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Abstract

Background: Alterations in gene expression in peripheral blood cells have been shown to be sensitive to the

presence and extent of coronary artery disease (CAD). A non-invasive blood test that could reliably assess

obstructive CAD likelihood would have diagnostic utility.

Results: Microarray analysis of RNA samples from a 195 patient Duke CATHGEN registry case:control cohort yielded

2,438 genes with significant CAD association (p < 0.05), and identified the clinical/demographic factors with the largest

effects on gene expression as age, sex, and diabetic status. RT-PCR analysis of 88 CAD classifier genes confirmed that

diabetic status was the largest clinical factor affecting CAD associated gene expression changes. A second microarray

cohort analysis limited to non-diabetics from the multi-center PREDICT study (198 patients; 99 case: control pairs

matched for age and sex) evaluated gene expression, clinical, and cell population predictors of CAD and yielded 5,935

CAD genes (p < 0.05) with an intersection of 655 genes with the CATHGEN results. Biological pathway (gene ontology

and literature) and statistical analyses (hierarchical clustering and logistic regression) were used in combination to select

113 genes for RT-PCR analysis including CAD classifiers, cell-type specific markers, and normalization genes.

RT-PCR analysis of these 113 genes in a PREDICT cohort of 640 non-diabetic subject samples was used for

algorithm development. Gene expression correlations identified clusters of CAD classifier genes which were

reduced to meta-genes using LASSO. The final classifier for assessment of obstructive CAD was derived by Ridge

Regression and contained sex-specific age functions and 6 meta-gene terms, comprising 23 genes. This algorithm

showed a cross-validated estimated AUC = 0.77 (95% CI 0.73-0.81) in ROC analysis.

Conclusions: We have developed a whole blood classifier based on gene expression, age and sex for the

assessment of obstructive CAD in non-diabetic patients from a combination of microarray and RT-PCR data derived

from studies of patients clinically indicated for invasive angiography.

Clinical trial registration information: PREDICT, Personalized Risk Evaluation and Diagnosis in the Coronary Tree,

http://www.clinicaltrials.gov, NCT00500617

Background

The promise of genomics to improve diagnosis and

prognosis of significant diseases is dependent on a num-

ber of factors including appropriate use of technology,

identification of clinical issues of significant unmet need,

and the rigorous statistical derivation and testing of

genomic classifiers [1]. Multigene expression classifiers

have been developed and have become incorporated

into clinical guidelines in both breast cancer recurrence

prognosis and heart transplant rejection monitoring

[2,3]. A guideline for the metrics such classifiers should

meet, including independent validation, and adding to

current clinical factor algorithms has been described [4]

and it has been suggested that peripheral blood cell

gene expression may reflect pathological conditions in a
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variety of cardiovascular disease states [5]. In this work

we describe the development of a validated whole blood

based classifier for the assessment of obstructive CAD

[6].

Mortality and morbidity from CAD and myocardial

infarction (MI) are a major global health burden. Major

determinants of current CAD likelihood are sex, age,

and chest-pain type [7,8]. Other risk factors such as dia-

betes, smoking, dyslipidemia, hypertension and family

history have been associated with future cardiovascular

event risk [9]. In addition, atherosclerosis has a systemic

inflammatory component including activation and

migration of immune cells into the vessel wall [10,11].

Prior work has shown that quantitative measurements

of circulating blood cell gene expression reflect the

extent of CAD [12,13]. These observations likely reflect

both changes in cell type distributions, which have prog-

nostic value for cardiovascular events [14] and gene

expression changes within a specific cell type or lineage.

The “gold standard” for detecting CAD is invasive cor-

onary angiography; however, this is costly, and can pose

risk to the patient. Prior to angiography, non-invasive

diagnostic modalities such as myocardial perfusion ima-

ging (MPI) and CT-angiography may be used, however

these only add moderately to obstructive CAD identifi-

cation [15]. We describe herein the development of an

algorithm for the assessment of obstructive CAD using

peripheral blood gene expression, age, and sex, which

was subsequently validated in an independent cohort

[6].

Methods

Patient selection and clinical methods

All patients were clinically referred for angiography and

angiograms were performed based on local, institutional

protocols. The first microarray cohort of 198 subjects

(88 cases and 110 controls) was derived from the Duke

University CATHGEN registry, a retrospective blood

repository, enrolled between August 2004 and Novem-

ber, 2005 [16]. For CATHGEN patients, clinical angio-

graphic interpretation defined cases as ≥75% maximum

stenosis in one major vessel or ≥50% in two vessels and

controls as <25% stenosis in all major vessels. Clinical

inclusion and exclusion criteria were described pre-

viously and included both diabetic and non-diabetic

patients [13]. All CATHGEN patients gave written

informed consent and the study protocol was approved

by the Duke University IRB.

