D-chromosomes. Translocations in-
volving chromosomes 2, 3, 4, and 5 were identified in both maps and
are indicated in Figure 9, A and B.

When all markers were aligned to the A, draft genome, 61.8% of
the markers aligned to the reference. A total of 3863 and 11,344 SNPs
that mapped were included in the intraspecific and interspecific maps,
respectively. While a larger percentage of the SNPs mapped to A,
compared to Ds, expected collinearity was not observed when these
A, alignment positions were plotted against position in the linkage
maps (Figure S3, A and B), as was seen with the high-quality BAC-by-
BAC-derived Djs reference genome. The strong collinearity with the
high-quality Ds genome suggests that our genetic maps are correctly
ordered, whereas the low collinearity with the A, genome sequence
suggests that the genome sequence may be improved using the maps
produced in this effort and other genetic maps.

DISCUSSION
The interspecific and intraspecific genetic maps developed with the
CottonSNP63K represent the most saturated maps developed for
cotton to date. The produced intraspecific genetic map is the first
saturated map for a cross between two G. hirsutum lines. While one
other effort has come close to generating a number of linkage groups
equal to the 26 cotton chromosomes (Zhang et al. 2009), to the best of
our knowledge the intraspecific map developed here is the first that
associates into 26 linkage groups corresponding to the number of
cotton chromosomes. The array and maps provide a foundation for
fine mapping and genetic dissection of agronomically and economi-
cally important traits, and facilitate the identification of causative genes
underlying quantitative trait loci. This new tool will also foster map-
based cloning and genome assembly efforts and contribute to advance-
ments in marker-assisted selection and genomic selection in breeding
programs. Although our initial interspecific map was very close to the
estimated tetraploid map size of ~4500 cM suggested by Rong et al.
(2004), it showed sizeable gaps and discordant LD patterns. Once
corrected, the size of both maps was well below the estimated value
of ~4500 cM at 3854.3 cM for the interspecific map and 3499 cM for
the intraspecific map. A decrease in map size is expected when higher-
density maps are generated, due to the improved ability to distinguish
scoring errors from double recombinant events with high-density
markers (Rong et al. 2004). Although the sizes of the new interspecific
and intraspecific maps are lower than expected, they both fall well
within the range of previous map sizes of published interspecific maps
3380 to 5115 cM (Yu et al. 2012; Blenda et al. 2012; Shi et al. 2014) and
within the range of 2061 to 4448 cM for reported intraspecific maps
(Zhang et al. 2012; Gore et al. 2014; Rong et al. 2004; Tang et al. 2014).
The mapping of a large number of markers from different discovery
sets utilizing a large variety of different cotton lines, primarily cultivars
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as shown in Table 2, along with a moderate percentage of markers
showing intermediate to high MAFs suggests high transferability of
markers across different sets of cotton germplasm. To have a wide
applicability across cotton samples, the array was designed to provide
the most comprehensive tool to date for cotton researchers and in-
cluded SNPs that were discovered from technologies targeting both
gene regions and genomic regions. This approach was applied so that
the inclusion of markers outside of genes would generate a more even
distribution across chromosomes because genic markers are unevenly
distributed across chromosomes (Hulse-Kemp et al. 2014). Because the
majority of the gene-based markers were provided by the CSIRO
discovery set using the D5 sequence assembly as a reference (Zhu et al.
2014), many A-subgenome-specific genes may be under-represented in
the gene-based marker set. Fortunately, genomic markers located in
LD with a gene of interest can also be of value in genome-wide asso-
ciation studies, and thus help compensate for the subgenomic bias
among genic intraspecific markers. As the TAMU/UC-Davis Intra-
Genomic Set 1 and TAMU/UC-Davis Inter-Genomic sets are markers
derived from BAC-end sequences (Hulse-Kemp et al. 2015), these
markers will provide an avenue for direct map-based cloning and
fine-mapping of identified regions of interest through direct integration
of the array with BAC-based resources.

The array provides cotton research groups with a standardized set
of markers that can be used to localize and replicate important
previously identified markers, and it will also allow for investigating
different types of sample inconsistencies. The replication analysis
performed here showed that while technical DNA replicates show
very high consistency, different levels of variability were seen with
other replication types. As found in maize (Yan et al. 2009), the array
analysis revealed considerable variation within some cotton lines, not
only between different seed sources but also within the same seed
source. Notably, two different TM-1 samples, typically used as a
G. hirsutum genetic standard line (Kohel, Richmond, and Lewis 1970),
show only 89.77% similarity. Hinze et al. (2015) found similar incon-
sistencies using SSRs in the US National Cotton Germplasm Collection
where accessions with a common name may or may not have been
identical whereas other accessions with no reason for similarity
were genetically identical. Such inconsistencies can create difficulties
when trying to interpret or compare studies utilizing samples bearing
a common name. The CottonSNP63K provides an efficient way to
characterize these inconsistencies because it has negligible inconsis-
tencies with reproducibility; thus, the similarity differences discovered
between seed sources are due to variation of the sources, not a problem
with genotyping on the array. The amount of residual heterozygosity
within the same seed source shows that some lines are more hetero-
geneous than others, and comparisons across studies using heteroge-
neous lines will be less reproducible. However, residual heterozygosity
in lines also will offer direct avenues for fine mapping of genes in
primarily isogenic backgrounds (Truco et al. 2013), as well as provide
additional diversity within G. hirsutum that has been noted to have
low levels of diversity (Tyagi et al. 2014).

