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Abstract: Our research concerned the development of an autonomous robotic navigation system
for orchard harvesting with a dual master-slave mode, the autonomous navigation tractor orchard
transport robot being the master followed by a navigation orchard picking robot as the slave. This
addresses the problem that in single master-slave navigation mode, agricultural combined harvesting
equipment cannot stop repeatedly between rows of apple trees and drive continuously when turning.
According to distances obtained from a global positioning system (GNSS), ground points were used
to switch the navigation mode of the transport and picking robot. A cloth simulation filter (CSF)
and random sample consensus (RANSAC) algorithm was used to obtain inter-row waypoints. The
GNSS point was manually selected as the turn waypoint of the master and a kinematic model was
used to compute the turn waypoints of the slave. Finally, we used a pure pursuit algorithm to
track these waypoints sequentially to achieve master-slave navigation and ground head master-slave
command navigation. The experimental results show that the data packet loss rate was less than
1.2% when the robot communicated in the orchard row within 50 m which meets the robot orchard
communication requirements. The master-slave robot can achieve repeated stops in the row using
follow navigation, which meets the demands of joint orchard harvesting. The maximum, minimum,
mean and standard deviation of position deviation of the master robot were 5.3 cm, 0.8 cm, 2.4 cm,
and 0.9 cm, respectively. The position deviations of the slave robot were larger than those of the
master robot, with maximum, minimum, mean and standard deviation of 39.7 cm, 1.1 cm, 4.1 cm,
and 5.6 cm, respectively. The maximum, minimum, mean and standard deviation of the following
error between the master-slave robot were 4.4 cm, 0 cm, 1.3 cm, and 1 cm respectively. Concerning
the ground head turn, the command navigation method allowed continuous turning, but the lateral
deviation between robots was more than 0.3 m and less than 1 m, and the heading deviation was
more than 10◦ and less than 90◦.

Keywords: go to navigation; following navigation; autonomous combined harvesting; pure pur-
suit control

1. Introduction

With the extreme labor shortage in the seasonal agricultural industry, the commercial
harvesting of fresh fruits, such as apples, is highly dependent on human labor, resulting
in labor costs accounting for 60% of variable production costs [1–3] as shown in Figure 1,
where the harvesting process consists mainly of picking and transportation. To alleviate
labor constraints, some research groups and companies have developed single-arm [4,5]
or multi-arm picking robots [6,7], or used human-machine collaboration [8,9] to replace
manual operations at individual stages of picking or transportation. However, some
scholars have proposed the use of combined harvesting robots to collaboratively complete
picking and transportation, and their simulation results have shown that the co–robotics
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not only greatly reduced the labor intensity, but also increased the picking efficiency by
about 60% [10]. Therefore, combining picking robots and transport robots to complete
picking is a trend in the development of fruit picking technology [3] and a hot spot for
multi-robot research in agriculture [11].
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Figure 1. Manual apple picking and handling. (a) Climbing ladders for apple picking; (b) picking
and placing in fruit boxes; (c) placing apple boxes on the transport truck.

1.1. Objective of the Study

The objective of this research was to develop a master-slave combined harvesting
robot navigation system that operates in the same row, while considering fruit tree height
and branch growth. In this navigation system, the combined harvesting robot can perform
within-row cooperative harvesting and cross-row continuous turning. In-row cooperative
harvesting means that the combined harvesting robots can repeatedly stop in a fixed
formation within a fruit tree row, while the picking robots stop and carry out the picking
operation according to the fruit tree planting array, put the picked fruits into the fruit
baskets of the transport robots, and then move on to the next tree when the harvesting
is finished. Continuous turns across rows require the combined robot to continuously
track the turn path to reduce the drive time when not operating. For this purpose, a
combined harvesting robot navigation system was developed as a navigation method,
with communication technology, navigation technology, and control technology, and the
effectiveness of the navigation system was verified in orchard experiments [12].

1.2. Related Works

As early as 2004, Noguchi et al. [13] proposed the concept of master-slave navigation
based on the combined harvesting method for hay in large fields. The master-slave naviga-
tion was divided into two modes: command navigation and follow navigation [13,14]. A
review of the literature reveals that the earliest record of master-slave navigation robots in
orchards was the orchard spraying robots proposed by Moorehead et al. [15] in 2012, which
used a centralized controller as the master and operated spraying robots with commanded
navigation in the planned operation area. Similarly, Gonzalez-de-Santos et al. [16], and
Kim et al. [17] first used a UAV to acquire ground information and then used command
navigation based on ground images to operate the ground robot along the planned opera-
tion path. Ju et al. [18] used two UAVs and a ground robot to monitor the environment in
an orchard, with the ground robot traveling ahead as the master and the UAV following as
the slave. The experimental results showed that the master-slave robot could maintain a
stable formation under this navigation mode. These studies all used one navigation mode,
either command navigation or follow navigation. In a single master-slave navigation mode,
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the robots can only achieve continuous path tracking or maintain a fixed formation, which
is not very flexible.

