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CAS-DFT (Complete Active Space Density Functional Theory) is presented as a method that
allows an economical, simultaneous treatment of non-dynamical and dynamical correlation
effects for electronic systems with multi-reference character. Central problems of CAS-DFT
concern the effective coupling between wave function and DFT method, the double counting
of dynamical correlation effects, the choice of the proper input quantities for the DFT
functional, the balanced treatment of core and active orbital correlation, of equal-spin and
opposite-spin correlation effects, and the inclusion of spin polarization to handle closed- and
open-shell systems in a balanced way. We present CAS-DFT2(CS,SPP,FOS,DS) (CAS-DFT
using level 2 for the distinction of core and active orbital correlations, carried out with the
Colle–Salvetti functional, using the Stoll–Pavlidou–Preuss functional for equal-spin correla-
tion corrections, including spin polarization in the scaling procedure, and correcting with the
Davidson–Staroverov density for low-spin cases). The method is free of any self-interaction
error and size extensive provided the active space is properly chosen. For the three lowest
states of methylene, stringent and less stringent tests are used to demonstrate the performance
of the new CAS-DFT method for six different active spaces.

1. Introduction

Kohn–Sham (KS) density functional theory (DFT) [1–4]
in its present approximate form leads to erroneous
results when applied to electron systems with strong
multi-reference character. There are of course several
wave function theory (WFT) methods available that
provide satisfactory descriptions of multi-reference
problems, however these WFT methods are computa-
tionally no longer feasible for larger molecules [5–8].
Ideal for larger systems would be a KS-DFT method
that handles both dynamical and non-dynamical corre-
lation effects in a balanced way so that neither the
degree of multi-reference character nor the size of the
system investigated represents any longer a fundamental
obstacle. This has led to a number of attempts of
improving or extending KS-DFT in such a way that
multi-reference problems can also be described with
reasonable accuracy [9–45]. Developments and investi-
gations made in this direction have necessarily been
confronted with the question how to distinguish between
dynamical and non-dynamical electron correlation
effects, which is of general interest for both WFT and
DFT [46–50].

Our own efforts have focused on the question how
to combine features of a WFT method for treating non-

dynamical correlation with those of DFT that treats

preferentially dynamical correlation effects (see below).
In previous work, we have shown that even in the case

of multi-determinantal problems that have no multi-

reference character, there is a need to extend KS-DFT
by methods well known in WFT. This led to the

development of restricted open shell DFT for singlet
biradicals (ROSS-DFT) [51]. Early attempts in our

group to combine generalized valence bond (GVB)

theory [52] with the local spin density approximation
(GVB-LSD) [36, 37] extended this work to multi-

reference systems and led finally to the development

of the more general complete active space (CAS)-DFT
approach [41, 42]. In this work, we report on a further

development of CAS-DFT where we will focus on the

basic requirements for a functioning method and the
realization of these requirements. We will develop a

CAS-DFT method in our work that provides a balanced
description of the different situations (closed-shell,

open-shell with high- or low-spin electron coupling)

that may be encountered in different systems. We will
also show how CAS-DFT can be further developed to

meet the requirements of an easy to handle and broadly

applicable WFT-DFT method.*Corresponding author. Email: cremer@theoc.gu.se
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The development of a new CAS-DFT method will be
presented in the following way. In section 2, previous
attempts of including non-dynamical electron correla-
tion into DFT are shortly reviewed. In section 3, we will
discuss the basic requirements of a CAS-DFT method,
demonstrate how these can be handled when setting up a
method useful for applications, and present CAS-DFT2.
Finally, in section 4 we will compare CAS-DFT with
other WFT-DFT methods and outline future possible
developments of CAS-DFT.

2. Covering non-dynamical electron correlation

at the KS-DFT and WFT-DFT levels of theory

The exact DFT exchange and correlation (XC)
functional should cover all non-dynamical and dynami-
cal correlation contributions [2], however the approx-
imate XC functionals available today are considered to
describe only dynamical correlation effects [3, 4]. There
were early speculations that the local XC functionals
in use also account for some non-specific non-dynamical
correlation effects [24, 53–57]. For example, LDA or
GGA exchange functionals lead to molecular densities
that when compared with suitable reference densities
reveal the presence of non-dynamical correlation effects
[56, 58–60]. Speculations were confirmed in a quantita-
tive way when investigating the exchange hole provided
by local or semilocal exchange functionals [61–63]:
the self-interaction error of approximate exchange
functionals mimics long-range correlation effects, which
improve the stability of the KS wave function and the
performance of DFT methods run with approximate
X-functionals.
Two important corollaries result from these findings:

(a) KS-DFT with approximate functionals generally
performs much better than Hartree–Fock (HF) in the
case of electronic systems with some multi-reference
character. It may even reach in some cases the quality
of coupled cluster calculations [59]. However, since the
coverage of non-dynamical correlation effects is non-
specific, a priori there is no guarantee whether KS-DFT
can really describe a given multi-reference problem in
a satisfactory way. (b) Any improvement of DFT aimed
at including multi-reference effects in an explicit way
has to consider that use of local or semilocal exchange
functionals will automatically lead to a double count-
ing of electron correlation effects and in this way give
flawed results. This fact is common to most attempts
of improving DFT in such a way that it can satis-
factorily describe non-dynamical correlation effects.
The simplest improvement of DFT for multi-reference

problems is to use broken-symmetry unrestricted
DFT (BS-UDFT) [60, 64–67]. This approach leads

to reasonable results when applied, e.g. to biradicals
with a small singlet–triplet splitting [64]. Analysis of
BS-UDFT (carried out over the years by many groups,
but here just a few representative citations are given)
[60, 64–67] reveals that the BS-UDFT wave function,
although a single-determinant wave function, has
two-configurational character similar to that of the
generalized valence bond approach for one electron pair
(GVB(1)). However, the BS-UDFT wave function never
takes the explicit form of a GVB(1) function, because it
is the admixture of a triplet state that leads to a single-
determinantal form. The non-dynamical electron corre-
lation effects accounted for by BS-UDFT are reflected
by the form of the �- and �-spin orbitals calculated
at the UDFT level of theory [60, 64, 65]. They can be
quantitatively determined via the natural orbital occu-
pation numbers of a BS-UDFT calculation.

Due to the two-configurational character of BS-
UDFT, the double counting of non-dynamical corre-
lation effects, although mostly ignored, becomes a
serious problem in this case: non-dynamical correlation
effects explicitly introduced by the wave function are
suppressed by non-specific non-dynamical correlation
effects invoked by the LDA or GGA exchange func-
tional used in the calculation. Accordingly, it is always
better to carry out UDFT calculations with hybrid
functionals thus reducing any double counting as
much as possible (B3LYP is better than BLYP in the
case of a BS-UDFT description) [63].

Gräfenstein and Cremer [42, 60] have introduced a
classification of electronic systems in those that are
dominantly single-configurational single-determinantal
(type 0), single-configurational multi-determinantal
(type I), multi-configurational with each configura-
tion represented by a single determinant (type II), and
multi-configurational where one or more configura-
tions have to be represented by a multi-determinantal
description (type III). KS-DFT already fails to
describe type I systems correctly, although in this case
no non-dynamical correlation effects are involved.
These systems have been described by permuted orbitals
(PO) UDFT [60, 64], ROSS-DFT [51] or similar
approaches [68, 69] where in these cases knowledge
from WFT [60, 70, 71] was used to derive the
appropriate formalism. ROKS (restricted open-shell
KS) DFT by Filatov and Shaik [69] can be applied
for type I and two-configurational type II systems, for
which BS-UDFT or TCSCF-DFT [72] are also useful.

The primary objective of the present research is
however to describe type I, type II and type III systems
in a general way using standard KS-DFT as a starting
point. A larger number of attempts and approaches
have been made in this direction [9–45] where only a few
should be mentioned here.
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(1) Ensemble theory. The question of how to include
multi-reference effects into DFT touches the
fundamental problem whether any ground state
density (including single- and multi-reference
systems) associated with an antisymmetric
ground state wave function of a Hamiltonian
with the external potential VðrÞ is v-representa-
ble. Basic work by Levy [13], Lieb [14], Chayes
et al. [15], Englisch and Englisch [16] and Kohn
and co-workers [17, 19] has led to an extension
of the original KS theory, which was formulated
for pure-state v-representability (i.e. densities
representable by a single-determinant ground
state wave function of a non-interacting refer-
ence system), to ensemble KS theory, which
is formulated for ensemble v-representability
(i.e. densities representable by a weighted sum
of pure state wave functions of non-interacting
reference systems). It has been formally proven
by Englisch and Englisch [16] that any strictly
positive density is an ensemble v-representable
density where the pure-state v-representability
is a special case. Baerends and co-workers have
given numerical examples (C2 and H2þH2

description) where, for typical multi-reference
cases, the original conjecture of pure-state
v-representability breaks down [18]. (For
related work, see also Savin et al. [20] and
Morrison [21].)
From the background of ensemble theory,

repeated attempts of describing multi-reference
systems within KS theory using fractional
occupation numbers have been made [9–12].
These approaches have been systemized in the
Restricted Ensemble Kohn–Sham (REKS)
theory of Filatov and Shaik [22, 23]. In the
REKS scheme, each of the single-determinant
configurations that would occur, e.g. in a CAS-
SCF(2,2) calculation is treated at the DFT level
including DFT exchange and correlation. The
four configurations are superimposed to account
for the non-dynamical correlation and simul-
taneous optimization of the weighting factors
and the KS orbitals is carried out. The REKS
approach has the important advantage of
being compatible in a DFT context, i.e. REKS
energies are directly comparable to standard KS-
DFT energies for states without non-dynamical
correlation effects. However, dynamical and
non-dynamical correlation effects are not cleanly
separated in the REKS method.

The REKS method is applicable to (2,2)
and (3,3) [22, 23] problems where the derivation
of these methods has been guided by the CI

handling of the corresponding cases. Further
extensions of REKS (e.g. to (4,4) problems) is
difficult because the CI expansion contains more
variational parameters which can be provided
by formal ensemble DFT. Simplifications in
the sense of GVB-like schemes [52] have to be
applied, the usefulness of which are difficult
to foresee, apart from the fact that in any case
the simplicity and cost effectiveness of standard
KS-DFT is lost. As in the case of BS-UDFT
or any other related approach, the problem of
double counting of the correlation effects, which
is inherent in the method, can however be partly
overcome by using hybrid rather than pure XC
functionals [63].

Recently, Khait and Hoffmann [73] have
suggested a procedure to decompose a spin-
adapted density into densities of configuration-
state functions. In this way, one can write down
densities of, for example, atomic multiplet states
in terms of densities of single determinants.
It remains to be seen how these densities trans-
form to energies and how this can be formulated
within a generally applicable ensemble method.
In any case, such an approach will require the
development of a new XC functional in order
to avoid the double-counting problem.

(2) Implicit or explicit splitting of the electron–
electron interaction operator. Multi-reference
DFT methods that either explicitly or implicitly
invoke a partitioning of the electron–electron
interaction operator are no longer hampered
by the double-counting problem. Savin and
co-workers [25–29] decompose the Coulomb
interaction potential into a long-ranged smooth
and a short-ranged singular part. The effect
of the long-ranged interactions is described by
a multi-reference wave function, whereas the
correlation due to the short-ranged portion is
treated with a DFT-type functional. This implies
that one has to develop new DFT functionals,
which in addition will depend parametrically
on the cut-off parameters used to decompose the
Coulomb interaction.
Despite some first successes of the approach

[29], the method depends on the validity of the
assumption that the short-range part of the
perturbation will always result in short-range
correlation effects only. Especially in cases
where non-dynamical correlation effects are
important, e.g. in the case of stretched diatomic
molecules, long-range correlation effects allow
the molecule to decrease its electron–electron
interaction energy at a low cost in terms of the
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one-particle energy. In this case, the short-range
part of the electron–electron interaction can play
a role for the formation of long-range correlation
effects as well, which cannot be covered properly
in this computational scheme.

Panas and co-worker [31] have suggested an
implicit partitioning of the electron–electron
interaction operator. They use a CAS-SCF
reference function to cover the non-dynamical
electron correlation effects. For the description
of the dynamical correlation effects, they start
from the idea that dynamical electron correla-
tion prevents the electrons from being close to
each other. The total electron–electron interac-
tion energy for the exact pair distribution, which
shows a correlation hole for each position of
the reference electron, should therefore be close
to that of a model pair distribution without
this correlation hole, provided that the electron–
electron repulsion potential is truncated for small
distances. In the approach by Panas, the two-
electron integrals are therefore not calculated
with the full Coulomb potential 1=r12 but with an
expression that is truncated for short r12 values.
This should provide an inclusion of the dynami-
cal electron correlation into the CAS-SCF
calculation at no additional computational cost.
It is, however, difficult to provide a well-founded
rationale how the truncation of the 1=r12 repul-
sion should be done. In particular, the extent of
the dynamical electron correlation will depend
on the local electron density, which is not known
in advance. Thus it is questionable whether an
a priorimodification of the two-electron integrals
can describe dynamical electron correlation in
a general fashion.

