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ABSTRACT   

Vibration energy harvesting using piezoelectric material has received great research interest in the 

recent years. One important concern for the development of piezoelectric energy harvesting is to 

broaden the operating bandwidth. Various techniques have been proposed for broadband energy 

harvesting, such as the resonance tuning approach, the frequency up-conversion technique, the multi-

modal harvesting and the nonlinear technique. A recently reported linear 2-degree-of-freedom harvester 

can achieve two close resonant frequencies both with significant power outputs, using its unique 

cantilever configuration. This paper proposes to incorporate magnetic nonlinearity into the linear 2-

DOF system, aiming at further broadening its operating bandwidth. Experimental parametric study is 

carried out to investigate the behavior of such nonlinear 2-DOF harvester. Among different 

configurations, an optimal configuration of the nonlinear 2-DOF harvester is obtained to achieve 

significantly wider bandwidth. A lumped parameter model for such nonlinear 2-DOF harvester is 

developed, and the results provide good validation for the experimental findings.  

Keywords: piezoelectric; energy harvesting; broadband; multi-modal; nonlinear  

1. INTRODUCTION  

To power the small electronics such as wireless sensor, a promising alternative for chemical batteries is 

the use of energy harvesters, which harness ambient environmental energy and convert it into 

electricity. There are different possible energy resources for harvesting, including solar, wind, thermal 
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and vibration. Among them, mechanical vibration is the most ubiquitous energy source in our daily 

life, thus vibration based energy harvesting has attracted great research interest in recent years.  

Generally, vibration energy can be converted into electrical energy using electrostatic, electromagnetic 

or piezoelectric effects. No matter what kind of mechanism is adopted, harvesters are mostly designed 

as a resonator providing large amplitude response within a quite narrow bandwidth. With a slight 

frequency shift from the resonance, the performance will decrease drastically. To improve the 

functionality of a vibration energy harvester, broadening the operation bandwidth is an important issue, 

as the vibration sources in the practical circumstances are usually frequency-variant or cover a large 

frequency range. 

To achieve broadband energy harvesting, multi-modal technique as one promising method has been 

widely investigated, can be divided into two different themes according to their configurations. A 

system comprising an array of cantilever beams with different resonant frequencies can achieve wider 

bandwidth covered by all cantilever harvester components (Shahruz, 2006; Ferrari et al. 2008). 

However, such system sacrifices the overall output efficiency, as only one component is at work while 

others are off-resonance. Lien and Shu (2012) also studied the electrical behaviors for piezoelectric 

energy harvester arrays with different circuit interfaces. Another way for multi-modal energy 

harvesting is using more than one vibration modes based on a single cantilever beam. Energy harvester 

with conventional cantilever configuration can also provide multiple resonances; however, its high-

order vibration modes are usually separated very far away from the fundamental one with much smaller 

amplitude (Ou et al., 2012; Tang et al., 2012; Erturk et al., 2009b). To design a multi-modal energy 

harvester which is more applicable, its multiple response peaks should be tuned close enough. Jang et 

al. (2011) and Kim et al. (2011) developed energy harvesting devices using both translational and 

rotational vibration motions to achieve two close resonant frequencies. Wu et al. (2013) proposed a 

“cut-out” 2-degree-of-freedom (2-DOF) harvester with a secondary beam enclosed within the main 

beam, which achieves two close resonances with significantly large amplitudes. Besides, this design 

can fully utilize the material of a cantilever beam.  

Other than the multi-modal energy harvesting technique, magnetic interaction is frequently employed 

for broadband energy harvesting. Initially, the magnetic interaction is used to adjust the system 

stiffness and tune the resonant frequency to match the environmental excitation (Tang et al., 2013; 

Challa et al., 2008). But the magnet induced nonlinearity can also significantly change the behavior 
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thus performance of the harvester. Such harvesters are thus termed nonlinear energy harvesters. In 

general, most proposed nonlinear harvesters can be regarded as a Duffing-type oscillator developed 

from a linear single-degree-of-freedom (SDOF) harvester. They can be operated either in mono-stable 

or bi-stable condition depending on its configuration (Stanton et al., 2009; Cottone et al., 2009; Tang et 

al., 2012; Erturk et al., 2009a). Different oscillation states co-exist within same frequency range, such 

as high-amplitude oscillations, low-amplitude oscillations or chaotic vibrations. In the mono-stable 

configuration, its frequency response curve will cover a larger frequency range by “deflecting” the 

peak toward higher frequency or lower frequency direction. For bi-stable configuration, large 

amplitude vibration can be achieved when the base excitation is large enough to ensure the harvester to 

overcome the potential barrier between the two equilibrium positions. For the bi-stable harvesters 

developed by Erturk et al. (2009a), remarkable improvement is achieved under sufficient excitation (e.g. 

0.35g), while no obvious improvement is reported for lower excitation level. 

