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Sepsis is defined as dysregulated host response caused by systemic infection, leading

to organ failure. It is a life-threatening condition, often requiring admission to an intensive

care unit (ICU). The causative agents and processes involved are multifactorial but are

characterized by an overarching inflammatory response, sharing elements in common

with severe inflammatory response syndrome (SIRS) of non-infectious origin. Sepsis

presents with a range of pathophysiological and genetic features which make clinical

differentiation from SIRS very challenging. This may reflect a poor understanding of

the key gene inter-activities and/or pathway associations underlying these disease

processes. Improved understanding is critical for early differential recognition of sepsis

and SIRS and to improve patient management and clinical outcomes. Judicious selection

of gene biomarkers suitable for development of diagnostic tests/testing could make

differentiation of sepsis and SIRS feasible. Here we describe a methodologic framework

for the identification and validation of biomarkers in SIRS, sepsis and septic shock

patients, using a 2-tier gene screening, artificial neural network (ANN) data mining

technique, using previously published gene expression datasets. Eight key hub markers

have been identified which may delineate distinct, core disease processes and which

show potential for informing underlying immunological and pathological processes and

thus patient stratification and treatment. These do not show sufficient fold change

differences between the different disease states to be useful as primary diagnostic

biomarkers, but are instrumental in identifying candidate pathways and other associated

biomarkers for further exploration.
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INTRODUCTION

Sepsis is described as “life-threatening organ dysfunction caused
by a dysregulated host response to infection,” leading to injury to
healthy tissues, including those remote to the infection site (1, 2)
and is part of a systemic inflammatory response syndrome group
of conditions which can be infectious or non-infectious in origin.
This can then progress to organ failure (such as acute kidney
and acute lung injury) and septic shock if there is additional
cardiovascular system involvement (3). Sepsis in its severe form
typically results in admission to intensive care (ICU) and may be
fatal (1, 4, 5). It is a major healthcare problem, killing over 44,000
people a year in the UK—more than lung, bowel, breast and
prostate cancer combined (3, 6, 7). It costs the NHS £2.5 billion
a year and is increasing in incidence (8). Patients present with
clinical presentation and symptoms analogous to SIRS of non-
infective origin (9), which is initiated by events such as trauma
e.g., out of hours cardiac arrest (OOHCA). These conditions also
exhibit a high degree of similarity in immune profile and they
are hard to distinguish using conventional diagnostic methods
(4, 9, 10).

There are a variety of causes of sepsis, including community
and health care-related infections, and the condition commonly
develops in patients with multiple risk factors, such as emergency
surgery, diabetes and immunosuppression (6, 7). Regardless of
the original initiating cause, sepsis develops to an inappropriate,
dysregulated host inflammatory condition, in response to
stimuli of infectious origin e.g., pathogen associated molecular
patterns (PAMPs), such as endo- or exotoxins (11). These
are recognized by pattern recognition receptors (e.g., Toll-
like receptors or TLRs) and in sepsis ultimately lead to
development of an inappropriate inflammatory response (12).
These responses can be characterized using bioinformatic
methods to determine signal-specific “fingerprints,” which
can provide information on the underlying immune-
pathological processes at work. These can be used to
support diagnosis and inform patient management/therapeutic
decisions (13).

The therapeutic options for sepsis have been extensively
reviewed in the past and have been described as a “graveyard”
for pharmaceutical companies (14, 15). Many treatments have
been trialed but most of them failed to improve clinical
outcomes in patients. Three notable inflammatory cytokines
including tumor necrosis factor alpha (TNF-alpha), interleukin
1 (IL-1) and high mobility group box 1 (HMGB1) protein,
have been assessed in clinical studies, but failed in clinical
evaluation and are not now used as therapeutic interventions
(14). The underlining challenge for development of improved
immunomodulatory therapeutic options is hampered by a
general lack of knowledge of the underpinning immune-
pathological processes at work and/or identification of clinically
useful biomarkers which can differentiate sepsis from SIRS. These
would be useful, to aid correct diagnosis. Some progress has
been made by other groups in the field in recent studies who
have sought to better delineate the complex immunopathology
of sepsis and develop discriminatory biomarker panels for disease
stratification (16–22).

Here we describe a meta-analysis of previously published
SIRS/sepsis and other infection datasets using artificial neural
network (ANN) analyses, with additional interrogation of the
input datasets using the bioinformatics package GeneSpring
12.5TM, to enable identification and assembly of SIRS/Sepsis
immunopathology models and delineation of likely originator
cell types. We have used similar methods to analyse gene
expression data and delineate likely biomarker-associated cell
types in a previously published Macaque model of Tuberculosis
(23). The four main objectives of this study were to:

• identify a panel of gene expression profile biomarkers which
distinguish sepsis patients from those who had clinical
outcomes consistent with SIRS or the more severe septic shock

• investigate the immune-pathogenesis of these markers,
primarily in sepsis

• compare these profiles to those observed in resolved SIRS
• uncover the likely cell types associated with key identified

hub markers.

The combined data outputs from these objectives may provide
valuable information for development of biomarkers for
diagnostic purposes and provide valuable information on some
of the key metabolic pathways and/or cell types involved in the
underlying pathological processes.

MATERIALS AND METHODS

Microarray Datasets
All microarray data used in this study were sourced from
individual previously published datasets from the ArrayExpress
database (24). These microarray data are available in the
ArrayExpress website (http://www.ebi.ac.uk/arrayexpress/)
under accession number E-GEOD-9960 [pathogen etiology
not given (25, 26)], E-GEOD-28750 [pathogen etiology not
given (27)], E-GEOD-6269 [a mixture of Escherichia coli,
Staphylococcus aureus, and Streptococcus pneumoniae infections,
in comparison with Influenza A (13)] and E-GEOD-13904
[pathogen etiology not given (28)]. Detailed information on the
sample preparation on these datasets can be found in the original
studies and on the ArrayExpress website. A total of 401 samples
were obtained from these datasets and a summary of these
datasets can be found in Table 1. These were all generated using
the Affymetrix platform using two different gene chips: HG-
U133A (E-GEOD-6269) and HG-U133_Plus_2 (E-GEOD-9960,
E-GEOD-28750, and E-GEOD-13904).

Data Pre-processing
Raw files of these microarray gene expression data (E-GEOD-
9960, EGEOD-28750, E-GEOD-6269, and E-GEOD-13904) were
downloaded from the ArrayExpress website and processed
using the RMA (robust multi-array) method embedded in the
Affymetrix Expression Console (29), to remove background
noise, to normalize expression values of the probe sets and
to provide an unbiased interpretation on the pathology of the
selected markers. An auditing and filtration process was then
applied, to remove unidentifiable probe entities and sets with
multiple gene-associations. The expression values of the probe
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TABLE 1 | Summary of the datasets used in this study.

GEOD dataset References Patient

cohort

Sample distribution

Sepsis SIRS Post-surgical

sepsis

Septic

shock

Resolved

SIRS

Healthy

control

Gram-positive

bacteraemia

Gram-negative

bacteraemia

E-GEOD-9960 (13, 25, 26) Adult 45 25 – – – – – –

E-GEOD-28750 (27) Adult 10 – 11 – – 20 – –

E-GEOD-13904 (28) Pediatric 52 27 – 106 24 18 – –

E-GEOD-6269 (13) Pediatric – – – – – – 37 26

sets which associated to a single gene symbol were averaged and
these were used as the final expression value for that gene. This
filtering process yielded a total of 12,507 genes for microarray
data stored in the HG-U133A chip (E-GEOD-6269) and 20,328
genes for HG-U133_Plus_2 (E-GEOD-9960, E-GEOD-28750
and E-GEOD13904). Samples were then categorized into 8
disease groups (i) sepsis (ii) SIRS (iii) septic shock (iv) resolved
SIRS (v) healthy control (vi) gram-positive bacterial infection
(vii) gram-negative bacterial infection (viii) post-surgical sepsis
in two control patient cohorts—adult and pediatric (Table 1).
Due to a low number of samples in the post-surgical sepsis group
(11 samples), pathology analysis of this group is omitted in the
rest of this study.

Study Outline
A two-tier gene screening was conducted to identify a set
of prominent markers segregating sepsis and SIRS in the
adult cohort, using dataset E-GEOD-9960. Gene pathology
analyses based on these markers was then performed, to reveal
gene interaction activities and their pathways which associated
specifically with sepsis, SIRS, septic shock, resolved SIRS or gram-
positive and gram-negative bacteraemia. A panel of 51 genes
(48 candidate genes and 3 housekeeping genes) associated to
sepsis and SIRS were first selected based on the joint-decision
obtained fromANNmodeling (30) and an ontology-based review
of other previously-published adult whole blood transcriptomic
microarray data. A gene-gene interaction analysis based on these
delineated gene subsets was performed using an inference model
based on a three-layered backpropagation ANN algorithm (31).
The gene interaction results were visualized using Cytoscape
(31). A smaller set of eight key marker genes with strong
interaction influences to other highly significant genes were
identified using this process. Pathology analysis of these marker
genes was performed with inclusion of three new microarray
datasets (E-GEOD-6269, E-GEOD-28750 and E-GEOD-13904),
comparing sepsis, SIRS, healthy control, resolved SIRS, septic
shock, gram-positive and gram-negative using ANNs (31) and
the PANTHER gene ontology (GO) database (32, 33). Figure 1
shows the analysis pipeline for this study.

Preliminary Gene Screening
Test Set Screening for Candidate Genes Using ANN

Data Mining Methods
Processed E-GEOD-9960 microarray data was downloaded from
the ArrayExpress website. This contained 54,675 probe entities,

which had been interrogated with RNA from a total of 70 patient
blood samples, distributed into sepsis and SIRS specific groups
(see Table 1). Using all probe entities, ANN-based predictive
models were constructed to examine the prediction power of this
dataset for differentiating sepsis patient samples from SIRS.

