
In an opencast coal mine explosives are used
for fragmentation of coal and overburden. If
the explosive energy is not fully utilized it
causes blast-induced ground vibration, which
may   damage nearby structures. Ground
vibration is expressed as peak particle velocity
(PPV). During different stages of mine
planning and operation, it is necessary to use
a ground vibration prediction model for blast-
hole design. Selection of the modelling
technique is crucial. Mathematical and
statistical modelling techniques have limited
application because of the lack of explicit
knowledge about the complex mine blasting
system. Vogiatzi (2002) highlighted the
problem of multicollinearity in case of
statistical modeling techniques. Mutalib et al.

(2013) stated that mathematical models are
unable to capture the nonlinear relationship
between several blasting-related parameters
due to the complexity of the model input data.
However, the difficulty involved in modelling
complex blast vibration problems can be
removed by adopting an alternative soft
computing modelling approach. One of the soft
computing techniques is the artificial neural
network (ANN). Ragam and Nimaje (2018)
developed an ANN model for predicting PPV
using six input variables. Kosti  et al. (2013)
stated that the conventional predictors fail to
provide acceptable prediction accuracy. They
showed that a neural network model with four
mine blast parameters as input could make
significantly more accurate on-site predictions.
Sayadi et al., (2013), using a database from
Teheran Cement Company limestone mines,
found that a neural network resulted in
maximum accuracy and minimum error.
Khandelwal and Singh (2009) developed an
ANN model using 150 data records from an
Indian coal mine with site-specific rock
characteristics and geomining setting.
Khandewal and Singh (2007) built a ground
vibration prediction model for a magnesite
mine using four prediction variables with 20
data records. Kamali and Ataei (2010)
predicted PPV in the structure of the Karoun III
power plant and dam using an ANN. El Hafiz
et al. (2010) evaluated ground vibration
predictors using data from a single-station
seismograph at a limestone quarry in Egypt. 

ANN prediction models have been built for
one Indian coal mine and one limestone mine.
Using the findings of these initial studies, it is
essential to enhance the application of ANN in
various mines in different Indian coal mining
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regions. In this investigation we collected 248 data records
with 15 input variables from three mining regions. A
combined database was built after randomization of the data.
With the help of this database an ANN model was built and
the final output obtained. The robustness of the model was
tested by using data from other mines and using the model to
predict PPV. Site-specific features, including fracture zones
due to the presence of underground workings and fault
planes, are expressed as a non-quantifiable variable by using
an ordinal scale. Tests were carried out to establish whether
the model prediction can be improved by using the non-
quantifiable variable. Sensitivity analyses were performed by
using input and output connection weights of the model.
Also, 3D plotting was done to understand the interplay
between two input variables, keeping the other variables
equal to the mean values.

Blast-induced ground vibration often damages structures
near a mine site. The intensity of mine blast-induced
vibration must be predicted prior to blasting operations near
any important surface structure. PPV can be considered as
the representative indicator of ground vibration. It is a
significant factor in control of structural damage (Bureau of
Indian Standards, 1973; Kahriman, 2002; Singh and Singh,
2005; Bakhshandeh, Mozdianfard, and Siamaki, 2010;
Khandelwal and Singh 2009). Khandelwal, Kumar, and
Yellishetty (2011) observed that the empirical equations do
not include physicomechanical parameters of rock mass, blast
design, and explosive type, which are relevant for the
calculation of PPV. 

The empirical method of PPV estimation is discussed
here. The basic relationship between the variables is V=KWa

Db, where W is the weight of explosive charge; D is the
distance from the blast; V is the magnitude of vibration; and
K, a, and b are constants whose values depend on the site-
specific geomining conditions. V is expressed as PPV (mm/s).
The prediction equation derived by the US Bureau of Mines is
V=K (D/Q0.5)-b. A plot of PPV as a function of scaled distance
(D/Q.05) on a log-log scale gives a straight line for mine
sites. To derive the values of K, a, and b for a particular site it
is necessary to monitor test shots and plot PPV against scaled
distance on a log-log scale. Ghasemi, Ataei, and
Hashemolhosseini (2013) observed that since only a limited
number of variables are considered for deriving empirical
equations, the PPV predictions are not accurate enough 
for demarcation of a safe zone around a mine blast site.
(Table I). The nature and intensity of blast-induced ground
vibration is dependent on many factors, the most important
of which are shown in Table II. 

Artificial neural network (ANN) models can overcome
some of the drawbacks of empirical models (Girish, 2007).
ANN is a nonlinear self-adaptive approach without any prior
assumptions about the interrelations between series of input
variables. A back-propagation neural network (BPNN) is
used as a learning algorithm for training a multilayer feed-
forward neural network. It provides a computationally
efficient method for changing the weights in a feed-forward
network, with different activation function units. Dey et al.
(2016) designed an ANN model that consists of number of
inputs, a single output, and an intermediate hidden layer.
Training of the network is the process of learning when the
error is calculated as the difference between the predicted
output and actual output (target). As the error reaches a
user-defined error tolerance limit, the training is stopped;
otherwise the weights are readjusted by back-propagation.
All inputs to a node are weighted independently, summed
with bias, and fed into logistic or other nonlinear functions.
The output is then connected to all neurons of the next layer.

