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Abstract

Background: Dementia is an age-related cognitive decline which is indicated by an

early degeneration of cortical and sub-cortical structures. Characterizing those

morphological changes can help to understand the disease development and

contribute to disease early prediction and prevention. But modeling that can best

capture brain structural variability and can be valid in both disease classification and

interpretation is extremely challenging. The current study aimed to establish a

computational approach for modeling the magnetic resonance imaging (MRI)-based

structural complexity of the brain using the framework of hidden Markov models

(HMMs) for dementia recognition.

Methods: Regularity dimension and semi-variogram were used to extract structural

features of the brains, and vector quantization method was applied to convert

extracted feature vectors to prototype vectors. The output VQ indices were then

utilized to estimate parameters for HMMs. To validate its accuracy and robustness,

experiments were carried out on individuals who were characterized as non-

demented and mild Alzheimer’s diseased. Four HMMs were constructed based on

the cohort of non-demented young, middle-aged, elder and demented elder

subjects separately. Classification was carried out using a data set including both

non-demented and demented individuals with a wide age range.

Results: The proposed HMMs have succeeded in recognition of individual who has

mild Alzheimer’s disease and achieved a better classification accuracy compared to

other related works using different classifiers. Results have shown the ability of the

proposed modeling for recognition of early dementia.

Conclusion: The findings from this research will allow individual classification to

support the early diagnosis and prediction of dementia. By using the brain MRI-

based HMMs developed in our proposed research, it will be more efficient, robust

and can be easily used by clinicians as a computer-aid tool for validating imaging

bio-markers for early prediction of dementia.

Dementia Hidden Markov Model (HMM), Classification, Magnetic Resonance Imaging (MRI), Alzheimer’s

Disease (AD), Regularity Dimension, Semi-variogram, Vector Quantization (VQ)
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Introduction

Dementia is an age-related neurodegenerative disorder but the cause is still essentially

unknown. Alzheimer’s disease (AD), the most common form of dementia, is characterized

by loss of neurons and synapses in the cerebral cortex and certain subcortical regions. The

current clinical diagnosis of AD is still based on clinical observation, neurological and

neuropsychological testing. Advanced medical imaging techniques such as magnetic reso-

nance imaging (MRI), positron emission tomography (PET), and single photon emission

computed tomography (SPECT) have shown promise as non-invasive diagnostic indicators

for AD that may lead to proposal of new diagnostic criteria [1,2]. Specially, volumetric

MRI proves less expensive than other imaging methods and related studies have

documented reductions in the size of specific brain regions in people with dementia

as they progressed from mild cognitive impairment to severe AD [3,4]. However, it

is still challenging to apply fully automated MRI analytic methods to identify potential

AD neuroimaging bio-markers.

Studies involving brain MRI scans have tried to extract the most informative features

for diagnosing dementia. Regions-of-interest (ROIs) analysis mainly focuses on brain

structural changes in specific anatomical regions such as hippocampal [5,6], entorhinal

[7,8], frontal [9-11], temporal [6,12], and parietal cortex [6,13] during disease progression.

They provide valuable information of histopathological changes but somehow suffer from

limitations like expert-dependency, region-limited, and time consumption. Multiple

regions or the whole brain give more accuracy for dementia prediction since they extract

typical features from the whole brain and are able to capture early signs of cognitive

impairment before the onset of dementia. These studies include the measure of voxel-

based differences in cortical volume [10,14], density [12], and thickness [13,15], etc. Cortex

architecture such as sulcal folds and irregularity can be another important aspects worth

studying since sulcal folds are the principal surface landmarks of the human cerebral

cortex, and exhibit structurally complex patterns [16] that are postulated to reflect under-

lying connectivity [17]. However, very few studies have reported the changes of cortical

architecture in dementia. In our previous study, we have quantified the cortex structure

complexity using entropy method [18], and found a significant higher global cortical

structure complexity in AD subjects compared to cognitive normal. This increase was

also found to be accompanied with aging. These features have the potential to serve as

sensitive surrogate markers and are capable of quantifying the extent of brain degene-

ration in dementia. However, modeling that can best capture brain structural variability

and can be valid in both disease classification and interpretation is extremely challenging.