The second microarray cohort of 210 subjects (105

case: control pairs, matched for age and sex) and the RT-

PCR algorithm development cohort (210 cases and 430

controls) were part of PREDICT, a multi-center US study

of patients referred for coronary angiography (http://

www.clinicaltrials.gov, NCT00500617). For PREDICT

patients, core laboratory QCA reads (Cardiovascular

Research Foundation New York) were used for case: con-

trol classification. Cases had ≥50% stenosis in at least one

major coronary vessel and controls <50% stenosis in all

major vessels.

Subjects from PREDICT were eligible if they had a

history of chest pain, suspected anginal-equivalent

symptoms, or a high risk of CAD with no known prior

MI, revascularization, or CAD. Detailed inclusion/exclu-

sion criteria have been described [6]. Diabetic status was

defined by clinical identification, blood glucose (non-

fasting ≥200 or fasting ≥126), rorhemoglobin A1c,

(≥6.5), or diabetic medication prescription. Complete

blood counts with differentials were obtained for all

patients. PREDICT patients gave written informed con-

sent, and the study protocol was approved by the Insti-

tutional Review Boards.

Blood collection, RNA purification and RT-PCR

Whole blood samples were collected in PAXgene® tubes

prior to coronary angiography, according to the manu-

facturer’s instructions, then frozen at -20°C. For the

CATHGEN samples RNA was purified as described

(PreAnalytix, Franklin Lakes, NJ), followed by quantita-

tive analysis (Ribogreen, Molecular Probes, Eugene, OR).

For the PREDICT samples an automated method using

the Agencourt RNAdvance system was employed.

Correlation between gene expression and cell type

distributions

Correlations with complete blood counts and database

gene expression analysis (SymAtlas, http://biogps.gnf.

org) were used to identify highly cell-type selective

genes. In addition, whole blood cell fractionation by

density centrifugation or through positive antibody

selection followed by RT-PCR was performed on specific

cell fractions (see Additional file 1).

Statistical methods

All statistical methods were performed using the R soft-

ware package.

Microarray methods

Microarray samples were labeled and hybridized to 41K

Human Whole Genome Arrays (Agilent, PN #G4112A)

using the manufacturer’s protocol. For PREDICT micro-

arrays all matched pairs were labeled and hybridized

together to minimize microarray batch effects. Microar-

ray data sets have been deposited in GEO (GSE 20686).

Normalization

Agilent processed signal values for array normalization

were scaled to a trimmed mean of 100 and then log2

transformed. Standard array QC metrics (percent
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present, pair-wise correlation, and signal intensity) were

used for quality assessment, resulting in 3 of 198

CATHGEN and 12 of 210 PREDICT samples being

excluded.

Array analysis

For the CATHGEN array, logistic regression (unadjusted

and sex/age adjusted) was used to assess gene expres-

sion association with case: control status. For the PRE-

DICT array, given the paired design, conditional logistic

regression was used. False discovery rates were used to

account for multiple comparisons. BINGO was used to

assess enrichment of gene ontology terms in the set of

655 genes [17]. A hyper-geometric test was used to

identify overrepresented terms; results were corrected

for multiple testing using Benjamini & Hochberg False

Discovery Rate (FDR) correction.

Gene selection

Genes for RT-PCR were selected based on statistical sig-

nificance, gene ontology pathway analysis, and literature

support. Hierarchical clustering based on gene: gene cor-

relations ensured that RT-PCR genes represented multiple

clusters. Normalization genes were selected based on low

variance, moderate to high expression, and no significant

association with case: control status, sex, age, or cell

counts. Cell-type genes were selected based on known lit-

erature or correlation to known cell-type specific markers.

PCR methods

Amplicon design, cDNA synthesis, and RT-PCR were per-

formed as previously described [6,13]. All PCR reactions

were run in triplicate and median values used for analysis.

Clinical/demographic factors were assessed for CAD asso-

ciation using univariate and multivariate logistic regres-

sion. Gene expression association with CAD and other

clinical/demographic factors was assessed by robust logis-

tic regression (unadjusted and sex/age adjusted) [13].

Algorithm development and validation

Hierarchical clustering was used to group genes using a

correlation cutoff. Clusters were reduced to meta-genes

[18] and normalization genes based on correlation struc-

ture, known biology, and cell count correlation. In gen-

eral, a meta-gene was a set of 1-4 genes from a specific

cluster, chosen to best represent the cluster center using

a parsimonious number of genes. Genes within meta-

genes were equally weighted with one exception (Addi-

tional File 1). For meta-gene pairs with high correlation

and opposite disease regulation, ratio terms (differences

on the log scale) were defined. Meta-genes indepen-

dently associated with outcome were selected by the

LASSO method, with sex by meta-gene interactions

allowed during variable selection [19].