(3) Merging of WFT with DFT. BS-UDFT can be
considered as the simplest example for this
approach. As mentioned above, even at this stage
the double counting of electron correlation
effects becomes a problem and in so far the
neat separation of non-dynamical and dynamical
correlation effects, i.e. the avoidance of a double
counting of correlation effects is a central prob-
lem of this approach. Various authors have tried
to handle this problem in different ways.
(a) Colle and Salvetti [32] start from a MCSCF

reference wave function. In the two-particle
density matrix resulting from the wave
function, they check locally point by
point to what extent the electron–electron
repulsion potential is reflected in the
electronic structure, i.e. to what extent
short-range electron correlation is covered

by the MCSCF wave function. The dyna-
mical electron correlation is then accounted
for by a generalized version of the original
Colle–Salvetti functional [33] where the
information from the first step is used to
reduce the dynamical correlation energy
accordingly. The pointwise assessment of
the wave function is expensive, which
counteracts the goal of setting up a cheap
and efficient computational scheme.

(b1) The simplest way to avoid a double
counting of energy contributions is to
keep dynamical electron correlation out
of the multi-reference wave function, i.e. to
choose as small an active space as possible.
This approach was pursued first by Lie
and Clementi [34], who investigated the
dissociation of second-row hydrides and
diatomics. In their work, just as many
additional configurations were superim-
posed to the HF state so that the disso-
ciation is described qualitatively correctly.
The dynamical correlation is then taken
into account by applying a version of the
Gombas correlation potential [74] which
was reparametrized in [34] to improve the
balance in the description of the closed-
shell molecules and the open-shell
fragments. Lie and Clementi found that
the approach required further refinement
to become practicable.

(b2) Kraka [36] and Kraka et al. [37] followed
the same basic idea by combining a GVB
wave function with a correlation-energy
term calculated with a LDA correla-
tion functional. This approach allowed
one to reproduce dissociation energies
of a set of 28 small molecules with an
accuracy of 4 kcalmol�1, as compared
to 24 kcalmol�1 for the corresponding
GVB calculations. In this approach, the
proper choice of configurations for the
molecules and fragments proved crucial
and subtle. The work by Kraka and
co-workers [36, 37] demonstrates that
a straightforward combination of small-
active-space WFT calculations and a DFT
correlation functional does allow a simul-
taneous description of non-dynamical and
dynamical correlation effects. However,
one cannot guarantee that the choice of
a minimal active space in all cases will
exclude dynamical electron correlation
from the reference function. It should be
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mentioned that the idea of this approach
has recently been revived by Stoll [75].

(c) All methods described so far start from
a theoretical description of the correlation
hole. Gusarov et al. [45] pursue a com-
plementary line, trying to construct an
XC potential and, subsequently a multi-
reference DFT correlation-energy functi-
onal by studying a set of test molecules
and generalizing the features found there.
They start by doing high-level ab initio
calculations for the test molecules, pro-
viding reliable reference values for their
one-electron densities as well as total
energies. Then they attempt to reproduce
the densities found by a CAS-SCF calcula-
tion with an adjustable extra one-electron
potential. This potential, which is a gen-
eralized KS correlation potential, will
depend not only on the density to be
reproduced but also on the size of the
active space for the reference function. The
energy difference between the high-level
ab initio and the CAS-SCF result is a gen-
eralized KS correlation energy. The cor-
relation energies and potentials obtained
are collected in a data base with the goal of
establishing general relationships between
the electron density of the molecule and
the active size on the one hand and the
KS correlation potential on the other hand.
So far, no strategy has been provided for
the evaluation of the compiled data and the
systematic construction of a KS potential
for a given density and active space.

3. Basic requirements for a useful CAS-DFT method

The goal of this work is to develop a calculational
scheme that provides a balanced description of non-
dynamical and dynamical electron correlation effects
by combining a multi-reference wave function approach
with a DFT correlation functional for a description
of the dynamical correlation. For this purpose, a list
of requirements has to be fulfilled.

(1) Any useful WFTþDFT method has to refrain
from using spin densities %� and %� as input
quantities because they lead to errors in the
description of state multiplets [51, 60]. Other
input quantities have to be found.

(2) As one includes specific multi-reference effects
explicitly into the calculation, approximate
DFT exchange cannot be used any longer

because it implicitly mimics non-specific non-
dynamical correlation effects [61–63]. Exchange
has to be calculated in an exact way by the WFT
method to avoid any double counting of non-
dynamical correlation effects caused by the
exchange functional.

(3) The WFT approach treats, in a specific way,
a part of the total correlation energy. This part is
larger the larger the active space is. In practice
the active space is chosen in such a way that all
non-dynamical correlation effects are covered.
The DFT correlation functional, however, is
insensitive to the size of the active space. It is
designed to describe all electron correlation
effects in the system, however, in an unspecified
way: all correlation effects, including those
related to low-lying virtual orbitals, are treated
as dynamical ones. Consequently, some correla-
tion-energy contributions in the molecule are
treated twice: once in an exact way by the multi-
reference wave function and once more in a less
specific way by the DFT correlation functional.
This becomes actually more problematic the
larger the active space is. This double counting
of correlation effects has to be avoided [41, 42, 60].

(4) Problem (3) can be reformulated to lead to the
more general question: how does the DFT part
of any WFTþDFT method ‘know’, which non-
dynamical or dynamical correlation effects are
already included by the WFT method so that
the DFT method is set up to compensate just for
missing correlation effects?

(5) Problems (3) and (4) lead to the necessity of
distinguishing between active and inactive (core)
orbitals to keep track of electron correlation
effects accounted for by the WFT method.

(6) There is also a necessity of considering which
orbitals are doubly and which are singly
occupied in the active space. Closed shell and
open shell systems encounter different situations
in terms of opposite and equal spin correlation
effects, which has to be considered when merging
any WFT method with DFT.

(7) Even if just two open-shell systems are com-
pared, opposite and equal spin correlation effects
will be different for a high-spin and a low-spin
system. This also has to be considered.

(8) An appropriate choice of the DFT correlation
functional has to be made.

(9) The WFTþDFT method to be developed has
to be size-consistent (extensive) within the limi-
tations given by the WFT approach (where of
course it is useful just to consider size-consistent
WFT methods).
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Some of these questions have already been discussed
in our previous work [41, 42, 60] and therefore, they
need only to be considered in a short, summarizing
fashion in the following. Also there are some general
questions, which have to be considered before starting
with the actual development work. In this connection
it is also useful to demonstrate the various points
discussed for a suitable molecular example, for which
the various correlation effects can still be assessed in
a simple way (i.e. a relatively small molecular system),
but one which is not trivial. For this purpose we have
chosen the three lowest states of methylene CH2, the
3B1 ground state, the 1A1 first excited state and the 1B1

second excited state. These states represent typical
examples for a high-spin open shell case with no
correlation (type 0 system), a closed-shell case with
non-dynamical electron correlation (type II system)
and a low-spin open shell biradical again with no (or
just small) non-dynamical correlation (type I or type III
system). The three states present different cases of
opposite/equal spin correlation situations and therefore
the calculated state energy differences will be sensitive
indicators of the usefulness of any WFT-DFT method.
In so far as these calculations are not trivial, they will

reveal in a system with no non-dynamical correlation
whether CAS-DFT can reduce unwanted correlation
effects to zero. This would be difficult to check in a
larger system because there doubly-counted correlation
effects could still be used to fill up lacking correlation so
that any weakness of the method in this respect would
be disguised. For the three states of methylene however
accurate excitation energies are known and the three
different electronic situations of the system provide a
basis for a rigorous testing of CAS-DFT.
All methylene calculations discussed in the following

were carried out with a 6-311þþG(2df,2pd) basis set
[76]. For the 1B1 state, the low-spin ROMP2 (OPT2)
geometry from [71] was used, the geometry of the other
two states was calculated at the R(O)MP2 level with
the TZ2P basis set as described in [71] (see table 1). For
the calculations, the ab initio packages COLOGNE 2004
[77] and Gaussian 98 [78] were used. In figure 1, the
energy gain for an increase of the active space relative to
the (0,0) space is shown for the 1A1 state of methylene.
The corresponding energy differences are given in
table 1. In view of the multi-reference character of this
state, they will be a measure for the performance of the
various methods.

3.1. Choice of the appropriate multi-reference
wave function

Previous experience in our group with the GVB-DFT
approach [36, 37] clearly showed that the applicability of

GVB as a suitable WFT method for describing multi-
reference systems is too limited and a more general
MCSCF approach seems to be more desirable. A
straightforward procedure to cover non-dynamical
electron correlation effects is to include all configuration
state functions with similar energy into a self-consistent
field calculation optimizing both the orbitals and the
coefficients of the configuration state functions as done
in the full optimized reaction space (FORS) method of
Ruedenberg et al. [79] or the equivalent (complete active
space) CAS-SCF approach [80]. The special case of a
CAS-SCF(2,2) calculation, i.e. 2 electrons in two active
orbitals as needed for describing the dissociation of
a single bond, includes the same non-dynamical near-
degeneracy correlation effects as provided by GVB(1)
[52] or in a related way by BS-UHF.

What should the energy gain for a CAS-DFT method
with successively increasing active space look like? For a
(0,0) space, i.e. HFþDFT correlation, non-dynamical
correlation contributions will be missing in the energy.
The DFT correlation term will describe these correla-
tion effects in an unspecified way and, accordingly,
underestimate their contribution to the correlation
energy. If the orbitals essential for the non-dynamical
correlation effects are added to the active space, the
energy should decrease. For example, the 1A1 state of
methylene represents in a first approximation a (2,2)-
active space problem where the active orbitals are the
occupied a1-symmetrical � lone pair orbital and the
empty b1-symmetrical pp orbital. If the active space
is increased by adding orbitals that are responsible for
dynamical correlation effects, the energy gain in the
CAS-SCF wave function should be balanced by a
reduction of the DFT correlation energy, i.e. the total
energy should remain basically unchanged. For the
1A1 state of methylene, there should be a substantial
gain in energy from the (0,0) to the (2,2) and (2,4)
active space where in the latter case the �*(CH) orbitals
are added, which could be important for obtaining
a balanced description of the 1A1,

3B1 and 1B1 states.
Only minor energy gains can be expected when

increasing the active space from (2,2) to (6,4) or from
(2,4) to (6,6) and (8,7). In the first case the (2,2) space
is enlarged by the occupied �(CH) orbitals so to include
all valence electrons where the CH bond electrons
should only undergo dynamical correlation. The same
holds for the second case (again addition of the �(CH)
orbitals), which represents the full valence (6,6) active
space. The addition of the 1s core orbital leads to
the (8,7) space, which is interesting in so far as the core
electrons will definitely encounter just dynamical
rather than any non-dynamical electron correlation.
Hence, a sensitive test would be provided by the
CAS-DFT(6,6) and CAS-DFT(8,7) energies, which
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Table 1. Absolute HF(0,0), MP2(0,0), and HFþCS(0,0) references energies of the 1A1 state of CH2. For increasing active space, the lowering of the energy relative to
the (0,0) space is given. Values in parentheses denote SPP corrected energies.a

Active

space CASSCF CAS-MP2 CASþLYP CASþCS

CAS þ fCS CS

(CAS þ fCS CS(SPP))

CAS-DFT1 (CS, FCS)

(CAS-DFT1(CS,SPP,FCS))

CAS-DFT2 (CS, FCS)

(CAS-DFT2(CS,SPP,FCS))

(0,0) �38.89206 �39.05004 �39.12460 �39.12309 �39.12309 (�39.12309) �39.12309 (�39.12309) �39.12309 (�39.12309)

(2,2) �14.22 �3.56 �14.45 �10.02 4.10 (0.57) �2.10 (�4.56) �1.59 (�4.07)

(6,4) �14.63 �3.68 �14.88 �10.38 3.83 (0.36) 2.49 (0.97) 3.58 (0.25)

(2,4) �18.07 þ 1.83 �18.30 �12.81 23.62 (15.97) 2.23 (�1.69) 4.50 (0.33)

(6,6) �38.41 �5.18 �38.75 �28.89 9.26 (1.36) 4.32 (�3.17) 7.44 (0.37)

(8,7) �38.56 �4.28 �38.90 �29.04 9.18 (1.27) 9.18 (1.27) 9.18 (1.27)

aAbsolute energies in hartree, relative energies in kcalmol. All calculations with the 6-311þþG(2df,2pd) basis set. The CS correlation energy leads to an energy lowering
of E(RHFþCS)�E(RHF)¼�144.98 kcal mol. Active spaces: (2,2): minimal; (6,4): minimalþ all occupied valence orbitals; (2,4): minimalþ all virtual valence orbitals;
(6,6): full valence; (8,7): full valenceþ 1s(C). CS: Colle–Salvetti functional; FCS: scaling factor f calculated for a closed shell situatio; SPP: Stoll–Pavlidou–Preuss
functional for elimination of equal-spin correlation; levels 1 and 2: different levels of distinguishing between core and active electron correlation.
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should be strictly identical. Although in a practical
application one would be interested in just the minimal
(2,2) or the extended (2,4) active space, consideration
of the three other active spaces provides energy data
reflecting the sensitivity of the method to double
counting of correlation effects.
Summarizing the following relationships should

hold for the absolute CAS-DFT energies of the 1A1

state of methylene provided a double counting of
correlation effects can be excluded:

ECAS�DFTð2,4Þ<ECAS�DFTð2,2Þ�ECAS�DFTð0,0Þ, ð1aÞ

ECAS�DFTð2,2Þ �ECAS�DFTð6,4Þ, ð1bÞ

ECAS�DFTð2,4Þ �ECAS�DFTð6,6Þ ¼ECAS�DFTð8,7Þ: ð1cÞ

Figure 1 shows the CAS-SCF/6-311þ þG(2df,2pd)
energy of the 1A1 state of CH2 for the five different
active spaces, relative to the energy for the (0,0) active
space (i.e. HF energy). The CAS-SCF energy decreases
with the size of the active space. The minimal (2,2) space
gives a gain of 14.2 kcalmol�1 relative to the HF energy,
caused mainly by the non-dynamical correlation effects
of the electron lone pair where the two electrons avoid

each other by moving in opposite directions out of
the molecular plane. Major energy gains are obtained
when adding the ��(CH) orbitals to the minimal active
space and increasing to the (2,4) space (�3:8 kcalmol�1,
table 1) or applying the full valence (6,6) space
(�20:4 kcalmol�1 relative to the minimal active space).
The latter energy change is caused by adding dynamical
(primarily left–right) electron correlation (involving
excitations from the �(CH) to the ��(CH) orbitals)
whereas in the former case the energy lowering may be
due to either non-dynamical or dynamical correlation
effects. As becomes obvious from figure 1, neither the
extension from the (2,2) to the (6,4) or from the (6,6)
to the (8,7) space lead to any significant effect (see
also table 1). Excitations of the �(CH) electrons into the
p�(C) orbital do not play any role for non-dynamical
or dynamical electron correlation. Also, incorporating
the 1s(C) orbital into the active space leads to an energy
gain of just 0.2 kcalmol�1, which is not astonishing
because the unoccupied valence orbitals are not appro-
priate for describing dynamical correlation between the
two 1s(C) electrons.