For dementia diagnosis, multivariate classification techniques have been proposed in

literatures such as support vector machines (SVM) [19,20], artificial neural network

(ANN) [21], and decision trees (Trees) [22]. Hidden Markov Models (HMMs) is a pop-

ular double stochastic model which is able to extract the underlying statistics using a

compact set of features [23]. HMM is especially suitable for sequence data modeling

compared to other conventional classifiers. It has been applied in white matter hyper-

intensities quantification [24], spatio-temporal analysis of brain MR images [25] and

age prediction [26]. In the current study, we aimed to establish a computational

approach for modeling the MRI-based structural complexity of the brain using the

framework of HMMs for dementia recognition. Regularity dimension and semi-

variogram was used to extract structural features of the brains. Regularity dimension is
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based on sample entropy which quantifies the system complexity. Semi-variogram can

estimate the spatial distribution of the system. Vector quantization (VQ) method was

applied to convert extracted large feature data to small prototype data. The output VQ

indices were then utilized to estimate parameters for HMMs. Classification was carried

out using a data set including both non-demented and demented individuals with a

wide age range.

Materials and Methods

System architecture

Two fundamental steps are required to design the classifier. The first one is to extract

features that can best characterize and discriminate between different group of subjects,

and the second is to select an appropriate classifier paradigm. Figure 1 shows the archi-

tecture of the proposed classification system. In the current study, two features were

extracted using regularity dimension and semi-variogram separately from time series

generated from each MRI slice. Two feature sequences were then obtained from time

series of subsequent MRI slices over the whole brain. VQ allows each feature sequence

to be represented as index sequence which can be defined as state or observable symbol

in HMM construction. Evaluation of the classifier includes training and testing stages.

We used n-fold and leave-one-out cross-validation in model testing.

During the training stage, feature vectors were obtained from all training data from

two different groups. The model parameters were estimated and optimized by using

state and observation sequences generated from VQ. Therefore, each group will have

one representative HMM (Figure 1(a)).

Two approaches were applied in HMMs testing. The first is to match the observed sym-

bol sequence of test data against two different group HMMs previously obtained in the

training stage and compute the probability of the sequence generated from the model

separately. The test data which indicates a subject will be classified to the group which

attains higher probability (Figure 1(b)). The second approach is to construct a HMM for

each test data and compare it with group HMMs separately using Kullback-Leibler

Figure 1 System architecture. Hidden Markov Models (a) training, and (b)(c) testing.
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divergence (KLD). The test data will be classified to the group which has smaller KLD

indicating greater similarity between the two models (Figure 1(c)).

Subjects

All subjects were drawn from the Open Access Series of Imaging Studies (OASIS)

database (http://www.oasis-brains.org/) [27]. From the database, we selected a data set

consisted of a cross-sectional collection of young, middle-aged, non-demented and AD

elder adults (Table 1). The subjects were all right-handed and included both men and

women. Among the subjects, 75 of them had been clinically diagnosed with very mild

to mild AD (with Clinical Dementia Rating (CDR) score of 0.5 or 1); and others with

CDR score of 0. All studies were approved by the Institutional Review Board (IRB) of

Washington University. Informed consents were obtained from all subjects at the time

of study participation.

MRI acquisition and data preprocessing

All images were corrected for inhomogeneity prior to further segmentation. For each

subject, a grey/white/Cerebrospinal Fluid (CSF) segmented image [28] in which each

voxel has been labeled as GM, white matter (WM), or CSF is provided. All images are

in 16-bit Analyze 7.5 format, and are normalized into 176x208x176 voxel-wise images.

Additional details of the image characteristics can be found at (http://www.oasis-

brains.org/) [27].