In terms of communication technology, there is currently little research on the commu-
nication of multi-mobile robots in orchards. Mao et al. [19] proposed an ad hoc on-demand
distance vector routing (AODV) protocol based on a prediction model of the reception
strength of Wi-Fi signals in an orchard and built a set of small physical platforms for
communication based on a leader-follow structure to verify the practicality of the routing
protocol in a dynamic environment. However, this needs to be tested in a real orchard
scenario. Fei [20] installed XBEE modules on multiple picking bags and sent the data to a
centralized controller via a wireless network. However, picking bags with XBEE modules
are usually fixed in place, and XBEE requires high data throughput and is unsuitable for
large data volume communication.

In terms of master-slave robot cooperative navigation, the problem of autonomous
navigation of the master robot needs to be addressed first. The current research on au-
tonomous navigation of orchard robots mainly focuses on automatic travel between rows
of fruit trees, especially the use of light detection and ranging (LIDAR) to extract tree rows
or detect trees and labels, which is regarded as a reliable method of autonomous navigation.
For example, Zhang et al. [21] set landmarks at the ends of rows of fruit trees and used a
laser scanner to detect the landmark information and build a local map of the orchard to
ensure the robot’s autonomy in the orchard. Bergerman, et al. [22] fused a 2-D laser scanner,
wheel, and steering encoder sensor data, and used the laser scanner to detect the landmarks
at both ends of the orchard rows to bring about the vehicle’s straight and cross-row turns
in the orchard. Shalal, et al. [23] fused vision and LIDAR information for detecting and
distinguishing non-trunked trees with 96.64% detection accuracy. Bell, et al. [24] used a 3-D
laser scanner to detect the features of posts and tree trunks in a pergola structure orchard to
determine the robot’s travel centerline. Lepej and Rakun [25] relied on a 2-D laser scanner
to detect landmarks for real-time robot map building and localization in an apple orchard.
Blok et al. [26] used a probabilistic particle filter (PF) algorithm combined with LIDAR
detection to achieve autonomous robot navigation within fruit tree rows by detecting tree
rows. Jones, et al. [27] used multilayer LIDAR to linearly track vehicle trajectories marked
on an offline map of a kiwifruit orchard, and experimental results showed an accuracy
of ±75 mm. Zhang et al. [28] used Euclidean clustering and three point collinearity to
extract the central feature points of fruit tree trunks scanned by 2-D lasers and fitted these
central feature points into straight lines as robot navigation reference paths. Liu et al. [29]
used single-line LIDAR to obtain orchard environment information, fused posture sen-
sor correction information, then used least squares to fit a single-row fruit tree line, and
finally combined the SVM algorithm to predict the centerline between orchard rows as
the robot navigation reference path. Liu et al. [30] used a random sampling consistency
algorithm with least squares to fit the trunk information detected by 3-D LIDAR, and then
complementary fusion of the information based on the principle of optimal parallelism of
the left and right trees rows to find the centerline of the fruit tree rows as the autonomous
navigation path of the robot.

In these studies, the autonomous navigation robot has always walked along a set opera-
tional path without pausing in between. To ensure successful robot picking, Bayar et al. [31]
proposed a method of human intervention to stop the robot, that is, a human presses the
pause button to stop the robot when it travels in front of the apple tree autonomously, and
then presses the button to make the robot walk after the picking is finished. To further
improve the degree of automation of the picking robot operation, some scholars adopted
methods such as laying rails and attaching radio frequency identification (RFID) tags
to enable robots to complete spot parking by identifying apple trees with tags [32–34].
However, this method usually requires a lot of preparation work in orchards in advance.
Sun et al. [35] used LIDAR to scan the surrounding environment and build an environmen-
tal map, then artificially set multiple path points in the map for parking, as needed, to
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make the robot pick autonomously along the planned path. This this method takes a lot of
time in constructing an orchard map and set the picking points manually.