For CASPT2 or CAS-MP2, the energy relationships
of equations (1) should hold. This has to do with the
fact that methylene is an example for which pair effects

Figure 1. Changes in the correlation energy relative to a reference energy (HF, MP2, HFLYP, HFCS) for an increasing active
space as calculated by different methods with a 6-311þ þG(2df,2pd) basis set. CS: Colle–Salvetti functional; FCS: scaling factor f
calculated for a closed shell situation; SPP: Stoll–Pavlidou–Preuss functional for elimination of equal-spin correlation; levels 1 and
2: different levels of distinguishing between core and active electron correlation.
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dominate dynamical electron correlation whereas three-
or higher-order electron correlation effects play only
a minor role [81]. Accordingly, CAS-MP2 (CASPT2)
should provide rather accurate energies. CAS-MP2/
6-311þ þG(2df,2pd) calculations with a finite basis at
fixed geometries reveal how the actual energies behave
(table 1, figure 1). The CAS-MP2 energies for the (2,2),
(6,4) and (6,6) spaces fulfill equations (1) confirming that
with the minimal active space not all non-dynamical
electron correlation is introduced. However, this is
also not included when using the (2,4) space, which
seems to be unbalanced pushing the correlation energy
above that of the MP2(0,0) calculation. This is not
surprising in so far as MP2 is known to exaggerate pair
correlation effects [81] and provides a less appropriate
reference than HF does. In any case, the inclusion of
the ��(CH) orbitals into the (2,2) space to yield the (2,4)
space reduces the effectiveness of non-dynamical elec-
tron correlation without introducing new effects. In this
respect, the (6,6) space with the possibility of left–right
correlation for the bond electrons seems to add both
dynamical and non-dynamical correlation.
These observations show that it is misleading to make

presumptuous classifications along the lines that left–
right correlation is always non-dynamical and angular
(or in–out) correlation effects are always dynamical.
The classification of correlation effects will have to
change from electronic system to electronic system and
their nature should be assessed by quantitative means
rather than with a rigid classification scheme.
At this point it is useful to understand how in

CASPT2 [5] or CAS-MP2 [6] lacking correlation effects
are included by perturbation theory. Besides dynamical
correlation effects, CASPT2/CAS-MP2 does include
non-dynamical correlation effects in its correction term
and can thus balance an inconsistent choice of the
active space to some extent: the CASPT2 or CAS-MP2
correlation energy can be found by expanding the
expression

�E¼ CCAS�SCF ĤHQ̂Q
1

ECAS�SCFþ�E�Q̂QĤHQ̂Q
Q̂QĤH

�����
�����CCAS�SCF

* +
,

ð2Þ

which gives in second order

�ECASPT2

¼ CCAS�SCF V̂VQ̂Q
1

ECAS�SCF � Q̂QĤH0Q̂Q
Q̂QV̂V

�����
�����CCAS�SCF

* +
:

ð3Þ

Equation (3) shows the sensitivity of CASPT2 or
CAS-MP2 to external configurations (outside the active

space) rather than just orbitals or densities: the operator
V̂VQ̂Q first applies the perturbation (i.e. the electron–
electron interaction) onto the CAS-SCF reference
function and then projects out that part which is outside
the active space. The weight of the part is determined
by the energy of the configurations in the subspace
orthogonal to the active space: if there are low-lying
ones, the expectation value of Q̂QĤH0Q̂Q will become close
to ECAS�SCF, and the corresponding configuration will
make a large contribution to the CAS-MP2 (CASPT2)
energy. That is, the structure of the energy expression
(3) scans the orthogonal space for configurations that
(i) are coupled to CCAS�SCF via the interaction operator
and (ii) have an energy close to the CAS-SCF energy.
In this way, equation (3) generates large energy contri-
butions for such configurations. The occurrence of this
kind of configuration actually indicates that the active
space should be extended by active orbitals leading to
these configurations.

Clearly, the perturbation method that includes
dynamical electron correlation ‘knows’ what correlation
effects are already accounted for by the multi-reference
method so that the correlation energy can be further
optimized. The result of the CASPT2 (CAS-MP2)
calculation is in this way optimal. For a CAS-DFT
approach the coupling between the two methods
proceeds through the CAS electron density, which is
the input for the DFT correlation functional. If the
latter is ‘blind’ to any changes in the CAS density, then
DFT will not ‘know’ what CAS-SCF is doing. But even
in the case that the correlation functional responds to
the features of the CAS density, an optimization of the
coupling effects can only be achieved by a self-consistent
procedure. Experiences made by Kraka, who developed
a SCF GVB-DFT method [36, 37] indicate that self-
consistency corrections (needed for analytical energy
derivatives) are small and that the sensitivity of the
correlation functional to the properties of the active
space of the WFT method is low. Techniques (borrowed
from WFT) to improve this sensitivity are in conflict
with the goal of developing a simple, largely applicable
CAS-DFT method.

Several authors have advanced [22, 23, 34, 36, 37]
what is considered (to our opinion erroneously) as
a basic rule: methods such as GVB-DFT or REKS
are successful because they operate with the smallest
active space possible (minimal active space) to include
just non-dynamical rather than any dynamical electron
correlation. Therefore, CAS-DFT calculations should
be carried out with the minimal active space to keep
the double-counting problem as small as possible. The
sensitivity of the correlation functional is less serious
for a minimal active space calculation. However, as we
will show, in this work even for minimal active space
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calculations, double counting of correlation effects
is always a problem. Only, that this double-counting
of correlation effects is often disguised (correlation is
largely underestimated when using minimal active
spaces) and may even lead to better results (right results
for the wrong reason).
There are many situations (see above) where a

minimal active space description is not sufficient and
therefore any WFTþDFT theory based on a minimal
active space rule cannot offer (apart from cost
considerations) any advantages. We will use extended
(rather than minimal) active spaces to keep the flexibility
of the CAS-SCF description and, because of this, we
will focus on appropriate means to suppress the double
counting of correlation effects. Clearly such a means
must become most sensitive when large active spaces
are used. For the present example of the correlation
energies of the 1A1 state of methylene, we can
reformulate the rules of equation (1) (applicable to the
ideal case of a very large basis set) in the following way.

(a) CAS-DFT absolute energies should be sepa-
rated from each other by small energies
(for methylene just 5 kcalmol�1 or less). The
magnitude of the energy range is a direct
reflection of the sensitivity of the correlation
functional to include missing correlation
effects.

(b) By avoiding any stronger deviations for the
(2,4) or (8,7) space (spaces, for which CAS-
MP2 turns out to be unstable), CAS-DFT
should prove to be stable against variations
in the active space.

(c) CAS-DFT should be located below the
energy of the HFþCS reference, reflecting
the non-dynamical correlation energy missing
in the HFþCS description. Any reordering
of CAS-DFT energies relative to that given
in equation (1) (figure 1) indicates deficiencies
of the method chosen.

These rules are more stringent than those actually
needed for a consistent description of the various states
of a molecule or the different energies of a reaction
complex along the reaction path. Nevertheless, they
provide in the following a guidance on how to improve
any CAS-DFT method.

3.2. Choice of the input quantities

As was pointed out previously [41, 42], spin densities
%� and %� are no longer useful input quantities for CAS-
DFT. One has to replace these densities, similarly as
discussed by Perdew et al. [82] in the case of UDFT
(see also [40, 60]), by the total density %ðrÞ and the

on-top pair density Pðr, rÞ as input quantities for the
correlation functional. As a two-particle quantity,
Pðr, rÞ can distinguish between states with different
multiplicity and, contrary to the spin densities %�, %�,
the on-top density is identical for the components
of a state multiplet such as T(M ¼ �1), T(M¼ 0), and
T(M¼ 1). Equation (4) can be used to convert existing
correlation functionals so that they depend on total
density %ðrÞ and on-top pair density Pðr, rÞ rather than
spin densities %�ðrÞ and %�ðrÞ [35, 41, 42];

"on�top
C ð%,PÞ ¼ "C

%

2
þ

%

2

� �2
�P

� �1=2
,
%

2
�

%

2

� �2
�P

� �1=2 !
;

ð4Þ

where "C is the correlation energy.

3.3. Choice of the appropriate correlation functional:
CAS-SCFQLYP versus CAS-SCFQCS

CAS-SCFþLYP calculations, in which the LYP
correlation energy is simply added to the CAS-SCF
energy, as suggested by several authors [38, 48], are also
included in table 1 and figure 1. Clearly, CASþLYP
does not lead to a change in the relative CAS-SCF
energies because the LYP correlation functional is
insensitive to the changes in the CAS pair density
when calculating the three different states. CASþLYP
follows the overall changes in the active space energies
of CAS-SCF. We conclude that a simple addition of
the LYP functional (calculated with the CAS-SCF
densities) does not lead to any results better than those
of CAS-SCF.

This changes almost dramatically when the Colle–
Salvetti (CS) functional [33] is used. We have previously
[41, 42] chosen this functional for CAS-DFT calcu-
lations for the following reasons.

(i) The CS functional has been developed for
the subsequent correction of Hartree–Fock
wave functions [33].

(ii) The CS functional does not use the spin-
resolved densities but the total density and
pair density as input quantities. It is thus
more sensitive to the features of the elec-
tronic structure that are reflected in the
CAS-SCF wave function.

(iii) The CS functional contains gradient correc-
tions and therefore is superior to LDA
functionals.

In table 1 and figure 1, the results of the CASþCS
calculations are given. The CS functional is, in distinc-
tion to the LYP functional [3] (actually derived from the
CS functional), sensitive to the quality of the reference
wavefunction because CS depends not only on the total
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density but also on the on-top density and the curvature
of the pair distribution function around the position
of the reference electron. Both of the latter quantities
will change (on-top density down, curvature up) if the
quality of the CAS reference wave function increases.
In LYP however, the on-top density and curvature are
expressed by the total density and its gradient, implicitly
assuming a wave function of HF quality.
Figure 1 reveals that the CS functional introduces

the expected (and needed) sensitivity to the changes in
the CAS density by decreasing the energy gains with
increasing active space (by 4.4, 5.5 and 9.9 kcalmol�1;
table 1), i.e. it scales back correlation effects so that
more of them are included in the active space. The back-
scaling (coupling via the CAS density) is however too
weak so that the double counting of electron correla-
tion effects experienced at the CASþLYP level largely
remains. This double counting problem will be
investigated in section 4.

4. A balanced description of non-dynamical and

dynamical correlation in CAS-DFT

The basic problem of a simple additive CAS-SCFþ

DFT approach is illustrated in figure 2. The CAS-SCF
reference wave function contains the correlation effects
related to excitations into low-lying unoccupied orbitals
and treats them exactly. For the purpose of under-
standing what correlation effects are accounted for by

the DFT correlation functional, we revert to the
homogeneous electron gas (HEG) and a LDA functional.
The LDA correlation functional models all correlation
effects, no matter whether high-lying or low-lying
virtual orbitals are involved. Similar arguments apply
to aGGA functional such as the CS functional. By simply
adding the CAS-SCF and DFT energy contributions,
one counts the correlation effects arising from low-
lying excitations twice, however in the form of dyna-
mical rather than non-dynamical correlation, i.e. just a
part of the non-dynamical correlation is counted twice
(assuming that the non-dynamical correlation energy
associated with the excitations in question is larger than
the dynamical correlation energy). This becomes more
of a problem the larger the active space is, i.e. the higher
the quality of the underlying CAS-SCF calculation is.