In this paper, a nonlinear 2-DOF piezoelectric energy harvester (PEH) is proposed based on the linear 

2-DOF harvester developed by the authors (Wu et al., 2013). Experimental parametric study is carried 

out and a significantly broader operating bandwidth is achieved in mono-stable condition. A lumped 

parameter model for such nonlinear 2-DOF harvester is derived and the results present consistent trends 

compared to the experiment data. Based on the findings from experiment and modeling, it is concluded 

that, such nonlinear 2-DOF configuration is much more advantageous than linear 2-DOF configuration, 

by combining the multi-modal energy harvesting with nonlinear technique.  

2. PREVIOUS LINEAR 2-DOF PIEZOELECTRIC ENERGY HARVESTER 

A 2-DOF “cut-out” PEH was reported in our previous study (Wu et al., 2013), which achieves two 

close natural frequencies, and both the main beam (outer beam) and secondary beam (inner beam) can 

generate significant power outputs. The drawback of this linear 2-DOF PEH is the existence of an anti-

resonance frequency. The response at the anti-resonance frequency will be very low and even approach 

zero when the damping in the system is very small. The presence of the anti-resonance in-between the 

two response peaks results in a deep valley in the response, which definitely deteriorates the broadband 

performance of the 2-DOF system. To further study the anti-resonance response as well as the entire 

frequency response of such 2-DOF harvester, a simplified “cut-out” beam shown Figure 1 is analyzed, 

which can be represented as a 2-DOF lumped mass model.  In this model, the outer beam (two identical 
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arms) and inner beam are both assumed uniform, with L1 and L2 being the length of the outer beam and 

inner beam, respectively, and M1 and M2 the masses at the tips of outer beam and inner beam, 

respectively.  

For the lumped mass model of this 2-DOF beam, the mass matrix is  

[𝑀] = [𝑀1 00 𝑀2]                                                              (1) 

The stiffness matrix can be obtained as follows by using the standard stiffness influence coefficients 

method (Meirovitch 2003),    

[𝐾] = 6𝐸𝐼14𝐸𝐼1𝐿13𝐿23+3𝐸𝐼2𝐿14𝐿22 [2𝐸𝐼1𝐿23 + 2𝐸𝐼2𝐿13 + 6𝐸𝐼2𝐿1𝐿22 − 6𝐸𝐼2𝐿12𝐿2 −2𝐸𝐼2𝐿13 + 3𝐸𝐼2𝐿12𝐿2−2𝐸𝐼2𝐿13 + 3𝐸𝐼2𝐿12𝐿2 2𝐸𝐼2𝐿13 ]       (2) 

where E is the elastic modulus of the material, and I1 and I2 are the moment of inertias of the outer and 

inner beams, respectively.  Thus, the two resonant frequencies as well as the modal shapes can be 

obtained by solving the eigenvalue problem from the equation of motion for such 2-DOF system. 

By solving the equation of motion for the 2-DOF system under base excitation, its frequency response 

can be obtained. The frequency response curves can be classified into different groups according to the 

values of L1/L2 and two natural frequencies f1 and f2, as shown in Table 1. Here the two natural 

frequencies f1 and f2 are not defined by the order of the absolute value of the frequency. Instead, f1 

denotes the natural mode in which the movement of the outer mass dominates, while f2 relates to the 

inner mass. The mode shapes corresponding to f1 and f2 are also illustrated in Figure 1.  

   

Figure 1. A “cut-out” 2-DOF cantilever beam, and its mode shapes in lumped mass model 

First of all, this table shows that, the frequency responses of the 2-DOF beam greatly rely on the length 

ratio of the inner beam to outer beam, while the value of 2/3 is a critical point that divides the pattern 

into three categories. 
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From Equation (2), it can be seen that when the length ratio L2/L1 equals to 2/3, the stiffness matrix will 

be reduced into a diagonal matrix, which fully decomposes the system to be two SDOF systems. This 

can also be observed from Group A in Table 1, i.e., the response curves are the same as the two 

independent SDOF systems.  

If the length ratio L2/L1 is larger than 2/3, the system will follow the response pattern in Group B or C. 

As shown in group B, when f2>f1, there is an anti-resonance point (highlighted with a red circle) in-

between the two response peaks for the outer beam. This anti-resonance separates the two peaks and 

forms a deep valley in the response curve. The outer beam will not be able to generate sufficient power 

output around this valley due to the low response. The existence of anti-resonance between the two 

peaks will greatly deteriorate the performance of the harvester. There is an anti-resonance point for the 

inner beam as well, with its position in front of the two response peaks. In this condition, the valley in-

between the two response peaks is not deep, and the inner beam can still generate significant power 

output throughout this frequency region.  

By adjusting the values of the moment of inertia and the tip masses, natural frequency f2 for the 

vibration mode dominated by the inner mass can be tuned lower than f1, as represented by Group C in 

Table 1. By comparing Groups B and C, it can be observed that the response patterns for the outer 

beam and inner beam is swapped.  