Sivaprasad et al. (2006) and Hornik, Stinchcombe, and
White (1989) stated that an ANN could act as a universal
approximation of nonlinear functions. Rahman et al. (2013)
noted that an ANN can be trained to identify nonlinear
patterns between input and output values of opencast
blasting phenomena. Maqsood et al., (2002) affirmed that
ANNs do not require any prior knowledge of the system
under consideration and are well suited for modellng
dynamic systems on a real-time basis. Huang and Foo
(2002) and Scardi (2001) observed that an ANN can be used
either where no precise theoretical model is available, or
when uncertainty in input parameters complicates
deterministic modelling. García, Rodríguez, and Tenorio
(2011) observed that the ANN technique can also perform
tasks based on training or initial experience, and does not
need an algorithm to solve a problem. This is because it can
generate its own distribution of the weights of the links
through learning.  
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Table I

Empirical models Empirical models Site constants 
USBM equation V = k(R/Q1/2)−b k = 239.56   &    b = 1.166
Ambraseys and Hendron equation V = k(R/Q1/3)−b k = 1207.96 &    b = 1.175
Langefors–Kihlstrom equation V=k(Q/(D2/3)b/2 k = 2.195     &    b = 3.389
Indian Standard Predictor equation V=k(Q/(D2/3)b k = 2.195     &    b = 1.694

Table II

1 Rock types
2 Geological  discontinuities
3 Distance
4 Explosive charge weight 
5 Blast geometry
6 Rock mass properties
7 Explosive types



Mohamad (2009) used several ANN models in the Assiut
limestone mine in Egypt and concluded that increasing the
number of input variables can improve the capability of an
ANN to predict PPV. Monjezi, Ghafurikalajahi, and Bahrami
(2011) developed an ANN model to predict PPV at the
Siahbisheh pumped storage project in Iran, using the
maximum charge per delay, the distance from the blasting
face to the monitoring point, stemming, and hole depth as
input parameters and compared their results with empirical
models and multivariate regression analysis. Using artificial
intelligence approaches Khandelwal and Singh (2007),
Mohamed (2011), Kamali and Ataei (2011), and Singh and
Singh (2005) predicted PPV using hole depth and diameter,
number of holes, burden, spacing, and the distance from the
blast face as inputs. They concluded that the ANN is a more
accurate approach compared to regression analysis. Other
researchers predicted PPV based on ANN models in different
projects. Amnieh, Mozdianfard, and Siamaki  (2010),
Amnieh, Siamaki, and Soltani (2012), and Alvarez et al.
(2012) compared the results of both ANNs and empirical
models with multiple linear regression (MLR) analysis to
establish the applicability of each method. A discussion on
superiority of ANN modeling techniqueas is included in
Appendix A.

This subsection contains a brief discussion of the
conceptual framework in ANN model-building. Based on the
discussions so far an ANN model is built by training the
network using input data from the study areas. Database
development for model input is discussed in the next
subsection. The training data constitutes 70% of the
database. The network is trained in supervised manner with
a back-propagation algorithm training a multilayered feed-
forward network. Initially, training data is preprocessed by
normalizing input and output data. A flow chart of the
model-building process is shown in Figure 1.

Mine blast-induced ground vibration (PPV) was recorded in
three mechanized coal mines. Study area I is located in the
Angul district in the state of Odisha. Study area II is located
in the Raniganj coalfield, Burdwan District, in the state of
West Bengal. Study area III is located in the North Karanpura
coalfield, Chatra District in the state of Jharkhand. 

PPV data was collected from 140 blasts: 50 blasts in
study area I, 36 in study area II, and 54 in study area III. The
blasting pattern is described in Table III. SME explosive and a
Nonel initiation system were used. Ground vibration was
recorded using BLASTMATE III, manufactured by Instantel,
Canada. Two instruments were stationed at distances of 40 m
to 320 m from the blast site.  PPV was recorded at different
distances for each blast. Only those values above 1 mm/s
were included in the database. Two hundred and forty-eight
data records were obtained from 140 blasts. 

Input variables are presented in Table IV. These variables
were selected based on the authors’ experience as well as a
study of the relevant literature in the section ‘ANN model’.
PPV data measured on the mine sites is described in Table V.
The ANN technique can detect similarities between these
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Table III

Number of blasting rounds 140
Number of observations 248
Diameter of drill-holes (mm) 150–160
Depth of holes(m) 3.50–6.50
Burden (m) 3.0–4.50
Spacing (m) 3.5–5.0
Explosive charge/hole (kg) 15.10–70.10
Maximum charge/delay (kg) 70.10
Maximum charge/round (kg) 7113.50



input variables. This property gives it excellent interpolation
capability, especially when the input data is noisy (not
exact). An ANN is capable of calculating arithematic and
logical functions, generalizing and transforming independent
variables to dependent variables, parallel computations,
nonlinear processing, handling of noisy data, function
approximation, and pattern recognition (Sayadi et al., 2013). 