The final algorithm was fit using Ridge regression

[20], where the outcome variable was case: control sta-

tus and the predictors the LASSO-selected meta-genes

and sex-specific age terms. Sex was a binary predictor,

and age a linear predictor with separate slopes for men,

women >60, and women <60 (the slope for women age

< 60 was estimated to be approximately 0 and thus was

set to 0 in the final algorithm). The LASSO was fit

using the glmnet package in R and ridge regression was

fit using the Design package in R; in both cases the

shrinkage parameter lambda was estimated using 10-

fold cross validation. Model performance was estimated

using leave-one-out cross-validation.

Results

A schematic of the patient, gene, and logic flow for

gene discovery and algorithm development is shown in

Figure 1. Baseline demographic characteristics of the

CATHGEN registry and PREDICT study microarray

patient cohorts are summarized in Table 1. Significant

clinical and demographic factors for obstructive CAD

were age, male sex, systolic blood pressure, and dyslipi-

demia; increased neutrophil count and decreased lym-

phocyte count trended toward significance. In all cases

whole blood samples were obtained in PAXgene® tubes

and microarray analysis performed using the Agilent

41K platform.

A total of 2,438 genes showed significant CAD associa-

tion (p < 0.05) in the 195 subject case: control analysis

from the CATHGEN cohort (Figure 1). Analysis of the

effect of clinical factors on gene expression showed dia-

betes as the most significant (p = 0.0006, Additional

file 2). Based on statistical significance and biological rele-

vance, 88 genes (Additional file 2) were selected for

RT-PCR analysis on these same samples. CAD-gene

expression analysis in non-diabetic and diabetic subsets

(N = 124 and 71, respectively), showed 42 and 12 signifi-

cant genes, respectively (p < 0.05), with no intersection

(Figure 2). Further work was thus limited to non-diabetics.

Microarray CAD gene discovery on 210 PREDICT non-

diabetic patient samples used a paired case: control

experimental design, to reduce confounding effects of

age, sex and microarray batch processing. CAD analysis

on the 99 case: control pairs which passed quality

metrics yielded 5,935 significant genes (p < 0.05)

with 655 genes in common with the CATHGEN results

(Figure 3, Additional File 2). Gene Ontology (GO) analy-

sis of these 655 genes identified 55 significant, overre-

presented biological process terms (adjusted p < 0.05,

Figure 4, Additional File 2), largely reflecting inflamma-

tion, immune cell differentiation, cell death and apopto-

sis. The molecular and cellular ontologies showed

enrichment of 3 and 10 terms respectively, including

caspase activity and ribosomal function.
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CATHGEN - Diabetics 
and Non-diabetics
Microarray N=195
2,438 genes p<0.05

Gene Selection for RT-PCR

RT-PCR 88 genes
42 p<.05 Non-Diabetic
12 p<.05 Diabetic
No overlap

PREDICT - Non-Diabetics
Second Microarray N=198
Paired design
5,935 genes, p<0.05
655 overlap with CATHGEN

Gene Selection for RT-PCR

Algorithm Development Set
N=640, RT-PCR 113 genes

Algorithm Derived and Locked
23 genes, age, sex

Figure 1 Gene discovery and algorithm development patient and logic flow schematic. Initial gene discovery (CATHGEN repository)

included both diabetic and non-diabetic patients. Gene discovery from PREDICT involved non-diabetic patients in a paired microarray analysis,

that yielded 655 significant genes in common with those from the CATHGEN arrays. For RT-PCR 113 genes were selected and tested on 640

PREDICT patient samples, from which the final algorithm was derived and locked.

Table 1 CATHGEN and PREDICT microarray cohort clinical and demographic characteristics