Table 1. Frequency response patterns  

L2/L1 f2/f1 
Displacement frequency response 

for outer mass M1 

Displacement frequency response 

for inner mass M2 
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In Groups D and E with the length ratio smaller than 2/3, for f2 > f1, the anti-resonance point is located 

at the right of the two response peaks for the outer beam, while the inner beam has the anti-resonance 

response in-between the two peaks. Moreover, it also observed from Groups D and E, when the order 

of the natural frequencies exchanges, the patterns of the response curve swaps.  

As conclude from Table 1, to design such a linear “cut-out” 2-DOF broadband energy harvester, one 

may prefer to have its frequency response with two close significant peaks, but without the anti-

resonance in-between them (i.e. the response from the inner beam in Group B in Table 1).  

3. EXPERIMENTAL STUDY OF THE NONLINEAR 2-DOF HARVESTER 

3.1 Design of nonlinear 2-DOF harvester  

 
Based on the design of the linear 2-DOF “cut-out” harvester, the nonlinear 2-DOF harvester is 

developed by introducing magnetic interaction. It comprises a main beam (outer beam) and a secondary 

beam (inner beam), both with tip masses. Two polar opposite magnets are installed at the tip of the 
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inner beam and the base, respectively. Figure 2 shows the prototype installed on a vertical seismic 

shaker.  

 

Figure 2. Nonlinear 2-DOF energy harvester installed on the vertical shaker 

As discussed in Section 2, except for Group A in Table 1, an anti-resonance valley always exists in the 

frequency responses of both the outer and inner beams, but at different locations. Thus, only one beam 

(either outer beam or inner beam) can avoid the anti-resonance in-between the two response peaks for 

broadening bandwidth. In this experimental study, the inner beam is selected and optimized for further 

broadband energy harvesting by avoiding anti-resonance in-between two peaks and introducing 

nonlinearity. One d31 piezoelectric sheet, Macro-Fiber-Composite (MFC, model: M-2814-P2), is 

attached on the inner beam for energy generation. Two repulsive NdFeB permanent magnets with 

diameter of 10 mm, thickness of 5 mm and surface flux of 3500 gauss are embedded in two plastic 

holders, separated at the distance of D. One holder with the magnet serves as the tip mass of the inner 

beam (M2=7.4 g), while the other one is clamped to the shaker with a short support beam. The length of 

the short support beam is adjustable, making it convenient to adjust the distance between the two 

magnets while keeping other structural parameters unchanged. The outer and inner beams have the 

thickness of 1 mm and 0.6 mm, respectively, both of which are made of aluminum. For the 

convenience of fabrication, these two parts are fabricated separately and assembled with screws. The 

screws and several pieces of steel plate at the free end of the outer beam serve as its tip mass (M1), and 

M1 is adjustable by adding or removing small steel plates. Each piece of small plate weighs about 1.9 g, 

while the minimum value of M1 including the screws and nuts is 3.6 g. Detailed dimensions of the 

proposed nonlinear 2-DOF harvester are shown in Figure 3.  
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Figure 3. Illustration of nonlinear 2-DOF harvester (all dimensions in mm) 

In the experimental parametric study, three parameters are adjusted to study the behavior of the system. 

They are: the distance of the two magnets (D), the tip mass of the outer beam (M1), and the base 

excitation level (A). The distance of two magnets which affects the nonlinear stiffness of the system 

and the base excitation level are two key parameters determining the nonlinear dynamics of the 

harvester. Also, adjusting M1 affects the nonlinear response patterns of various configurations. 

Different values of these three parameters used in the experiment are listed in Table 2.  

Table 2. Values for parameters used in experiment study 

Parameters Values 

Distance of two magnets, D (mm) 14, 12, 11, 10, 9 

Tip mass at the end of outer beam, M1 (g) 13.1, 11.2, 9.3, 7.4, 5.5, 3.6 

Harmonic base excitation level, A (m/s2, RMS) 0.5, 1, 2 

 

If the distance between two magnets is smaller than certain value, due to the strong repulsive magnetic 

force, the structure will have two stable equilibrium positions (thus two potential wells). This is called 

bi-stable configuration, as illustrated in Figure 4. The central position is the stable equilibrium position 

in the mono-stable configuration, which however becomes the potential barrier in the bi-stable 

configuration. When the distance between two magnets decreases further, the two equilibrium positions 

will be separated further away from each other, and the central potential barrier will increase, making it 

harder to cross. Thus, the dynamics of the bi-stable configuration will be more complicated than that of 

mono-stable one. Small-amplitude oscillations confined in one potential well, large-amplitudes 

oscillation crossing two potential wells, or even be chaotic responses may present, depending on the 

base excitation level and the initial condition (Tang et al., 2012). In this study, we focus on the 
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performance of the harvester in mono-stable configuration, while the bi-stable configuration will be 

briefly illustrated to show the difference. For the prototype studied in our experiment, the critical 

distance D for transition from mono-stable configuration to bi-stable one is observed as between 10 and 

9 mm. 

 

Figure 4. Illustration of equilibrium position for mono-stable and bi-stable vibrations  

The harvester is firstly tested with sinusoidal sweep to obtain the frequency response curves for 

different configurations, from which an optimal configuration is determined. Subsequently, the optimal 

nonlinear 2-DOF harvester is tested under random excitation to compare its performance with that of 

the linear counterpart.   