A prospective approach to tackle the double count-
ing of correlation effects was suggested by Savin [39],
worked out later by Miehlich, Savin and Stoll (MSS)
for atom calculations [40], and then developed to a
generally applicable method by Gräfenstein and Cremer
[41, 42]. According to this approach, the correlation
effects related to excitations in low-lying virtual orbitals
are excluded from the DFT correlation energy term by
using equation (5);

ECAS�DFT ¼ ECAS�SCF þ

Z
d3r"DFT

c ðrÞ, ð5 aÞ

"DFT
c ðrÞ ¼ "DFT, std

c ðrÞ � "DFT, trunc
c ðrÞ, ð5 bÞ

Figure 2. Double counting of correlation effects in a simple CASþDFT approach. The electron correlation effects accounted for
by all excitations of a FCI (left), those of CAS-SCF with M electrons and Nact orbitals (middle) and those of a DFT calculation
(right) are schematically indicated by arrows. Bold arrows denote those excitations (correlation effects) counted in CAS-DFT twice.
virtual: virtual orbitals; occupied: occupied orbitals; �F: Fermi energy.
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where ‘std’ refers to a standard DFT correlation energy
(i.e. the density of the CAS-SCF wave function is simply
inserted into a DFT correlation functional, in our case
the CS functional) and ‘trunc’ means a truncated DFT
correlation energy related to low-lying excitations only.
The larger the active space in the CAS-SCF wave
function is the higher the limit energy in the truncated
DFT part has to be chosen. Figure 3 shows schemati-
cally the partitioning of the correlation energy between
the CAS-SCF reference function and the DFT correla-
tion functional.
The realization of this idea raises two questions. (a)

How can the limiting energy for the DFT excitations be
determined? The orbital energy spectrum is discrete for
the real system, whereas it is continuous for the HEG
that is used as a model to calculate the DFT correlation
energy. In addition, orbital energies are not well-defined
quantities in CAS-SCF. A measure for the DFT limiting
energy that can be directly transferred to the size of
the active space can be obtained by considering local
densities. For this purpose, one calculates for the real
system both the real density %ðrÞ and a reference density
%ref ðrÞ defined by

%ref ðrÞ ¼
Xact:
k

2½’kðrÞ�
2, ð6Þ

i.e. as that density, one would determine if all active
orbitals were doubly occupied. The ratio

�ref ðrÞ ¼
%ref ðrÞ

%ðrÞ

� �1=3
ð7Þ

is then a local measure for the size of the active space.
For a HF wave function with no non-dynamical

correlation at all, �ref ðrÞ ¼ 1; with increasing active
space, �ref ðrÞ becomes larger and tends to infinity for
the limit of a full CI (FCI) calculation with a complete
basis set. It should be noted that �ref ðrÞ can be equal or
close to 1 locally even for a large active space if the
weakly populated active orbitals are concentrated in
other regions of the molecule. The ratio �ref ðrÞ is thus
a measure describing how many weakly populated
active orbitals are available locally to describe correla-
tion effects in the real system. Equivalently, �ref ðrÞ can
be seen as a measure for the size of the local correla-
tion hole present in the reference wavefunction, which
is a view that fits well with the KS-DFT approach.

(b) The second question concerns the calculation
of the truncated DFT correlation energy. This is
straightforward at the LDA level. The correlation
energy for the HEG is recalculated with the excitations
limited to low-lying virtual orbitals up to a certain
truncation energy. This truncation energy is defined
in a way that the reference density for occupied
and low-lying virtual orbitals just equals %ref ðrÞ of the
real system. One recalculates then the correlation
energy of the HEG with this truncation, providing an
expression for the truncated LDA correlation energy
"LDA
c ð%, �ref Þ, where the conventional LDA correlation
energy density is given by the special case "LDA

c ð%Þ ¼
"LDA
c ð%,1Þ. With this truncated LDA energy, one can
define the DFT correlation terms in equation (4) as

"DFT, std
c ðrÞ ¼ "LDA

c ð%Þ

����
r

, ð8 aÞ

"DFT, trunc
c ðrÞ ¼ "LDA

c ð%, �ref Þ

����
r

: ð8 bÞ

Figure 3. Partitioning of the correlation energy in a CAS-DFT calculation according to Miehlich et al. [40]. For explanations,
see figure 2 and text.
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This corresponds to an LDA description of the correla-
tion energy. Of course, the accuracy of LDA is insuffic-
ient for reliable quantum-chemical calculations. On the
other hand, it is not clear how the truncated DFT
correlation energy can be defined in a GGA or other
more sophisticated approaches. Therefore, one uses
expressions (9) rather than equations (8 a) and (8 b):

"DFT, std
c ðrÞ ¼ "GGA

c ½%�

����
r

, ð9 aÞ

"DFT, trunc
c ðrÞ ¼

"LDA
c ð%, �ref Þ

"LDA
c ð%,1Þ

"GGA
c ½%�

����
r

, ð9 bÞ

i.e. the absolute correlation energy is calculated at
the GGA (or another elaborate) level of DFT, only
the relative effect of the truncation is determined at the
LDA level. Technically, one calculates the scaling factor

f ð%, %ref Þ ¼ 1�
"LDA
c ð%, �ref Þ

"LDA
c ð%,1Þ

ð10Þ

with dependence on % and �ref once and forever, then
parametrizes it in an analytical form and determines
then the total energy according to

ECAS�DFT ¼ ECAS�SCF þ

Z
d3r f ð%, %ref Þ"

GGA
c ½%�

����
r

: ð11Þ

In the following, this approach [40–42] will be called
CASþ f DFT with reference to the scaling factor f.
In this work, we use for all calculations in this
connection CASþ f CS as explained above.
Both the test calculations by MSS [40] and our own

test calculations [41, 42] suggest that CASþ f DFT is
a reasonable approach for incorporation of dynamical
correlation effects into the active space. Figure 1 and
table 1 reveal however that the approach suffers from
some serious shortcomings.
The CASþ f CS energies for the (2,2) and (6,4) active

spaces of CH2 (1A1) are about 4 kcalmol�1, those for
(6,6) and (8,7) spaces about 9.2 kcalmol�1, and that for
the (2,4) active space even 23.6 kcalmol�1 above the
HFþCS reference energy. Although the dependence
of the energy on the active space has been reduced by
10 kcalmol�1, the relative CASþ f CS energies are far
from reaching CAS-MP2 quality (even if the (2,4) value
is excluded). In addition, the energy ordering is incorrect
for CAS-SCFþ f DFT: the (6,6) and (8,7) energies are
above rather than below the (2,2) and (6,4) ones, which
suggests that the scaling factor exaggerates the elimi-
nation of doubly counted correlation effects. This error
increases with the size of the active space where for the
(2,4) space CASþ f CS even enlarges the unbalanced
description of non-dynamical and dynamical correlation

effects observed at the CAS-MP2 level. Hence, there is
a need to analyse the failures of the scaling procedure
inherent in the CASþ f CS approach, which will be
done in the next subsection.

4.1. Improved determination of the scaling factor
by considering equal-spin and opposite-spin
correlation effects

An obvious limitation of the CASþ f DFT approach
is the calculation of the scaling factor at the LDA
level, which is known to have limited accuracy. An
improved treatment of the truncated DFT energy may
resolve at least some of the problems encountered
for CASþ f DFT. Stoll, Pavlidou and Preuss (SPP) [84]
analysed the performance of LDA in standard DFT
calculations and pointed out that an important reason
for the limited performance of LDA is that equal-
spin correlation effects are overestimated relative
to opposite-spin correlation effects. This becomes
manifested in the large self-interaction error (SIE) that
occurs for LDA correlation functionals, i.e. the fact that
LDA incorrectly predicts a non-vanishing correlation
energy for a one-electron system. This overestimation
is due to the difference between the HEG and finite
systems.

(a) In the HEG, the exchange hole is more diffuse
the lower the density is and shows long-range
oscillations, which are an artefact related to
the vanishing HOMO–LUMO energy differ-
ence. An important portion of the equal-spin
LDA correlation hole just fills the minima
in the oscillations of the exchange hole, which
results in a considerable amount of equal-spin
correlation energy.

(b) In the real system, in contrast, the size of the
exchange hole is limited, and there is in
particular no counterpart to the long-range
oscillations one finds in the HEG. As a con-
sequence, equal-spin correlation effects are
much weaker than in the case of the HEG.

(c) For opposite-spin electrons there is no
exchange and thus the inconsistency in the
LDA description of electron correlation
vanishes.

The exaggeration of equal-spin correlation is an
artefact of the HEG itself and occurs even if this
model system is treated exactly. This artefact reflects
an essential difference between the HEG and the real
system, which has been pointed out by Dobson [85]:
in the HEG, each electron has a large number
of other equal-spin electrons in its vicinity, allowing
for substantial energy gain by equal-spin correlation.
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A similar situation is found in metals, which rationalizes
the success of LDA for the description of metals. In
molecules or covalently bonded solids, in contrast, the
equal-spin electrons are more strongly separated. It is
unlikely, e.g. to find two equal-spin electrons in the
region of one covalent bond. Consequently, equal-spin
correlation effects are weak and contribute only little
to the total energy. In a one-electron system, there are
no other equal-spin electrons at all, but the LDA
description still assumes nearby equal-spin electrons
for each reference point. This accounts for the large SIE
of the LDA correlation.
In the CASþ f DFT approach, the LDA correlation

energy is calculated with the random-phase approxi-
mation (RPA), which further increases the exaggeration
of equal-spin correlation effects.
One might expect that this inconsistency of LDA is

problematic mainly for open-shell systems. However,
even for a closed-shell system this inconsistency can
influence the full and truncated DFT correlation energy
differently and thus influence the value of scaling factor
f. The long-range oscillating part of the LDA correla-
tion hole is mainly due to low-lying excitations, i.e.
excitations involving orbitals close to the Fermi level.
This means eventually that an RPA calculation of f
will give too small values of f, i.e. tends to reduce the
DFT correlation energy too strongly.
The solution suggested by SPP [84] is to completely

eliminate equal-spin correlations from the DFT corre-
lation functional. This implies that the DFT correlation
energy is approximated by

ESPP
c ½%�, %�� ¼ ELDA

c ½%�, %�� � ELDA
c ½%�, 0� � ELDA

c ½0, %��:

ð12Þ

This expression is self-interaction free by construction,
no matter which approximation is used for the corre-
lation functional. Here ELDA

c ½%�, %�� is the standard
LDA correlation energy for the spin-resolved density
%�, %�. As SPP showed [84], the modification of the
DFT functional along these lines will improve accuracy,
especially if the SPP functional is used together with
a HF description of the exchange energy. Even though
the complete suppression of equal-spin correlation
effects is physically incorrect, the error of this approx-
imation is considerably smaller than the exaggeration
of equal-spin correlation in conventional LDA.
It should be noted in this connection that the GVB-
LDA approach by Kraka [36, 37] used a SPP-corrected
correlation functional.
The idea of the SPP correction is easy to transfer to

the truncated DFT used in the CASþ f DFT approach.
For this purpose, the truncated DFT energy is
calculated both for a spin-unpolarized HEG with the

total density % (i.e. %� ¼ %� ¼ %=2) and a completely
spin polarized electron gas with %� ¼ %=2, %� ¼ 0 with
the same limiting energy for the virtual orbitals. Then,
the truncated correlation energy is calculated in analogy
to equation (12).

The SPP-corrected CAS-SCFþ f DFT energies for
1A1 CH2 are shown in figure 1. The (2,2), (6,4), (6,6) and
(8,7) energies are at this level less than 1.5 kcalmol�1

above the (0,0) reference value, i.e. the inclusion of the
SPP corrections improves the balance between dynami-
cal and non-dynamical correlation effects for different
active spaces.

The CASþ f DFT(SPP) energies collected in figure 1
and table 1 show that there is indeed a significant
improvement caused by the SPP functional: the energies
of four of the active spaces considered are now found
within 1.4 kcalmol�1 above the reference energy, which
corresponds to an improvement factor larger than 5.
However, the energy ordering of the states is still
incorrect (energy for (2,2) below (6,6), figure 1) similarly
as in the original CASþ f DFT method. The (2,4) state
is 16 kcalmol�1 above the (0,0) reference state. This is
a strong indication that there are more inconsistencies
to be corrected in the original CASþ f DFT method.

4.2. The distinction between active and
inactive orbitals: CAS-DFT1

The CAS-SCFþ f DFT method assumes implicitly
that all orbitals are either active or virtual, i.e. that there
is no inactive (core) space. This applies to all examples
investigated by MSS [40] but is not typical for normal
applications, where one has to limit the active space
to those orbitals involved in the chemical processes
of bond breaking and bond forming for computational
reasons [41, 42].

Figure 4 shows the major inconsistency in the
treatment of correlation effects in a CASþ f DFT
calculation that does not differentiate between active
and inactive orbitals: CASþ f DFT corrects for the
double-counting occurring in CASþDFT but sup-
presses incorrectly excitations from inactive into weakly
occupied active orbitals. The resulting errors will be
especially large when the inactive and the weakly
occupied active orbitals are deformed during a chemical
process (chemical reactions, excitations, etc.).