CATHGEN Microarray Cohort PREDICT Paired Microarray Cohort

Controls Cases Controls Cases

Variable (N = 108) (N = 87) p.value (N = 99) (N = 99) p.value

Sex (%Male) 55 (50.9%) 58 (66.7%) 0.039 75(75.8%) 75 (75.8%) 0.868

Age (yrs) 55 ± 11 63 ± 10 <.001 55 ± 12 62 ± 11 <.001

Caucasian 56 (51.9%) 60 (69%) 0.023 85(85.9%) 92 (92.9%) 0.166

BMI 32 ± 7 30 ± 6 0.098 30 ± 7 30 ± 6 0.722

Current Smoker 41 (38%) 45 (51.7%) 0.075 14(14.1%) 25 (25.3%) 0.074

Systolic BP 144 ± 22 153 ± 25 0.007 132 ± 17 138 ± 18 0.009

Diastolic BP 83 ± 13 87 ± 15 0.077 82 ± 11 80 ± 12 0.271

Hypertension 67 (62%) 65 (74.7%) 0.084 55(55.6%) 65 (65.7%) 0.191

Dyslipidemia 55 (50.9%) 58 (66.7%) 0.039 50(50.5%) 69 (69.7%) 0.009

Neutrophil Count 3.8 ± 1.2 4 ± 1.3 0.392 3.9 ± 1.2 4.3 ± 1.5 0.037

Lymphocyte Count 1.8 ± 0.7 1.9 ± 0.7 0.87 2 ± 0.7 1.9 ± 0.6 0.239

1Microarray cohort analyses are restricted to those whose arrays passed QC analysis (195/198 for CATHGEN and 198/210 for the PREDICT samples).
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Gene selection

A total of 113 genes (Table 2) were selected by statistical

significance, biological relevance, and prior association

with CAD from RT-PCR gene expression measurements

in the 640 patient PREDICT algorithm development

cohort (Figure 1, Table 3). Known cell-type specific mar-

kers, those correlated with cell counts in PREDICT, and

candidate normalization genes, were also represented.

Analysis of algorithm development cohort: clinical and

gene expression factors

The most significant clinical/demographic factors for CAD

association were age, sex, chest pain type and neutrophil

count. Age and sex were independent risk factors for CAD

(Table 3) and showed significant gene expression correla-

tion. Chest pain type was also a significant independent

risk factor (p = 0.0004), especially in men, but was gene

expression independent. Neutrophil count was signifi-

cantly correlated (positively or negatively) to expression of

93 of 113 RT-PCR genes, and was significantly associated

with CAD in men (p = 0.049) but not women (p = 0.77).

Neutrophil-associated genes showed both up and

down regulation with CAD status, whereas lymphocyte-

associated genes were generally down-regulated. There

was significant gender-specific regulation of neutrophil

correlated genes (men 40/42 genes up-regulated, women,

41/42 down-regulated) whereas lymphocyte gene down-

regulation was gender independent.

Hierarchical clustering of the 113 PCR genes resulted

in 18 correlated clusters (Figure 5, Table 2), a significant

fraction of which could be mapped to cell-type specific

gene expression groups, with finer correlation substruc-

ture within the lymphocyte and neutrophil associated

genes. There were 3 lymphocyte subgroups representing

T-cells (clusters 1,2,3), B-cells (cluster 3) and NK cells

(cluster 12). Three neutrophil subgroups were also iden-

tified: previously described neutrophil genes (IL8RB,

S100A8, S100A12, TXN, BCL2A1; cluster 13, 16); newly

identified up-regulated neutrophil genes (CLEC4E,

CASP5, TNFAIP6; cluster 16) and down-regulated neu-

trophil genes (KCNE3, TLR4, TNFRSF10C; clusters 13,

14) [13]. Cluster 8 appears to be eosinophil specific.

Figure 2 RT-PCR analysis of diabetic status impact on significant genes from CATHGEN microarray analysis. Significance of individual

genes selected from the CATHGEN microarray cohort in non-diabetic (ND) and diabetic (D) patients is shown. The sex/age adjusted p values

from a CAD logistic regression analysis in each subset are plotted (log scale). Significant p values (<0.05) are indicated in red with gene symbols,

non-significant ones in black.
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The 26 genes in clusters 4-7 and 9-11 did not have clear

cell-type association.

Algorithm derivation and performance

Based on gene expression correlation clustering and

cell-type analyses, 15 meta-genes and 3 normalization

genes were defined as inputs for model variable selec-

tion (Table 2, Figure 6). Selection by the LASSO method

and further weight penalization by Ridge regression

resulted in the final, locked algorithm, comprising 20

CAD-associated genes and 3 normalization genes in 6

meta-gene terms (Figure 6), where each term represents

a ratio of meta-genes or meta-gene to normalization

genes. The algorithm score is calculated as described

(Additional file 1) and was defined as the predicted

regression model value.

The estimated cross-validated algorithm AUC in ROC

analysis in the PREDICT development set was 0.77 (95%

CI 0.73 to 0.81) (Figure 7); prospective validation in an

independent PREDICT validation set of 526 patients

(192 cases, 334 controls) yielded an AUC of 0.70 (95%

CI = 0.65 to 0.75) [6].

Discussion

This study presents gene discovery from microarrays

and development from a large RT-PCR data set of a

whole blood derived RT-PCR based gene-expression

algorithm for assessment of obstructive CAD likelihood

in non-diabetic patients, which was subsequently vali-

dated in an independent patient set [6].