3.2 Frequency response for sinusoidal sweep 

 

The acceleration for the base excitation is kept constant for every sinusoidal sweep. The frequency 

responses of open circuit voltage from the nonlinear 2-DOF energy harvester are recorded in terms of 

the root mean square (RMS) values as the harvester is vibrating in the steady state. At some unique 

frequencies, the transient responses are recorded as well. With various distances between the two 

magnets, linear response, quasi-linear response, mono-stable nonlinear response and bi-stable nonlinear 

response are observed, and an optimal configuration is concluded which can achieve significantly 

wider bandwidth.   

Frequency response of linear 2-DOF harvester (without magnetic force) 

By removing the magnet which clamped at the shaker, the system becomes a linear 2-DOF harvester. 

Its frequency responses, including three groups of experimental results with different mass values, are 

shown in Figure 5. It is observed that the first peak slightly changes due to different M1 while the 

second peak is almost not affected. Here, the two natural frequencies (about 15 Hz and 28 Hz for case 

(a)) are still a bit far away from each other, and the magnitude of the first peak is relatively small 

Outer mass
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compared to the second. Thus, the linear harvester is not optimized to achieve two close response peaks 

with adequate magnitudes.  
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Figure 5. Frequency response of linear 2-DOF harvester, (a) M1=11.2g, (b) M1=9.3g, and (c) M1=7.4g. 

Quasi-linear response of nonlinear configuration with lower excitation level 

When the 2-DOF harvester with nonlinear configuration is tested under low excitation level (0.5 m/s2), 

it exhibits a quasi-linear behavior which is similar to the linear harvester (Figure 6). Under low 

excitations, the vibration amplitude of the structure is not significant, thus the linear component of the 

magnetic force dominates and changes the linear stiffness of the system (mostly affect the inner beam). 

It can be seen from Figure 5(a) and Figure 6, with different distances between the two magnets D, the 

resonant frequency for the second peak is tuned (from 28 Hz to 17.5 Hz) while the first resonant peak 

remains at the same position (around 15 Hz). Meanwhile, the magnitude of the first peak increases and 

the second peak decreases gradually with the decrease of the magnets distance. Moreover, an anti-

resonance point can be clearly observed in front of the first peak (highlighted with red circle), which is 

very similar to the pattern of the inner beam in linear 2-DOF case (Group B in Table 1). It is important 

to note that the configuration in case (d) of Figure 6 meets the requirements for the design of a 

broadband energy harvester, which presents two close response peaks of adequate magnitudes with 

anti-resonance point outside the two peaks range. Under higher excitations, the bandwidth for such 

system can be further increased, which will be detailed in the following section. Besides, it should be 

mentioned that further decrease of the magnets distance (D) tunes the harvester into bi-stable 

configuration. As observed from Figure 6, when the distance between the magnets decreases, the 

amplitude of the second response peak slightly drops. Meanwhile, the amplitude of first peak, as well 
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as the response for frequency 15-17 Hz increases significantly. This indicates energy redistribution 

phenomenon in the frequency domain when the parameters are varied and the broader bandwidth is 

achieved at the minor cost of peak amplitude.    
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Figure 6. Quasi-linear frequency response for nonlinear 2-DOF harvester under base excitation of 0.5 

m/s2 with M1=11.2 g and (a) D=14 mm, (b) D=12 mm, (c) D=11 mm (d) D=10 mm.  

Mono-stable nonlinear response with higher excitation level 

With two magnets placed closer for mono-stable configuration (D=10 mm), the response curve 

presents very minor hardening nonlinear behavior under low excitation, that is, the second peak is 

slightly bent to the higher frequency direction, as shown in Figure 7(a). However, the upward and 

downward sweeps do not have obvious difference, thus it still can be regarded as a quasi-linear 

response.  

When the excitation level increases, the response curve, especially the second peak, is bent further to 

the higher frequency direction, providing enlargement in bandwidth, as shown in Figure 7(b) and (c). 

Also, the typical jump phenomenon and multi-valued response of mono-stable configurations are 

observed (i.e. from 18.5Hz to 20Hz in Figure 7(c), large-amplitude and small-amplitude oscillation 

orbits co-exist). If 10V is regarded as a useful working voltage level, the upward sweep ensures the 

harvester to capture the higher energy orbit and cover a bandwidth of about 5 Hz (15 Hz to 20 Hz). 