ANN can be applied to combat the problem of
multicollinearity in the data (Hermosilla and Carpio, 2005).
The correlation coefficient is widely used in statistics but
correlation is a measure of the linear association between
variables. If two variables are related in a nonlinear manner
the correlation coefficient will not be able to do justice to the
strength of relationship (Makridakis, Wheelwright, and
Hyndman, 2005). The neural network is capable of capturing

the interactions between the inputs, because of the hidden
units are able to handle extreme nonlinearity. The nature of
these interactions is implicit in the values of the weights.
Therefore multicollinearity in the input data is not an issue
for training a neural network. Further discussion of this
aspect is presented in the review paper by Bhadesjia (1999). 

The neural network toolbox of MATLAB 2015 was used to
build an ANN blast-induced vibration model. The ANN
architecture (Table VIII) has fifteen input variables, one
hidden layer, and four nodes. Four nodes were selected since
this gives a high R value (Table VII). The network was
trained up to maximum epoch of 1000 and the error goal was
set at 1e-7. In Figure 2 and Table IX the association between
the PPV predicted by the model and the actual PPV measured
in the field is 0.968, and the average relative error is 11.85.
Therefore, the prediction capability of the model was deemed
to be good and the model ready for use. An attempt was
made to improve the model prediction by including non-
quantifiable variables. Diverse structural features were
observed during inspection of different mine sites. Some of
the quantifiable rock parameters are included in Table III as
input to ANN models. Site-specific structural features are
mostly non-quantifiable variables, therefore an ordinal scale
of 1 to 3 is used. To cite an example, if the site has minimum
structural discontinuities then a value 1 is assigned, while 3
represents highly fractured and faulted strata (Table XI).
However, further research on use of non-quantifiable
variables as model input is essential. By including the above
variable a marginal increase in R value from 0.968 to 0.975
was obtained. The model performance was also compared
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1 Rock density (Rd) (gm/cc) 2.41 2.42 2.59 0.27 1.52 2.59
2 No. of holes (Nh) 61.60 57.00 60.00 36.73 1.00 142.00
3 Hole diameter (Hdia) (mm) 158.18 160.00 160.00 3.87 150.00 160.00
4 Hole depth (Hd) (m) 5.76 5.90 6.00 0.45 3.50 6.50
5 Burden (B) (m) 3.85 4.00 4.00 0.43 3.00 4.50
6 Spacing (S) (m) 4.45 4.50 5.00 0.55 3.50 5.00
7 Charge length (Cl) (m) 2.09 2.20 2.20 0.37 0.80 2.90
8 Stemming length (St) (m) 3.67 3.70 3.90 0.40 2.50 4.50
9 Max. explosive charge/delay (Ed) (kg) 52.34 55.10 60.10 9.45 15.10 70.10
10 Charge/round (Et) (kg) 3043.40 2813.50 2505.0 1923.38 45.10 7113.50
11 Monitoring point from face (DB) (m) 153.81 140.00 120.00 65.55 40.00 320.00
12 Young's modulus (E) (GPa) 14.40 15.25 15.25 3.31 2.21 15.65
13 Poisson’s ratio (P) 0.24 0.23 0.23 0.03 0.20 0.35
14 P-wave velocity (Vp) (m/s) 5450.68 5800.00 5800.0 968.41 1804.20 5999.10
15 Density of explosive (De) (gm/cc) 1.11 1.12 1.11 0.02 1.06 1.18

1 PPV (mm/s) 10.38 8.11 26.36 7.20 1.249 33.84

1 Tansig/ Trainlm 0.966
Tansig/ Trainscg 0.924

2 Tansig/ Trainlm 0.968
Tansig/ Trainscg 0.957

3 Tansig/ Trainlm 0.975
Tansig/ Trainscg 0.940

4 Tansig/ Trainlm 0.943
5 Tansig/ Trainlm 0.959



with the multivariate linear regression model (Table IX) and
results show the benefits of an ANN for enhancing accuracy
in model prediction. 

The robustness of the training was tested with different
initialized states of the network parameters for the given
architecture while holding other training parameters and
algorithms constant. Typical results for the 15-4-1
architecture with the sigmodal transfer function and
Levenberg-Marquardt training function retrained for five
runs are presented in Table VI. The result shows significantly
good convergence under repeated training with different
initialized states, leading to a close variation in prediction
performance. 

Twenty-eight new data records were used to examine the
prediction performance of the ANN model. The output is
compared with measured PPV in Table X. Also, the same
database was used for predicting PPV by four empirical
models (Table I). The reasons for selection of four out of
several available empirical models are stated below. Scaled
distance (maximum charge weight divided by the cube root
or square root of actual distance) is used for deriving
empirical formulae for Indian mines. The correlation
coefficients between the predicted and measured PPVs in case
of the ANN and empirical model are 0.96 and 0.67
respectively (Table X).  Other formulae, which are not
included in Table II, are based on inelastic effects, which
cause energy losses during blast wave propagation. Inelastic
attenuation of elastic waves is dependent on the geotechnical
properties of the rocks. In case of other formulae, empirical
constants are derived for specific geomining features and
therefore they were not considered. 