The ANN data mining algorithm used was developed by our
group for mass spectra (34–36) and microarray analyses (30)
and has been published previously (37). To identify disease-
specific candidate markers, a 3-layered backpropagation ANN
model with embedded exhaustive search strategy and cross-
validation procedure was constructed. The sample set was
randomly partitioned into 3 sets, i.e. training, test, and validation,
in which the training set was used to train the model, the test
set used for early stopping of the model and the validation set
used to test the classification performance of the model. The ratio
for the training, test and validation sets is 0.6:0.2:0.2, i.e., 60% of
the samples are used for training purposes, 20% for testing and
the remaining 20% for validation. To avoid any bias on reported
results, samples were randomly re-shuffled 50 times for training,
test, and validation purposes.

For the ANN architecture, a structure of 1-2-1 was applied. An
input node representing a unique probe set in the dataset, two
hidden nodes in the hidden layer and an output node predicting
sample class. As an exhaustive search strategy was applied, a
new probe set identification was selected as the input node in
the input layer each time a new network model was created.
A sigmoid activation function was utilized in the algorithm.
Three hundred epochs were used for the training process and
100 epochs for the testing window, stopping if the mean square
error (MSE) failed to improve <0.01 over the window. A single
input node was deliberately applied to ensure that all probe sets
in the data were thoroughly examined by the ANN. Finally, the
probe sets were ranked based on their standard residual errors
(SRE), computed using a multiple regression method, which are
equivalent to fold-change differences in other gene expression
profile analysis methods.

To identify genes for which probe sets were highly ranked
in truncated p-values, a stringent filtering process was applied
to remove probe sets that did not meet any one of the
following criteria: (i) a single probe set should have only
associated to a single gene symbol; (ii) all probe sets to
which a similar gene associated to should have a consistent
regulation response pattern in a similar disease group; and
(iii) any unlabelled probe set (i.e., unknown gene symbol)
should contain sufficient information for finding the associated
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FIGURE 1 | Analysis pipeline for this study.
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gene symbol in a BLAST search. It was hypothesized that a
“true” marker should be reproducible and exhibit a consistent
differential regulation response pattern in individuals from a
similar disease group. A panel of 48 candidate markers and
three housekeeping genes were identified and are summarized in
Supplementary Information S2, Table S1.

Gene Interaction Analysis Using ANN Inference

(ANNI) Algorithm
Using the selected candidate biomarker genes from primary
gene screening, a network inference model based on a 3-layered
backpropagation ANN algorithm called ANNI (38, 39) was used
to model the molecular interactions between genes identified
for sepsis and SIRS. ANNI is a bespoke algorithm developed
by our group to model the relationship between genes, to gain
an in-depth understanding on how these molecules interact
and to identify new relationships between these molecules by
iteratively calculating the influence that multiple genes may
have upon a single entity. This algorithm hypothesized that
expression (i.e., up- or down-regulation) of a biomarker can
explain, using the remaining biomarkers in the gene pool, if
these biomarkers are able to explain one particular categorical
outcome (i.e., a disease status). This explores the influences
of all biomarkers among themselves and provides a complete
view of all the possibilities for network interactions between
all biomarkers.

In brief, a new ANN interaction model was constructed each
time a gene in the gene pool was selected as an output node and
was omitted from the pool. The remaining genes (N − 1) were
then used to predict the omitted gene and the network weights
of the trained model were stored. The process continues until
all the genes in the pool were used as output. The weights of
all the trained models were then averaged and served as the final
interaction results to describe the interaction between genes, such
as the intensity of the relationship between a source gene and a
target gene and the nature of their relationship (e.g., stimulatory
or inhibitory). Further information on this algorithm can be
found in our previous study (40).

Interactome Network Map Visualization Using

Cytoscape
Gene interaction results were displayed visually using the
Cytoscape software platform (41). Using the gene interaction
output of the candidate gene selection analyses, genes with strong
interaction influence on other genes were chosen for further
analysis. Gene pathology analysis based on these gene entities
was interrogated to segregate sepsis from SIRS, septic shock,
resolved SIRS, gram-positive and gram-negative bacteraemia and
healthy controls.

Functional Pathway Analysis Using the
PANTHER Database
Pathway analysis for the selected marker genes was performed
by mapping these genes onto the PANTHER (Protein Analysis
Through Evolutionary Relationships) database (Version 8).

Parametric ANOVA and Similar Entity
Analyses Using Agilent GeneSpring 12.5
Data output files from E-GEOD-9960, E-GEOD28750, E-GEOD-
6269, and E-GEOD-13904 were imported into GeneSpring

GX
TM

v12.5 (42). Data were normalized to the 75th percentile
followed bymedian baseline transformation, according to default
settings. Statistically significant features from a predefined
entity list (Supplementary Information S3, Table S3.1). were
identified using one-way ANOVA analysis across all entities and
time-points, using the Benjamini-Hochberg False Discovery Rate
(BH-FDR) (43), with multiple testing corrections at a cut-off p
≤ 0.05. Associative relationships between key candidate and hub
genes and other gene entities were conducted using the similar
entities function using a cut-off of >0.7. All further analyses
were conducted using hierarchical cluster analysis, heat map, and
other functions in GeneSpring GX v12.5, using default settings.

RESULTS

Gene Screening Analyses
The rank distribution of all 54,675 probe sets based on regression
errors is shown in Supplementary Information S1, Figure S1. A
total of 11,846 probe sets were found with SRE > 1.0 (5,445
probe sets) and SRE <-1.0 (6,401 probe sets). Amongst these
probe sets, 1,647 with SRE > 2.0 and 139 with SRE <-2.0. The
filtering criteria yielded a total of 14,872 unique genes. Amongst
these genes, 7,589 genes (inclusive of 1,501 genes with SRE> 1.0)
exhibited an up-regulation pattern in sepsis and the remaining
7,283 (1,823 with SRE < −1.0) exhibited up-regulation in SIRS.
The full gene datasets were then integrated with empirically-
derived functional ontology gene lists from previously published
literature [from (44–49)], which yielded a final selection list
of 48 candidate genes. A summary of these is provided in
Supplementary Information S2, Table S1, showing the product
of p-values using the rank order from ANN data modeling and
Student t-tests, computed using the BH-FDR. Of these, 22 genes
were found to be relatively upregulated in Sepsis vs. controls and
the remaining 26 upregulated in SIRS vs. controls. High median
expression values were observed in both the adult Sepsis and
adult SIRS groups (Supplementary Information S1, Figures S2,
S4), demonstrating that overall these genes had higher expression
in these two groups compared with any other group in the study.

Selection of Housekeeping Genes
Selection of housekeeping genes is a crucial process for
customizing microarray gene expression data (50), as they are
used to normalize mRNA levels between different samples in
qPCR. A housekeeping gene should be consistently expressed
in all gene expression samples, irrespective of which disease
group the sample belongs to and have poor prediction power
in stratifying samples. Inappropriate selection of housekeeping
genes could bias gene expression differences between different
groups and samples during analysis, rendering array data
incomparable. Selection of reference genes may be study or
disease specific, as there is variation in identification of useful
candidates even in a single disease area (51). A total of 129
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FIGURE 2 | Overarching network interaction map between the hub biomarkers and other significant disease-associated entities. Source �: � Target: � Entities

which show relative upregulation in SIRS compared with sepsis: � Entities which show relative upregulation in sepsis compared with SIRS:: Inhibitory interaction:

: Stimulatory interaction.

candidate housekeeping genes, including several commonly used
entities e.g., GAPDH (52–56), were investigated in this study. The
stability of these genes was ranked according to predictive power
of the genes in stratifying adult sepsis from adult SIRS and their p-
values. HMBS (predictive p= 0.82, t-test= 0.73), TBP (predictive
p = 0.60, t-test = 0.32) and ALAS1 (predictive p = 0.44, t-test
= 0.20) were found to be the most invariant and thus selected
as suitable housekeeping genes for further expression study data
analysis (given in Supplementary Information S2, Table S2).
These commonly used reference genes may be more specific for
SIRS/Sepsis datasets and useful for normalization purposes in
future development of diagnostic assays.

Identification of Key Marker Genes
Using the 48 gene expression markers identified in the initial
gene screening process, interactions between these markers were
modeled (Figure 2). Eight prominent markers which showed
higher interaction activities with other genes were identified,
which are KLRK1, MYL9, PCOLCE2, CD177, FGF13, SLC16A3,
GPR84, and TDRD9. These genes may reflect 8 core biological

activities at work in the respective disease processes and may also
provide important information for connections to other genes
(Table 2). These may have other alternative functions dependant
on cell type, relative disease condition or homeostasis, in addition
to regular ascribed cellular functions.

Regulation Response Pattern Analysis
Using the healthy controls group as baseline control to
determine the regulation response of these markers, fold
change expression differences were determined (given in
Supplementary Informations S1 and S2; Figure S3 and
Table S2). Significant up-regulation patterns were observed
in both sepsis and SIRS. From these data it was observed
that the expression levels of these 8 markers are higher in all
disease groups (Supplementary Information S1, Figure S4),
compared with healthy controls, except for KLRK1 which shows
little change in adult SIRS and sepsis and is downregulated
in pediatric SIRS, sepsis and septic shock. Significantly higher
fold change differences were observed in disease groups
compared with controls in the adult compared to the pediatric
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TABLE 2 | Primary and alternate cellular functions of hub gene entities.