However, the higher voltage response obtained from the upward sweep cannot be always guaranteed in 

the practical application. By considering the downward sweep response curve, which is more robust for 

any initial condition, the bandwidth is still quite large of about 3.5 Hz (15 to 18.5 Hz). 
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As observed from Figure 7, the amplitudes of frequency responses do not increase proportionally to the 

excitation level, especially for the first peak. This may due to the geometric constraint that the vibration 

amplitude of the structure cannot increase infinitely with the excitation.  
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Figure 7. Frequency responses for nonlinear 2-DOF harvester with M1=11.2g and D=10mm under 

excitation of (a) 0.5m/s2 (b) 1m/s2 and (c) 2m/s2 

Moreover, within certain frequency range (as indicated in Figure 7(c)), the response is not harmonic 

though the system is under harmonic excitation. Transient voltage responses for several frequency 

points are shown in Figure 8. It is clear in Figure 8 that any of the four waveforms can be viewed as a 

combination of several harmonic waveforms with different frequency. As observed in the experiment, 

the vibration motion of the harvester was constantly swapping between its two vibration modes, which 

can be regarded as the internal resonance for the nonlinear system. In Figure 7(c), an additional peak 

presents within such frequency range. Actually, the presence of this peak is due to the variation of the 

RMS value for those non-harmonic waveforms. As observed in the experiment, this phenomenon is 

more obvious when the excitation level is higher.  
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Figure 8. Transient voltage responses of nonlinear 2-DOF harvester at (a) 16.4Hz, (b) 16.9Hz, (c) 

17.4Hz and (d) 17.8Hz 

It is worth mentioning that the broadband performance of the nonlinear 2-DOF harvester is achieved by 

properly selecting the structural parameters (M1=11.2g) and the distance between magnets (D=10mm). 

Similar to the linear 2-DOF harvester, we achieve two close peaks, both with adequate amplitudes, and 

the negative effect of anti-resonance for broadband performance is mitigated by avoiding its 

appearance in-between the peaks. Moreover, the nonlinearity introduced into the system further widens 

the bandwidth by bending the second peak and filling the valley between the peaks. But such 

broadband performance may be deteriorated with improperly selected parameters.  

Figure 9 provides more cases of the linear 2-DOF harvester with different M1. For case (a) in Figure 9, 

the anti-resonance point is located in-between the two response peaks, which is similar to the pattern of 

inner beam for Group C in Table 1. For cases (b) and (c), the two resonant frequencies are tuned close 

to each other, and the bandwidth is reduced as compared to Figure 7. On the contrary, for case (d), the 

two resonant frequencies are tuned too far away, making the output between two peaks deteriorated. 

Thus, considering the case in Figure 7 and the four cases in Figure 9, we conclude that the 

configuration of nonlinear 2-DOF harvester with M1=11.2g and D=10mm is the optimal configuration 

for this mono-stable nonlinear 2-DOF harvester. Here, the optimal configuration refers to the best one 

which produces largest bandwidth with respectable amplitude, when the tip masses vary from 7.4 to 
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13.1g and the distance between magnets changes from 14 to 10mm, through our experimental 

parametric study.  
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Figure 9. Frequency response for nonlinear 2-DOF harvester with D=10 mm, A=2m/s2 and (a) M1=5.5g, 

(b) M1=7.4g, (c) M1=9.3g and (d) M1=13.1g. 

When the distance between two magnets is further decreased (D≤9mm), the harvester will move into 

bi-stable configuration, which is more complicated than the mono-stable vibration. According to our 

experimental observation, the harvester was easily confined in one potential well due to the gravity and 

fabrication defect. The dynamics and frequency response will be much different from the mono-stable 

configuration. The investigation of the bi-stable configuration is beyond the scope of this paper. 

In this work, the electromechanical coupling is quite low as Ke2/ζ=0.2~0.3, (Ke is electromechanical 

coupling coefficient and ζ is mechanical damping ratio), which can be regarded as weak coupling 

condition (Shu and Lien, 2006). For weak electromechanical coupling, the frequency responses of the 

optimal power and open circuit voltage have very similar trends in spite of the slight resonant 

frequency shift. Thus, the frequency response of open circuit voltage can be used to study the 

bandwidth of the system and the conclusions in terms of open circuit voltage response apply to the 

harvested power as well. 

3.3 Tests under random excitation  

 

In real applications, the majority of vibration energy sources present in random patterns. In this section, 

the nonlinear 2-DOF harvester is tested under random excitation with a uniformly distributed 

acceleration spectrum from 8 Hz to 35 Hz, which covers all the frequency range for both linear and 
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nonlinear configurations developed in this work. In the experiment, a shaker controller (VR9500) is 

used to control the random vibrations of the shaker. Figure 10(a) shows an example of the controlled 

excitation spectrum for the experiment test, in which the demanded spectrum is a uniform distribution 

with RMS acceleration of 0.1G (gravitational acceleration). The time history of the acceleration of the 

base excitation from the shaker is also recorded, as shown in Figure 10(b). Three random excitation 

levels, 0.1G, 0.15G and 0.2G, are considered for random tests. 
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Figure 10. (a) Power density of demanded spectrum and controlled value for RMS acceleration=0.1 G, 

(b) Time history of base excitation 

The optimal 2-DOF nonlinear configuration (M1=11.2g and D=10mm) obtained from the previous 

section is tested and evaluated under random excitation. Its performance will be compared with its 

linear counterpart (simply remove the clamped magnet).   