Time series extraction

In order to generate 1-D signals that allow the application of regularity dimension, the

surface structure of the GM should be represented by time-series. For each MRI slice,

the time series represent the distances measured from subsequent outer boundary

points to the GM center of mass. In semi-variogram analysis, the spacial locations of

each point on the outer boundary were also included.

For each MRI slice, the center of the GM was detected by using the Matlab function

called “regionprops” which calculates the centroids of the image regions labeled in the

matrix of a two-dimensional array of nonnegative integers that represent contiguous

regions. Each centroid is 1-by-n dims vector that specifies the center of mass of the region.

The locating of the boundaries of GM in each 2-D scan was carried out by using the

Matlab function called “bwtraceboundary” which traces the outline of an object in a binary

image. All of these functions are available in the Matlab Image Processing Toolbox. The

distances from consecutive points on the outer boundary to the center of the GM are

then calculated. The distances are measured within each single MR slice (in a 2-D plane);

one MR slice yields one time series. The whole cortical surface structure is then

Table 1 Subjects Demographics and Dementia Status

Young Middle-aged Elder (non-demented) Elder (AD)

Number 75 75 75 75

Sex (female/male) 43/32 43/32 49/26 43/32

Age (years)
CDR

20.2 ± 1.2
(18∼22)
0

46.0 ± 8.1
(30∼59)
0

74.5 ± 8.4
(61∼91)
0

77.3 ± 7.6
(62∼92)
0.5, 1 or 2

Values given are mean ± SD.

Values in parentheses represent the range.
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represented by 130-140 time series extracting from their corresponding MR image slices.

For each individual, a sequence consist of 130-140 time series generated from the whole

brain MRI slices can be obtained. The orders of the sequences are the same, from top to

bottom.

By depicting the distances between the boundary points and the GM center of each

cortical sheet, we were able to build up time series that can best reflect the micro-

structures of the cortical surface architecture including its folding patterns and any

shape changes, and as thus enable complexity analysis. Figure 2 presents typical

examples of brain MRI, detected boundary contour of the GM and its corresponding

generated time series for each group.

Features extraction

Regularity dimension

The entropy measures provide a way to study the system complexity and has shown

high potentiality in quantifying the extent of cortical degeneration in dementia in one of

our previous studies [18]. The idea of regularity dimension is based on the concept of

power laws and sample entropy (SampEn) measures [29]. SampEn quantifies the condi-

tional probability that two sequences similar for m points (within a given tolerance r)

remain similar when one consecutive point is included. For a given time series X = x1, ...,

xN, where Bm(r) is the probability that two sequences will match for m points, whereas

Figure 2 Typical example of brain MR image for each group. Typical examples of brain MR image for

each group. Original image after removing the skull (the first row), detected boundary contours (black) of

the grey matter (grey) for the same image (the second row), and the corresponding generated time series

(the third row). In the third row of the figure, the time series indicates the distances measured from the

grey matter center to subsequent outer boundary points.
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Am(r) is the probability that two sequences will match for m + 1 points. However, since

we normally have no a priori knowledge concerning the dimension of a system, it is

imperative that we evaluate the method for different m and r. The regularity dimension

has been recently introduced for modeling a mathematical relationship between the

frequency with which information about signal regularity changes in various scales. It

provides an approach to unify multiple solutions due to the choice among the varieties

of the values of entropy parameters m and r. It can be generally expressed as where Ir

is SampEn denoting the information subject to r. It can be noted from (2) that the

regularity dimension Dr measures the rate of change of signal regularity/predictability

with respect to log(1/r). It is the rate at which the entropy of a dynamical system is

gained with decreasing length r.

SampEn (m, r, N) = −ln[
Am (r)

Bm (r)
] (1)

Dr = lim
r→0

Ir

log(1/r)
(2)

In the present study, regularity dimension Dr was estimated with a r reduced from 1

to 0.05 with an interval of 0.05. Time-series were extracted from each slice of brain

MRI, thus, for each slice, we can get a feature vector consisting of Dr with increasing r

(Figure 3(a)).