Hub gene ID Name Gene annotation (1) Primary Function (2) Alternate Function References

CD177 CD177 molecule A cell surface glycoprotein exclusively expressed

by neutrophils, it plays a role in adhesion and

exvagination of neutrophils from the peripheral

blood

(1) Delineates neutrophil subsets and regulates

transmigration across the endothelium through

the interaction with platelet endothelial cell

adhesion molecule-1

(57–63)

FGF13 Fibroblast growth

factor 13

A potent factor involved in a variety of biological

processes including cell growth and death,

embryonic development and other cellular

processes

(1) Regulates cell proliferation, differentiation and

morphogenesis and invasion by binding to the

extracellular domain of cell surface receptors

(2) Microtubule-stabilizing protein regulates

neuronal polarization and migration

(64–72)

GPR84 G protein-coupled

receptor 84

A putative pro-inflammatory receptor that plays a

critical role in a variety of physiological

homeostasis activities. This receptor is activated

by medium-chain fatty acids and may be

associated with chronic inflammation

(1) Functions as an enhancer of inflammatory

signaling in macrophages, up-regulated in

endotoxin-tolerant macrophages - modulates

responses to TNF-α

(2) Recruitment in neutrophils

(73–81)

KLRK1 (NKG2D) Killer cell lectin-like

receptor subfamily K,

member 1

Activating receptor expressed by immunogenic

cells including all NK cells and subsets of T cells. It

plays an important role in immune system by

serving as a major recognition receptor for

detecting and eliminating transformed or infected

cells

(1) Activating receptor on natural killer (NK) and

T-cells and binds a diverse panel of

polymorphic ligands encoded by the MIC and

RAET1 gene families

(2) Promotes B1a cell development and

protection against bacterial infection

(82–84)

MYL9 Myosin, light chain 9,

regulatory

A structural component of muscle that plays a

vital role in growth and development of smooth

muscle, associated to the contractile activities in

smooth muscle and non-muscle cells. Other

regulatory functions

(1) Structural component of muscle fiber

(2) Regulation of platelet and

macrophage development (3) alternate

pathway for CD3 expression on T-cells

(85–92)

PCOLCE2 Procollagen

C-endopeptidase

enhancer 2

A glycoprotein that plays a central role in

physiological activities including cell signaling

processes (i.e., cell adhesion, cell communication

and transport), cellular, developmental and

metabolic process and also in development or

function of the immune system in response to

internal/invasive threats

(1) Mycocardium collagen deposition,

bone morphogenesis

(2) High density lipoprotein synthesis

(3) Immune cell extracellular matrix formation

(93–96)

SLC16A3 Solute carrier family

16

(mono-carboxylate

transporter) member

3

A transmembrane protein that transports lactate

and mono-carboxylates (both endogeneous and

exogenous) across the cell membrane

(1) Monocarboxylate transporter 4 that shuttles

lactate out of the cell, may be upregulated

during shift to accelerated glycolysis during

critical illness

(2) Other functions may include a role in

maintaining Colonic Homeostasis

(97–102)

TDRD9 (Tudor domain

containing 9)

A putative protein that plays a central role during

spermatogenesis and other metabolic processes

(1) Transposon silencing in the male gonad

(2) Suppression of DNA repair genes

(103–109)

group, especially for FGF13 and PCOLCE2. PCOLCE2 is also
downregulated in pediatric gram-negative infection.

Overlapped Genes and Pathway Analyses
Further investigation on the performance of these hubmarkers in
delineating individuals with sepsis, SIRS, septic shock, resolved
SIRS, gram-positive or gram-negative bacteraemia or healthy
controls was performed. This revealed unique and overlapped
gene interactions and pathway-associations for these groups.
The eight core hub genes show strong interaction influences to
other linked associated genes (Figure 2). CD177, FGF13, KLRK1,
MYL9 and PCOLCE2 act as target hub genes to interconnect
to their neighboring genes and GPR84, SLC16A3 and TDRD9
play important roles as secondary source genes, targeting their
specific, associated genes. To more fully understand these
hub gene interactions, these eight markers underwent gene
classification analyses in each of the six different disease groups,

to identify a set of highly predictive genes that could influence
the interaction pathways between these markers. As markers
GPR84, KLRK1, and TDRD9 were not represented in dataset E-
GEOD-6269 (Affymetrix chip HG-U133A), interaction profiling
of these genes was omitted from the gram-positive and gram-
negative bacterial infection group dataset. Using the exhaustive
ANN algorithm described above, a total of 740 new genes (10
new genes× 8 markers× 8 groups + 10 new genes× 5 markers
× 2 groups) were revealed. Low predictive errors (mean error =
0.1578) were observed for each of these hub markers across all
the groups (Supplementary Information S2, Table S3).

Amongst these newly selected genes, some overlapped
between groups (Supplementary Information S2, Table S4).
These entities may also participate in activating metabolic
pathways (pathway associations for the disease groups are given
in Supplementary Information S2, Table S5). High numbers
of overlapped genes were found in pediatric septic shock
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compared with pediatric sepsis, suggesting that these two clinical
manifestations of sepsis have similar response pathways and
biological processes, as expected. These overlapped genes are
MYL9 (whose primary function is in muscle development or cell
movement but has a secondary function in regulating platelet
development) and immune/inflammatory response pathways
(PCOLCE2, GPR84 and CD177). A small proportion of the
overlapped genes participated in different activities in other
cellular processes (FGF13, TDRD9) suggesting a possible way to
stratify these groups based on these activities. In addition to the
overlapped pathways, there is also evidence presented that some
pathways are uniquely associated to a specific disease group.
However, stability analyses for these pathways in the respective
disease group using larger patient cohorts collected at different
time points are needed. This is to ensure such pathways are
in fact unique for each of the disease group and that they can
be used as candidate pathways to identify different progressed
stages in both SIRS and sepsis, which may better inform patient
management and care. The second observation suggests a
possible impairment in cell growth and death and other cellular
processes in adult SIRS.

Regulation Response and Gene Interaction
Analyses
These hub genes were further investigated for their ability
to stratify sepsis from SIRS, septic shock, resolved SIRS,
gram-positive, or negative bacteraemia. The majority of these
genes showed inhibitory responses when interacting with the
other genes. Genes expressed in SIRS demonstrated distinct
interaction responses when interacting with those also highly
expressed in SIRS. All the SIRS-expressed genes showed
stimulatory responses when interacting with genes that were
highly expressed in sepsis. This stimulatory response appeared
inhibited when they interacted with one another. Stimulatory
interaction responses were observed in most of the gene clusters
in septis, SIRS, septic shock, resolved SIRS, and bacteraemia.
The latter gram-positive/gram-negative bacteraemia disease
group exhibited few interactions between the hubs and
complex, unique interaction signatures. The results summary
is given in Supplementary Information S4 and interaction
maps in Supplementary Information S5, this group was not
analyzed further.

Interaction maps were generated from gene interaction
analyses using Cytoscape and are given in Figures 1–4.
These show the specific regulation response pattern and
bi-directional interaction gene interactomes for the selected
8 markers in all 10 disease groups. Amongst the clusters
in the maps, cluster MYL9, GPR84, and SLC16A3 showed
uni- and/or bi-stimulatory signals in most groups, with the
exception of adult sepsis which exhibited inhibitory signals.
The majority of these clusters were not connected in most
disease and control states, except for adult sepsis and adult
SIRS with the gene clusters for TDRD9, CD177, GPR84,
PCOLCE2, FGF13 and SLC16A3 interconnected at various
points, either directly or through overlapped gene connections
(Supplementary Information S2, Table S6).

Gene Interaction Patterns in Adult SIRS and Sepsis

and Healthy Controls
Figure 3 shows the interaction maps of the core hub entities in
(a) adult healthy controls (b) adult SIRS and (c) adult sepsis. In
the healthy control group (Figure 3A), it can be seen that there
is interaction of the hub entities with a number of other gene
entities, most of which is inhibitory in character, as indicated by
the blue arrows. There is a small amount of stimulatory activity,
particularly for PCOLCE2 and CD177. There is little interaction
between the 8 hub-centered activities, which may indicate a state
of relative homeostasis. In the adult SIRS group (Figure 3B),
it can be seen that the complement of genes associated with
each hub gene varies from those observed in healthy controls
and there is significantly more stimulatory activity between
the hub genes and the interacting gene entities, particularly
for KLRK1. There is also increased interaction between the
hubs, indirectly between TDRD9 and PCOLCE2 through OLAH,
directly between GPR84 and FGF13 and indirectly through
CEACAM1 and CDADC1. The interaction maps for the sepsis
group (Figure 3C) show a similar pattern to those for SIRS, i.e.,
specific changes in the complement of genes associated with each
hub gene and significantly increased stimulatory interactions for
KLRK1, FGF13, and MYL9. There are interactions between the
GPR84, CD177, and TDRD9-centered hubs, through EXOSC4,
ZDHHC19, and NECAB1 which appear profoundly inhibitory in
nature, in contrast to the healthy controls. The MYL9-centered
hub shares entities TREML1 with adult healthy controls and
TGFB1l1 with adult sepsis.

Comparing the gene interaction profiles between adult sepsis
and adult SIRS in Figures 3B,C, different gene interaction
activities were observed. In adult sepsis, genes TDRD9, GPR84,
and CD177 interacted via overlapped genes EXOSC4 (TDRD9
↔ GPR84 ↔ CD177), ZDHHC19 (TDRD9 ↔ CD177) and
NECAB1 (GPR84 ↔ CD177). TDRD9 and GPR84 in adult
SIRS, interacted however with FGF13 (GPR84 ↔ FGF13)
and PCOLCE2 via the overlapped gene OLAH (TDRD9 ↔

PCOLCE2). The interactions in sepsis patients suggest possible
co-activation in inflammation actions.