Under the same level of random excitation, Figure 11 provides the examples of the waveforms of the 

open circuit voltage response for both the nonlinear and linear configurations. Obviously the magnitude 

of the response for the nonlinear 2-DOF harvester is much larger than its linear counterpart. 
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Power spectrums in the frequency domain are obtained by Fast Fourier Transformation (FFT), for both 

linear and nonlinear configurations, as shown in Figure 12. It can be observed that both the magnitude 

and the bandwidth are greatly improved for the nonlinear configuration compared to its linear 

counterpart.  
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Figure 11. Recorded waveforms under random excitation of RMS acceleration=0.1 G, (a) Linear, (b) 

Nonlinear  
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Figure 12. FFT result for recorded waveform, (a) Linear, (b) Nonlinear 
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To further evaluate the performance of the system, the harvester is connected with an energy storage 

circuit composed of an AC/DC full-wave rectifier and a storage capacitor (330μF).  In the experiment, 

the charging procedure is carried out for 2 minutes each time, and the voltage at the capacitor is 

monitored to calculate how much energy can be accumulated, as shown in Figure 13. For each random 

excitation level, the same procedure is repeated for 4-5 times to ensure the reliability of the results.   

From the comparison shown in Figure 13, the performance of the nonlinear harvester is much better 

than that of its linear counterpart. For all the tested cases, the accumulated energy in the capacitor (E =1/2𝐶𝑈2) by the nonlinear harvester is about 2.5 times larger than its linear counterpart. For example, 

the average energy stored for the nonlinear harvester with excitation of 0.2G is about 5.5 mJ, while the 

linear one only achieves about 2.2mJ. Other than this standard charging circuit, many other circuit 

techniques proposed by researchers, i.e. SSHI techniques (Liang and Liao, 2012), can be considered to 

further improve the power output of the developed nonlinear harvester. 
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Figure 13. Charging record for nonlinear and linear 2-DOF harvester with different excitation levels  

4. MODELING OF NONLINEAR 2-DOF HARVESTER AND VALIDATION  

4.1 Modeling of linear 2-DOF harvester 

 

In this section, a lumped parameter model for the nonlinear 2-DOF harvester is presented. The 

modeling results are obtained using numerical integration in Matlab and validated against the 

experiment outcome.  

With the mass and stiffness matrices obtained in Equations (1) and (2), the vibration motion of the 

linear 2-DOF system subjected to base vibration can be described by  

{𝑀1�̈� + 𝐶11�̇� + 𝐾11𝑥+𝐶12�̇� + 𝐾12𝑦 = −𝑀1�̈�0𝑀2�̈� + 𝐶12�̇� + 𝐾21𝑥+𝐶22�̇� + 𝐾22𝑦 = −𝑀2�̈�0                                             (4) 

where x and y are the displacements for outer mass and inner mass, respectively; �̈�0  is the base 

acceleration; and Kij and Cij denote the related components in the stiffness and damping matrices, 

respectively. When simplifying the harvester using the lumped-mass model, the mass values used in 

the equations should be modified with a correction factor, as the distributed mass of the cantilever will 

also contribute to the vibration motion (Erturk and Inman 2008). However, when the tip mass is much 

larger than the distributed mass of cantilever, the correction factor is very close to unity. For example, 

by considering the optimal configuration of our experiment, tip mass M1=11.2g and the distributed 

mass of outer beam is about 2.7g. The correction factor can be calculated as 1.03, by using the 

equations in Erturk and Inman (2008). Thus, for qualitative analysis using the lumped-mass model, the 

correction factor is not applied in this work. 

The damping matrix is assumed to be proportional to the mass and stiffness matrices as 
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[𝐶] = 𝜇[𝐾] + 𝜆[𝑀]                                                                           (5) 

where μ and λ are two coefficients. To determine these coefficients, an attenuation test for the 

experiment prototype is carried out to measure the damping ratio (ζ) at the first and second resonances. 

The measured damping ratio does not vary too much for different conditions, and the value is around 

0.8% for both resonances. With known damping ratios at the resonant frequencies, the two coefficients 

as well as the damping matrix are then obtained.  

With the piezoelectric transducer attached on the inner beam, an electrical-mechanical coupling 

equation is required to relate the vibration motion with the electrical output. However, in this 2-DOF 

cantilever harvester, the strain is not simply related to the displacements ‘x’ and ‘y’. The angle of 

rotation at the tip mass is also related to the strain in the beam. Figure 14 illustrated the displacements 

and angle of rotation in stationary condition, where the dashed line of the inner beam indicates the “free 

position” that no strain occurs in it. 

 

 Figure 14. Stationary displacement and angle rotation relation 

The strain distribution in the inner beam should be proportional to the overall displacement from the 

“free position” to the forced position, which is indicated as “Δ” in Figure 14. To obtain Δ, the angle of 

rotation at the outer mass should be obtained first, which is expressed as 

𝜃1 = 𝜑11(𝐾11𝑥 + 𝐾21𝑦) + 𝜑21(𝐾12𝑥 + 𝐾22𝑦)                                               (6) 

where 𝜑𝑖𝑗  denotes the angle of rotation at position j when a unit force is applied at position i.   