The limitation to non-diabetic patients was due to the

significant differences observed in PCR-based technical

replication of the initial microarray experiment from the

CATHGEN cohort, where both diabetic and non-diabetic

patients were included (Figure 2). This effect could be due

to differences in the pathophysiology of CAD in diabetics,

as has been observed at the plaque composition level, [21]

or due to diabetic medications, some of which modulate

gene expression and affect cardiovascular disease [22].

A number of methodological steps deserve highlight-

ing: first, we interrogated whole blood samples from

more than 1,000 patients; second, we developed and

used an automated and high reproducible RNA extrac-

tion process for the PREDICT samples; third, for the

PREDICT work we also used core laboratory determined

quantitative coronary angiography to define maximum

percent stenosis and case: control status and fourth, we

used ratios of correlated gene sets or meta-genes as

building blocks for algorithm development. These meth-

odological approaches enhanced the power of the PCR

algorithm development set to investigate the relationship

between CAD, clinical factors, and gene expression.

The relationships between age, sex, CAD, and gene

expression are complex. Increasing age and male sex are

well-known risk factors for CAD, which affect gene

expression in circulating cells [23,24]. The majority of

Figure 3 Venn diagram of microarray, RT-PCR, and algorithm gene sources. A total of 7718 genes were identified, 2438 and 5935,

respectively, from the CATHGEN and PREDICT microarray analyses, with an intersection of 655 genes. For the 113 RT-PCR genes, 52 were from

PREDICT, 22 from CATHGEN, and 29 from both; 10 were either normalization genes or from previous studies [13]. The final algorithm contained

20 informative genes: 10 from both microarray studies, 8 PREDICT alone, and 2 CATHGEN alone.
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genes measured by RT-PCR in this study correlated with

lymphocyte or neutrophil fraction. Lymphocyte-asso-

ciated gene expression decreases with CAD in a sex-

independent fashion, consistent with decreased lympho-

cyte counts being correlated with increased cardiovascu-

lar risk [14]. In contrast, neutrophil-associated genes

display significant sex-specific expression differences

with CAD: in men 95% of the neutrophil genes were

up-regulated whereas 98% were down-regulated in

women, consistent with increased granulocyte counts in

men being associated with higher CAD risk, with lesser

effects in women [25,26].

Biological significance of algorithm terms

The use of correlated meta-genes as building blocks for the

algorithm is significantly reflective of gene expression cell-

type specificity. The algorithm genes are expressed selec-

tively in multiple types of circulating cells including neu-

trophils, NK cells, B and T-lymphocytes, [27], supporting

roles for both adaptive and innate immune responses in

atherosclerosis [10].

A role for neutrophils in both the early and later stages

of atherogenesis has recently been suggested, especially

in connection with hyperlipidemia [28,29]. Algorithm

term 1 is a ratio of neutrophil expressed meta-genes that

are up and down regulated with CAD (Figure 6). This

term may particularly reflect neutrophil apoptosis, as

Caspase-5 is increased with CAD, whereas TNFRSF10C,

an anti-apoptotic decoy receptor of TRAIL, is decreased

[30]. Term 2 genes up-regulated with CAD are also

expressed largely by neutrophils and likely reflect both

innate immune activation, (S100A8 and S100A12), [31]

and a cellular necrosis response (CLEC4E) [32]. S100A8

and S100A12 are up-regulated in chronic inflammatory

conditions, including asthma, rheumatoid, and inflamma-

tory arthritis, perhaps reflecting a more general patho-

physiological signal, consistent with increased CAD in

disorders such as rheumatoid arthritis [33,34].

Term 2 is highly correlated with the signature pre-

viously identified by us [13] and includes the most sig-

nificant gene from that work, S100A12. This term is

normalized in a sex-specific manner, perhaps reflecting

Figure 4 Gene ontology analysis of 655 CAD genes identified from microarray studies. The 655 CAD genes identified were analyzed using

the BINGO algorithm to ascertain significant biological processes. Significant processes (p < 0.01 after FDR correction) are colored with the

gradient of p values reflected in the colors as indicated, and the biological process annotated. A total of 55 processes were significant in this

analysis at p < 0.05.
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Table 2 Genes evaluated by RT-PCR in the algorithm development cohort

Gene Symbol MicroArray Evidence1 Cell-Type2 Cluster Metagene Term Algorithm Term3