Gene Interaction Patterns in Pediatric SIRS, Sepsis,

Severe Sepsis, Resolved SIRS, and Healthy Controls
Figure 4 shows the interaction maps of the core hub entities in
(a) pediatric healthy controls; (b) pediatric SIRS; (c) pediatric
sepsis; (d) pediatric severe sepsis (septic shock) and (e)
pediatric resolved SIRS. A similar pattern of mainly inhibitory
interactions of core hub entities with other gene entities was
observed in pediatric healthy controls (Figure 4A) and these
differ in the main from those observed in adult healthy
controls, except those centered around KLRK1 i.e., C1ORF68,
C19ORF45, LOC100506175, LOC100507244, PHF7, SLC22A8,
and ZDHHC19, which are shared. SIGLEC6 appears to be
variably connected with FGF13 in the adult and CD177 in the
pediatric controls.

In pediatric SIRS (Figure 4B), as seen with the adults, the
complement of genes associated with each hub gene alters,
there is significantly more stimulatory activity between the
hub genes and the interacting gene entities, particularly for
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FIGURE 3 | Continued

KLRK1 and SLC16A3. There is also increased interaction
between the hubs TDRD9 and PCOLCE2, however directly
in this case and between GPR84 and FGF13 indirectly
through RETN. CEACAM1 interacts with GPR84, but not

FGF13 in pediatric SIRS. The only hub which exhibits
shared entities other than CEACAM1 is the MYL9 hub,
which shares CMTM5, ITGA2B and TREML1 with the
adult dataset.
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FIGURE 3 | Interaction maps between hub biomarkers, entities and hub nodes; (A) healthy control adult (B) SIRS adult (C) sepsis adult. Source �: � Target: �

Predictive gene: � Candidate gene:: Inhibitory interaction:: Stimulatory interaction.

The interaction maps of the core hub entities in resolved
pediatric SIRS are shown in Figure 4C. In addition to alterations
in the complement of most hub-centered entities, with the
exception of the MYL9-centered hub, the connections between
the TDRD9 and PCOLCE2 and GPR84 and FGF13-centered
hubs appear now dissolved and there is a single connection
between the CD177 and GPR84-centered hubs. There are
few shared entities between the core entity-associated hubs,
with the exception of MYL9 which shares CMTM5 and
SELP with pediatric controls and SIRS and TREML1 with
pediatric SIRS.

In pediatric sepsis (Figure 4D) there are again alterations
in the complement of genes associated with each hub gene
and significantly increased stimulatory interactions for nearly
all hubs, with the exception of KLRK1 and PCOLCE2. TDRD9
and SLC16A3 show more modest stimulatory activity. There
are interactions between the TDRD9-centered hub and GPR84,
directly and through DDAH2, with CD177 through DDAH2,
with FGF13 through BST1 and with PCOLCE2, through
SH3GLB1. There is interaction of GPR84 with CD177 through
C19orf59 and RGL4 and with SLC16A3 and PCOLCE2, through
MTF1, CD82, and G6PD. There are few shared hub-associated
entities between adult and pediatric Sepsis, with the exception
of GPR84-associated EXOSC4 and ENTPD7, CD177-associated
DDAH2 and MYL9-associated TGFB1l1.

Figure 4E shows the interaction maps of the core hub entities
in pediatric severe sepsis (septic shock). The pattern is similar
to that for pediatric sepsis with connections between nearly all

hubs with the exception of KLRK1, SLC16A3, and MYL9. There
are also changes in the complement of genes associated with each
hub gene and increased stimulatory interactions, compared with
the healthy control profiles. There are interactions between the
TDRD9-centered hub and PCOLCE2, directly and through HK3,
with the FGF13-centered hub directly and the GRP84-centered
hub through PCYT1A. There is connection between the GRP84-
centered hub to the CD177-centered hub through ZDHHC19.

Gene entities shared between sepsis and severe sepsis response
hubs are; TDRD9 – LIN7A, GPR84 – ENTPD7, PYCT1A and
ZDHHC19, CD177 – DDAH2 and RGL4, SLC16A3 – DENND3
and MBD6, MYL9 – CMTM5, ITGB3, ITGA2B, NRGN, SELP
and TREML1. The only entities shared with pediatric healthy
controls are CMTM5, NRGN and SELP and are also associated
with the MYL9-centered hub.

PANTHER Functional Pathway Analysis
A total of 82 PANTHER pathways were found containing
333 hits, based on the 748 gene identified previously (see
section Overlapped Genes and Pathway Analyses and
Supplementary Information S1, Figure S5). The healthy
groups in both the pediatric and adult cohorts had a much
lower number of pathway hits than all disease groups in general,
as perhaps expected. These pathways were grouped into 11
major themes. The majority of the gene hits were derived from
the pediatric group (pediatric septic shock(p), 57 hits, 17.1%),
SIRS-resolved (SIRS(p), 49 hits, 14.7%), pediatric gram-positive
(gram+bacterial(p), 43 hits, 12.9% and also adult SIRS (SIRS(a),
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FIGURE 4 | Continued

35 hits, 10.5%). These were related to one or more of the
following themes: signal transduction, G protein–related, growth
and development and also immune system. High numbers of
signal transduction hits were also found in the adult group

(13 hits in sepsis and 17 in SIRS) when compared to the same
disease group in the pediatric cohort (6 in sepsis and 6 in SIRS).
In the pediatric cohort, a high number of signal transduction
hits were also observed in SIRS-resolved and septic shock. In
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FIGURE 4 | Continued

addition, the G protein-coupled receptor pathway was found to
have a large number of identified hits in the pediatric cohort,
including SIRS-resolved (11 hits), septic shock (10 hits), and
gram-positive bacteraemia (9 hits). In general, a higher number

of hits were found in both patient sepsis groups when compared
to the SIRS groups in the growth and development pathway.
The immune system pathway, in contrast, had a higher number
of hits in the SIRS and gram-positive bacteraemia groups
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FIGURE 4 | Interaction maps between hub biomarkers, entities and hub nodes; (A) healthy control pediatric (B) SIRS pediatric (C) SIRS-resolved pediatric (D) sepsis

pediatric (E) septic shock pediatric. Source �: � Target: � Predictive gene: � Candidate gene:: Inhibitory interaction:: Stimulatory interaction.

than in the sepsis group. All disease groups except the adult
SIRS group, were found to have gene hits associated with
neuro-degenerative disorders.

Similar Entities Analysis
Many of the eight key hub entities have ascribable functions
and can be assigned to a particular cell type with some
confidence, e.g., neutrophil-specific CD177. However, it was
not apparent which cell type(s) were associated with expression
of some of the other hub entities. To ascertain which of the
entities could be associated with other cell delineating markers
further parametric and similar entity analyses were conducted.
Data were imported into GeneSpring 12.5 from the respective
repositories as outlined above, normalized to the 75th Percentile
and baseline transformed to the global median. ANOVA or T-
test parametric analyses were conducted on each dataset and
the results then ranked on p-value, from highest to lowest
(given in Supplementary Information S6–S9; Tables S6.1, S7.1,
S8.1, S9.1).

Using a focused biomarker gene list, which includes cluster
of differentiation (CD) and other cell-associated biomarkers
(Supplementary Information S3), similar entity analyses were
conducted for each of the 8 hub markers [using default settings
(Euclidean) and a distance-based similarity (or covariance)
cut-off value ≥ 0.7], to establish potential cell-type associations.
Using this analysis, a number of gene entities were found
to co-associate with hub genes CD177, FGF13, GPR84,

KLRK1, MYL9, PCOLCE2, and TDRD9 in datasets E-GEOD-
6269 (Supplementary Information S6, Tables S6.2–S6.9),
E-GEOD-28750 (Supplementary Information S7, Tables S7.2–
S7.9), E-GEOD-13904 (Supplementary Information S8,
Tables S8.2–S8.9) and E-GEOD-9960 (Supplementary

Information S9, Tables S9.2–S9.9). The entities associated
with the hub genes which are shared between the 4 datasets are
summarized in Supplementary Information S2, Table S7.

These results reflect observations from the regulation response
pattern analyses, where each hub gene associates with a slightly
different complement of genes. However, some hubs share genes
in common, perhaps indicating expression in a common cell type.
These results may also give some indication as to the cell type or
biological processes associated with that hub gene, e.g., CD177
and MMP8 indicating neutrophil cell activity.

DISCUSSION

Using a two-tier gene screening process of rank distribution
based on regression error and comparison with empirically-
derived functional ontology lists derived from previously
published literature, 48 significant genes were identified
in this study. Three house-keeping genes for use in the
study were additionally identified based on their invariant
expression between disease test groups. Of these, 22 were
upregulated in sepsis and 26 in SIRS. A gene interaction
analysis based on these genes was conducted and 8 potent
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markers CD177, GPR84, FGF13, KLRK1, MYL9, PCOLCE2,
TDRD9, and SLC16A3 were identified and selected for further
investigation for their ability to stratify SIRS from sepsis and
septic shock.

Gene interaction results for these 8 markers showed
interaction relationships between other gene entities, which
also showed dynamic regulation between different control
and disease groups. The adult and pediatric control groups
appear to exhibit a more balanced profile of negative
and positive regulatory interactions between the hub and
associated genes and may reflect a state of homeostasis. It
is therefore not surprising to find some overlapped genes
between pediatric healthy control and adult healthy control
(see Supplementary Information 2, Table S6) although it is
generally held that the immune responses of adults and children
differ in some respects (110, 111). Fewer than nine overlapped
genes were identified between these two non-disease groups
and the majority of these genes were found to map to the
KLRK1-associated immune response pathway.