In terms of autonomous navigation control of the slave robot, Ding et al. [36] developed
an autonomous following vehicle heading control system for orchards based on infrared
sensor detection of relative heading angle, and theoretical modeling and control of a
following vehicle control system based on infrared sensors and encoder detection of relative
heading declination angle and front-wheel declination angle, respectively. This controlled
autonomous following of the following vehicle. Bi et al. [37] designed a following system for
master-slave orchard operation vehicles based on binocular vision, in which the following
vehicle obtained the 3-D information on a black-and-white checkerboard to obtain spacing,
lateral offset, and heading declination angle of the leader vehicle, relative to the following
vehicle, to effect autonomous real-time following of the leader vehicle. In both autonomous
following control systems, the robots did not communicate with each other, and the leader
was operated remotely by a human. To determine if the slave can work with a master that
can operate autonomously needs further study. Li et al. [38] used a fuzzy control method
for following robots based on wireless communication to ensure that the robots travel on
the same path by controlling the vehicle turning angle, heading, and speed, with a mean
error of 5.88 cm between the two robots.

Finally, in the research of master-slave robot cooperative control, Zhang et al. [39]
combined a master-slave motion model and sliding mode variable control method; the
average lateral error of the robot navigation system was less than 0.04 m. Bai et al. [40]
combined feedback linearization and sliding mode control theory to design an asymptoti-
cally stable path tracking control law and a formation-keeping control law, according to
which the average tracking error of the master robot was 5.81 cm and that of the slave
robot was 5.93 cm. The average tracking error of the master robot was 5.81 cm and the
average tracking error of the slave robot was 5.93 cm. Zhang et al. [41] constructed a
parallel cooperative model and designed a longitudinal relative position controller based
on the dynamics principle and the bit-velocity coupling control method, under which the
relative position deviation of the robot was 7.78 cm. However, these are mainly used in
a large-field operation environment. Combined harvesting robots in large fields usually
work together across rows, i.e., the operating paths do not overlap.

2. Materials and Methods
2.1. Overall Design of the System

In response to the problems in the above studies, a master-slave mode orchard
combined harvesting robot navigation system was developed after reviewing the litera-
ture [42,43] and drawing on experiences of orchard robot navigation systems developed in
other laboratories [44,45]. The system enables combine harvesting robots to achieve opera-
tional requirements by adopting different navigation modes during orchard harvesting.
The navigation system of the orchard master-slave combined harvesting robot is composed
of a picking robot with autonomous navigation as the master, and another transporting
robot as the slave. When the master-slave robot works cooperatively in the row, the com-
bined harvester robot team uses navigation mode to locate apple trees or vehicles by LIDAR
detection and walks along the green dotted line. When the master-slave robot needs to
make a turn at the head of the ground, the combined harvester team uses commanded
navigation, relying on a global positioning system (GNSS) position information, to make
the slave robot track the turning point and turn.

2.1.1. Structure and Design of the Master-Slave Navigation System

An overall framework of the orchard master-slave navigation system, including the
automatic navigation system of the orchard master robot and slave robot, is depicted
in Figure 2. The autonomous navigation system for the master-slave robot is the same
basically, mainly including the positioning unit, the central control unit, and the bottom
control unit. The positioning unit consists of an RTK-GNSS (includes GNSS plug in the
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radio, a GNSS receiver, external radio antennas, and GNSS base station), LIDAR, and
odometer to provide positioning and operational status information to the central control
unit of the robot. The central control unit streams its status data with the central control
units of other robots via Wi-Fi, makes judgments based on the status information of other
robots and the information provided by the positioning unit itself, selects the navigation
mode applicable to the current working environment, and sends control commands to the
underlying control unit.
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2.1.2. Platform Construction of the Master-Slave Navigation in an Orchard

The hardware structure of the orchard master-slave robot cooperative navigation
system is shown in Figure 3. The crawler robot that pulls the transport trailer is used as the
master robot (the overall vehicle length after pulling the trailer is 2.05 m), and the crawler
robot that performs picking work is used as the slave robot. The orchard master-slave
robot cooperative navigation system consists of a positioning unit, a central control unit, a
bottom control unit for the master robot, a positioning unit, a central control unit, and a
bottom control unit for the slave robot.
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The central control unit of the master robot in a master-slave cooperative navigation
system utilizes a UNO-2484G computer with a Core i7 CPU processor, 8 GB of memory,
USB data transfer support, a wireless network card, and support for 802.11AC wireless
protocol. The underlying control unit of the master robot includes a DBL6050-2E DC
brushless motor controller and two 48 V brushless DC motors. The DC motors inside
them carry incremental encoders. The mobile station in the positioning unit of the master
robot has a Shanghai Sinan M600 and communicates with a Sinan T300 type base station
at low frequency (461.050 MHz). This RTK-GNSS (M600) positioning accuracy is at the
centimeter-level, with a horizontal accuracy of ±1 cm and a heading angle accuracy of
0.57◦. The LIDAR in the positioning unit adopts Velodyne VLP-16 line LIDAR, which is set
above the center point of the robots, where the horizontal scanning range of the LIDAR is
0–180◦, the vertical scanning range ±15◦, the measurement distance 0.4 m to 100 m, ad and
the resolution 0.1◦.