Explicit knowledge about the interplay between different
variables responsible for blast-induced ground vibration is
largely lacking. To extract knowledge from the ANN model,
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Table VII

1 Tansig/ Trainlm 0.95 0.92 0.92 0.94
Tansig/ Trainscg 0.89 0.86 0.85 0.87

2 Tansig/ Trainlm 0.97 0.94 0.93 0.95
Tansig/ Trainscg 0.92 0.90 0.89 0.90

3 Tansig/ Trainlm 0.97 0.94 0.94 0.95
Tansig/ Trainscg 0.94 0.91 0.92 0.92

4 Tansig/ Trainlm 0.97 0.96 0.97 0.97
Tansig/ Trainscg 0.96 0.94 0.95 0.95

5 Tansig/ Trainlm 0.97 0.94 0.94 0.95
Tansig/ Trainscg 0.94 0.91 0.92 0.92

Table VIII

Number of input variables 15
Number of nodes in hidden layer 4
Number of hidden layers 1
Transfer function Hyperbolic tangent sigmoid transfer 

function (tansig) for hidden layer 
and Purelin for output layer

Table IX

No. of observations 248 248
Correlation coefficient 0.97 0.80
Av. relative error (%)* 11.85 16.01

*The absolute error is the difference between the measured value and the
true value. The relative error is defined as the absolute error relative to the
size of the measurement. 

Table X

No. of observations 28 28 28 28 28
Correlation coefficient 0.96 0.67 0.63 0.68 0.74
Av. relative error (%) 11.8 37.3 38.47 37.89 35.19



output sensitivity analysis was carried out. Sensitivity
analysis is the method of studying a model by assessing the
significance of each input variable on the model output. By
this means it is possible to identify how different input
variables influence the model output. A connection weight
approach was adopted. Calculation of the product of the raw
input-hidden and hidden-output will assign weights between
each input neuron and output neuron. Summation of the
products across all hidden neurons is done for finding out
connection weights. Olden and Jackson, (2002) observed that
the sensitivity analysis approach can determine the
significance of the variables in the neural network. Negative
connection weights represent inhibitory effects on neurons
and decrease the value of the predicted response, whereas
positive connection weights represent excitatory effects on
neurons and increase the value of the predicted response.
The sensitivity of the network is given by connection weights
used in the network architecture by means of the following
calculations.  

(i) Input-hidden-output connection weights: the
product of input-hidden and hidden-output
connection weights for each input and hidden
neuron(Table XII);
For Input I = 1 to j where j = no. of variables, hidden
neurons h= 1 to i, where i = no. of hidden neurons

and For Output O = 1 to o, where o = no. of outputs
Weight of input variable j and hidden neuron i = Wji
Weight of output o and hidden neuron i = Woi
Contribution of each input neuron to the output via
each hidden neuron is given by (Table XIII):

Cji = |Woi| x |Wji| [1]

ii. Overall connection weight: the sum of the input-
hidden-output connection weights for each input
variable

iii. Relative importance (%) for each input variable
based on Garson’s algorithm 

Garson, 1991 gave the procedure for partitioning the
connection weights to determine the relative importance of
various inputs. The method essentially involves partitioning
the hidden-output connection weights of each hidden neuron
into components associated with each input neuron.

i. For each hidden neuron h, multiplying the absolute
value of the hidden-output layer connection weight
by the absolute value of the hidden input layer
connection weight. This is donefor each input
variable j. The following product Pji is obtained
Table XIV:

The product Pji = |Woi| x |Wji [2]
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Table XI 

Presence of fractures Minor fracture planes Highly fractured due to presence  Prominent fractures not found  
of underground working below opencast

Faults Minor faults  Three  major faults of throw 80–240 m No major faults
Structural discontinuities expressed in ordinal scale 1 3 2
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Table XII  

Input 1 W(1,1) W(1,2) W(1,i-1) W(1,i)
Input 2 W(2,1) W(2,2) W(21,i-1) W(2,i)
Input 3 W(3,1) W(3,2) W(3,i-1) W(3,i)
Input 4 W(4,1) W(4,2) W(4,i-1) W(4,i)
Input j-1 W(j-1,1) W(j-1,2) W(j-1,i-1) W(j-1,i)
Input j W(j,1) W(j,2) W(j-1,i-1) W(j,i)
Output W(0,1) W(o,2) W(0,i-1) W(o,i)

Table XIII

Input 1 C(1,1) C(1,2) C(1,i-1) C(1,i)
Input 2 C(2,1) C(2,2) C(2,i-1) C(2,i)
Input 3 C(3,1) C(3,2) C(3,i-1) C(3,i)
Input 4 C(4,1) C(4,2) C(4,i-1) C(4,i)
Input j-1 C(j-1,1) C(j-1,2) C(j-1,i-1) C(j-1,i)
Input j C(j,1) C(j,2) C(j-1,i-1) C(j,i)