In contrast, the disease group hub and associated gene
interactions exhibit increased either positive or negative activities
compared with normal controls. The adult and pediatric
SIRS disease groups exhibited features in common i.e., shared
interaction between the TDRD9 and PCOLCE2 hubs and the
GPR84 and FGF13 hubs (the latter both directly and indirectly in
adult SIRS). These interactions are replaced in pediatric resolved
SIRS by direct interaction between the CD177 and GPR84 hubs.
The adult sepsis group exhibited indirect interaction between the
CD177, GPR84, and TDRD9 hubs whereas the pediatric sepsis
group exhibited indirect interaction between CD177, GPR84
and TDRD9; direct interaction between the GPR84 and TDRD9
hubs, indirect interaction between TDRD9 and the FGF13 and
PCOLCE2 hubs and also between the PCOLCE2 and SLC16A3
hubs. A similar interaction profile was observed in pediatric
septic shock, except for the SLC16A3 interactions. This suggests
commonalities in the core immune response between adults and
children in sepsis and septic shock and this differs from the
profile of interactions observed in SIRS. These results suggest that
the immune pathways involved in SIRS and sepsis pathogenesis
are different, even if the core hub entities controling those
disease processes are shared. This could be taken to mean that
either different response pathways are activated in the same
cell type or that different cell types/sub types are involved
in the response.

Comparing the overall interaction responses of the immune-
related clusters CD177, GPR84, and KLRK1, stimulatory
responses were observed between KLRK1 and its associated
genes in adult sepsis, adult SIRS, pediatric SIRS and pediatric
resolved SIRS. However, as this marker appears downregulated
in the fold-change analyses compared with CD177 and GPR84
which are upregulated this would imply that the KLRK1
response is abrogated and that CD177/GPR84-responses are
enhanced. Further detailed breakdown of these and the other
hub associations may give an indication of some of the
underlying pathological processes at work in the disease
groups. CD177 (57, 58) and GPR84 (73, 74) are inflammatory
markers and were found to be expressed at a high level

in all disease groups compared to healthy controls. This
suggests upregulation of immune processes associated with these
markers in disease groups compared with healthy controls.
This also further implies that sepsis and SIRS share elements
of a common immune response blueprint, based around
these two entities. These appear in opposite aspect in the
overarching interactive pathways map (Figure 2). However,
there are no significant variations in the overall expression
level of these which could be used for stratifying sepsis
from SIRS, septic shock, resolved-SIRS, or bacteraemia. There
is a great deal of interactive action surrounding these two
markers and these may fulfill oppositional roles in the primary
disease processes. GPR84 stimulates more proinflammatory
processes in adult SIRS, pediatric SIRS, pediatric resolved-
SIRS, pediatric sepsis, and pediatric septic shock and would
support the premise that these patients exhibit profiles consistent
with an ongoing pro-inflammatory immune response. The
precise nature and detail of these differ between each of the
disease processes e.g., the interactions associated with GPR84
appear inhibitory in adult sepsis and stimulatory in SIRS and
pediatric sepsis.

Central to this dynamic is the interplay between GPR84 and
other entities e.g., CD177, FGF13, and PCOLCE2 which appears
broadly inhibitory in nature in the overarching interaction
map (Figure 2) and VSTM1(alternatively called SIRL-1), which
is stimulatory. This latter entity is also being stimulated by
DACH1. VSTM1 plays an extremely important role in the
regulation of the oxidative burst in phagocytic cells (112, 113)
including neutrophils and is involved in attenuating neutrophil
extracellular trap (NET) formation (114, 115). It is also a
key factor in development of the proinflammatory Th17 T-
cell response (116). Thus, in the context of its antagonistic
role to CD177, which when engaged with β2 integrins will
impair neutrophil transmigration across endothelial barriers (57,
59, 60), this may perhaps imply differential control of two
alternate differentiation and activation functions or pathways
in neutrophils. CD177 appears to be subject to stimulatory
mechanisms by HLA-DRA and GIMAP4, the former of which is
likely expressed on other antigen presenting cells (APCs) and the
latter by B and T-lymphocytes (117). The view currently perhaps
represented by these interactions is of alternate promotion
and/or competition between two different functional subtypes
of neutrophils i.e., a proinflammatory/activated, trans-migratory
subtype and an anti-inflammatory and/or differentiated subtype,
perhaps involved in immune suppression and/or NET formation.
This could also be interpreted as competition between two
entirely different pro and anti-inflammatory cell types, as
GPR84 can also be expressed by both neutrophils and
monocytes/macrophages. It is not possible from this study
to determine which cell type(s) are responsible for GPR84
expression and further study is required.

CD177
As stated above, CD177 expression was observed to be highly
elevated in adult and pediatric SIRS, sepsis, septic shock and
resolved SIRS. It was found to associate with a variety of
gene entities in the interaction analyses. These shared few
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commonalities between the different disease groups with the
exception of DDAH2, RGL4, and ZDHHC19 in adult sepsis
and pediatric septic shock. DDAH2 encodes a dimethylarginine
dimethylaminohydrolase, which functions in nitric oxide
(NO) generation, by regulating the cellular concentration of
methylarginines responsible for inhibiting/regulating nitric
oxide synthase activity (118). This entity has been associated
previously with sepsis and may contribute to disease pathology
through alterations in NO activity (118–120). In mice, knockouts
(KOs) in DDAH2 result in increased mortality in a mouse model
of sepsis (118), macrophage-specific DDAH2 KOs exhibit similar
disease susceptibility to global KOs. Therefore, this gene entity
is associated with the pro-inflammatory response and bacterial
killing, as well as involvement in endothelial and blood pressure
homeostasis. Its upregulation may perhaps also imply regulation
of production of iNOS-regulated nitrogen reactive metabolites
in sepsis (120). RGL4 overexpression leads to increases in the
levels of the GTP-bound forms of Ral and the small GTPase
Ras (121), leading to increased Ras activation and generation of
morphologically transformed cells and disorganized cell growth.
Additionally, ZDHHC19 is involved in palmitoylation of R-Ras
(122), which leads to changes in its cellular functions, including
increased viability and morphological alterations. Therefore,
the activities of both these entities could be linked and might
suggest regulation of cell morphological alterations. CD177 is a
neutrophil specific gene and is variably expressed on different
peripheral blood neutrophil populations (58). CD177high

expressing cells have been found previously in severe bacterial
infections and sepsis (123, 124) and are considered to play a
major role in disease pathology. Association of CD177 with
other neutrophil associated genes e.g., LCN2 and ELANE was
confirmed from similar entities analysis. Ras inhibits terminal
neutrophil differentiation (125), thereby indefinitely extending
their proliferative potential and strongly promotes the sensitivity
of these cells to granulocyte-macrophage colony-stimulating
factor (GM-CSF). These entities may perhaps therefore be
implicated in accumulation of relatively undifferentiated,
immature neutrophils in the peripheral blood as observed in
sepsis and SIRS (126) and/or neutrophil NET formation (127).
This latter process may be Ras mediated through the actions of
RGL4 and ZDHHC19. Interestingly RGL4 is normally associated
with KLRK1 in adult and pediatric healthy controls along with
various other entities, implying an alternate role in normal
healthy immune homeostasis.

CD177 also exhibited strong direct connections to other hub
entities GPR84 and TDRD9 in adult and pediatric sepsis and to
GPR84 alone in pediatric septic shock and resolved SIRS. It was
not connected to any other hub entities in adult or pediatric SIRS.
Similar profiles for GPR84 and CD177 were observed with the
overlapped genes in sepsis (adult and pediatric–TDRD9) and in
SIRS (adult compared with pediatric). This suggests that CD177-
associated components of the response in adults and children are
broadly similar but not identical in either disease condition.

In the similar entities analysis CD177 was linked with
other classical neutrophil markers e.g., LCN2, ELANE and with
others e.g., ARG1, ALPL, and CD24. It was also associated
with ALPL in pediatric septic shock. ARG1 is a cytosolic

arginase (128) and one of the factors expressed and released
by myeloid suppressor cells (129). This depletes arginine in the
cellular microenvironment leading to a number of immune-
regulatory effects, including T-cell inhibition (130–132), limiting
the availability of arginine for nitric oxide synthase, a key
factor in NO production and regulation of other arginine-
dependent biological processes (128). These myeloid suppressor
cells have been implicated in the immunopathology of a number
of diseases, but also in sepsis, both in humans and mouse
models (130, 133). This combined with expression of DDAH2 as
discussed above may suggest that these CD177 expressing cells
may exhibit the characteristics of immature, anti-inflammatory
myeloid (neutrophil) suppressor cells. This has been observed
previously (131, 134, 135). Neutrophils and neutrophil NETsmay
play a key role in intravascular coagulation, which is a feature
of sepsis (136, 137) and also be involved in immunomodulation
(138–143).Therapies targeting these cells may be beneficial in
sepsis (144, 145), although their role as disease driver or
modulator remains unclear. As there are both pro and anti-
inflammatory responses evident in sepsis, the pathway toward
immunomodulatory therapies based on these observations, is still
unclear (146).

ALPL is a tissue-non-specific form of alkaline phosphatase
and is a membrane bound glycosylated enzyme not expressed
in any particular tissue. Its function in disease processes
in this study is unclear. We found it to be associated to
adult SIRS (along with ZDHHC18, as opposed to ZDHHC19
found in the sepsis pathway association analysis). It has
been associated with neutrophil activity previously in obesity
(147) and may be associated with mitophagy of redundant
mitochondria (148). Defective mitochondrial activity has also
been previously documented in sepsis (149, 150). CD24 is
considered to be predominantly a B cell marker (151), but it is
also found on granulocytes and is implicated in early neutrophil
responses to infection in sepsis-induced acute respiratory
distress syndrome (152), along with other entities identified
in this study—olfactomedin 4 (OLFM4), lipocalin 2 (LCN2),
and bactericidal/permeability-increasing protein (BPI). These
contribute further to the overall neutrophil-dominant profile of
this hub and its associated entities.