DDX18 3 1.1

SSRP1 3 1.2

CCT2 3 2 1.3

RPL28 N 2 1.4 Norm 2b

XIST 2 1,4,5 1.5

RASSF7 3 1.6

PKD1 3 1.7

AGPAT5 3 2,7 1.8

GLS 3 1.9

TMC8 3 1.10 1 3b,4b

RPS4Y1 2 3 1.11

KLF12 3 4 1.12

LCK 2,3 3,4,8 1.13

CD3D 2,3 3,4,8 1.14 1 3b,4b

AES 3 1.15

ZAP70 3 3,4,8 1.16

CD81 3 7,8 1.17

QDPR 3 2,5 1.18

FXN 2 2 1.19

CORO2A 3 1.20

TCEA1 3 7 1.21

KMO 3 5,7 2.1

TLR7 3 5 2.2

RHOC 3 2.3

CX3CR1 3 6,8 2.4

IL11RA 1,2 3,4 3.1

IL7R 1,2,3 3,4,8 3.2 3

FAIM3 2,3 3,4,7 3.3

TCF7 2,3 3,4,8 3.4 3

CD79B 2,3 7 3.5 2 4a

SPIB 2,3 2,5,7 3.6 2 4a

CD19 3 5,7 3.7

BLK 3 5,7 3.8

PI16 2 3.9

LRRN3 3 3,4 3.10 4

HNRNPF N 4.1 Norm 5b,6b

TFCP2 N 4.2 Norm 5b,6b

ACBD5 3 4.3

DIAPH1 3 4.4

CD37 3 7 4.5

PLAGL2 3 1 4.6

SRA1 3 5.1

CD300A 2 8 5.2

ELMO2 3 5,8 5.3

CD33 2 1,6 6.1

CSPG2 1,2 6.2

CAT 2 2,5 6.3

NOD2 1,3 1,6 6.4

KCNMB1 2 6.5 5

TCF7L2 3 1,6,8 6.6 5

PDK4 3 6.7 5
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Table 2 Genes evaluated by RT-PCR in the algorithm development cohort (Continued)

TBC1D8 3 1,5,6 6.8

NR4A1 3 5 7.1

CDKN1C 3 6,8 7.2

C2 2 7.3

CLC 2 1,2 8.1 6

OLIG2 2 8.2

ADORA3 2 8.3 6

MMD 1,2,3 7 9.1

HIST1H2AE 1,3 4,7 9.2 7

AMFR 2 10.1

CD34 N 2 10.2

A_24_P128361 (AF289562) 3 11.1 8 5a

CD248 2,3 4 11.2

KLRC4 2 4,8 12.1 9 3a

TARP 2,3 4,8 12.2

CCR5 2 4,5 12.3

CD8A 1 3,4,8 12.4

SLAMF7 2 5,8 12.5 9 3a

KLRC2 2 3,4,8 12.6

PRSS23 2 8 12.7

NCAM1 N 8 12.8

TNFRSF10C 3 13.1 11 1b

IL8RB 1,3 1,6,8 13.2 11 1b

TLR4 3 1,6 13.3 11 1b

NAMPT 3 1,5,6 13.4

AQP9 3 1,6 13.5 10 2c

S100A8 1,2,3 1,5,6 13.6 12 2a

NCF4 2,3 1,6 13.7 10 2c

GLT1D1 1,2,3 13.8

TXN 2,3 2,5 13.9

GABARAPL1 3 13.10

SIRPB2 1,3 13.11

TRPM6 3 13.12

CD93 1,2,3 1,5,6 13.13

ASPRV1 3 13.14

ALOX5AP 2,3 5 13.15

BCL2A1 1,2,3 1,6,8 13.16

F11R 3 14.1

PTAFR 3 1,6 14.2

H3F3B 3 7 14.3

TYROBP 2,3 1,6,8 14.4

NCF2 3 1,5,6 14.5

KCNE3 2,3 1,6 14.6 11 1b

LAMP2 2,3 1 14.7

PLAUR 3 1,6 14.8

CD14 1 1,5,6 14.9

HK3 1,2 1,6,8 14.10

IL18 1 14.11

RGS18 1,2 1,6 15.1

BMX 2,3 16.1

MMP9 2,3 16.2

S100A12 1,2,3 1,5,6 16.3 12 2a
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sex-specific differences in the significance of neutrophil

counts in CAD and MI [26]. In men normalization to

RPL28 which is strongly expressed in lymphocytes,

reflects the neutrophil to lymphocyte ratio, which is

prognostic for death or MI in a CAD population [14].

In women normalization to AQP9 and NCF4, two CAD

insensitive neutrophil genes, permits assessment of neu-

trophil up-regulation of the S100s and CLEC4E, inde-

pendent of neutrophil count.

Term 3 consists of 2 NK cell receptors, SLAMF7 and

KLRC4, normalized to T-cell specific genes (TMC8 and

CD3D). SLAMF7 may specifically activate NK cell func-

tion, while inhibiting B and T cells [35]. KLRC4 is also

likely involved in NK cell activation [36]. NK cells have

been associated with atherosclerosis in both mouse

models and humans, and reduced lymphocyte counts

associated with cardiac events [14,37].