The determination of the scaling factor f has to be
generalized so that it accounts for the size of both
the active and the inactive space. The basic idea of
this generalized approach is shown schematically
in figure 5. In the truncated DFT calculation for
CAS-DFT one excludes not only all excitations into
high-lying virtual orbitals but also those from low-lying
occupied orbitals. The limiting energy for the occupied
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orbitals is adjusted in a way that the total density of
all low-lying (i.e. inactive) occupied orbitals just equals
%core in the real system. This means that the scaling
factor f is generalized to depend on both the actual,
the reference, and the core density. The DFT correla-
tion energy calculated at this level takes the form of
equation (13):

"DFT
c ðrÞ ¼ f ð%, %ref , %coreÞ"

GGA
c ½%�

����
r

: ð13Þ

The calculation of "LDA
c ð%, �ref , �coreÞ, referred to

as ‘truncated RPA’, is described in Appendix A.

The results were parametrized for the use in the CAS-
DFT code incorporated into COLOGNE 2004 [77] as
described in Appendix B. Energies obtained with the
general scaling factor are denoted as CAS-DFT1.

The parametrization suggested by MSS [34] is
inappropriate for an extension to the CAS-DFT1
approach. We constructed therefore a new model
function for the scaling factor f, which incorporates
some known features of the scaling factor from the
beginning. This model function allowed us to para-
metrize the scaling factor with a sufficient accuracy.
The analytical expression found from the parametriza-
tion contains the scaling factor for CASSCFþ f DFT

Figure 5. Schematic description of a more rigorous treatment of scaling active and core excitations (correlation effects) in the
CAS-DFT1 method using the Random Phase Approximation (RPA) in a truncated form. The dashed arrows indicate excitations
that are eliminated when a finite size of the active space is considered (middle) and in addition a finite size of the inactive (core) space
(right). For further explanations, see figure 2 and text.

Figure 4. The missing excitations (correlation effects) in the CASþ f DFT approach when introducing an inactive (core) space
of finite size (right, dashed arrows). Despite the fact that they are not present in the reference wave function, they are scaled-back
via the truncated DFT. For further explanations, see figure 2 and text.
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as a special case and will be used in this case as well
instead of the expression suggested in [34].
The CAS-DFT1 results for the 1A1 state of CH2

(figure 1) reveal an equally directed, but even stronger
improvement than obtained with the SPP functional.
The relative energies are spread over 11 rather than
19 kcalmol�1 as in the case of CASþ f DFT (table 1).
The energies of the active spaces are ordered in the
way that the minimal active space has the lowest, the
full valence þ 1s(C) active space has the highest energy,
which is just opposite to the CAS-SCF ordering.
Introduction of the SPP functional thus leading to
CAS-DFT1(SPP) helps to improve results further.
Energies are spread over just 6 kcalmol�1 reaching
almost CAS-PT2 quality. However, the ordering of
states is still wrong suggesting that with the number of
electrons in the active space the scaling factor exagge-
rates correlation effects covered by DFT thus leading
to a stronger reduction of the DFT correlation energy
as it should.
The discrepancies suggest that electron correlation

effects involving low-lying occupied orbitals are
described in an essentially different way in the HEG
than in the real system. In the HEG, the lowest occupied
orbitals correspond to plane waves with low wave
numbers, which vary in space very slowly. This means
that the corresponding correlation hole may have long-
range tails. Excitations from the occupied orbitals into
all virtual orbitals, including those closely above the
Fermi energy, may make substantial contributions to
the correlation hole. In the real system, in contrast,
the lowest-lying occupied orbitals (1s orbitals) are
concentrated in space, and the size of the correlation
hole is limited by the extension of the orbital. The
virtual orbitals needed to describe the correlation effects
between 1s orbitals have high orbital energies; excita-
tions from the 1s orbitals into the low-lying valence
orbitals make only small contributions to the correlation
energy. Overall, the lowest occupied orbital makes a
larger relative contribution to the correlation energy in
the HEG than in the real system, and one should expect
that CAS-DFT1 largely overcompensates the decrease
in the CAS-SCF energy one obtains by including inner
core orbitals into the active space due to large back-
scaling appropriate for the HEG but not for the real
system. This is exactly what one observes for the (6,6)
and (8,7) CAS-DFT1 energies for the 1A1 state of CH2.

4.3. The distinction between active and
inactive orbitals: CAS-DFT2

As was pointed out in the previous subsection, the
CAS-DFT1 method generates too extended correlation
holes in connection with the inner core orbitals and

exaggerates thus the correlation-energy contributions
from these orbitals. This problem can be remedied if
the core correction of the correlation energy is based
on the core density alone rather than the total density.
This is the basic idea for an improved CAS-DFT
approach, which will be denoted as CAS-DFT2 in the
following.

In CAS-DFT2, a correction term is added to the
calculation of the correlation energy, which accounts for
excitations from the inactive into the weakly populated
active orbitals:

"DFT
c ¼ "DFT, std

c � "DFT, trunc
c þ "DFT, core!weak

c : ð14Þ

The correction term in turn is approximated by

"DFT, core!weak
c ¼ "DFT, core! act

c � "DFT, core! strong
c , ð15Þ

where DFT, core ! act denotes excitations from the
inactive orbitals into all active orbitals and
DFT, core ! strong, excitations from the inactive
orbitals into all strongly occupied active orbitals. Each
term in equation (14) is equivalent to "DFT, trunc

c from
equation (5 b) with suitably substituted actual and
reference densities. One can thus write

"DFT, core! act
c ¼ 1� f %core, %refð Þ½ �"GGA½%core�

����
r

, ð16 aÞ

"DFT, core! strong
c ¼ 1� f %core, %ð Þ½ �"GGA½%core�

����
r

, ð16 bÞ

and altogether

"DFT
c ¼ f ð%, %ref Þ"

GGA½%�

þ f %core, %ð Þ � f %core, %refð Þ½ �"GGA½%core�

����
r

:
ð17Þ

The expression "GGA½%core� utilizes a correlation hole,
the extent of which is adjusted to the extent of the core
orbitals, that is, the artificial long-range core correla-
tions in CAS-DFT1 are suppressed from the beginning.
This method was suggested previously [41, 42] to
overcome the major shortcoming of the CASþ f DFT
approach. In this work, we reintroduce this approach
as CAS-DFT2 where we take advantage of the new
scale factor determination described in the Appendix,
the equal-spin correction, and other features described
in the next section.

Inspection of figure 1 and table 1 does not reveal any
improvement of the active space energies calculated with
CAS-DFT2 relative to those obtained with CAS-DFT1.
However, CAS-DFT2(SPP) energies are clearly better
than CAS-DFT1 or CAS-DFT2 energies. (a) They reach
CAS-MP2 quality (spreading over just 4.4 kcalmol�1
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when excluding the (8,7) case). (b) Absolute energies for
the (2,4), (6,4) and (6,6) spaces are almost identical, i.e.
the (2,4) active space is handled by CAS-DFT2(SPP) on
an equal footing contrary to the failure of the CASPT2
(CAS-MP2) method in this case.
The improvement caused by CAS-DFT2(SPP)

becomes especially clear when comparing the energy
difference between the (6,6) and (8,7) spaces. Ideally,
this energy difference should be zero (see equation (1)).
For the 1A1 state, the value is decreased from
4.4 kcalmol�1 at CAS-DFT1(SPP) to 0.9 kcalmol�1 at
CAS-DFT2(SPP). For the 3B1ð

1B1) state, the corre-
sponding values are 0.9 and 3.6 (0.9 and 3.7) kcalmol�1

thus underlining the improvement caused by CAS-
DFT2(SPP). This comparison reveals also that CAS-
DFT2(SPP) seems to provide a cancellation of errors
where CAS-DFT1(SPP) introduces a variation of 0.7
to 0.8 kcalmol�1 in the relative energies.
There is still an inconsistency in that the energy for

the four largest active spaces is 4 kcalmol�1 above that
of the (2,2) space. Clearly, this indicates that the scaling
factor still is too small for larger active spaces (too
strong cut-back of correlation effects). In particular, the
(6,4) energy is 4 kcalmol�1 above the (2,2) energy even
though the CAS-SCF value indicates that the two CAS-
SCF wave functions are nearly identical. The f scaling
factor is obviously not sensitive to situations where an
increase of the active space does not lead to additional
correlation effects in the reference wave function.
Besides, the energies for the largest active spaces are
not below the (0,0) energy. This discrepancy can be
traced back to the interplay between the CS correlation
functional and the scaling factor: the CS functional is
to some extent sensitive to the quality of the reference
wavefunction whereas in the derivation of the scaling
factor it is assumed that the DFT correlation functional
does not possess such sensitivity. Therefore, for large

active spaces, parts of the correlation energy may be
eliminated twice: once by a decrease of the total CS
correlation energy and once more by a decrease of the
scaling factor f.

It was mentioned above that the tests made for the
data in table 1 and figure 1 represent stringent tests
where changes in the absolute energies of a single
electronic system are directly used. We refrain from
making similar tests for the 3B1 and 1B1 states because
we have to consider now the chemically more interest-
ing energies. Any real electronic system experiences
a variety of different electron correlation effects (left–
right, in–out, angular pair correlation effects; different
types of three-, four-, n-electron correlation effects;
short-range, long-range correlation effects; equal-spin,
opposite-spin correlation effects; etc.), which lead to
correlation energy contributions of significantly varying
magnitude. One cannot expect that a scaling factor
based on the HEG can account for all these variations.

There is however no need for such sensitive scaling
factors. For real electronic systems, differences of
energies have to be discussed rather than absolute
energies. Because of this one can expect that for
relative energies most of the smaller inconsistencies
caused by variations in the correlation effects cancel
each other out. This will be considered in the next
section.

5. Differences in electron correlation for

closed- and open-shell systems

In table 2 and figure 6, the singlet–triplet (S–T)
splitting energy for CH2, i.e. the excitation energy
Eð1A1Þ � Eð3B1Þ is shown where again a stepwise
improvement of the CAS-SCF to the CAS-DFT2(SPP)
description is followed for the different active spaces
considered.

Table 2. Energy differences E(1A1)�E(3B1) calculated for CH2 at various level of theory.
a

CASþ f CS CAS-DFT2(cs)

Active space CAS-SCF CAS-MP2 CASþCS fCS (fCSþ SPP) fOS (fOSþ SPP)

CAS-DFT1(CS)

FCS (FCS,SPP)

FCS

(FCS,SPP)

FOS

(FOS,SPP)

(0,0) 24.70 15.30 15.82 15.82 (15.82) 15.82 (15.82) 15.82 (15.82) 15.82 (15.82) 15.82 (15.82)

(2,2) 10.48 9.65 5.80 5.77 (6.48) 13.41 (10.64) 4.53 (5.80) 7.01 (7.79) 14.64 (11.94)

(6,4) 10.07 1.63 5.44 5.53 (6.19) 13.17 (10.37) 5.18 (5.97) 5.81 (6.53) 13.45 (10.71)

(2,4) 6.62 18.22 3.01 1.08 (1.76) 6.21 (4.75) 3.98 (4.89) 5.90 (6.95) 11.03 (9.95)

(6,6) 10.36 9.04 5.20 6.63 (6.74) 11.84 (9.74) 5.65 (5.86) 6.60 (6.72) 11.81 (9.72)

(8,7) 10.36 8.94 5.20 6.62 (6.73) 11.83 (9.73) 6.62 (6.73) 6.62 (6.73) 11.83 (9.73)

aRelative energies in kcalmol�1. All calculations with the 6-311þþG(2df,1pd) basis set. The (0,0) space denotes HF, MP2,
HFLYP, HFCS references energies. Active spaces: (2,2): minimal; (6,4): minimal þ all occupied valence orbitals; (2,4):
minimal þ all virtual valence orbitals; (6,6): full valence; (8,7): full valence þ l s(C). CS: Colle–Salvetti functional; FCS and
FOS: scaling factor f calculated for a closed- or open-shell situation, respectively; SPP: Stoll–Pavlidou–Preuss functional for
elimination of equal-spin correlation; levels 1 and 2: different level of distinguishing between core and active electron correlation.
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Since HF misses the non-dynamical correlation effects
involving the lone-pair electrons of the 1A1 state,
an 1A1–

3B1 splitting of 24.7 kcalmol�1 is predicted,
about 15 kcalmol�1 above the experimental value of
9.4 kcalmol�1 derived from the experimental enthalpy
value of 9.0 kcalmol�1 [86] by considering thermal
corrections [42]. CAS-SCF, in contrast, gives an S–T
splitting between 10.1 and 10.5 kcalmol�1, i.e. less than
1 kcalmol�1 off the experimental value. An exception
is found in the case of the (2,4) space, which under-
estimates the splitting by about 3 kcalmol�1 (figure 6).
The ��(CH) orbitals in this active space are relevant for
correlations between the two � lone-pair electrons in the
1A1 state, and adding them to the active space decreases
the CASSCF energy. For the 3B1 state, in contrast, the
correlations between the two unpaired electrons are
weak in the first place because of the high-spin coupling.
Besides, the correlations between the � and the p
electron involve out-of-plain movements of the �
electron, which cannot be described by excitations
into the two ��(CH) orbitals. Therefore, the (2,4) active
space gives nearly the same CASSCF energy as the
(2,2) space for the 3B1 state. Accordingly, the (2,4) space
stabilizes the 1A1 state artificially.
MP2/6-311þþG(2df,2pd) calculations improve

the HF splitting to 15.3 kcalmol�1. CAS-MP2 gives
much better results for the (2,2) (9.6 kcalmol�1, table 2)

and the (6,6) or (8,7) spaces (9.0, 8.9 kcalmol�1, table 1)
all being close to the experimental value. CAS-MP2
fails however when using the (2,4) space (18.2 kcalmol�1

due to an unbalanced stabilization of the 3B1 state)
or the (6,4) space (1.6 kcalmol�1 due to an unbalanced
stabilization of the 1A1 state). In agreement with the
observations made for the absolute energies of the
1A1 state, we find that CAS-MP2 (CASPT2), despite
the strong coupling of the perturbation correction to
the CAS-SCF wave function, is partly unstable.