The system software of the combined orchard harvesting robot runs on a Linux system,
and the system software of each robot is composed of three modules: an information
interaction layer, an information processing layer, and an execution layer. The software
system structure is shown in Figure 4. The information interaction layer is based on the
Linux system model for data interaction between the picking robot and the transport robot.
The information processing layer is based on the robot operating system (ROS) navigation
program for the picking and transport robot group, and the execution layer is based on the
Linux system mobile platform control. According to the speed information output from the
information processing layer to the underlying servo controller, the autonomous walking
of the picking and transporting robot is realized.
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2.2. Communication System for a Combined Orchard Harvesting Robot

The picking and transporting robots in a combine orchard harvesting robot needs
to navigate continuously during turns, and repeatedly stop between rows. The picking
robot needs to ensure a minimum distance between it and the transporting robot in front
of it without collision and be able to work with the transporting robot when stopped
between rows. Therefore, the two robots need to communicate with each other and
carry out cooperative picking and transportation based on exchanged information. In the
above software system architecture for picking and transporting robots, the information
interaction layer of the robots helps the master (transporting robot) and slave (picking robot)
to transfer information, including GNSS coordinates, direction, speed, and navigation
mode of the picking or transporting robot. The data frame format of the inter-robot
communication protocol is shown in Figure 5.
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Where x and y are global coordinates, the robot heading and speed are obtained by
the GNSS and odometer, respectively, and the navigation mode is divided into straight
ahead (0) and turning (1). The data frame format of said communication protocol consists
of a start character, an identifier, a data bit, a check bit, and a termination character. The
data frame starts with the “$” symbol and ends with the cyclic redundancy check (CRC).
The CRC is divided into the robot identity document (ID), the current time, the global
coordinates X, Y, the heading, the navigation mode, and an error code indicated by “,”. The
identifier of the data corresponds to the number of robots, i.e., the robot ID. The ID of the
transport robot is 1 and the ID of the picking robot is 2.

2.3. Master-Slave Navigation Strategy

According to the actual operational requirements of orchard harvesting, the combined
orchard harvesting robot needs to complete the action of stopping and going straight
repeatedly, according to the tree planting pattern, when driving independently between
rows. It does not need to stop when turning at the head of the ground to improve the
operational efficiency. At the same time, the picking robots in this combined orchard
harvesting robot needs to keep a minimum distance from the tractor-drawn transport
robots driving in front of it to ensure that the arm of the picking robot can put the apples
in the apple box and the two robots cannot collide. Therefore, the combined orchard
harvesting robot uses different target feature approaches for inter-row and ground turns.
GNSS is used to determine target feature points for ground turns and LIDAR is used to
determine target feature points for in-row turns.

The above navigation strategy is carried out within the information processing layer
in the software system of the master (transport) robot and slave (picking) robot, as shown
in Figure 6. The master robot, after starting navigation, determines whether the current
position of the robot is within the threshold range of the ground head-turning point if the
slave robot does not stop navigation. When the robot is within the threshold range of the
set GNSS turning point, GNSS navigation is used or, vice versa, LIDAR navigation is used.
When GNSS navigation is used, it detects whether there is an obstacle in front of the robot,
and when there is no obstacle, the nearest GNSS point is set as the target for tracking, and
real-time navigation status information (speed, current position information, navigation
mode) is sent to from the robot in real-time. When the GNSS coordinate point of the main
robot is far from the ground turn, LIDAR is used for navigation, i.e., the apple tree trunk
feature is used as the target feature for tracking. That is, the center point of the master
robot is taken as the center point, and the apple tree trunks on the left and right sides of
the tractor behind the master robot are extracted, respectively, and the middle point of the
center point of the trunks on both sides is the robot’s tracking target. When the center point
coordinates of only one side of the trunk exist, the detected trunk center point and half
of the row distance are summed as the target tracking point. When no trunk is detected,
GNSS navigation is performed and ends if the current GNSS point is the last.
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Figure 6. Software structure of the orchard master-slave robot cooperative navigation system. (a) The
master robot navigation strategy; (b) the slave robot navigation strategy.

After starting navigation, the slave robot sends and receives navigation status in-
formation (speed, current position information, navigation mode) from the master robot,
and the slave robot ends navigation when the master robot ends navigation. Navigation
during ground head turns is performed in the same way as the master robot. When LIDAR
navigation is used in the apple tree rows, the apple basket on the master robot is used as the
target feature for tracking, and the distance between the current robot and the apple basket
is judged in real-time. When the distance is within the threshold value, it stops and sends
out navigation status information while judging if the main robot ends the navigation. If
not, the target tracking is continued, and the navigation status information is released.