Schaak et al. (20) observed an association of CD177
with MMP8, HP, and RETN in a large meta-analysis of
previously-published sepsis microarray datasets and postulated
this signature to be associated with activated neutrophils.
These entities comprised the most preeminent, upregulated
entities in this study, in addition to OLAH. These authors
also noted significant expression heterogeneity between different
individual patients, which may reflect differences in pathogenic
disease origin. Our observations here would confirm some of
those concluded earlier, from these previous studies. These
observations, combined with the fact that CD177 appears to
interact differently with other hub genes in either SIRS or sepsis,
would imply perhaps activation of different pathological immune
pathways but in a similar cell type (i.e., neutrophils). Different
neutrophil subsets are becoming a keen focus of interest in
disease pathogenesis (153) and further work is required to tease
out these pathway relationships.
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GPR84
As with CD177, GPR84 showed increased interaction between
the hubs, in disease states, compared with healthy controls.
GPR84 is a G protein-coupled receptor for medium-chain
fatty acids (74). It is expressed in neutrophils, monocytes and
macrophages (75, 76) and canmodulate pro-inflammatory TNFα
mRNA expression in endotoxin-tolerant human monocytes
when activated with its ligand decanoic acid (77). It is
highly expressed on the surface of peripheral blood leukocytes
and is responsible for IP3-Ca2+ signaling, mobilization of
intracellular granules, chemotactic migration, as well as assembly
of reactive oxygen species generating NADPH-oxidase. This
latter function is relatively low in naïve neutrophils but is
significantly increased by pre-treatment of neutrophils with
TNFα (75) or GM-CSF (154). In both adult and pediatric SIRS
there is a connection between GPR84 and FGF13, which in
the pediatric group is indirectly through RETN and in adults
directly and indirectly through CEACAM1 and CDADC1. This
connection is maintained in pediatric resolved SIRS. RETN
(resistin) is an immune-associated entity and a component
of neutrophil exocytic granules (155) and inhibits essential
neutrophil functions e.g., the oxidative burst (156). CEACAM1
is expressed on a variety of immune cells (42, 157), including
neutrophils (158) and is a key receptor involved in binding of
these cells to endothelial cells during the process of exvagination
from the periphery into tissue locations (159, 160). CDADC1
(cytidine and dCMP deaminase domain containing 1) is
reportedly a testis-specific protein involved in testis development
(161), however it may play a role in regulating the cell cycle and
proliferation (162, 163). Its role in disease processes in the context
of this study is very unclear.

In adult sepsis there is indirect interaction between GPR84,
CD177, and TDRD9 through EXOSC4 and with CD177 through
NECAB1. The profile is somewhat similar in pediatric sepsis
with connections between GPR84 and TDRD9 directly and
indirectly through instead DDAH2 and with CD177 through
C19orf59 and RGL4. These connections are maintained in
pediatric septic shock, except mediated indirectly through
ZDHHC19 (CD177) and PCYT1A (TDRD9). Entities ENTPD7,
and EXOSC4 are shared between the adult and pediatric GPR84
connections. ZDHHC19 is linked to GPR84 in the pediatric
interaction map as opposed to TDRD9 and CD177 in the
adult interaction map. Thus, although the connections and
entities are broadly similar the regulatory profile is significantly
different and is inhibitory in the adults and stimulatory in
children. Due to the key regulatory nature of GPR84, this
would imply immune upregulation/inflammation in children
associated with the GPR84 hub and suppression in adults.
DDAH2, ZDHHC19 and RGL4 have been discussed previously
(see above), entities ENTPD7, C19orf59, EXOSC4, and PCYT1A
warrant further discussion.

ENTPD7 or ectonucleoside triphosphate diphosphohydrolase
7 is a purine-converting ectoenzyme which hydrolyses
extracellular nucleoside triphosphates (UTP, GTP, and CTP) to
nucleoside monophosphates as part of a purinergic signaling
pathway. This is involved in inflammation and oxidative stress
(164). Its role in cellular processes in this context are not known,

however, it may be associated with protection from or response
to oxidative stress (165), as hypoxia is a common feature of
sepsis (166–169) and may have an effect on immune cell function
(170). C19orf59 (or MCEMP1) was originally identified as a Mast
cell-associated protein (171) and is a peripheral blood biomarker
for patients with stroke (172–174). However, it also constitutes a
component of neutrophil exosomes and myeloid suppressor cell
exosomes (175). This factor perhaps plays a role in neutrophil
pathophysiology, organ damage, or is associated with immune
suppressor-cell activity in pediatric sepsis. EXOSC4 (exosome

component 4) is also a component of exosomes, involved in 3
′

→ 5
′

exoribonuclease activity (176), suggesting an association
with degranulation activity. MYCL1 is the only entity exhibiting
GRP84-associated stimulatory activity in adult sepsis. This entity
is selectively expressed in dendritic cells (DCs), expression of
which is controlled by IRF8 during DC development. MYCL1
expression is initiated in DC progenitors and maintained in
mature DCs even in the presence of inflammatory signals such
as granulocyte-macrophage colony-stimulating factor. Loss of L-
Myc by DCs causes a significant decrease in in vivoT-cell priming
during infection (177). This interaction may perhaps suggest that
GPR84 reactivity is influenced by a MYCL1-associated process.
PCYT1A (phosphate cytidylyltransferase 1, choline, alpha) is
involved in the regulation of phosphatidylcholine biosynthesis.
Its expression is somewhat ubiquitous, however is may play a role
in some immune processes e.g., regulation of B cell progenitor
fate in germinal centers.

The cell type involved in this GPR84 expression is not certain,
as it can be expressed on neutrophils and other APCs e.g.,
monocytes/macrophages. In the similar entities analysis, it is
variably linked with CD63, CD300A, and CD58, however there
was no consensus between datasets. These biomarkers can also
be expressed on several other cell types. Our hypothesis is that
it is either expressed in a competitive fashion to the CD177-
associated pathway in neutrophils or subsets of neutrophils,
or in another APC type, functioning in a competitive fashion
to CD177-expressing neutrophils. However, the activity of this
marker could not be ascribed to a cell type with any degree
of confidence.

TDRD9
TDRD9 (tudor domain containing 9) also showed increased
interaction between the hubs, in disease states, compared with
healthy controls. Expression of this entity has been described in
gametogenesis with expression in testis and thyroid (103–106),
its association with immune cells or processes has not previously
been reported. Its primary function is in transposon silencing and
progression of spermatogenesis (107), through anATPase activity
and interaction with PIWI proteins. It potentially could play a
broader role in DNA damage protection (108, 109). Whether or
not this is a secondary function in immune-related processes is
currently unknown.

In both adult and pediatric SIRS there is a connection
with PCOLCE2, directly in the pediatric group and indirectly
through OLAH in adults. This association is disconnected
in pediatric resolved SIRS. No other entities were found to
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overlap between adult and pediatric groups. OLAH (oleoyl-ACP
hydrolase), is another gene purported to have sex-linked tissue-
restricted expression in placenta and testis and plays a role in
fatty acid biosynthesis. Its expression in bone marrow-derived
mononuclear cells isolated from patients with rheumatoid
arthritis has been reported previously. Again, its functional role
in the context of the SIRS disease process is as yet unexplained.
Other placenta-related genes e.g., PLAC8 have also been reported
in association with immune processes including sepsis, however
wider tissue expression of this latter gene has already been
mapped and its association with immune cells and function
confirmed. Whether secondary functions exist for both TDRD9
and OLAH remains to be elucidated. In similar entities analysis
it associated with many entities, including those shared between
datasets CEACAM1, DACH1, and FLOT1. CEACAM1 has been
discussed earlier, DACH1 is involved directly in regulation of
cell cycle regulators in cells of myeloid origin (178) and FLOT1
involved in vesicle trafficking and cell morphology and its
expression documented previously in immune cells (179–181).

TDRD9 appears to play a central and dominant role in
sepsis, particularly the pediatric data set. As described above,
there was association of TDRD9 with CD177 and GPR84 in
adult and pediatric sepsis. In addition, there was association
with FGF13 through BST1 and PCOLCE2 through SH3GLB1
in pediatric sepsis. Connection with CD177 is lost in pediatric
septic shock. SH3GLB1 (SH3 domain containing GRB2 like,
endophilin B1, also called Bif-1) is a proapoptotic member of
the Bcl-2 family, Bcl-2-associated X protein (Bax) and may
be involved in regulating apoptotic signaling pathways and
in maintaining mitochondrial morphology. This may play a
role in autophagy-mediated pathogen killing (182, 183). The
overarching impressions from the TDRD9-associated activities
are of cell proliferation, adhesion and phagocytosis/autophagy,
perhaps involved in pathogen clearance/killing (184).