𝜑11 = 𝐿122𝐸𝐼1 

         (7) 

𝜑21 = (𝐿1 − 𝐿2)2 − 𝐿222𝐸𝐼1  

Finally the overall displacement Δ is  

xy
Δ
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Δ = 𝑦 − 𝑥 + 𝜃1𝐿2 = 𝛼𝑦 − 𝛽𝑥                                                       (8) 

𝛼 = 1 + (𝜑11𝐾21 + 𝜑21𝐾22)𝐿2 

𝛽 = 1 − (𝜑11𝐾11 + 𝜑21𝐾12)𝐿2 

Therefore, the coupled governing equation of the 2-DOF system should be written as, 

{𝑀1�̈� + 𝐶11�̇� + 𝐾11𝑥+𝐶12�̇� + 𝐾12𝑦 − 𝜓𝑉 = −𝑀1�̈�0𝑀2�̈� + 𝐶12�̇� + 𝐾21𝑥 + 𝐾22𝑦+𝐶22�̇� + 𝜓𝑉 = −𝑀2�̈�0−𝜓(∆̇) + 𝐶𝑠�̇� + 𝑉 𝑅⁄ = 0                                          (9) 

where ψ is an electrical-mechanical coupling coefficient related to the property of piezoelectric 

material and the vibration modal shape; Cs is the capacitance of the piezoelectric element; R is the 

electric load connected to the harvester; and V is the voltage cross the load. In this model, ψ is equal to 

9.2e-5 NV-1 and Cs is 25 nF. To emulate the open circuit condition, R is set to be 1000MΩ. 

4.2 Dipole-dipole magnetic interaction  

 

In the proposed 2-DOF nonlinear harvester, the magnetic force is simplified as a dipole-dipole 

magnetic interaction. In vector form, its general expression is (Levitt and Malcolm, 2001), 

�⃗�𝑚𝑎𝑔 = 3𝜇0𝑚𝑎𝑚𝑏4𝜋|𝑟|4 [�̂� × �̂�𝑎 × �̂�𝑏 + �̂� × �̂�𝑏 × �̂�𝑎 − 2�̂�(�̂�𝑎 ∙ �̂�𝑏) + 5�̂�(�̂� × �̂�𝑎) ∙ (�̂� × �̂�𝑏)]        (10) 

where μ0 is the permeability of space (4πe-7 Tm/A); ma and mb are the magnetic moment for the two 

magnets (in the experiment, ma=mb=0.218Am2); r is the distance of two magnetic dipoles; �̂�, �̂�𝑎, �̂�𝑏, 𝑗 ̂
and �̂� are the units vector with directions shown in Figure 15. In this nonlinear 2-DOF harvester, one 

magnet is fixed at the shaker thus its position and orientation does not change, while the other is 

attached at the tip of the inner beam with displacement and angle of rotation during vibration.  

By applying these restrictions into Equation 10, the magnetic force can be expressed as 

�⃗�𝑚𝑎𝑔 = 3𝜇0𝑚𝑎𝑚𝑏4𝜋|𝑟|4 [�̂� sin(𝑎) + 𝑗̂ sin(𝑎 + 𝑏) + 2�̂� cos(𝑏) − 5�̂� sin(𝑎) sin(𝑎 + 𝑏)]            (11) 

The angles a and b in Figure 15 are also related to the displacements of the outer mass (x) and inner 

mass (y).  

𝑎 = arctan( 𝑦𝐷′)                                                                     (12) 

𝑏 = 𝜃2 = 𝜑12(𝐾11𝑥 + 𝐾21𝑦) + 𝜑22(𝐾12𝑥 + 𝐾22𝑦)                                   (13) 

Finally the magnetic force in the vertical direction is obtained as 
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𝐹𝑚𝑎𝑔𝑣 = �⃗�𝑚𝑎𝑔 ∙ 𝑗̂        = 3𝜇0𝑚𝑎𝑚𝑏4𝜋|𝑟|4 [sin(𝑎) cos(𝑏) + sin(𝑎 + 𝑏) + 2 cos(𝑏) sin(𝑎) − 5�̂� sin(𝑎) sin(𝑎 + 𝑏)] sin(𝑎)      (14) 

 

Figure 15. Relative position inner mass 

It should be noted that, in the experiment, the distance D between the magnets is measured from the 

facing surfaces of the two magnets. While, in the modeling with the assumption of dipole-dipole 

magnetic interaction, the horizontal distance D’ is calculated from centre to centre of the magnets, i.e.,  

D’=D+5, as the thickness of the two cylinder magnets are both 5 mm. 