Term 4 is a gene expression based measure of the B/

T-cell ratio. The roles of both T and B cells in athero-

sclerosis development are complex; mouse models have

shown B cells to be both athero-protective and more

recently, atherogenic [38-40]. In this study apparent

upregulation of B-cell specific genes is correlated with

CAD, perhaps supporting the latter. The last two terms,

based on AF289562 (AF2) and TSPAN16 are genes of

unknown function that will require further work to clar-

ify their role in atherosclerosis.

Previous work by Sinnaeve and coworkers also exam-

ined peripheral blood gene expression in a coronary dis-

ease population [12]. As noted by these authors, there is

little overlap between their genes and the signatures

identified in our previous study [13] or this one. A num-

ber of significant differences in the study populations

(restricted age range, combining two sex specific

cohorts) in their study may have contributed to this. In

addition, there are differences in both RNA isolation

methodology and microarray platforms. Further work is

needed to resolve these issues.

Algorithm development

For algorithm development, as described above, we used

an approach that minimized the effect of any single

gene by using meta-genes as building blocks [18,41]

Penalized stepwise logistic regression (LASSO) selected

significant meta-genes from a 640 patient data set which

greatly exceeded the number of candidate variables (15

meta-genes), reducing the likelihood of over-fitting.

Further, in order to minimize over-weighting of indivi-

dual terms, meta-gene coefficients were penalized using

Ridge regression. An alternative approach would have

been to use a combined two-step shrinkage method

such as the elastic net [42]. Although correlations with

Table 2 Genes evaluated by RT-PCR in the algorithm development cohort (Continued)

CLEC4E 2,3 16.4 12 2a

CLEC4D 2,3 1,6 16.5

CASP5 2,3 16.6 13 1a

TNFAIP6 2,3 1 16.7 13 1a

IL18RAP 1,3 3,4,8 16.8 13 1a

ARG1 2,3 17.1 14

HP 1 1,2 17.2

CBS 2,3 17.3 14

AF161365 3 17.4 15 6a

ALAS2 CN 18.1

1Microarray Evidence: 1 = Wingrove et al, 2 = CATHGEN, 3 = PREDICT, CN = cell-type specific normalization gene, N = global normalization gene
2Cell Type: 1 = CD33+ (myeloid), 2 = CD34+(hematopoetic precursor), 3 = CD4+, (T cell) 4 = CD8+ (T cell), 5 = Dendritic, 6 = CD14+ (monocyte), 7 = CD19+ (B

cell), 8 = CD56+ (natural killer cell).
3For algorithm term identification, genes in the numerators are listed as Na whereas those in the denominators are Nb.

Table 3 PREDICT algorithm development cohort clinical

and demographic characteristics1

Variable Controls (N = 410) Cases (N = 230) p.value

Sex (%Male) 193 (47.1%) 180 (78.3%) <.001

Age (yrs) 57 ± 12 64 ± 11 <.001

Caucasian 347 (84.6%) 210 (91.3%) 0.022

BMI 31 ± 8 30 ± 6 0.348

Current Smoker 87 (21.2%) 45 (19.6%) 0.693

Systolic BP 133 ± 18 138 ± 18 <.001

Diastolic BP 80 ± 12 80 ± 11 0.944

Hypertension 248 (60.5%) 167 (72.6%) 0.003

Dyslipidemia 225 (54.9%) 170 (73.9%) <.001

Neutrophil Count 4 ± 1.2 4.3 ± 1.4 0.054

Lymphocyte Count 2 ± 0.6 1.9 ± 0.6 0.007

Chest Pain Category .0004

Asymptomatic 141 (35.4%) 90 (39.6%)

Atypical 56 (14.0%) 29 (12.8%)

Non-Anginal 137 (34.3%) 47 (20.7%)

Typical 65 (16.3%) 61 (26.9%)

1Clinical and demographic characteristics for the 640 PREDICT algorithm

development cohort are shown.
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specific cell types was a key observation, recent meth-

odologies described for deconvoluting gene expression

data sets from complex cell mixtures might have led to

improved results [43].

The cross-validated model AUC was 0.77 (95% CI 0.73

to 0.81), suggesting that the algorithm score was a signifi-

cant CAD predictor. A decrease to an AUC of 0.70, with

overlapping confidence intervals (95% CI = 0.65 to 0.75),

was observed in the independent validation set [6]. This

decrease may reflect an over-optimistic cross-validation

estimate, as we did not re-select terms during each itera-

tion. Ultimately, the validation results provide the most

informative measure of a model’s prediction accuracy.

Limitations

Although this is one of the largest studies examining

gene expression in peripheral blood in CAD patients

and has yielded a specific algorithm for the assessment

of CAD status, it has several limitations.

From a clinical perspective, diabetics and patients with

known chronic inflammatory disorders were excluded.