To reduce the degree of ground interference in target feature extraction during LIDAR
navigation, the orchard ground point cloud needs to be removed before extracting target
tracking features. The installation position and scanning angle of the LIDAR have a large
impact on the removal of orchard ground, so the 3-D LIDAR needs to be angularly and
horizontally calibrated. Therefore, the LIDAR from the robot is first aligned with a white
wall at close range, and the LIDAR scan range is considered normal when the LIDAR is
rotated until the returned point cloud image became a straight line.

The robot is driven to the flat ground of the orchard and parked, and when the point
cloud data sent by the receiving LIDAR is stabilized, at least three points are randomly
selected within a frame of the obtained point cloud and calculated according to the plane
equation to obtain the ground plane model Ax + By + Cz + D = 0. Then, other points are
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substituted into the plane model, the error is calculated, and the points whose difference
(the set difference is 0.01) between the error and the k value in Equation (1) is less than the
set threshold are the internal points, and the number of internal points under the model is
counted. When the number of internal points in the model is greater than the maximum
number of internal points already saved, the model parameters are updated until the set
number of iterations is reached (the set number of iterations is 100 in this model).

Then, the ground is roughly extracted according to the plane model threshold using
the Random Sample Consensus (RANSAC) algorithm to get the ground normal vector P.
The rotation angle formed by this normal vector and the LIDAR coordinate normal vector
Q is determined and, finally, the rotation matrix R is determined using the Rodriguez
rotation formula.

k =
log(1− τ)

log(1− ηn)
(1)

where k is the plane threshold, τ is the probability of selecting an interior point during the
iteration, %, η is the probability of selecting a point as an interior point in the point cloud,
%, and n is the total number of point clouds.

ψ = arccos

 →
P•
←
Q

|P||Q|

 (2)

where P is the plane normal vector, (A, B, C), Q is the normal vector of the LIDAR coordinate
system, (0,0,1), ψ is the rotation angle of the vector P to the vector Q◦.

R =

∣∣∣∣∣∣
cos ψ + A2(1− cos ψ) AB(1− cos ψ)− C sin ψ B sin ψ + AC(1− cos ψ)

C sin ψ + AB(1− cos ψ) cos ψ + B2(1− cos ψ) −A sin ψ + BC(1− cos ψ)
−B sin ψ + AC(1− cos ψ) A sin ψ + BC(1− cos ψ) cos ψ + C2(1− cos ψ)

∣∣∣∣∣∣ (3)

The point cloud data acquired from the LIDAR is angularly transformed by the rotation
angle to obtain calibrated point cloud data. Due to the difference in the point cloud usage
of the robots, the point cloud scan of the master robot is taken as [0,2π] and the point cloud
scan of the slave robot is taken as [0,π]. The LIDAR point cloud calibration of the master
robot in Figure 7a,b shows the LIDAR point cloud calibration for the slave robot.
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2.3.1. Master Robot Navigation Phase

As the robot turns at the ground head, the GNSS sensor carried by the robot can be
used to measure the ground head turn point as a targeted tracking point. This section of
the article focuses on apple tree trunk feature extraction using LIDAR within apple tree
rows for target tracking.
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For LIDAR-based environment perception, the 3-D point cloud is usually divided
into two separate subsets, ground points and non-ground points [46]; the apple tree trunk
belongs to the non-ground point cloud. Therefore, it is necessary to remove the ground
point cloud-first to improve the accuracy of obtaining apple tree trunk features.

In recent years, there have been a large number of studies on ground point cloud
extraction and segmentation algorithms. For example, some scholars segmented ground
point clouds based on the ground measurement model of LIDAR [47,48] or used RANSAC
to fit the ground like a piece of a plane for segmentation [49–51], or distinguished ground
and vegetation based on the threshold between ground point clouds [52]. These methods
are simple and effective, but considering that the ground point cloud changes continuously
above and below the horizontal plane when the robot is driving continuously in the
orchard, the principle of a simulation filter (CSF) algorithm [53] is more indicative of the
current terrain features than methods that rely on the height of a laser beam, a sensor or
set thresholds.