Semi-variogram

The variogram is originally a geostatistical method that describes how the spatial data

are related (correlated) with distance. It constructs a variogram that best estimates the

autocorrelation structure of the underlying stochastic process. In the current study,

since regularity dimension analysis only includes the information of distance values

from boundary points to the gray matter center, as supplement, semi-variogram was

applied to studies the spatial structure of the distance series. It includes the information

of both distances and spatial locations of the boundary points. We applied the experi-

mental semi-variogram [30], denoted as g(h), to analyse the spatial (autocorrelation)

structure of the data using a plot of the semi-variance against lag distance h. It is defined

as the average squared difference of values separated by h. The semi-variogram can be

calculated as where xi and xj are data values from spatial locations i and j to the center

of gray matter (GM) mass, respectively. h represents a spatial distance that separate

Figure 3 A typical example of regularity dimension and semi-variogram. A typical example of

(a) regularity dimension and (b) semi-variogram.
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xi and xj. N(h) is the total number of distinct data pairs of (xi − xj). In the current study,

xi and xj are the distance values from the cortical boundary at location i and j on to the

GM center, respectively. Thus, for each time series, we can get a feature vector consisted

of semi-variogram values g(h) with increasing h (Figure 3(b)).

γ (h) =
1

2N (h)

∑

N(h)

(xi − xj)
2

(3)

Hidden Markov models (HMMs)

To study the similarities or dissimilarities between a test and reference sequences,

we can apply HMMs as an efficient recognition tool. An HMM is defined as a double

stochastic process, composed of an underlying stochastic process (hidden states) that

can only be visualized through another set of stochastic process (observable symbols).

Each HMM is characterized by l = (A, B, π), where A is the transition probability

matrix of the hidden states, B denotes the emission probability matrix of the observa-

ble symbol distributed within the hidden states, and π is the probability of the initial

distribution of the hidden states. To be specific, the following parameters need to be

defined to construct an HMM:

l: HMM model, l = (A, B, π)

N: the number of states

M: the number of different observable symbols per state

Q: the state sequence

Q = (q1, q2, ..., qT), T is the number of the state sequence

O: the observation sequence

O = (o1, o2, ..., oT), T is the number of observations

A: A = {aij}, aij is the probability of state i transferring to state j

aij = P(qt+1 = j|qt = i), 1 ≤ i, j ≤ N

B: B = {bj(k)}, bj(k) is the probability of the kth symbol being in the state j

bj(k) = P(ot = k|qt = j), i ≤ j ≤ N, 1 ≤ k ≤ M

π: π = {πi}, πi is the initial distribution of state i

πi = P(q1 = i), 1 ≤ i ≤ N

In a hidden Markov model, the state is not directly visible, but output, dependent on

the state, is visible (observable symbols). We have proved the capacity of regularity

dimension as a sensitive indicator to reflect the extent of cortical degeneration in [18],

so we define regularity dimension as hidden state. Semi-variogram studies the spatial

structure of the time series. Since the spatial location of each point on the cortical
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outer boundary is observable, the semi-variogram is assumed as observable symbol.

The probability of transition distribution of the states then can be estimated by states

sequence, and the emission distribution probability can be estimated by observing

semi-variograms where are emitted at the states of regularity dimension. The probability

distribution of initial state is assumed to be as equal (0.5).

Features coding

Since the size of feature vectors is too large for hidden Markov modelling (around

20,000 in two groups, 130-140/individual), a VQ method [31] is required to map the

set of vectors into a finite, smaller, set of prototype vectors for HMM. The output