FGF13
The association of FGF13 with GPR84 in pediatric and adult SIRS
has been discussed. This association is lost in pediatric resolved
SIRS. This entity also shows association with RETN, LCN2, and
crucially OLFM4 in pediatric SIRS and C19orf59 in adult SIRS.
OLFM4 (olfactomedin 4) is an antiapoptotic factor which plays
a role in several cellular and immune functions and is associated
with a subset of neutrophils (61), distinct from CD177 expressing
neutrophils (185). OLFM4 expressing neutrophils have been
suggested to be the pathogenic cell type in a murine model of
sepsis (186) and in pediatric septic shock (187) and has been
trialed along with other neutrophil genes as candidate biomarkers
in sepsis (188). FGF13 is also associated with TDRD9 in pediatric
sepsis, as discussed previously and no other hub entities in
adult sepsis. It is also associated with TDRD9 in pediatric septic
shock and indirectly with PCOLCE2 through WIPI and ASPH.
WIPI is an autophagy-associated entity, which is implicated
in neutrophil differentiation from immature precursors. An
inhibitory interaction between this and FGF13, would imply an
effort to prevent neutrophil differentiation in pediatric septic
shock. ASPH (aspartate beta-hydroxylase) is involved in ion and
small molecule transport pathways, its role in this disease process

context is unclear. Similar entities analysis did not provide any
clear identification of this entity with a specific cell type, due
to lack of clarity in association with other cell-type specific
gene markers (Supplementary Information S2, Table S7).
Interestingly it does appear to associate with a large number
of CD markers, including CD1A, CD1B, and CD1C, among
others, which might support a function of presentation of lipid
antigens to NKT cells. However, based on the ANN evidence,
it may be that FGF13 is neutrophil associated. It sits at the
center of the overarching interaction map (Figure 2) and is the
target for negative interactions with CD177, MMP8, and RETN,
which all associate together in the similar entities analysis. This
could be taken to imply competitive interaction between two
neutrophil cell types, one OLFM4 expressing (186, 189, 190)
and the other CD177 expressing (191), perhaps associated with
different immune functions. This requires further investigation.

PCOLCE2
PCOLCE2 interactions have been described in the context of
other hub entities previously. It appears to have a considerable
dependency on interactions with others, particularly TDRD9. It
interacts with this entity only in adult and pediatric SIRS. It
becomes disconnected from TDRD9 in pediatric resolved SIRS.
It does not interact with any other entities in adult sepsis. It
associates directly with TDRD9 and indirectly with SLC16A3
in pediatric sepsis, through MTF1, CD82, and G6PD. It is
associated with TDRD9 and FGF13 in pediatric septic shock,
as discussed previously. PCOLCE2 also critically interacts with
another entity CMTM4 (192), which is an enhancer of PD-L1
activity. This could play a major role in immune suppression of
T-cell activity. MTF1 (metal regulatory transcription factor 1),
plays a primary role in metal ion homeostasis and processing,
but also a role in fatty acid and lipid metabolism. It may have
a function in ion and metabolic homeostasis (193, 194), during
the disease inflammatory process. It’s association with G6PD
(glucose 6-phosphate dehydrogenase) and various other factors
including CA4 (carbonic anhydrase 4) and HK3 (hexokinase
3) would also imply a central role in metabolic homeostasis
sensing or regulation. This may be a secondary effect in the
disease process, due to metabolic perturbation and hypoxia seen
in both these disease conditions. Its primary role in disease
pathology is unclear. CD82 is a cell surface tetraspannin (195,
196), expressed on a variety of leukocyte cells including T cells
(197), is downregulated in infection and correlates with increased
leukocyte motility. Similar entities analysis gave a similar profile
to that for TDRD9 and provided little useful information as to
the cells of origin, although it provides additional evidence of
the close functional link between TDRD9, PCOLCE2, and also
SLC16A3. The functions managed by these hub genes may be
intimately connected.

SLC16A3
SLC16A3 [solute carrier family 16 (monocarboxylic acid
transporters), member 3], showed no increased interaction
between the hubs in any of the disease states except pediatric
sepsis compared with healthy controls. This entity plays a role
in transport of monocarboxylates including lactic acid and
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pyruvate. Lactate is postulated to increase PD-L1 expression
on monocytes and macrophages which could contribute to
immunosuppression (198). It associates with CD82 and MTF1
(see above), in both pediatric SIRS and sepsis (see above) and
DENND3 and MBD6 in pediatric sepsis and septic shock. It
is also associated with FOSL2 in pediatric septic shock and
LILRB2 and ITGAM in pediatric resolved SIRS. It is associated
with FUT7 and AMPD3 in adult SIRS and sepsis. This entity
therefore shows some overlap in activity between SIRS and
sepsis, although again the mechanisms at play in adults and
children is different. DENND3 (DENN domain containing 3) is
the exchange factor for the small GTPase Rab12 and is involved
in macro-autophagy (199–202), induced in response to cellular
starvation. MBD6 (methyl-CpG binding domain protein 6) is
involved in intracellular protein metabolism (203, 204) and
may play a role in innate system pathogen killing (205). Its
function therefore may be linked to that of DENND3. AMPD3
(adenosine monophosphate deaminase 3) is also involved in
energy metabolism and may also play a role in microbial
interactions with the host (206).

FOSL2 expression is regulated by TGF-β1 and is a key
transcriptional regulator which plays a role in invariant natural
killer T-cell (iNKT) development (207). Alteration of expression
of this marker would suggest a role of these cells in pediatric
sepsis. LILRB2 is involved in immunosuppressive responses
(208–210) and may function in down-regulation of immune
responses in pediatric resolved SIRS. ITGAM (CD11b) is a
component of the receptor for platelet factor 4 (PF4), but also
functions in immune signaling connections with SLC16A3. This
latter entity is a general myeloid cell marker, including myeloid
suppressor cells, which have been implicated in sepsis and other
diseases (130, 133, 211–215). These associations would suggest
that this hub entity may play a key role in immunosuppressive
cell functions (132), as its effect on many entities in the
overarching pathways map is inhibitory (Figure 2). FUT7 [α1,3-
fucosyltransferase (Slex)] is involved in leukocyte/endothelial
adhesion (216) in response to IL1β stimulation (217) and its
involvement implies activation and binding of cells as part
of the functionality associated with this hub entity in adults.
CD58, a ligand of the T lymphocyte CD2 protein, which
functions in adhesion and activation of T lymphocytes (218–
220) was found to be associated with SLC16A3 by similar entities
analysis and this may be of significance in that engagement
of this key receptor with CD2 is predominant in chronic
antigen stimulation, which may be an important feature of
sepsis, particularly with regard to natural killer cell (NK) cell
dysfunction (221). The predominant theme of this hub and
associated entities is therefore effector/suppressor cell function
and associated T, NK, or invariant natural killer cell (iNKT) cell
activity in sepsis and a somewhat different pathological pathway
or cell type associated with this marker in pediatric compared
with adult SIRS and sepsis.

KLRK1
KLRK1 (killer cell lectin like receptor K1, also called NKG2D)
is a transmembrane protein involved in natural killer cell (NK
cell) and CD8 T-cell activation (222–224). It has been shown to

also regulate T-cell independent B1-subtype B cells and antibody
production in response to bacterial infection (82). NKG2D-
deficient mice produce significantly less antigen-specific IgM
antibodies upon immunization with T cell-independent antigens,
and they are more susceptible to Gram-negative sepsis. This is
therefore a crucial key entity responsible for cell activation in
innate and adaptive immune responses and plays an important
role in protection from infection and development of sepsis.

Expression of this entity was reduced in pediatric SIRs and
sepsis and this was maintained in septic shock and resolved
SIRS. Its expression remained relatively unchanged in adult SIRS
and sepsis. It is interesting that this marker is downregulated in
these disease conditions and alongside many of the associated
entities, appears to be inhibited. KLRK1 did not associate with
any other hubs in any of the control or disease states. It
showed association with CD2, IL2RB, and IL7R in adult SIRS
and KLRG1 and TGFBR3 in adult sepsis, among others. It
showed interaction with CD28 and TLR7 in pediatric SIRS and
CD8A, KLRC3, GIMAP5, and GIMAP6 in resolved-SIRS. There
is connection between KLRK1 and CD2, NLRC3 (a NOD-like
receptor involved in innate immunity), CD247 (CD3-ξ chain),
CD96 and other markers of T and NK function. Association
with many of these markers was confirmed using similar entities
analysis (Supplementary Information S2, Table S7) e.g., CD2,
CD8A, IL2RB, ITK, NLRC3, and also GIMAP4, etc. Many
of these entities are T-cell associated and this would imply
a primary associative interaction with T-cell derived actions.
Although generally T-cell function is also impaired in sepsis little
is known about the action of γδ or invariant NKT cells in disease
processes, or mucosal associated invariant T cells (MAITs) and
intraepithelial lymphocytes (IELs) (225).

GIMAP4 sits at the fulcrum of the overarching interaction
map and is a stimulatory effector of several key entities,
including PCOLCE2, FGF13, and CD177. Expression of this
entity is prevalent in B and T-cells (117) and particularly
mature T cells (226). It exhibits differential expression in cells
of the T helper (Th) subtype (227), affecting expression of key
cytokines including interferon-γ (228). This observation could
be interpreted therefore, as Th cells being the positive stimulatory
driver behind these latter entities activities. The other entities in
the complex frame centered around them in Figure 2 interaction
map, appear to be seeking to counteract and oppose this activity
i.e., there are a lot of directed inhibitory activities directed against
them by other regulatory factors in pediatric sepsis e.g., BMX
(229) andVSTM1 (116) etc. KLRK1 showed increased interaction
with a variety of entities including BCL11B in pediatric sepsis.