Table XIV

IInput 1 P(1,1) P(1,2) P(1,i-1) P(1,i)
Input 2 P(2,1) P(2,2) P(2,i-1) P(2,i)

Input 3 P(3,1) P(3,2) P(3,i-1) P(3,i)
Input 4 P(4,1) P(4,2) P(4,i-1) P(4,i)
Input j-1 P(j-1,1) P(j-1,2) P(j-1,i-1) P(j-1,i)
Input j P(j,1) P(j,2) P(j,i-1) P(j,i)

Table XV

Input 1 Q(1,1) Q(1,2) Q(1,i-1) Q(1,i)
Input 2 Q(2,1) Q(2,2) Q(2,i-1) Q(2,i)
Input 3 Q(3,1) Q(3,2) Q(3,i-1) Q(3,i)
Input 4 Q(4,1) Q(4,2) Q(4,i-1) Q(4,i)
Input j-1 Q(j-1,1) Q(j-1,2) Q(j-1,i-1) Q(j-1,i)
Input j Q(j,1) Q(j,2) Q(j,i-1) Q(j,i)

Table XVI

Input 1 Q(1,1) Q(1,2) Q(1,i-1) Q(1,i) S1 = (Q(1,1) + Q(1,2) +..+ Q(1,i)
Input 2 Q(2,1) Q(2,2) Q(2,i-1) Q(2,i) S2 = (Q(2,1) + Q(2,2) +..+ Q(2,i)
Input 3 Q(3,1) Q(3,2) Q(3,i-1) Q(3,i) S3 = (Q(3,1) + Q(3,2) +..+ Q(3,i)
Input 4 Q(4,1) Q(4,2) Q(4,i-1) Q(4,i) S4 = (Q(4,1) + Q(4,2) +..+ Q(4,i)
Input j-1 Q(j-1,1) Q(j-1,2) Q(j-1,i-1) Q(j-1,i) Sj = (Q(j-1,1) + Q(j-1,2) +..+ Q(j-1,i)
Input j Q(j,1) Q(j,2) Q(j,i-1) Q(j,i) Sj = (Q(j,1) + Q(j,2) +..+ Q(j,i)

ii. For each hidden neuron,Pjiis divided by sum for all
the input variables to obtain Qji (Table XV). For
example for Hidden neuron1, 

Q(1,1)= P(1,1)/ (P(1,1) + P(2,1)+………+ P(j,1))
[3]

i.e. Qji =
∑ Pji

Pji

(iii) For each input neuron sum the product Sj formed
from the previous computation Qji (Table XVI).

Sj = ∑ Qji [4]

iv. Sj is divided by the sum for all the input variables
and expressed in terms of percentage, which gives
the relative importance or distribution of all output
weights attributable to the given input variable.

Relative Importance Percentage =  Sj/ ∑Sj [5]

Weights are plotted on the y axis (Figure 4), which gives a
measure of sensitivity from least to highest sensitivity.  The
graph shows that the maximum charge per delay and
distance from the face have the highest sensitivity. This
implies that blast-induced ground vibration (PPV) is highly

sensitive to the above variables. A negative sign indicates an
inverse relationship with blast-induced ground vibration.
Other variables with moderate sensitivity are the blast design
parameters like spacing, burden, and depth. It is common 



knowledge that some of the variables are related to blast-
induced ground vibration but the degree of sensitivity of
these variables is definitely knowledge gained from the
model output. The details of sensitivity analysis are given in
Table XVII and graphically represented in Figures 4 and 5.

Three-dimensional shaded graphs were drawn to study the
responses of blast-induced ground vibration to the changes
in various input variables. Out of the fifteen variables, only
values of two variables were changed at a time, and the
remaining variables were kept constant at their mean values.
In this manner a two-way interaction of variables or
sensitivity is created. The purpose is to study how ground
vibration is sensitive to the changes of these input variables. 

A database was prepared with the input variables varying at
regular intervals within the range of values collected from the
mines. For one value of a variable there will be ten values of
the other variable. Keeping the remaining variables at their
mean values, the selected variables were varied at regular
intervals. 

A 3D plot (Figure 7) was constructed using area to
represent two input variables, distance of the monitoring
station and charge per delay, and showing the model output
PPV. The following conclusions can be drawn from the plot.

(a) PPV is more sensitive to changes in distance
between the blast site and the monitoring station at
distances greater than 150 m.