The point cloud decreases as the distance between the object and the LIDAR increases.
Point clouds that are far beyond their travel distance are usually not used when driving
autonomously. Therefore, the unwanted point clouds are first removed by conditional fil-
tering, and then the ground point clouds are segmented using the CSF in Equations (4)–(6).

pm
∂px(t)

∂t2 = Fext(px, t) + Fint(px, t) (4)

px(t+∆t) = 2px(t) − px(t−∆t) +
g

pm
∆t2 (5)

→
dp =

1
2

pb

(→
pi −

→
p0

)
· →pn.pri (6)

where, in Equation (4), pm is the weight of the particle, px(t) is the position of the point in
the point cloud in the “fabric” at time t, Fext(px, t) is the external driving element (such as
gravity), Fint(px, t) is the internal link between the points in the point cloud. In Equation (5),
∆t is the time step, g is the gravity constant 9.8 m/s2, and px(t+∆t) is the new point in the

point cloud at the next iteration. In Equation (6),
→
dp is the displacement of the particle, pb is

1 when the particle is moving and 0 when it is not movable,
→
pi is the adjacent particle of

→
p0,

and
→
pn is the unit vector that normalizes the point to the vertical direction (0,0,1)T.
The point cloud is first divided into a grid (the size of a piece of the grid is 0.2 × 0.2 m),

and the original point cloud and the grid-like point cloud are projected onto the same plane
to find the nearest point of each point cloud and save the height information of the original
point cloud. For the point cloud in a single grid, the displacement of the point cloud by
gravity is then calculated by Equation (4), compared with the height of the point cloud
before projection and iterated until the height change reaches a set threshold or iterated
to a set value (set to 500). Finally, the displacement value is obtained from Equation (6),
and when the displacement is less than the set value (set to 0.2 m), it is regarded as a
ground point, or if greater, is regarded as a non-ground point. As shown in Figure 8a, in
the calibrated LIDAR point cloud the above method is used to divide the point cloud into a
non-ground point cloud and a ground point cloud, where the red points are ground, and
the blue points are non-ground points clouds.
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Figure 8. The master robot extracts point cloud information of tree trunks on both sides. (a) Master
robot segmentation of point clouds for ground and non-ground environments; (b) extraction of tree
trunk feature point clouds.

On the segmented non-ground point cloud, using the robot as the origin, conditional
filtering is used to extract the left apple tree row region and the right apple tree row region
behind the robot, respectively, and then RANSAC is used to extract the cylindrical features
of the tree trunk and segment them in this region. That is, randomly select any two-point
coordinates, substitute into Equation (7), and derive the error of the points in the point
cloud in the cylinder model, compare with the set threshold value, and through repeated
iterations, when the error is less than the threshold value, the sample point belongs to the
cylinder sample point, if the error is greater than the threshold value, it is the point outside
the cylinder.

(x− x0)
2 + (y− y0)

2 + (z− z0)
2 − cr

2 =
[cl(x− x0) + cr(y− y0) + cn(z− z0)]

2

cl
2 + cr2 + cn2 (7)

In Equation (7), cr is the radius of the cylindrical base circle, the distance from the
point on the cylindrical surface to its axis is constantly equal to the radius, (x, y, z) is any
point on the cylindrical surface, (x0, y0, z0) is a point on the cylinder axis, and (cl, cr, cn) is
the cylindrical axis vector.

The left and right trunks on both sides of the master robot obtained by fitting the
segmentation using the above algorithm are shown in Figure 8b. The obtained coordinates
of the points pl and pr on the center of the left and right-side trunk axes in the xoy plane of
the LIDAR coordinate system are (xl, yl) and (xr, yr), respectively. Then, the coordinates of
the center pc of these two points are ( xl−xr

2 , yl−yr
2 ), and the coordinates of the target point

pg at a distance from this center are ( xl−xr
2 + lc, yl−yr

2 ), where lc is the entire length of the
main robot after towing the trailer. Since the target point acquired by the LIDAR is relative,
Equation (8) is used to obtain the coordinates of the point in the global coordinate system
GxOGy. In Figure 9, the conversion between the LIDAR local coordinate system and the
GNSS global coordinate system is shown.

Gxg =
xg

cos α + Gxt − (xg tan α + yg) sin α

Gyg =
yg

cos α + Gyt + (xg − yg tan α) sin α
(8)

In Equation (7), Gxg and Gyg are the horizontal and vertical coordinates of the target point pg
in the global coordinate system, xg and yg are the horizontal and vertical coordinates of the
target point pg in the local coordinate system of the LIDAR, Gxt and Gyt are the horizontal
and vertical coordinates of the LIDAR in the global coordinate system, and α is the rotation
angle between the LIDAR coordinate system xoy and the global coordinate system GxOGy.
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the k nearest points to this point are found. When the distance between these points is less 
than a set threshold, it is considered an object, and the clustering ends when the number 
of points clouds in the object no longer increases. Conversely, other points in the point 

Figure 9. Coordinate conversions of local coordinates in the global coordinate system.