Adding dynamical electron correlation effects via
the DFT correlation functional reduces the S–T splitting
to about 3–6 kcalmol�1, i.e. deteriorates the accuracy
below that of CAS-SCF or DFT itself (B3LYP leads
to a value of 10.5 kcalmol�1, see, e.g. [64]). In view of
the fact that the absolute energies for the 1A1 state
are reasonable (figure 1, table 1), the (lower-lying)
open-shell state must be destabilized relative to the
closed-shell state. According to calculated S–T splitt-
ings (figure 6, table 2), this destabilization is also
acting, although slightly reduced, when scaling at
the CASþ f CS(SPP) level is introduced and in addi-
tion active and inactive orbitals are distinguished
(CAS-DFT1 or CAS-DFT2).

For the purpose of understanding the reason for
this failure, we consider the CASFþ f DFT calculations
with a (2,2) active space for the 1A1 and 3B1 states.

Figure 6. Changes in the excitation energy Eð1A1Þ � Eð3B1Þ of CH2 for an increasing active space calculated at different levels
of theory with a 6-311þ þG(2df,2pd) basis set. CS: Colle–Salvetti functional; FCS and FOS: scaling factor f calculated for a closed-
shell and open-shell situation, respectively; SPP: Stoll–Pavlidou–Preuss functional for elimination of equal-spin correlation; levels
1 and 2: different levels of distinguishing between core and active electron correlation, as calculated by different methods.
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For the 1A1 state, a (2,2) calculation implies that the
ground-state configuration and a doubly excited con-
figuration are superimposed, which means that some
electron correlation is covered by the CAS-SCF wave
function and has to be excluded from the DFT
correlation energy. This is reflected correctly by
�ref > 1, hence f < 1. For the 3B1 state, CAS-SCF(2,2)
is equivalent to restricted open-shell (RO) HF, i.e. no
correlation is contained in the wave function and f ¼ 1
must hold. However, as �ref > 1, one obtains f < 1 in
this case as well, and the correlation energy is scaled
down. This leads to an artificial destabilization of the
open-shell state, which is carried through all active
spaces and CAS-DFT procedures whereas CAS-MP2
(CASPT2) is of course immune against this error
because the form of the perturbation operator rather
than a general scaling factor decide on the added
dynamical electron correlation.

5.1. Handling of closed- and open-shell
systems in a balanced way

The current form of CAS-DFT is not sensitive to the
differences in electron correlation for open-shell and
closed-shell states. This can be remedied if the scaling
factor f is derived for the general case of a spin-polarized
system, i.e. if the calculation of "LDA

c is done for the case
of a spin-polarized electron gas.
The expression for the correlation energy in this

case is given in Appendix A. A subtle problem is the
parametrization of the resulting energy expressions,
which for CAS-DFT1 depend nonlinearly on four
parameters, namely %, %ref, %core and the spin polari-
zation �. The calculation of the scaling factor is
straightforward in this case, however the fitting of

calculated f-values to a four-dimensional function turns
out to be difficult. For the time being, there is no
parametrization of f for the general case of CAS-DFT1
available. As open-shell systems are often considered
in direct comparison to closed-shell systems, which
gives a partial compensation of core-orbital effects, this
lack is not too severe. CAS-DFT2 provides a reasonable
approximation for the open-shell correlation energy
without the need to perform a four-parameter nonlinear
fit for the scaling factor:

ECAS�DFT2, open
c ¼

Z
d3r"DFT

c %½ � f ð%, %ref , �Þ

þ

Z
d3r "DFT

c %core½ � ½ f ð%core, %, � ¼ 0Þ

� f ð%core, %ref , � ¼ 0Þ�:

ð18Þ

Here the leading term of the correlation energy is
corrected for the spin polarization whereas the correc-
tion term for the inactive orbitals is treated in a closed-
shell approximation, i.e. as if the total electron density
were 50% � and � spin each (compare with figure 7).
We will denote these methods using equation (18)
as methods based on an open-shell corrected scaling
procedure, abbreviated as FOS ( f for open-shell prob-
lems) or fOS DFT as opposed to FCS ( f for closed-shell
problems) or fCS DFT.

Including the open-shell corrections given by
equation (18), one obtains the S–T splittings given
in figure 6 at the CASþ fOS CS(SPP) and CAS-DFT2
(SPP,FOS) level, which are compared with the corre-
sponding CASþ fCS CS(SPP), CAS-DFT1(SPP, FCS)
and CAS-DFT2(SPP,FCS) values. There is a substantial

Figure 7. Schematic description of the different scaling procedures used in closed- and open-shell cases. Dashed arrows indicate
excitations eliminated from the truncated DFT treatment because they must not be back-scaled (they are not accounted for by CAS-
SCF). They are different for the � and the � space of an open-shell system with finite spin polarization �. For further explanations,
see figure 2 and text.
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improvement leading to a stabilization of the 3B1 state
by 3 to 7 kcalmol�1 depending on the size of the active
space (larger spaces lead to smaller stabilization of
the triplet; the scaling procedures explicitly handling
core orbitals lead to larger corrections, table 2).
In figure 6, only the S–T splittings obtained with the
SPP functional in combination with the FOS cor-
rection and CASþ f DFT or CAS-DFT2 are shown
because CAS-DFT1 leads to similar results as given for
CAS-DFT2.
Contrary to CAS-MP2 (CASPT2), CAS-DFT2

(SPP,FOS) leads to reasonable S–T splittings for all
active spaces, where the excitation energies differ by
just 0.3 to 2.5 kcalmol�1 from the experimental value of
9.4 kcalmol�1 (figure 6). In this respect, CAS-DFT2 (as
well as CAS-DFT1) is clearly better than CASþ f DFT
although the calculated S–T splittings for the smaller
active spaces agree better with the experimental value
(table 2, figure 6). However, the result for the (2,4) space
is unbalanced for CASþ f DFT whereas it is reasonable
for CAS-DFT2 (CAS-DFT1, see figure 6).
CAS-DFT2(SPP,FOS) provides for the first time

an ordering of results as one should expect it from
the design of the active spaces. The (2,2) space leads
to a value (11.9 kcalmol�1, table 2) below the accuracy
of the CAS-SCF result because, as suggested before,
important non-dynamical correlation effects are still
missing. Also, the simplifications made concerning
the spin polarization of the core electrons seem to be
another reason for the relatively large discrepancy of
2.5 kcalmol�1 from the experimental value. As soon as
the number of core electrons is reduced as in the (6,4)
space, the S–T splitting is improved to 10.7 kcalmol�1.
By adding missing non-dynamical electron correlation
in the (2,4) and (6,6) space, values of 10.0 and
9.7 kcalmol�1 are obtained. It is especially satisfying
that the (8,7) space leads to a reproduction of the (6,6)
result confirming that the 1s(C) electrons do not play
any role.
Clearly, by inspecting relative rather than absolute

energies the problems with the scaling factor increasing
the cut-back of electron correlation with the number
of active electrons largely vanish. However, a balanced
description of open-shell cases in relation to closed-shell
systems must be guaranteed where the situation will
become even more complicated if one has to compare
both high-spin and low-spin open-shell systems with
closed-shell cases.

5.2. Handling of high-spin and low-spin
open-shell states in a balanced way

The second excited singlet state of CH2 is the
low-spin open-shell 1B1 state. The treatment of low-spin

open-shell states poses a new problem for the CAS-
DFT approach, which can be explained for a (2,2)
treatment of the 1B1–

3B1 splitting in methylene.
A (2,2) CAS-SCF description is equivalent to a ROHF
description of the 3B1 state and to a low-spin ROHF
description in the case of the 1B1 state. This means that
both states are described at the HF level, the reference
wave function contains no non-dynamical correlation
effects, and the DFT correlation energy should not be
scaled down.

CAS-DFT(FOS) will handle the 3B1 state correctly.
In the case of the 1B1 state, in contrast, the following
situation is faced: the spin polarization function �(r)
introduced in the previous section is identically zero
everywhere, wrongly suggesting that the 1B1 state has
closed-shell character. Furthermore, �ref > 1 (there
are partly unoccupied orbitals in the active space)
and consequently f < 1. The DFT correlation energy
is incorrectly scaled down, and the 1B1 state is
destabilized relative to the 3B1 state. Clearly, to assess
the open-shell character of the 1B1 state, one has to treat
the two singly occupied orbitals as if they both were
� orbitals in the high-spin state. This problem has
been noticed by a number of authors in other
contexts [65, 70, 71, 87, 88].

This lack of balance implies that CAS-DFT(FOS) is
not size-consistent. This is easily seen for the dissocia-
tion of N2. For a large distance between the two N
atoms, the energy of the supermolecule should be twice
the energy of a N atom. CAS-SCF with a minimal active
space (i.e. (6,6) for the molecule, (3,3) for the atom)
reflects this correctly. CAS-DFT(FOS), in contrast,
describes the quartet state of the N atoms as high-spin
open-shell states where no scaling of the CS correlation
energy takes place, whereas the singlet state of the
molecule is treated as a closed-shell state with a scaling
of the CS correlation energy. Eventually, the N2

supermolecule is predicted to be higher in energy
than two independent N atoms. Only for a high-spin
(i.e. septet) coupling between the two N atoms is
CAS-DFT(FOS) size-consistent.

The spin-resolved density does not always give a
proper account of the open-shell or closed-shell char-
acter of a state. It gives the global probability of finding
electrons in a certain � or � spin orbital, while the open-
or closed-shell character is governed by the conditional
probability of finding an electron in a � spin orbital
provided that the corresponding � spin orbital is
occupied and vice versa. To follow this concept strictly,
one would need the spin-resolved electron pair distri-
bution. A simpler approach is available by considering
the occupation of the (spin-unresolved) natural orbitals.
Natural orbitals with an occupation number neither
close to 0 or to 2 indicate an open-shell character
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of the molecule. Based on this idea, Davidson and
co-workers [87–89] define the effective density of
unpaired electrons

DðrÞ ¼
X
i

nið2� niÞ’iðrÞ’iðrÞ, ð19Þ

where ’iðrÞ are the natural orbitals and ni are their
occupation numbers. It can be shown [89] that D(r)
agrees with the conventional spin density for a high-spin
ROHF wave function and gives just the density related
to the open-shell electrons for a low-spin ROHF wave
function.
A shortcoming of equation (19) is that D(r) may

exceed the total density, which makes it impossible to
use D(r) in lieu of the conventional spin density. This
problem however can be avoided by using the quantity

~DDðrÞ ¼
X
i

n2i ð2� niÞ’iðrÞ’iðrÞ, ð20Þ

which never exceeds the total density and thus is
a proper substitute for the spin density in DFT
correlation functionals. We denote the method based
on equation (20) to describe a low-spin open-shell
system as the DS (Davidson–Staroverov) [89] corrected
CAS-DFT method and obtain in this way CASþ fOS

CS(SPP,DS), CAS-DFT1(SPP,FOS,DS) and CAS-
DFT2(SPP,FOS,DS) as new methods. The DS correc-
tion restores the size-consistency of CAS-DFT(FOS).
For instance, in the above example, the energy of
the N2 supermolecule is calculated as if the molecule
were a septet. On the other hand, the DS correction
to closed-shell states, such as N2 at its equilibrium
geometry, is minimal.
Table 3 and figure 8 report the 1B1–

3B1 splitting in
CH2 at the various levels of theory considered. CAS-
SCF overestimates the splitting, value 1B1–

3B1, which
was determined to be 33.4 kcalmol�1 by Bauschlicher
[90] by extrapolating CISDþQ energies to the complete
basis set limit. Noteworthy is that this overestimation
is larger for a full-valence active space (41.2 kcalmol�1),
than for a minimal active space (38.7 kcalmol�1; this
result is actually the ROHF value). CAS-MP2 provides
only in the case of the (2,2) space a reasonable result
(35.3 kcalmol�1 corresponding to the ROMP2 result,
figure 8, table 2) whereas all other excitation energies
are either too small (28.8–30.2 kcalmol�1) or too large
((2,4) space: 46 kcalmol�1), i.e. the ROMP2 reference
value is actually better than any of the CAS-MP2 values
with larger active space. One could argue that the two
open-shell cases are no longer typical CAS problems.
However, CAS-MP2 should compensate for any defi-
ciencies of the active space, which it obviously fails to do.

We note that care has to be taken with the CAS-MP2
treatment of the 1B1 state. A CAS-SCF treatment of
the excited state is facilitated by imposing a symmetry
constraint, i.e. by excluding the closed-shell singlet
configurations from the active space. If this symmetry
restriction is not available, one can solve the problem
(as done in this work) by first performing a symmetry-
restricted CAS-SCF calculation and then restarting the
CAS-DFT calculation from the orbitals obtained, with
any further orbital optimization suppressed.