Due to the low diversity among cotton lines, multiple mapping
populations will be required to map all of the polymorphic SNPs on
the CottonSNP63K array. Analysis of the two mapping populations
reported here allowed us to map a total of 22,829 total markers, with
3533 SNPs being placed into both linkage maps. Classification of
SNPs into the intraspecific or interspecific groups was based on which
of our data sets the SNP was identified in. The SNP classification does
not indicate if it will or will not be a useful marker in other germplasm
types. For example, 3533 of the SNP loci are dually represented in the
intraspecific and the interspecific maps reported here. Utilizing
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mapped loci will be very straightforward, but utilizing the other
markers will be more difficult, at least until they are mapped. Syntenic
analyses with available high-quality related genome sequences such as
the JGI D5 genome provide some insight into localization information
in tetraploid cotton (Paterson et al. 2012). Allotetraploid linkage
groups determined here showed a linear alignment with the D5 ge-
nome (Figure 9, A and B) and were also able to identify historic
reciprocal translocation events between allotetraploid chromosomes
2/3 and 4/5 (Desai et al. 2006). The breakpoints for the translocations
can be roughly mapped to homeologous regions with the linkage

1206 | A. M. Hulse-Kemp et al.

maps to between 21.7 and 29.5 Mb in Ds chromosome 3 and between
16.7 and 21 Mb in D5 chromosome 5 for allotetraploid chromosomes
2/3, between 40.1 and 46.1 Mb in D5 chromosome 9, and between
11.5 and 23.2 Mb in Ds chromosome 12 for allotetraploid chromo-
somes 4/5. It has been suggested that these translocations involved
complete arms (Blenda et al. 2012), which is not ostensibly discordant
to the approximate breakpoints found here. However, additional map-
ping would be required to pinpoint exact locations relative to the Ds
chromosomes because map information near the breakpoints is still
ambiguous and overlapping at points.
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Figure 9 Dot plot of the syntenic positions of SNP markers in the allotetraploid linkage maps vs. the JGI G. raimondii reference genome. The 26
allotetraploid chromosomes are shown on the y-axis and the 13 chromosomes of G. raimondii are shown on the x-axis. Red arrows indicate
translocation events relative to G. raimondii. (A) Intraspecific linkage map displaying positions of 4521 mapped SNP in G. hirsutum with align-
ments to G. raimondiii. (B) Interspecific linkage map (G. barbadense line 3-79 by G. hirsutum genetic standard line Texas Marker -1) displaying

positions of 12,027 mapped SNP with alignments to G. raimondii.

Like SNP arrays developed for other crops, we found a relatively
large number of markers that were difficult to score and required
either manual adjustment of markers or eliminating the marker from
the analysis completely. Compared to diploids, the success rates for
SNPs in arrays are typically lower for polyploids due to the presence of
duplicated loci in homeologous, paralagous regions, the low levels of
divergence particularly between gene copies in different subgenomes,
and also between paralagous regions in the same subgenomes. The
61.6% success rate found for the CottonSNP63K is quite comparable
to the success rates of arrays generated for other polyploid crops, such
as 61% for oat (Tinker et al. 2014) and 63% for wheat (Wang et al.
2014). Most of the markers mapped in this study were localized to
a single map position, as was also the case for the majority of markers
mapped with the wheat 90K array (Wang et al. 2014), indicating that
most SNP assays are specific to a single locus and/or assaying segre-
gation of a single locus. Similarly, we also found that success rates
among discovery sets included on the array were highly variable
(Table 4). The differences in success rates for discovery efforts as
determined by this effort can provide insights for future SNP
development efforts by examining parameters and pipelines used
and the outcome of those discovery sets. The information provided
by the array will enable future SNP discovery efforts in cotton to
focus on increasing the success rate of SNP predictions.

CONCLUSIONS

The CottonSNP63K and the accompanying cluster file provide a
standardized high-throughput genotyping tool for the cotton com-
munity with limited ascertainment bias over a wide range of cotton
germplasm. The high-density genetic maps and their synteny with the
G. raimondii reference genome provide a useful resource for analyzing
genome-wide variation in allotetraploid cotton. Once the allotetra-
ploid cotton genome sequence is available, these maps will be a re-
source to validate and refine the genome assemblies, as well as provide
a resource to directly integrate physical and genetic resources. The
array and maps provide a foundation for the genetic dissection of
agronomically and economically important traits and crop improve-
ment through genomics-assisted selection. It will also foster positional

2G3-Genes| Genomes | Genetics

cloning and genome assembly efforts. Efforts are underway to also
provide a comprehensive diversity analysis of a wide range of cotton
material, because the results will further extend utility of the array,
component SNPs, and associated genomics resources.
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