2.3.2. Slave Robot Navigation Phase

In between the rows of apple trees, the slave robot uses the following navigation mode,
after information exchange with the master robot, when the slave robot needs to extract and
track the apple basket feature points on the master robot in front of it and use the feature
points to track the master robot. As with the method of non-ground point cloud extraction
by the master robot, the non-ground point cloud needs to be segmented from the calibrated
point cloud using the Equations (1)–(6). The segmented result is shown in Figure 10a. A
conditional filter is used in the non-ground point cloud to determine the following range of
the slave robot. The area chosen here is the range where the robot radar is the origin, the
front is less than or equal to 2 m, the left and right sides are less than ±0.5 times the row
spacing, and the height is less than the canopy height.
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Figure 10. Extraction of tractor point cloud features of the master robot. (a) Segmentation of point
clouds from the slave robot for ground and non-ground environments; (b) extraction of feature points
on the master robot tractor.

In the above following region, the Euclidean clustering method based on KD-Tree
nearest neighbor search is used, where the Euclidean clustering formula is shown in
Equation (9) and the ρ value is set to 0.1. Any point in the region is first brought in, and
the k nearest points to this point are found. When the distance between these points is less
than a set threshold, it is considered an object, and the clustering ends when the number of
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points clouds in the object no longer increases. Conversely, other points in the point cloud
are brought in one by one until the number of point clouds in the object no longer increases.

ρ =
√
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 (9)

In Equation (9), xi, yi, zi are the horizontal, vertical, and height coordinates of point i in the
point cloud in the LIDAR coordinate system, and xoy, xj, yj, zj are the horizontal, vertical,
and height coordinates of point j in the point cloud in the LIDAR coordinate system xoy.

In the above-obtained object point cloud, Equation (1) is used to fit the plane at
RANSAC, as shown in Figure 10b. Finally, the center-of-mass extraction formula (10) is
used to obtain the coordinates of the center-of-mass points of the fitted plane, using only
the x, y coordinate values as feature points and converting them into coordinates in the
global coordinate system using Equation (1) for following from the robot.

pz =
1
n
(

n

∑
i=0

xi,
n

∑
i=0

yi,
n

∑
i=0

zi) (10)

After the master robot walks to the orchard head turn point, the slave robot interacts
with it and adopts the command navigation mode, at which time the slave robot acquires
the GNSS head turn point of the master robot and tracks its turn point to complete the
ground head turn.

2.4. Control System

The pure pursuit algorithm is a kinematic constraint-based algorithm that has been
successfully applied in the trajectory tracking control of many robots [54]. The algorithm
can determine the arc length to be traveled by the robot to the tracking path based on the
set pre-sight distance. In picking and transporting robot driving, the spacing between
target feature points extracted using LIDAR is short. When the orchard robot is driving
at a fixed speed, the target feature point spacing changes less, so here a fixed arc length is
used for target tracking.

As shown in Figure 11, the distance L of the target feature point from the robot is first
calculated using Equation (13), and then the distance Ld between the final robot pre-visual
distance point and the robot’s current position point is obtained using Equation (12). Ld is
equal to L when Ld is less than the set threshold value of 1 m, or vice versa, is equal to the
threshold value of 1 m. The calculated distance Ld is used in Equation (13) to obtain the
curvature of the robot walking according to the curve. The crawler robot uses a differential
motion model, in which the angular velocities ωl and ωr of the left and right sides of
the robot can be determined based on the wheel spacing l, the drive radius r, the angular
velocity v, and linear velocity ω from the odometer output in Equation (14). The influence of
the angular velocities on both sides can be calculated by Equation (16) to the displacement
point coordinates of the crawler robot at the next moment. The actual path of the robot can
be controlled by inputting the new displacement point coordinates into Equations (13)–(16).

L =

√(
Gxg − Gxt

)2
+
(
Gyg − Gyt

)2 (11)

Ld =

{
L L < 1 m
1 L ≥ 1 m

(12)

1
R

=
θt

err
Ld

=
2 sin(arctanθt − α)

Ld
=

2 sin
(

arctan(Gyg−Gyt
Gxg−Gxt

)− α
)