VQ indexes were then applied as states or observable symbols in HMM. VQ is an

efficient technique for data compression which can greatly reduce the storage and

increase computational efficiency without loosing too much information. The VQ

process includes two steps [32]: to design a representative codebook that minimizes

the expected distortion, and assign a label (index) to each feature vector of the input

data from the codebook. A most commonly used method for generating codebook is

the Linde-Buzo-Gray (LBG) algorithm [33]. In general, for a given training set T (regu-

larity dimension or semi-variogram in this study) and the size J of codebook, LBG

repeatedly splits the training data into two cells until the desired size of codebook is

reached. During each splitting process, search for and update the centroid of each cell

until the average distortion D is minimized. D is defined by

D =
1

TK

T
∑

t=1

(||yt − Q (xt) ||2)2. (4)

For a training set T = {y1, y2,..., yT }, where yT = (yt1, yt2, ..., ytK ) is a K-dimensional

feature vector, t = 1, 2, ..., T , we aimed to find a codebook vector C = {c1, c2, ..., cJ}

and the partitions of space, V = {R1, R2, ..., RJ}, where Rj is the encoding region asso-

ciated with code vector cj, which minimize D. Then, each source vector yt is assigned

to a nearest neighbor encoding region Rj denoted by Q(xt) = cj and labeled by index

of the code vector. Only the indices are sent instead of vectors. Figure 4 shows the

flowchart of LBG algorithm.

In the current study, the training vectors are assembled from two groups to be com-

pared in order to keep accordance from subject to subject. For state construction

using regularity dimension, we set the size of codebook as 2. For symbol construction

using semi-variogram, in order to achieve an “optimal” codebook size, we varied the

size from 4 to 256. Figure 5 presents the classification rate of AD elders vs. normal

elders using a fixed VQ codebook size of states as 2 and varied VQ codebook sizes

for observable symbols. From the Figure 5, it can be observed that both accuracy and

sensitivity improve as the size increases from 4 until 32. The accuracy as well as the

sensitivity and specificity begin to decrease as the size rises to 128. The optimal size

for symbols is then decided as 32 because it could provide the best trade-off between

effective analysis and efficient computation.

Similarity comparisons

For a test observation sequence O, representing a single individual, and a reference

HMM l, we can compute P(O|l), which implies the probability of an observation
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Figure 4 The flowchart of LBG algorithm. The flowchart of Linde-Buzo-Gray (LBG) algorithm.

Figure 5 Classification performance using fixed status size and varied sizes of observation symbols.

Classification accuracy, sensitivity and specificity of AD elders versus normal elders with a fixed VQ

codebook size of states as 2 and varied VQ codebook sizes of observable symbols from 2 to 256.
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sequence O given the model l:

P (O|λ) =
∑

Q

P (O|Q, λ) P (Q|λ)

=
∑

q1...qT

πq1
bq1 (o1) aq1 q2

bq2 (o2) ...aqT−1 qT
bqT

(oT) .
(5)

The time needed to evaluate P(O|l) directly would be exponential to the observation

number T. A forward algorithm [34] is a more efficient procedure which reduces the

complexity of the calculation from 2TNT to N2T.

P(O|l) can be maximized by using Baum-Welch algorithm [23] which is also refer-

eed to as the forward-backward algorithm. The algorithm iteratively uses λ =
(

A, B, π
)

instead of l = (A, B, π) to repeat the re-estimation process. The P(O|l) improves until

some limiting point is reached. The final estimate is called maximum likelihood of the

HMM. The re-estimated model λ =
(

A, B, π
)

is better than or equal to the previous

model, so that P(O|λ̄) ≥ P(O|λ), as desired.

Given a test HMM l1 = (A1, B1, π1) and a reference HMM l2 = (A2, B2, π2), we can

compare the similarity/dissimilarity between the two models by using a well-known

proximity measure, Kullback-Leibler divergence (KLD) [35]. The KLD estimate two

probability distributions between two HMMs l1 and l2 which can be defined by

DKL (λ1, λ2) = 1 − exp [Ds (λ1, λ2)] , (6)

where Ds is the symmetrized version of the approximate KLD of l1 and l2, namely

Ds (λ1, λ2) =
D (λ1, λ2) + D (λ2, λ1)

2
, (7)

in which D(l1, l2) is the empirical KLD between l1 and l2 which was originally

introduced by Juang and Rabiner [32] using the Monte Carlo simulations. The models

are assumed to be ergodic, having arbitrary observation probability distributions and

the dissimilarity is defined as the mean divergence of the observation sample. This

approximate KLD is given by where Oλ2
= (o1, o2, . . . , oT2

) is a sequence of observa-

tions generated by model l2, and T2 is the length of the sequence Oλ2. Eq. (8) can

interpret how well model l1 matches observations generated by model l2, relative to

how well model l2 matches observations generated by itself.