In addition, KLRK1 appears negatively influenced by kinases
ITK [inducible T-cell kinase (230)] and TXK. These are
involved in CD4, CD8, and iNKT cell development (231–
239). ITK functions to regulate mature T-cell development and
differentiation, but also acts as an inhibitor of NKG2D-initiated
granule-mediated killing in NK cells (83, 240). This implies
a central role in NK cell down-regulation. NK cell function
is impaired in sepsis (241–244) most likely due to chronic
antigen overstimulation (221). Therefore, the overarching and
complex emerging picture is of NK-cell function suppression,
perhaps driven by (CD4) T-cell and/or APC activity. This is
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more profound in the pediatric data set than the adult. NK cell
dysfunction has become a focus of research interest in recent
reports and may be associated with chronic antigenic stimulation
and exhaustion (18, 221, 241, 243). This may be due to defective
receptor-mediated effector responses (242), and the observations
presented here would support that hypothesis.

MYL9
MYL9 (myosin light chain 9) is primarily a myosin light
chain that may regulate muscle contraction by modulating the
ATPase activity of myosin heads. However, various isoforms
of this exist. The inducible form MLC-2C plays a role
in monocyte/macrophage lineage development and platelet
production (85–87). In this study MYL9 associates with a
large number of other genes with platelet-related functions e.g.,
CMTM5, ITGA2B, ITGB3, TREML1, and SELP (245), which
may perhaps suggest its role in this context is as regulator of
platelet production.

This hub gene exhibited the greatest conservation of
associated entities, compared with other hub entities, across all
the control and disease interaction map analyses. However, it
also did not associate with any other hubs in any of the control
or disease states. In the pediatric control it associated with a
number of entities including SELP, CMTM5, and TGF1l1, in
pediatric SIRS with ITGB3 and ITGA2B, TREML1, and CMTM5.
All of these are associated with MYL9 in pediatric sepsis and in
pediatric septic shock, except for CMTM5 in the latter. CMTM5,
SELP, and TREML1 were also observed in pediatric resolved
SIRS, in addition to ALOX12 (arachidonate 12-lipoxygenase, 12S
type), which was also seen in pediatric sepsis. This latter entity
and its reaction products have been shown to regulate platelet
function (246). The profile of MYL9 associated gene interactions
for adult sepsis is quite different than that for pediatric sepsis,
with association instead with platelet membrane glycoproteins
GP5 and GP6, PLOD2, COL6A3, and PROS1. MYL9 associates
with TREML1 in adult controls and other integrin subunits
ITGA3 and ITGB3BP. It interacts with TREML1, CMTM5,
TGFB1l1, and ITGA2B in adult SIRS, among others and TGFB1l1
only in adult sepsis. The interactions are intermediate in adult
SIRS and predominantly pro-stimulatory in adult sepsis.

SELP (p-selectin) has been implicated in sepsis for some
considerable time and may contribute to neutrophil recruitment
and NET formation (247–250). Ascorbic acid treatment is
in focus as a potential therapy directed toward these cell-
to-cell interactions (251, 252). CMTM5 has been implicated
in platelet aspirin responses through studies in cardiovascular
disease (253, 254). ITGB3 (integrin subunit beta 3) and ITGA2B
(integrin subunit alpha 2 beta; both component chains of the
heteromeric, platelet-specific integrin αIIbβ3), have also been the
focus of intense interest in sepsis (255–258). TREML1 is an α-
granule-localized platelet factor, which functions in aggregation,
bleeding, and inflammation (259–261), of which soluble forms
are of interest in disease control (262, 263). TGFB1I1 (Hic-
5) is a transforming growth factor β1 (TGF-β1) -induced
matrix protein, involved in matrix formation and cell adhesion
(264–273). To our knowledge its association with platelet gene
transcript profiles has not previously been reported.

The profile of interactions for adult sepsis is quite different
than that for pediatric sepsis, with association instead with
platelet membrane glycoproteins GP5 and GP6, PLOD2,
COL6A3 and PROS1, ITGA3, and ITGB3BP (integrin subunit
beta 3 binding protein), inferring activation down a different
pathway. GP5 (human platelet glycoprotein V) is a part of the Ib-
V-IX system of surface glycoproteins that comprise the receptor
for von Willebrand factor and mediate the adhesion of platelets
to injured vascular surfaces in the arterial circulation (274–278).
GP6 forms a complex with the Fc receptor gamma-chain to
initiate the platelet activation signaling cascade upon collagen
binding (279–284) and may be associated with an increased risk
of platelet-related disorders including ischemic stroke. PLOD2
(procollagen-lysine,2-oxoglutarate 5-dioxygenase 2) catalyzes the
hydroxylation of lysyl residues in collagen-like peptides and
COL6A3 (collagen type VI alpha 3 chain) is a general structural
matrix protein and is fairly ubiquitously expressed. However, it is
differentially regulated during hypoxia (285, 286) and may alter
function during inflammatory stress. PROS1 encodes a vitamin
K-dependent plasma protein that functions as a cofactor for
the anticoagulant protease, activated protein C (APC), which
functions to inhibit blood coagulation (287–291) and is vitamin
K dependant (292). Association of many of the above described
entities with MYL9 was confirmed using similar entities analysis
(Supplementary Information S2, Table S7).

Many of the above entities are components of platelet α-
granules (293). Thus, platelet activity, aggregation and blood
clotting feature as a dominant theme within the MYL9 associated
entities. The pathways of activation appear different between
adults and children. Thus, the overarching view across the
control and disease interaction maps, is of perhaps a state of
platelet homeostatic balance in healthy controls then a shift to
a predominantly inhibitory process between these gene elements
in pediatric SIRS, which then alters to a stimulatory aspect in
resolved SIRS. The interactions are profoundly stimulatory in
sepsis and septic shock. This process might in part be driven by
increased thrombopoietin levels in the blood of sepsis patients
(294, 295) and has previously been acknowledged to be a
significant contributing factor in organ failure (296).

Significant Pathways
Many of the above pathway observations were also confirmed
from the results of the pathway analysis. Entities in the blood
coagulation pathway (P00011) were found to be overlapped
in SIRS, sepsis, and septic shock. These pathway reactions
are perhaps revealed in the profile of entities associated with
MYL9. The integrin signaling pathway (P00034) was also
found to be represented in all disease groups and the healthy
controls. Tissue injury caused by infection and also by an
inappropriate host response, can lead to multiple dysfunctions
during sepsis progression.

SUMMARY

A two-tier gene screening using ANNs was conducted to identify
a panel of markers and their relationships related to sepsis and
SIRS. On the first-tier screening process, a panel of 48 candidate
markers and 3 housekeeping genes were identified. Amongst
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these 48 candidate markers, 26 showed a consistent upregulation
response in adult SIRS and the remaining 22 were upregulated
in adult sepsis. The interaction between these genes were then
analyzed in the second-tier screening process. Eight key hub
genes were identified. Further investigation on pathogenesis
activities of these hub genes in stratifying sepsis from SIRS, septic
shock, resolved SIRS and bacteraemia were conducted.

Our findings are summarized below:

• CD177 can be taken to imply a substantial infiltration of
CD177 positive neutrophils in both SIRS and sepsis

• GPR84 appears to oppose and provide an inhibitory control
for CD177 and this may be taken to mean diametrically
opposing and competing pathways, either in the same cell
type or subtypes, or in two different cell types. The cell-type
assignation is unknown, and this requires further investigation

• TDRD9 may be involved in regulation of cell proliferation,
adhesion and phagocytosis/autophagy, perhaps involved in
pathogen clearance/killing. The cell type assignation is also
unknown and requires further investigation

• FGF13 may be neutrophil-associated and shows some linkage
with hub genes TDRD9 and PCOLCE2

• The pathogenic role or cell association of PCOLCE2 and
SLC16A3 are unclear, but these may function in metabolic
processes, perhaps associated with hypoxia and carboxylic acid
metabolism and are closely linked to each other and TDRD9.
They may also be linked to immunosuppressive cell activities,
however this requires further investigation

• KLRK1 is most likely associated with NK cell activity and
its reduction in expression can be taken to mean loss or
down-regulation of NK cells/markers from the periphery.
This could be due to inhibition, cell death or egress from
the periphery

• KLRK1 inhibition may be actioned through ITK
• This process appears to be inhibited/driven by T-cells and/or

APCs, which also appear to promote the activities of other key
hub genes such as CD177, FGF13, and PCOLCE2

• The activity of MYL9 could be ascribed to platelet activation
and blood clotting cascades with reasonable confidence

• The activity surrounding MYL9 is a key differentiator between
SIRS and sepsis in both adults and children, with apparent
inhibition of these activities/pathways in SIRS and activation
in sepsis

• This is consistent with the observation of intravascular
coagulation being a key feature of disease pathology in sepsis
and a major cause of observed organ damage.

While the hub genes showed significant fold increases over
controls, they did not show sufficient fold-change differences
between SIRS and sepsis and lack discriminatory power to
differentiate these two conditions. Although some of these
hubs and associated gene interactions cannot yet be easily
described in the context of this study, they may provide the
basis for further investigation into gene regulatory networks and
pathways and their specific involvement in disease development
and progression. They may also provide a new source of
other biomarkers for prospective investigations in differential
diagnosis. A better understanding of the disease processes

underpinning each condition, could also pave the way for
improvements in patient management and care. The interaction
analysis has provided additional information as to the likely
source of a few of the hub markers e.g., CD177, FGF13, KLRK1,
andMYL9, which could be ascribed to a cell type with reasonable
confidence i.e., neutrophils, NK cells, and platelets. These cell
types have been implicated previously in the immunopathology
of sepsis and this may pave the way for new or improved targeted
therapies. The remaining hub genes GPR84, TDRD9, PCOLCE2,
and SLC16A3 could not be assigned to a cell type with the same
degree of confidence and their cell-associated expression and
role in underlying disease immunopathology requires additional
study. Further work is in progress to investigate these biomarkers
and associated pathways, to provide clarification on the likely
basis of cell type-associated expression and identify diagnostically
useful biomarkers.
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