By adding this magnetic force into Equation (9), the governing equation of the nonlinear 2-DOF 

system is obtained as 

{ 𝑀1�̈� + 𝐶11�̇� + 𝐾11𝑥+𝐶12�̇� + 𝐾12𝑦 − 𝜓𝑉 = −𝑀1�̈�0𝑀2�̈� + 𝐶12�̇� + 𝐾21𝑥 + 𝐾22𝑦+𝐶22�̇� + 𝜓𝑉 + 𝐹𝑚𝑎𝑔_𝑣 = −𝑀2�̈�0−𝜓(𝛼�̇� − 𝛽�̇�) + 𝐶𝑠�̇� + 𝑉 𝑅⁄ = 0                                  (15) 

For simplicity, only the vertical component of the magnetic force is considered in Equation 14, while 

the horizontal component is neglected. Note that, the magnetic force is only applied to the inner mass. 

This is why in the experiment the nonlinearity mostly affects the second response peak which is 

dominated by the inner beam. 

4.3 Numerical computations and results  

 

Since it is very difficult to solve Equation (15) including nonlinear term analytically, we resort to 

numerical integration techniques using Runge-Kutta method (which are readily available in Matlab) to 

obtain the numerical results. By numerically solving the ordinary differential equation with given initial 

conditions, the steady-state vibration waveform can be obtained for every frequency point. Thus the 

response curve for the frequency sweep can be plotted. All structural parameters are set according to 

the experiment setup, as shown in Figure 3, and the optimal configuration is chosen to be validated. 

Other parameters used for numerical computation are listed in the following Table (3).  
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Table 3. Parameters used for numerical computation 

Parameters Values 

Outer effective mass, M1 (g) 11.8 

Inner effective mass, M2 (g) 7.9 

Damping ratio, ζ 0.8% 

Stiffness matrix, K (N/m) [138.5 10.410.4 207.4] 
Damping matrix, C (10-3 N∙sec/m) [27.31 1.221.22 31.46] 
Magnetic moment, ma & mb (Am2) 0.218 

Permeability of space, μ0 (Tm/A) 4πe-7 

Electromechanical coupling coefficient, ψ (N/V) 9.2e-5 

Capacitance of the piezoelectric element, Cs (nF) 25 

Electric load resistor, R (Ω) 1e9 

Figure 16 shows simulation results under low excitation level of 0.5m/s2, to illustrate the trend of the 

resonance tuning by adjusting the value of the distance between two magnets, which is similar to the 

experiment results in Figure 6 except for slight differences in the peak locations and amplitudes. The 

value of the distance between two magnets does not exactly match with the experiment to achieve the 

optimal configuration.  
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Figure 16. Voltage response for optimal configuration under low excitation level of 0.5 m/s2 and with 

(a) D’=18 mm, (b) D’=16 mm, (c) D’=15 mm (d) D’=14 mm 

Figure 17 shows the theoretical results for different base excitation levels, which is similar to the 

experiment results shown in Figure 7, however the peak locations and amplitudes does not exactly 

match. It is also observed the existence of an anti-resonance point in front of the first response peak. 

Moreover, as shown in Figure 17(c), there is a fluctuation of the frequency response curve around 18 
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Hz, which indicates the occurrence of the internal resonance. The transient voltage waveform for the 

frequency of 18.3 Hz is recorded in Figure 17, which shows the similar phenomenon observed in the 

experiment. 
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Figure 17. Voltage response for optimal configuration with D’=14mm under (a) 0.5 m/s2 (b) 1 m/s2 and 

(c) 2 m/s2 
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Figure 19. Waveform of the voltage response at 18.3 Hz 

In summary, the results from the lumped parameter model indicate similar trend in the frequency 

response of the nonlinear harvester. The internal resonance is captured as well in the modeling results. 
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The results from the lumped parameter modeling validates that this nonlinear 2-DOF harvester can 

achieve broader operation bandwidth with proper chosen parameters. Although discrepancies exist 

between the theoretical modeling and the experimental results, the model predicts similar trend 

regarding the peak change and nonlinear vibration phenomenon to the experiment. Therefore, it can be 

used as a tool for parametric study of resonances and bandwidth tuning, which would provide initial 

estimate for the parameters in the optimal configuration. When doing so, the parameters should be 

chosen such that (1) no anti-resonance exists in the desired frequency range (e.g. choose the parameters 

that produce the inner beam response in Group B of Table 1); and (2) two response peaks are close 

with significant output.   

5. CONCLUTIONS  

A new nonlinear 2-DOF piezoelectric energy harvester is proposed to combine the multi-modal energy 

harvesting with the nonlinear vibration technique, and evaluated by the experimental parametric study. 

By properly choosing the structural parameters and the distance between the magnets, the two resonant 

response peaks can be tuned to be close enough and both with adequate amplitude. Meanwhile, the 

negative effect of the anti-resonance for broadband energy harvesting can be mitigated by avoiding its 

appearance in-between two peaks. The nonlinearity helps further broaden the useful bandwidth. Based 

on the experimental parametric study of the nonlinear 2-DOF harvester, an optimal configuration is 

determined, which provides much broader bandwidth and much higher efficiency when charging a 

storage capacitor compared to its 2-DOF linear counterpart. A lumped parameter model of the 2-DOF 

nonlinear harvester is also developed considering the dipole-dipole magnetic force. This model 

successfully predicts the similar broadband response trend of the proposed harvester as experiment.  
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