D (λ1, λ2) =
1

T2
log

P (Oλ2|λ1)

P (Oλ2|λ2)
, (8)

To be symmetric, we define D (l2, l1) as where Oλ1
= (o1, o2, . . . , oT1

) is a sequence

of observations generated by model l1, and T1 is the length of the sequence Oλ2.

D (λ2, λ1) =
1

T1
log

P (Oλ1|λ2)

P (Oλ1|λ1)
, (9)

HMM implementation

The implementation of the brain HMM is outlined as follows:

1) Obtain MRI scans of a participant;

2) Extract grey matter from pre-segmented image using SPM software package

(http://www.fil.ion.ucl.ac.uk/spm);
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3) Extract time series by the distances measured from subsequent outer boundary

points to the GM center of mass;

4) Extract state and observable symbol sequences based on regularity dimension

and semi-variogram using the VQ codebook;

5) Initial estimate l = (A, B, π);

6) Re-estimate λ =
(

A, B, π
)

using Baum-Welch algorithm.

HMM testing

The classifier was tested between every two groups (elder AD vs. elder non-demented,

middle-aged and young, respectively) using leave-one-out (LOO) and n-fold cross-

validation. In LOO method, one subject is taken at a time for evaluation, and the

remaining subjects are taken for training. This process is repeated until each subject in

both groups has been taken for evaluation, yielding an unbiased estimate of the classifica-

tion error rate. In n-fold cross-validation method, all the datasets are divided into training

and testing dataset. Firstly, 50% of the dataset are randomly selected as the training set,

while the rest 50% are taken for testing. The mean classification rates were obtained by

repeating the testing process over 100 times. Next, we increase the traning data to 70%

and 90% and test the models on the rest 30% and 10% data, respectively. For each combi-

nations, the testing process was repeated over 100 times to get mean classification rates.

To quantify the classification results, we calculated the accuracy defined as the ratio of

the number of test subjects correctly classified to the group. Meanwhile, sensitivity and

specificity of each tested pair of groups were computed as: Sensitivity = TP/(TP + FN) and

Specificity = TN/(TN + FP), where true positives (TP) are number of demented patients

correctly classified; true negatives (TN) are the number of control subjects correctly classi-

fied; false positives (FP) are the number of controls classified as demented patients and

false negatives (FN) are the number of demented patients classified as normal controls.

Results and Discussion

The testing results of HMM classifier are shown in Table 2. From Table 2, it is noted

that the classification rate increased as the age difference becomes larger. This is accor-

dance with our previous finding of an age-related progressing in cortical structural

irregularity [18]. Normal aging can also result in a reduction in brain size. Although

Table 2 Testing Results Using N-fold and Leave-one-out Cross-validation

Training Sets Parameters AD vs O
(mean ± sd)

AD vs M
(mean ± sd)

AD vs Y
(mean ± sd)

50% Sensitivity 0.792 ± 0.087 0.933 ± 0.033 0.982 ± 0.020

Specificity 0.773 ± 0.070 0.900 ± 0.047 0.982 ± 0.019

Accuracy 0.782 ± 0.047 0.916 ± 0.026 0.982 ± 0.013

70% Sensitivity 0.790 ± 0.087 0.934 ± 0.045 0.986 ± 0.025

Specificity 0.076 ± 0.084 0.891 ± 0.055 0.982 ± 0.023

Accuracy 0.783 ± 0.053 0.912 ± 0.035 0.984 ± 0.015

90% Sensitivity 0.780 ± 0.169 0.934 ± 0.090 0.986 ± 0.048

Specificity 0.800 ± 0.163 0.891 ± 0.117 0.980 ± 0.050

Accuracy 0.790 ± 0.117 0.913 ± 0.065 0.983 ± 0.035

Leave-one-out Sensitivity 0.813 0.933 0.987

Specificity 0.800 0.920 0.987

Accuracy 0.807 0.927 0.987

AD, O, M, Y refer to elder AD, non-demented elder, middle-aged, and young, respectively