The inclusion of DFT correlation energy Ec(CS) at
the CASþCS level of theory decreases all CAS-SCF
splitting values by about 9 to 30–32 kcalmol�1 below
but accidently close to the reference value. Scaling does
increase the excitation energies so that the full valence
space and the (8,7) results are above, with the other
below the reference value. Inspection of figure 8 shows
that the CAS-DFT1 or CAS-DFT2 results are better
than the CASþ f DFT results. CAS-DFT(SPP,FOS,DS)
leads to a significant reduction of the CAS-DFT
(SPP,FCS) values, which becomes especially obvious
when the SPP functional is applied (table 3).

The best values are obtained with the CAS-
DFT2(SPP,FOS,DS) method when using the full
valence active space (or the (8,7) space). The CAS-
DFT2(SPP,FCS) value of 34.5 kcalmol�1 is reduced
by 0.7 kcalmol�1 to 33.8 kcalmol�1, just 0.4 kcalmol�1

above the reference value. The importance of the
DS correction becomes obvious when comparing
with the corresponding CAS-DFT2(SPP,FOS) value
of 37.7 kcalmol�1 (table 3). Clearly, the low-spin open-
shell correction is of utmost importance as reflected by a
10% correction of the 1B1–

3B1 splitting energy obtained
at the CAS-DFT2(SPP,FOS,DS) level of theory.

It is interesting to note that a CAS-DFT2(SPP,FCS)
treatment of both open-shell states leads to a partial
error compensation, which will be broken if one of the
states is treated properly. Obviously, the error correc-
tions for high-spin and low-spin cases are of comparable
magnitude so that reliable relative energies will only be
obtained if they are both included.

6. Conclusions and outlook

This work has demonstrated that CAS-DFT cannot
be set up as a simple combination of CAS-SCF and
a DFT correlation functional. The coupling of the
WFT and the DFT method in an appropriate way via
the WFT density is essential for any WFT-DFT method.
Other problems are the avoidance of a double counting
of correlation effects and the balanced treatment of
core and active orbital correlation effects, equal-spin
and opposite-spin correlation effects as well as electron
correlation in low-spin open-shell systems.
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Table 3. Energy differences E((1B1)�E((3B1) calculated CH2 at various levels of theory.
a

CAS þ f CS CAS-DFT2(CS)

Active space CAS-SCF CAS-MP2 CASþCS fCS (fCSþ SPP)

fOS[FOSþ spp]

(fOSþ SPP,DS)

CAS-DFT1(CS)

FCS (FCS,SPP)

FCS

(FCS,SPP)

FOS[FOS,SPP]

(FOS,SPP,DS)

(0,0) 38.71 35.32 30.20 30.20 (30.20) 30.20 [30.20] (30.20) 30.20 (30.20) 30.20 (30.20) 30.20 [30.20] (30.20)

(2,2) 38.71 35.32 30.20 32.72 (31.98) 31.14 [36.09] (31.01) 32.08 (31.32) 32.24 (31.47) 30.65 [35.58] (30.51)

(6,4) 38.71 28.74 30.20 32.73 (31.98) 31.14 [36.09] (31.01) 33.00 (32.29) 33.07 (32.36) 31.48 [36.47] (31.39)

(2,4) 38.71 46.02 30.20 28.93 (28.81) 27.82 [31.89] (28.25) 32.55 (31.84) 32.66 (32.11) 31.55 [35.20] (31.56)

(6,6) 41.23 30.28 32.18 35.15 (34.45) 34.00 [37.67] (33.79) 35.04 (34.34) 35.13 (34.43) 33.98 [37.65] (33.77)

(8,7) 41.23 29.29 32.17 35.17 (34.46) 34.01 [37.68] (33.80) 35.17 (34.46) 35.17 (34.46) 34.01 [37.68] (33.80)

aRelative energies in kcalmol�1. All calculations with the 6-311þþG (2df,2pd) basis set. The (0,0) space denotes HF, MP2, HFLYP, HFCS reference energies. Active
spaces: (2,2): minimal; (6,4): minimal þ all occupied valence orbitals; (2,4): minimal þ all virtual valence orbitals; (6,6): full valence; (8,7): full valence 1 s (C). Values in
parentheses were obtained with the SPP functional (see text). CS: Colle–Salvetti functional; FCS and FOS: scalling factor f calculated for a closed- or open-shell situation,
respectively; SPP: Stoll–Pavlidou–Preuss functional for elimination of equal-spin correlation; DS: Davidson–Staroverov correction for low-spin cases; level 1 and 2:
Different Levels of distingusihing between core and active electron correlation.
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In this work, we have solved the various problems by
(a) improving the scaling by a new procedure based on
a different scaling of active and inactive orbital effects,
(b) correcting the scaling procedure by eliminating
equal-spin correlation effects that are exaggerated
when using the HEG as reference for the derivation
of the scaling factor, (c) including spin polarization in
the scaling procedure to distinguish between correlation
effects in closed- and open-shell systems, and (d) using
the Davidson–Staroverov correction to treat low-spin
open-shell systems in a balanced way together with
high-spin open-shell and closed-shell systems. The
most advanced CAS-DFT approach obtained in this
way is CAS-DFT2 (CS,SPP,FOS,DS), i.e. CAS-DFT2
carried out with the Colle–Salvetti functional using
the Stoll–Pavlidou–Preuss functional for equal-spin
correlation corrections, including spin-polarization in
the scaling procedure, and correcting with the
Davidson–Staroverov density for low-spin cases.
The new CAS-DFT methods have been tested for

the three lowest states of CH2 using six different active
spaces of increasing sophistication. A sensitive test
has been created by analysing the changes in the abso-
lute energies for the three states (only the 1A1 state

is discussed here) for increasing active space. This
test reflects any inconsistencies in the method used.
Especially, it reveals whether in the case of a lack of
non-dynamical correlation effects, the scaling procedure
can reduce DFT correlation in the correct way inde-
pendent of the state considered. Analysing in addition
the calculated relative energies of the two excited
states relative to that of the triplet ground state has
provided a means to test whether certain shortcomings
of the method used annihilate for relative energies.

The results summarized in this work show that
CAS-DFT, if properly designed, has the following
advantages.

(1) Contrary to CAS-MP2 [6] (CASPT2 [5]), CAS-
DFT is an economical method that is not
more expensive than CAS-SCF. Once the scal-
ing procedure and the corrections for open
shell cases have been set up, no further time
investments have to be made.

(2) Contrary to first expectations, there is no longer
aneed toworkwith aminimal active space [41, 42].
Improvements in the active space are reflected
in the calculated relative CAS-DFT energies and

Figure 8. Changes in the excitation energy Eð1A1Þ � Eð3B1Þ of CH2 for an increasing active space calculated at different levels
of theory with a 6-311þ þG(2df,2pd) basis set. CS: Colle–Salvetti functional; FCS and FOS: scaling factor f calculated for a
closed-shell and open-shell situation, respectively; SPP: Stoll–Pavlidou–Preuss functional for elimination of equal-spin correlation;
DS: Davidson–Staroverov correction for low-spin cases; levels 1 and 2: different levels of distinguishing between core and active
electron correlation.
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give in this way the method sufficient flexibility
to adjust appropriately to a given chemical
problem.

(3) Contrary to CAS-MP2 (CASPT2), CAS-DFT
is more stable with regard to variations in the
active space. This is of advantage when treating
electronic systems for which non-dynamical
correlation effects are difficult to predict, i.e.
nearly all non-trivial systems as shown even in
the case of methylene [91].

(4) The coupling of the DFT correlation functional
via the CAS total density and on-top density
turns out to be efficient even though a priori
a coupling via the perturbation operator
spanned in the active space and projected onto
the orthogonal space seemed to be better.

(5) In the case of methylene, the accuracy of CAS-
DFT2 meets that of CAS-MP2 (CASPT2) or
even outdoes it at much lower cost. It appears
realistic to generally reach CAS-MP2 (CASPT2)
quality with the CAS-DFT2 ansatz.

(6) Questions concerning size-consistency (exten-
sivity) apply to CAS-DFT in the same way as
they apply to CAS-SCF: the choice of the active
space decides on the size-consistency (extensiv-
ity) of the calculation. This is a large improve-
ment compared to our first attempts and is
mainly a result of using the DS correction.

(7) The use of exact (CASSCF) exchange and the
CS correlation functional keeps the CAS-DFT
method free from a direct SIE (i.e. a SIE caused
by the functionals used). When the scaling factor
is determined based on the SPP corrected RPA
correlation energies, one avoids also the indirect
SIE caused by the SIE in the scaling factor.
The SPP corrected CAS-DFT methods are thus
SIE-free.

Nevertheless, there is room for further improvements
of CAS-DFT.
As reflected by the absolute energies there is still

a trend of CAS-DFT to reduce correlation effects too
strongly with an increasing number of active electrons.
Several possibilities exist to tackle this problem and to
try to improve CAS-DFT further.

(a) For the HEG, there are excitations from
shortly below the Fermi edge to shortly above
the Fermi edge possible, which mimic strong
correlation effects and lead to artificially
decreased scaling factors. This shortcoming
may be eliminated in future work by intro-
ducing a system-specific ‘HOMO–LUMO’
gap that helps to exclude low-lying exci-
tations. Savin and co-workers [92–93] have

published investigations that might help to
introduce a gap-correction into the scaling
procedure.

(b) As shown in figure 1, the CS functional also
introduces some back-scaling of correlation
effects, which might have to be considered
when setting up the scaling procedure. The
results for CH2 give at hand that this double
back-scaling leads to inconsistencies between
different active spaces. Future investigations
are needed to clarify whether any back-
scaling caused by the CS functional has to
be considered in the scaling procedure. In this
connection, we have also to consider recent
criticism and improvement suggestions for
the CS functional [94–96].

(c) The scaling is done on a basis of a LDA
approach even though one uses nowadays
GGA functionals to which also the CS
functional belongs. There is a need for
adjusting the scaling factor to modern GGA
functionals in a more advanced fashion than
has been done in our current approach.

(d) It will also be important to replace the
assumption of a non-spin-polarized core in
open-shell systems by a better description.

(e) Finally, it will be necessary to technically
solve the fitting problems arising when trying
to express the scaling factor as a function of
four rather than just three parameters.

We have used CAS-DFT2(CS,SPP,FOS,DS) in a
large set of calculations to determine dissociation
energies, excitation energies and reaction energies. The
accuracy of the results is equivalent to those obtained
with strongly correlated WFT methods. This work will
be published elsewhere.

Useful discussions with Michael Filatov are acknowl-
edged. Calculations were done on the supercomputers
of the Nationellt Superdatorcentrum (NSC), Linköping,
Sweden. DC thanks the NSC for a generous allotment
of computer time. JG thanks the Carl Tryggers Stiftelse
for financial support.

Appendix A: Truncated random

phase approximation (RPA)

In this appendix we generalize the RPA calculation
for the correlation energy of the homogeneous electron
gas [97] to the case of truncated RPA.

The fluctuation-dissipation theorem [98] makes
it possible to express the correlation energy per particle
in terms of the dielectric polarizability of the
HEG, provided the latter is available for all relative
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electron–electron coupling constants � from 0 (inter-
action-free electron gas) to 1 (electron gas with full
electron–electron interaction). Let ��ðQ,!Þ be the polar-
izability for the momentum transfer Q, the frequency !,
and the coupling constant �. Then with the definitions

��ðQ,U; rs, �Þ ¼ ��ðQ, iQU; rs, �Þ, ðA 1 aÞ

�cðQ,U; rs, �Þ ¼

Z 1

0

d� ��ðQ,U; rs, �Þ � �0ðQ,U; rs, �Þ½ �,

ðA 1 bÞ

one has

Ec

N|{z}
¼ "cðrs, �Þ

¼ �
r3s
12p

Z
d3QvQ

Z þ1

0

dU �cðQ,U; rs, �Þ: ðA 2Þ

Here, vQ ¼ 4p=Q2 is the Fourier transform of the
Coulomb potential. rs is the Wigner–Seitz radius,
rs¼ �kFð Þ

�1, where kF is the Fermi wave vector and
�¼ 4=9pð Þ

1=3.
At the RPA level, �c is given by

�cðQ,U; rs, �Þ ¼
Q2

4p
F

p
Q3

X
�

k2F, �I0
Q

kF, �
,

U

kF, �

� �" #
,

ðA 3Þ

where kF, � ¼ z�kF, z� ¼ ð1þ ��Þ1=3 and

FðxÞ ¼ x� ln ð1þ xÞ !
x2, for x ! 0,

x, for x ! þ1,

�
ðA 4Þ

I0ðq, uÞ ¼
1

p

Z
d3pYðp� 1ÞYð1� jp� qjÞ

pbqq� q=2

pbqq� q=2
	 
2

þu2
:

ðA 5Þ

In equation (A 5), I0 is defined in terms of the
dimensionless variables q ¼ Q=kF and u ¼ U=kF,
likewise, a dimensionless integration variable p is used.
Furthermore,bqq ¼ q=q.
Finally,

"cðrs, �Þ ¼ �
3

4p�2r2s

Z 1

0

dq

Z 1

0

du q3

� F
�rs
p

1

Q3

X
�

z2�I0
q

z�
,
u

z�

� �" #
: ðA 6Þ

For � ¼ 0, this expression is equivalent to equation (19)
in [93].