(b) PPV is more sensitive to charge per delay when
distance between the blast site and the monitoring
station is less than 150 m.
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Table XVII

No. of holes Nh 0.5 6.08
Hole diameter (m) Hdia -0.5 6.15
Hole depth (m) Hd 0.4 4.85
Burden (m) B 0.3 3.45
Spacing (m) S 0.5 5.97
Charge length (m) Cl 0 0.04
Stemming length (m) St -0.1 1.4
Max. explosive charge/hole (kg) Ed 2.4 29.25
Charge per round (kg) Et -0.05 0.88
Density of explosive (g/cm2) De 0.05 0.45
Young's modulus (GPa) E 0.4 4.63
Poisson's ratio P -0.3 3.53
P-wave velocity (m/s) Vp -0.2 2.33
Rock density (g/ cm2) Rd 0.05 0.64
Distance of monitoring point from face (m) DB -2.5 30.33

* Variables shown in Figure 4
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An ANN model was developed using fifteen variables
covering blast design, rock characteristics, and the distance
between the blast site and monitoring station as input
variables. The ANN model was found to perform better than
the conventional models. Thus far, application of the ANN
modelling technique to predict blast-induced ground vibration
is limited and the number of input variables taken into
consideration is small. In this research an attempt was made
to train the model at three coal mining sites across India,
which are being operated under highly diverse geological and
mining conditions. The predictive capability of the model was
further tested with a new set of data.  An attempt was made
to gain knowledge about ground vibration by analysis of the
model output. The findings will help engineers to design
optimum blasting patterns for their mines. The paper
provides a basis for future research on identification of some
significant variables that can further enhance the
performance of the prediction model. Also, the applicability of
the model can be further expanded by extensively training
the model using data from different opencast coal mining
sites. 
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The empirical method for prediction of blast-induced vibration has been adopted by many researchers in the form of predictor equations. Predictor equations
are site-specific and indirectly related to the physical, mechanical, and geological properties of the rock mass as blast-induced ground vibration is a function of
various controllable and uncontrollable parameters. Rock parameters for the blasting face and propagation media for blast vibration waves are uncontrollable
parameters, whereas blast design parameters like hole diameter, hole depth, column length of explosive charge, total number of blast-holes, burden, spacing,
explosive charge per delay, total explosive charge in a blasting round, and initiation system are controllable parameters. For a blasting engineer it is essential to
gain knowledge, which is otherwise very limited, about the interplay between the several blast variables, since a blasting engineer will have to design, by trial
and error, an optimum blast-hole pattern to achieve a high powder factor and optimum fragmentation. In commonly used empirical models this knowledge base
is not available as it is primarily based on two variables. ANN models are claimed to be better than empirical models. Also, in the case of empirical models it is
not possible to predict PPV for new blast sites unless test shot are fired and the results are used for deriving two site constants. Some of the empirical
predictors are highlighted in Table A.1 

Table A.1 

1 Duvall and Petkof (1959) v = k(R/Q1/2)−b

2 Langefors and Kihlstrom (1963) v = k(Q/R2/3)b/2

3 Ambraseys and Hendron (1968) v = k(R/Q1/3)−b

4 Nicholls et al. (1971) v = 0.362D−1.63

5 IS 6922 (1973) v = k(Q2/3/R)1.25

6 Siskind et al. (1980) v = 0.828D−1.32

7 Ghosh and Daemen (1983) v = k(R/Q1/2)−be−αR

8 Pal Roy (1991) v = n + k(R/Q1/2)−1

9 CMRI (1993) v = n + k(R/Q1/2)−1

10 Kahriman (2002) v = 1.91D−1.13

11 Kahriman (2004) v = 0.34D−1.79

12 Kahriman et al. (2006) v = 0.561D−1.432

13 Rai and Singh (2004) v = kR−bQmaxe−α

14 Nicholson (2005) v = 0.438D−1.52

15 Rai et al. (2005) Qmax = k(vD2)b

16 Ozer (2008) (sandstone) v = 0.257D−1.03

17 Ozer (2008) (shale) v = 6.31D−1.9

18 Ozer (2008) (limestone) v = 3.02D−1.69

19 Ak et al. (2009) v = 1.367D−1.59

20 Badal (2010) v = 0.29D−1.296

21 Mesec et al. (2010) v = 0.508D−1.37

v is the PPV (m/s); D is the scaled distance (m/kg1/2), which is defined as the distance R (m) divided by the square root of explosive charge mass Q (kg) net
equivalent charge weight, i.e. D = R/Q1/2; k and b are site-specific constants. Generally, site constants k and b are determined by regression analysis of
blasting results. 
Peak particle velocity (PPV) is a function of the borehole pressure, confinement, charge weight, distance from blast area, manner of decay of compressive
waves through the rock mass, and the firing sequence of adjacent holes. In the case of empirical predictors there is no uniformity in the predicted result since
different predictors give different values of PPV for various amounts of allowable charge per delay in the same operating area. (Dowding, 1985; Khandelwal
and Singh, 2007; Monjezi et al., 2011). Moreover, empirical methods are unable to incorporate the numerous factors that affect the PPV and their complex
interrelationships, hence the need for other techniques, including artificial neural networks (Khandelwal, 2010). Table A.2 highlights some of the applications
of the ANN technique for modelling some of the detrimental effects of blasting.
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Table A.2