Chen and Pham BioMedical Engineering OnLine 2013, 12(Suppl 1):S2

http://www.biomedical-engineering-online.com/content/12/S1/S2

Page 11 of 16



AD may exhibit a characteristic pattern of atrophy different from that due to aging,

even accelerated aging, when AD works as an added effect over aging, it is difficult to

ascertain whether the cognitive decline is simply resulted from normal aging or AD,

especially at early stage of the disease. This is why the classification accuracy is

relatively lower in AD elders versus normal elders. When without this added effect, the

accuracy rises (in LOO, from 80.7% to 98.7%) as well as the sensitivity (in LOO, from

81.3% to 98.7%) and specificity (in LOO, from 80.0% to 98.7%). Results from the 50%,

70% and 90% training sets showed that the larger the training set is, the higher the

mean classification rates. However, two testing approaches using P(O|l) and KLD

don’t differ in classification results (Table 3). Since KLD estimation is based on P(O|l),

a single use of P(O|l) is superior to KLD which provides with more efficient comput-

ing. Meanwhile, re-estimation of HMM parameters did not improve the classification

results as shown in Table 4. One of the possible reasons could be a small size of train-

ing data that allows in parameter re-estimation. Another reason may be while para-

meters of one HMM are updated in such a way to maximize the quantity P(O|l), the

probability of O being observed from the other model is also improved. For those P(O|

l) of one group HMM only a tiniest bit over that relative to the other group HMM,

there is a risk that the re-estimated parameters may lead to a completely converse

classification result.

Using the aforementioned experimental methods, demented images can be classified

into three categories: very mild, mild and moderate as shown in Table 5. The resulting

detection rate of dementia increased as the cognitive impairment exacerbated as

expected (Table 6). The declination of global GM volume accelerates as disease devel-

oped [6] in the sense the morphological abnormalities can be even more remarkable

which make them more likely to be predicted and differentiated from normal cognitive

decline. However, due to the limitation of the data provided by OASIS database which

include very few moderate AD samples, even the current results show a very encouraging

detection rate in latter two groups, we are not able to verify the performance of the classi-

fier in late AD recognition. This issue is certainly worth investigating in our future

research when more data become available.

We have demonstrated that our proposed HMMs for MRI data analysis has strong

potential in discriminating among early AD, and healthy controls. We also compared

our classification results with recent related works using the same OASIS database.

Garcia-Sebastian et al. [36] applied voxel-based morphometry (VBM) to extract classifi-

cation features and SVM algorithm to perform classification of patients with mild AD

(49) vs. controls (49). They obtained a better results with 87.5%. Savio et al. [37]

applied four different models of ANN to the same dataset using SVM, and reported a

best classification accuracy of 83%. Comparing to these studies that achieved higher

accuracies but using small sampler sizes, our classification result of 80.7% accuracy is