Truncated RPA implies that only excitations from
orbitals with a momentum k � kcore ¼: �corekF into
orbitals with a momentum k � kref ¼: �refkF are con-
sidered in the dielectric polarizability. This implies that
the expression for � from equation (A 3) has to be
replaced by the more general expression

�cðQ,U; rs, �, �ref , �coreÞ

¼
q2

4p
F

p
Q3

X
�

k2F, �I
Q

kF, �
,

U

kF, �
;
�ref
z�

,
�core
z�

� �" #
ðA 7Þ

with

Iðq, u; �ref , �coreÞ ¼
1

p

Z
d3pYðp� 1ÞYð1� jp� qjÞ

�Yð�ref � pÞYðjp� qj � �coreÞ

�
pbqq� q=2

pbqq� q=2
	 
2

þu2
: ðA 8Þ

This gives finally

"cðrs, �, �ref , �coreÞ

¼ �
3

4p�2r2s

Z þ1

0

dq

Z þ1

0

du

� q3F
�rs
pq3

X
�

z2�I
q

z�
,
u

z�
,
�ref
z�

,
�core
z�

� �( )
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼Fðq, u; rs, �, �ref , �coreÞ

ðA 9Þ

For � ¼ 0 and �core ¼ 0, this is equivalent to Savin’s [39]
equation (A 3).

The integral I can be treated analytically. It can be
represented as follows:

Iðq, u; �ref , �coreÞ ¼ Iðq, u; �ref , 1Þ � Iðq, u; �ref , �coreÞ:

ðA 10Þ

Iðq, u; �ref , �coreÞ ¼

0 for q � 1� �core;

Iupðq, u; �ref , �coreÞ � Ilowðq, u; �ref , �coreÞ for 1� �core < q < �ref þ �core;

0 for q � �ref þ �core;

8><>: ðA 11 aÞ

Iupðq, u; �ref , �coreÞ ¼
Iþðq, u; �coreÞ for q � �ref � �core;

I0ðq, u; �ref , �coreÞ for q > �ref � �core;

�
ðA 11 bÞ

Ilowð�ref , �coreÞ ¼
I0ðq, u; 1, �coreÞ for q < �core þ 1;

I�ðq, u; �coreÞ for q � �core þ 1;

�
ðA 11 cÞ
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For �core ¼ 1, the expressions in equations (A 11) can
be simplified to

Iðq,u;�ref , 1Þ

¼

Iþðq,u; 1Þ� I�ðq,u; 1Þ for q� �ref � 1;

I0ðq,u;�ref , 1Þ� I�ðq,u; 1Þ for �ref � 1< q< �ref þ 1;

0 for q< �ref þ 1:

8><>:
ðA12Þ

The expressions Iþ, I� and I0 introduced in equations
(A 11) and (A 12) are defined as

I0ðq, u; p, �coreÞ ¼
1

2
p2 �

q2

4
þ u2

� �
ln p�

q

2

� �2
þu2

� �
þ qu arctan

p� q=2

u

�
1

2
p2 � �2core
	 


ln
p2 � �2core

2q

� �2

þu2

" #

� 2qu arctan
p2 � �2core

2qu
þ
1

2
p2 �

1

2
pq,

ðA 13 aÞ

I	ðq, u; �coreÞ ¼
1

2
�2core �

q2

4
þ u2

� �
ln

q

2
	 �core

� �2
þu2

� �
� qu arctan

�core 	 q=2

u

	
1

2
�coreqþ

1

2
�2core: ðA 13 bÞ

The integrations over u and q in equation (A 9) have
to be done numerically. The u integration is improper
in any case, the q integration is improper only for
�ref ¼ þ1 and amounts to a finite integration over
the interval ½0, �ref þ zmax�, zmax ¼ maxðz�, z�Þ otherwise.
Care needs to be taken to ensure a sufficient numerical
accuracy. We use Euler integration with Romberg
extrapolation for automatic step-width control. Also,
a Romberg-type extrapolation with respect to the upper
integration limit is used for the treatment of improper
integrals, where use is made of the asymptotic behaviour

Fðq, u; rs, �, þ1, �coreÞ / q�4 for q ! þ1,
Fðq, u; rs, �, �ref , �coreÞ / u�4 for u ! þ1

ðA 14Þ

of the integrand. Given the efficiency of the Romberg
extrapolation for the upper integration limit, the q
integration for large but finite �ref is carried out asZ �refþzmax

0

dq Fðq . . . �ref . . .Þ

¼

Z þ1

0

dq �

Z þ1

�ref�zmax

dq

� �
Fðq 
 
 
 þ1 . . .Þ

þ

Z �refþzmax

�ref�zmax

dq Fðq . . . �ref . . .Þ ðA 15Þ

(note Fðq, u; rs, �, �ref , �coreÞ ¼ Fðq, u; rs, �, þ1, �coreÞ for
q � �ref � zmax).

The expressions (A 13) for the integral I may lead to
small differences of large values for small or large values
of the arguments. In particular, the limit u ! 1 , q � u
had to be taken into account explicitly:

Iðq, u; �ref , �coreÞ ¼ ~IIðpup, �ref , �coreÞ � ~IIðplow, �ref , �coreÞ;

ðA 16 aÞ

~IIðp, �ref , �coreÞ ¼ �
1

24 q2
p6 þ

1

4
þ
�2core
8q2

� �
p4

�
q

3
p3 þ

q2

8
�
�4core
8q2

� �
p2, ðA 16 bÞ

!
1

2
ð�2core � 1Þq for q # 0, ðA 16 cÞ

pup ¼ min ðqþ 1, �ref Þ, ðA 16 dÞ

plow ¼ max ðq� 1, 1Þ: ðA 16 eÞ

The correlation energies per particle were calculated
with a numerical accuracy of 10�6 for rs < 0:1 and 10�7

otherwise.

Appendix B: The parametrization of the results

In the numerical calculations, the scaling factor f is
treated as a function of the parameter rs and the factors
�ref, �core rather than the densities %, %ref and %core.
In this appendix, we represent therefore f in the form
f ðrs, �ref , �core, �Þ, where we use the shorthand notations
fref ðrs, �ref Þ ¼ f ðrs, �ref , �core ¼ 0, � ¼ 0Þ and fCSð%, �ref ,
�coreÞ ¼ f ð%, �ref , �core, � ¼ 0Þ.

The results obtained pointwise for f ðrs, �, �ref , �core, �Þ
need to be fitted to an analytical form for use in
CAS-DFT calculations. Miehlich and co-workers [40]
use the ansatz

~ffref ðrs, �ref Þ ¼
XM
m¼1

XN
n¼1

bmnt
m�1�n�1

ref

 !�1

, ðB 1 aÞ

t ¼ ln rs ðB 1 bÞ

(we use a tilde to mark fitted quantities in distinction
from the original ones). We found that this approach
has a number of limitations.

(1) It does not fulfill the boundary conditions
for f ðrs, �ref Þ automatically. For instance, the
requirement f ðrs, 1Þ ¼ 1 leads to the constraints

XN
n¼1

bmn ¼ �m, 1, ðB 2Þ

which have to be accounted for by N� 1
Lagrangian multipliers.
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(2) It yields deviations of up to 0.02 from the exact
values for f ðrs, �ref Þ.

(3) Its accuracy cannot in practice be improved
systematically by increasing M and N. Increased
M and N lead to an ill-conditioned equation
system for the bmn and, eventually, may even
result in an increased RMS deviation between
exact and fitted values of f.

We therefore constructed a different model function
that avoids problems (1) to (3). As a first step, we
reparametrized fref ðrs, �ref Þ. The scaling factor has the
properties

fref ðrs, þ1Þ ¼ 0, ðB 3 aÞ

fref ðrs, �ref Þ / ��3
ref for �ref ! þ1, ðB 3 bÞ

fref ðrs, 1Þ ¼ 1, ðB 3 cÞ

1� fref ðrs, �ref Þ ¼ oð�ref � 1Þ for �ref # 1: ðB 3 dÞ

In equation (B 3 d ), o(
 
 
) is the Landau order symbol,
indicating that the term on the left-hand side is of a
lower order than �ref � 1.
These requirements are fulfilled by the ansatz

(	ref ¼ ��1
ref )

~ffref ðrs, �ref Þ ¼ 	3ref þ
XM
m¼1

XNref

n¼1

dref
mnt

m�1Knð	ref Þ, ðB 4 aÞ

KnðxÞ ¼
x3ð1� xÞ4=3 for n ¼ 1,

x3ð1� xÞn�1 for n > 1:

(
ðB 4 bÞ

The power term with the exponent 4=3 has been found
to reflect the behaviour close to �ref ¼ 1 efficiently.
This ansatz can be generalized straightforwardly to the

case of �core > 0. For the scaling factor fCSðrs, �ref , �coreÞ,
we have the additional requirements

fCSðrs,�ref , 0Þ ¼ 0, fCSðrs,�ref ,�coreÞ / �3core for �core # 0,

ðB 5aÞ

fCSðrs, �ref , �coreÞ � fCSðrs, �ref , 1Þ

¼ oð1� �coreÞ for �core " 1: ðB 5 bÞ

Attempts to build a model function for fCS in one
step failed to provide the required accuracy: for small
numbers of basis functions, the remaining error is
too high, for larger numbers, one encounters stability
problems. The parametrization was therefore done in
three steps.

(1) The function fcoreðrs, �coreÞ ¼ f ðrs, 0, þ1, �coreÞ
was fitted to a model function

~ffcoreðrs, �coreÞ ¼ �3core þ
XM
m¼1

XNcore

n¼1

dcore
mn tm�1Knð�coreÞ: ðB 6Þ

(2) The model functions ~ffref ðrs, �ref Þ and ~ffcore
ðrs, �coreÞ are combined such that one gets
a good approximation for f ðrs, 0, �ref , �coreÞ.
The ansatz

~ff1ðrs, �ref , �coreÞ ¼
~ffref þ ~ff � 2 ~ffref ~ffcore

1� ~ffref ~ffcore
ðB 7Þ

reflects a number of features of fCSðrs, �ref , �coreÞ:
(i) for 	ref ! 0, it converges to ~ffcoreðrs, �coreÞ,
for �core ! 0, it converges to ~ffref ðrs, �ref Þ;
(ii) it is smaller or equal to either of
~ffcoreðrs, �coreÞ and ~ffref ðrs, �ref Þ.

(3) The difference frem ¼ f � ~ff1 is fitted to a model
function of the form (B 4 b), where we call the
expansion coefficients for drem

mnl instead of dmnl .

Altogether, we get the model expression

fCSðrs,�ref ,�coreÞ ¼ ~ff1ðrs,�ref ,�coreÞ

þ
XM
m¼1

XNref

n¼1

XNcore

l¼1

drem
mnl t

m�1Knð	ref ÞKlð�coreÞ:

ðB8Þ

The f dependence

If � 6¼ 0, the scaling factor is defined only for

�core � 1� �ð Þ
1=3, ðB 9 aÞ

�ref � 1þ �ð Þ
1=3, ðB 9 bÞ

as the orbitals with k < �corekF have to be doubly
occupied and those with k > �refkF have to be empty.
As a consequence, one should not use �ref and �core as
independent variables in the parameter fit. A reasonable
choice is

~��ref ¼ �ref þ 1� 1þ �ð Þ
1=3, ðB 10 aÞ

~��core ¼ �core þ 1� 1� �ð Þ
1=3: ðB 10 bÞ

We start with a fit for the case �core ¼ 0. A suitable
model function is ( ~		ref ¼ ~���1

ref )

~ff ðrs, �ref , 0, �Þ ¼ ~		3ref þ
XM
m¼1

XNref

n¼1

XN�

l¼1

bmnlx
m�1Knlð ~		ref , �Þ,

ðB 11 aÞ

K1, 1ð	, �Þ ¼ 	3 1� 	ð Þ
4=3, ðB 11 bÞ

K2, 1ð	, �Þ ¼ 	3 1� 	ð Þ, ðB 11 cÞ

K2, 2ð	, �Þ ¼ 	3�, ðB 11 dÞ

Knþ1, lð	, �Þ ¼ ð1� 	ÞKn, lð	, �Þ for n � 2, ðB 11 eÞ

Kn, lþ1ð	, �Þ ¼ �Kn, lð	, �Þ for n ¼ 1 or l � 2: ðB 11 f Þ

Development of CAS-DFT method 305



The choice for K2, 2ð	, �Þ ensures that the scaling factor
no longer is kept fixed to 1 for ~��ref ¼ 1 as soon as � 6¼ 0.
The parametrization of the results was done with

a Fortran 77 program using the LAPACK subroutine
library [99].
So far, no practicable generalization of equation (B 11)

to the case of �core > 0 has been found. The quasi-linear
regression becomes instable (i.e. the resulting equation
systems become ill-conditioned) for four independent
variables and the corresponding number of expan-
sion coefficients. A nonlinear ansatz will probably be
necessary in this case.
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[61] V. Polo, J. Gräfenstein, E. Kraka, D. Cremer. Chem.

Phys. Lett., 352, 469 (2002).
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