Iphar, Yavuz, and Ak (2008) ANFIS DI, C PPV 44 R2 = 0.98
Bakhshandeh, Mozdianfard, and Siamaki (2010) ANN ST, DI ,C ,N PPV 29 R2 = 0.99
Monjezi et al. (2011a) ANN HD, ST, DI, C PPV 182 R2 = 0.95
Khandelwal, Kumar, and Yellishetty (2011) ANN DI, C PPV 130 R2 = 0.92
Mohamed (2011) ANN, FIS DI, C PPV 162 R2ANN=0.94; 

R2FIS=0.90
Fisne, Kuju, and Hudaverdi  (2011) FIS DI, C PPV 33 R2 = 0.92
Li, Yan, and Zhang  (2012) SVM DI, C PPV 37 R2 = 0.89
Mohamadnejad et al. (2012) SVM, ANN DI, C PPV 37 R2SVM=0.89; 

R2ANN=0.85
Ghasemi, Ataei, and Hashemolhosseini (2013) FIS B, S, ST, N, C, DI PPV 120 R2 = 0.95
Monjezi et al. (2013a) ANN C, DI, TC PPV 20 R2 = 0.93
Armaghani et al. (2013) ANN-PSO S, B, ST, PF, C, D, N, RD, SD PPV 44 R2 = 0.94
Hajihassani et al. (2014b) ANN-ICA BS, ST, PF, C, DI, Vp, E PPV 95 R2 = 0.98
Ghoraba et al. (2015) ANN BS, DI, C, ST, HL PPV 115 R2 = 0.98
Khandelwal and Singh (2005) ANN DI, C AOp 56 R2 = 0.96
Mohamed (2011) ANN, FIS DI, C AOp 162 R2FIS=0.92; 

R2ANN=0.86
Khandelwal and Kankar (2011) SVM DI, C AOp 75 R2 = 0.85
Bakhshandeh, Siamaki, and Mohamadi (2012) ANN HD, S, B, N, D, ST, PF AOp 38 R2 = 0.93
Hajihassani et al. (2015) ANN-PSO HD, S, B, ST, PF, N, DI, C, RQD AOp 62 R2 = 0.86
Monjezi et al. (2010) ANN HD, BS, ST, PF, SD, N, C, RD Flyrock 250 R2 = 0.98
Rezaei et al. (2011) FIS HD, S, B, ST, PF, SD, RD, C Flyrock 490 R2 = 0.98
Monjezi et al. (2011) ANN HD, BS, ST, PF, D, SD, C, B Flyrock 192 R2 = 0.97
Monjezi et al. (2012) ANN-GA HD, S, B, ST, PF, SD, D, C, RMR Flyrock 195 R2 = 0.89
Ghasemi et al. (2012) SVM, ANN HL, S, B, ST, PF, SD, D Flyrock 245 R2SVM=0.97; 

R2ANN=0.92
Mohamad et al. (2013) ANN HD, BS, ST, PF, C, D, N, RD, SD Flyrock 39 R2 = 0.97
Armaghani et al. (2013) ANN-PSO S, B, ST, PF, C, D, N, RD, SD Flyrock 44 R2 = 0.94
Monjezi et al. (2013b) ANN HD, S, B, D, C Flyrock 310 R2 = 0.98
Khandelwal and Monjezi (2013) SVM HL, S, B, ST, PF, SD Flyrock 187 R2 = 0.95
Marto et al. (2014) ANN-ICA RD, HD, BS, ST, PF, C, Rn Flyrock 113 R2 = 0.98
Trivedi, Singh, and Raina,  (2014) ANN B, ST, qI, q, σc, RQD Flyrock 95 R2 = 0.98
Ghasemi et al. (2014) ANN, FIS HL, S, B, ST, PF, C Flyrock 230 R2FIS=0.94; 

R2ANN=0.96
Armaghani et al. (2015) ANN, BS, ST, PF, C, DI PPV, Aop, 166 R2ANFIS=0.77; 

ANFIS Flyrock R2ANN=0.94 
R2ANFIS=0.86; 
R2ANN=0.95 
R2ANFIS=0.83; 
R2ANN=0.96

B Blastability index
B Burden
BS Burden to spacing
C Maximum charge per delay
D Hole diameter
DI Distance from the blasting face
E Young’s modulus
GA Genetic algorithm
HD Hole depth
HL Hole length
ICA Imperialist competitive algorithm
N Number of row
PF Powder factor
PSO Particle swarm optimization

q Specific charge
qI Linear charge concentration
RD Rock density
RMR Rock mass rating
RQD Rock quality designation
S Spacing
Sb Subdrilling
SD Specific drilling
ST Stemming
SVM Support vector machine
TC Total charge
Vp P-wave velocity
σc Unconfined compressive strength