Table 3 Classification Rates Using P(O|l) and KLD

Sensitivity Specificity Accuracy

P(O|l) KLD P(O|l) KLD P(O|l) KLD

AD vs O 0.813 0.813 0.800 0.800 0.807 0.807

AD vs M 0.933 0.933 0.920 0.920 0.927 0.927

AD vs Y 0.987 0.987 0.987 0.987 0.987 0.987
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still encouraging considering the number of subjects in the database and presented

more statistically reliable results. Daliri [38] proposed an automated method using

scale-invariant feature transform (SIFT) and SVM for diagnosing AD. Study achieved a

classification accuracy of 86% for mild AD (20) vs. normal (66) and 75% for (very mild +

mild AD) (69) vs. normal (66). The author also noted that it is more difficult to classify

the data from the subjects with very mild AD or the data from the subjects that are

elderly. Another study reported by Zhou et al. [39] using a large sample size proposed a

framework to analyze the hippocampal shape difference between AD (85) and HC

subjects (79) and achieved a classification accuracy of 52.6 ∼ 61.5%. Yang et al. [40]

proposed a method based on independent component analysis (ICA) coupled with the

use of SVM for classifying MRI scans into categories of AD (100), young healthy

controls (yHC) (116), middle age healthy controls (mHC) (100) and old healthy controls

(oHC) (100). The best classification accuracy between AD and oHC, AD and mHC, AD

and yHC appeared to be 73.7%, 91.6% and 97.8%, respectively. Comparing to above

studies using large samples, our results show better accuracy as well as sensitivity and

specificity.

HMMs have been applied to audio recognition and gesture/motion detection for

monitoring daily activities of patients with dementia [41-43]. It has been also utilized

to brain MRI for age prediction [25,26]. To our knowledge, there has been no report

on the application of HMMs in dementia classification. We explored the usage of

HMM and proved its potentiality in early AD diagnosis. The results from the 50%,

70% and 90% training sets show that larger training set did achieve better accuracy but

did not significantly improve the classification performance. It suggests that only a

small training set (50%) is large enough for HMMs. Comparing to conventional modeling

method using SVM or relevance vector regression (RVR) that usually needs for large train-

ing data and effective feature selection which is sometimes difficult to give clinical inter-

pretations, training and validation on the extracted features using HMM can be more

time efficient. Meanwhile, the superiority of HMMs in sequence statistics enables the

sequence information of brain MRI slices in representing the global cortical structure

which makes the results favorable to clinical analysis.

Our main goal in the current study is to propose a method based on HMM modeling

for dementia recognition. The current results have shown the capability of our proposed

method for early disease diagnosis. Since it is a pilot study, the current classification

Table 4 Classification Rates Using Initial and Re-estimated HMMs

Sensitivity Specificity Accuracy

l λ′ Λ λ′ l λ′

AD vs O P(O|l) 0.813 0.667 0.800 0.640 0.807 0.653

KLD 0.813 0.667 0.800 0.640 0.807 0.653

l and λ′ refer to initial and re-estimated HMMs, respectively

Table 5 Subjects Dementia Status

Very Mild Mild Moderate

Number 52 21 2

Age (years) 76.8 ± 7.8 78.4 ± 7.3 82.0 ± 5.6

CDR 0.5 1 2

Mini Mental State Examination (MMSE) 25.1 (14∼30) 22.2 (15∼29) 15
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results are encouraging and reasonable but still can be improved. We have noticed that

some white matter (WM) hyper-intensities were classified as GM, especially the boarder

voxels between GM and WM, and possibly the GM center of mass may be influenced by

the presence of the WM hyper-intensities. Due to the limitation of the segmentation and

boundary tracing method, some potential sensitivity of the approach is probably lost.

Future study will focus on methodology refinements to achieve a higher classification

accuracy especially between AD elders and normal elders. Moreover, we aim to extent

the use of this modeling to longitudinal dataset provided by OASIS database, and also to

larger datasets such as that provided by Alzheimer’s Disease Neuroimaging Initiative

(ADNI). We are also interested to know if our proposed model can classify between

AD and other neurological diseases.

Conclusion

We have presented an approach for modeling MRI based whole brain structural com-

plexity and applied it for diagnosing Alzheimer disease. Comparison with other related

work using the same OASIS database, we found the classification performance of our

proposed model presents promising results in classification. These results demonstrate

that our proposed approach is potential to serve as an in vivo surrogate tool for disease

severity prediction, and as a diagnostic method for mild cognitive impairment and AD.
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