The differences observed between diabetics and non-dia-

betics with CAD could be due to differences in the

molecular pathophysiology of the disease, medications,

or some combination of the two. In addition, although

race was not an independent risk factor after adjustment

for age and sex, the number of minority patients was

low, so conclusions with respect to them are signifi-

cantly underpowered. The use of a dichotomous angio-

graphic endpoint does not account for variations in

disease burden or external remodeling, and is not a

measure of ischemia. Finally, the contribution of athero-

sclerosis in other vascular beds is outside the scope of

this study, but may be important in asymptomatic high-

risk individuals.

From a cellular and gene expression perspective, the rela-

tive ease of obtaining peripheral blood cell RNA is counter-

balanced by not directly interrogating changes in the

Figure 5 Heat-Map representation of Hierarchical Clustering Results on 113 RT-PCR Genes. Clusters were generated by hierarchical

clustering yielding 20 groups of correlated. Clusters were annotated as to cell type expression using BioGPS (http://www.biogps.gnf.org). Extent

of correlation is indicated by color as shown in the bar.
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diseased vascular wall. Another complementary approach

could be to examine secreted proteins in the blood that

might reflect endothelial or vascular dysfunction. Finally,

given the chronic nature of atherosclerotic disease, it is

likely the gene expression signature observed reflects a

response to disease rather than the underlying cause.

Conclusions

Using a series of microarray and RT-PCR data sets,

comprising more than 1,000 patients, we have derived

an algorithm, consisting of the expression levels of 23

genes, sex, and age, which can assess the likelihood of

obstructive CAD in non-diabetic patients.

Additional material

Additional file 1: Algorithm Score Calculation and Transformation.

Cell fractionation and cell specific gene expression analysis.

Additional file 2: Data Tables. Table S1 - Significance of Clinical

Variables in CATHGEN gene discovery cohort. Table S2 - Significance of

RT-PCR results for the 88 genes tested in the CATHGEN discovery cohort,

1)Neutrophil Activation - Apoptosis
Innate Immunity

0.755* (IL18RAP+TNFAIP6+CASP5) -
(IL8RB+TNFRSF10C+TLR4+KCNE3)

2)Neutrophil Activation/Lymphocytes
Innate Immunity/Cell Necrosis

0.308*(S100A8+S100A12+CLEC4E)
- RPL28

3)NK Activation/T cells
Innate Immunity

0.406*(SLAMF7+KLRC4) - (TMC8+CD3D)

4)B/T Ratio - Adaptive Immune Response

0.137*(0.33*SPIB+0.67*CD79B) -
(TMC8+CD3D)

5)    0.246* AF2 - (TFCP2+HNRPF)

6M) 0.408*TSPAN - (TFCP2+HNRPF)

1)Neutrophil Activation - Apoptosis
Innate Immunity

0.755* (IL18RAP+TNFAIP6+CASP5) -
(IL8RB+TNFRSF10C+TLR4+KCNE3)

2)Normalized Neutrophil Activation
Innate Immunity/Cell Necrosis

0.548*(S100A8+S100A12+CLEC4E)
- (NCF4+AQP9)

3)NK Activation/T cells
Innate Immunity

0.406*(SLAMF7+KLRC4) - (TMC8+CD3D)

4)B/T Ratio - Adaptive Immune Response

0.137*(0.33*SPIB+0.67*CD79B) -
(TMC8+CD3D)

5)  0.246* AF2 - (TFCP2+HNRPF)

Males Females

Figure 6 Schematic of the final algorithm structure and genes. The algorithm consists of overlapping gene expression functions for men

and women with a sex-specific linear age function for the former and a non-linear age function for the latter. The genes in each term and their

weights are shown. For the gene expression components, 16/23 genes in 4 terms are gender independent: Term 1 - neutrophil activation and

apoptosis, Term 3 - NK cell activation to T cell ratio, Term 4, B to T cell ratio, and Term 5 -AF289562 expression normalized to TFCP2 and HNRPF.

In addition, Term 2 consists of 3 sex-independent neutrophil/innate immunity genes (S100A8, S100A12, CLEC4E) normalized to overall neutrophil

gene expression (AQP9, NCF4) for women and to RPL28 (lymphocytes) for men. The final male specific term is the normalized expression of

TSPAN16. Algorithm score is calculated as described (Additional file 1).

Figure 7 ROC analysis of final algorithm. The cross-validated ROC

curve for the final algorithm in the algorithm development cohort is

shown. The AUC is 0.77 ± 0.04.
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in the non-diabetic and diabetic subsets. Table S3 - The 655 genes

identified in both the CATHGEN and PREDICT discovery microarray

experiments. Table S4 - The significant biological process, cellular

compartment and molecular function ontologies from GO analysis of the

655 genes.
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