Khandelwal and Singh (2006) applied an ANN for predicting ground vibration by including relevant parameters for rock mass, explosive characteristics, and
blast design. The ANN was trained by 150 data-sets with 458 epochs and 20 testing data-sets. The ANN was found to be superior to a conventional
statistical relationship. The correlation coefficient determined by ANN for PPV was higher than that determined by statistical analysis. Khandelwal and
Singh (2007) investigated the prediction of PPV at a magnesite mine in a tectonically active hilly terrain in the Himalayan region in India. This study
established that the feed-forward back-propagation neural network approach seems to be the better option for predicting PPV in order to protect
surrounding environment and structures. Khandelwal and Singh (2009) predicted PPV in a coal mine in India based on ten input parameters using an ANN
technique. The network architecture was a three-layer, feed-forward back-propagation neural network with 15 hidden neurons. Input parameters were
trained using 154 experimental and monitored blast records. Comparison of the results by using correlation and mean absolute error (MAE) for monitored
and predicted values of PPV showed that that ANN results for the PPV were very close to the field data-sets compared to the conventional predictors and
MVRA predictions.  Monjezi et al. (2010) predicted blast-induced ground vibration using various types of neural networks such as multi-layer perceptron
neural network (MLPNN), radial-basis function neural network (RBFNN), and general regression neural network (GRNN) at Sarcheshmeh copper mine,
Iran. MLPNN gave the best results, with a root mean square error and correlation coefficient of 0.03 and 0.954 respectively. ANN, multivariate regression
analysis (MVRA), and empirical, analysis were used by Kamali and Ataei (2010) to predict the blast-induced PPV at the Karoun III power plant and dam. 
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The best model was the ANN, since its outputs were highly correlated to the measured and observed data. Tang et al. (2007) developed a back-
propagation neural network model to predict the peak velocity of blast vibration. They considered the charge hole diameter, distance, depth, column
distance between charge holes, line of least resistance, maximum charge of single hole, maximum charge weight per delay, stemming length, total
charge, magnitude of relative altitude and explosive distance as input parameters and found the predicted results from the ANN closer to the measured
values than those from empirical predictors. Singh and Singh (1995) studied the blast-induced ground vibration at Dharapani magnesite mine,
Pitthoragarh Himalaya in India and predicted PPV using neural networks.        
The artificial intelligence method of simulating and predicting ground vibration due to blasting is accurate, reliable, practical, user-oriented, and easy to
operate as well as useful for engineers (Lianjon, Guojian, and Yingxian, 2002). Neural network models provide descriptive and predictive capabilities
and, for this reason, have been applied through the range of rock parameter identification and engineering activities (Hudson and Hudson, 1997). A
number of conventional statistical, empirical equations and ANN systems have been employed by various researchers to predict rock fragmentation,
ground vibration and air blast prior to blasting operations. However, the ANN is preferred over the other predictive techniques due to its ability to
incorporate the numerous factors affecting the outcome of a blast among other advantages. The ANN model generated is site specific, the input
parameters can be expanded to include mechanical and geotechnical rock parameters such as rock strength, RQD, rock hardness, number of joints etc.
to provide the ANN model a wider application. 
The artificial intelligence method of simulating and predicting blasting is accurate, reliable, practical, user-oriented, and easy to operate as well as useful
for engineers (Lianjon, Guojian, and Yingxian, 2002). Cai and Zhao (1997) discussed ANN applications and incorporated the numerous factors that affect
the PPV and their complex interrelationships. Chakraborty et al. (2004)  underlined the effectiveness of multilayer perceptron (MLP) networks for
estimation of blasting vibration and proposed a fusion network that combines several MLPs and on-line feature selection technique to obtain more
reliable and accurate estimations compared with the empirical predictors. Mohamed (2009)  used three different variations of ANN for prediction of PPV
due to blast-induced ground vibrations and observed that the ANN using a large number of inputs parameters gave better prediction of PPV than an ANN
using one or two inputs parameters. Also, the ANN model with two input parameters provided better results than the model with one input parameter.
That is to say, increasing the number of input variables improves the ability of the ANN to learn and to predict more precisely. Singh (2005) attempted to
predict the ground vibration in Indian coal measure rocks using ANN and confirmed that the network provided better results than a conventional
multivariate regression method. PPV is generally used to assess potential blast vibration damage to structures on surface, but this parameter cannot fully
explain the effect on structures situated far from the point of blasting and which can be damaged even at very low PPVs. (Ramchandar and Singh, 2001;
Singh, Singh and Singh, 1994). The longer wavelength and smaller amplitude of these vibrations damage structures more severely than higher
amplitude, shorter wavelength vibrations (Perrson, 1997). Maity and Saha (2004) used a neural network to assess damage in structures due to variation
of static parameters. Using ANN, P-wave velocity and anisotropic property of rocks were investigated by Singh et al. (2004a). Lu (2005) studied the blast-
induced ground shocks using an ANN at underground mines. Singh and Singh (2005) studied the dynamic constants of rock mass with a neural network
and neuro-fuzzy system. 
This literature review provides a broad overview of the wide application of the ANN modelling technique. The observations quoted by several
researchers, as discussed above, establish the superiority of ANN as modelling technique in predicting blast-induced ground vibration . 
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