Ld
(13) ωr =

v− l
2 ω

r

ωl =
v+ l

2 ω
r

(14)
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After inputting the ideal path points of the picking and transporting robot walking in
the orchard in Matlab, the algorithm is simulated with the robot’s linear velocity v set to
0.5 m/s and angular velocity w to 0.5 m/s. The simulation results are shown in Figure 12.
The ideal path point and the simulated tracking path are compared in Figure 12a, where
it can be seen that the robot tracks the target point better in a short straight line, while
it deviates from the target point at the corner of the turn, but then adjusts it. The angle
change and distance difference between the target tracking and the set target point are
shown in Figure 12b, where the maximum angle deviation is less than 10 degrees, and
the maximum distance deviation is less than 0.35 m. However, the maximum distance
deviation occurs at the turning point, when the robot does not operate, and does not affect
the operation accuracy.
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When the robot turns at the ground head relying on the turning point of GNSS for
target tracking, to prevent collision between robots, it is necessary to identify the obstacles
in front of it. Here, the information of ±3◦ in the vertical direction, ±90◦ in the horizontal
direction, and scanning distance of [0.15, 10] m in 3-D LIDAR are obtained, and the range
is divided into multiple aliquot regions. As shown in Figure 13, when there is an object
(red asterisk) blocking any of the aliquot areas, the radar scanning distance is less than 1 m,
i.e., the obstacle is judged to exist, the output speed is 0 m/s, and the robot stops sharply.
Otherwise, the robot continues to walk.
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3. Results

A 389 m2 (47.4 × 8.2 m) non-standard apple cultivation area was selected at the
Apple Tree Experimental Demonstration Station of Northwest Agriculture and Forestry
University in Baishui County, Shaanxi Province (119◦32′45” E, 35◦12′26” N) from 18 October
to 23 October 2021, to test the communication and navigation performance of the orchard
picking and transportation robot. The experimental area is shown in Figure 14a, where
the apple tree rows are partially interspersed with branches and leaves, a reflective film
was laid on the ground near the apple trees, and the ground not covered by the film was
covered by weeds. The test area consisted of eight rows of apple trees, mostly of the Red
Fuji variety, with about 18 trees planted in each row, spaced about 4 m apart in rows and
2 m apart in plants. In Figure 14b,c, the trunk circumference of apple trees in the test area
was measured with a tape measure at 130 cm (stem diameter) [55] and 30 cm (ground
diameter) [56] from the ground to obtain the tree diameter data shown in Table 1.
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Figure 14. Apple orchard experimental area environment. (a) Experimental area in Apple Orchard;
(b) apple tree diameter at breast height measurement; (c) apple tree diameter at ground measurement.

Table 1. Apple-tree parameters of the apple orchard.

Category Parameter Average Standard Deviation

Row spacing/m 3.703~4.178 4.102 0.321
Plant spacing/m 1.876~2.155 2.055 0.107

Diameter at breast
height/m 0.32~0.53 0.417 0.066

Ground diameter/m 0.40~0.61 0.531 0.070

The detection range of apple tree trunk radius cr was set to [20.5, 26.5] cm based on
the average value of the actual measured trunk bottom diameter and trunk diameter.

3.1. Communication Experiment

To verify the reliability of information interaction of the combined harvesting robot
in an orchard environment, based on the minimum tracking distance (0.35 m) between
the two robots measured in the field and the longest distance (47.4 m) of the fruit tree
rows in the test area, an orchard communication test of the combined harvesting robot was
designed based on previous literature [38]. The test protocol is shown in Figure 15a.
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After the communication connection was established between the master and slave
robots, it was first connected to the Internet Protocol (IP) address of the slave robot via the
ssh command, and then 500 packets were sent to the master robots. The unreceived packets
were checked on the computers connected to the IP address of the master robot at different
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distances, then the number of packets received by the slave machine was checked and the
packet loss rate was calculated. This test was repeated five times independently. The IP
address of the master robot at the time of the test was 192.168.62.2, and the IP address of
the slave robot was 192.168.62.30.

When the front end of the slave robot is 0.35 m away from the fruit basket of the master
robot, the master robot can receive all the packets, and the number of packets lost and
the packet loss rate of the communication system are both zero. The slave robot was then
placed at 10, 20, 30, and 40 m from the master robot, which had 1, 2, 4, and 6 packet loss
counts, resulting in the packet loss rate of the communication system being 0.2, 0.4, 0.8, and
1.2%, respectively. Finally, the slave robot was placed 50 m from the master robot, where
the distance between the master and slave robots is greater than the length of the orchard
rows, and the master robot was inside the orchard and the slave robot was outside the
orchard. The number and rate of packet loss of this communication system were consistent
with the distance interval of the robots at 40 m. It can be seen that the packet loss rate of
data interaction within the orchard rows for the joint robots based on the communication
system is less than 1.2%, which indicates that the data loss is negligible when the robots are
interacting with information in the orchard.

Data on the number of packet losses and packet loss rates for the robotic communica-
tion system tests are shown in Table S1 in the Supplementary Information.

3.2. Navigation Experiments

Based on the results of several orchard experiments in the early stage [44,45], the
robot walking speed was set to 0.5 m/s in this experiment. According to references [38,57],
an experimental scheme of an autonomous navigation system for a combined orchard
harvesting robot was designed as shown in Figure 16. The transport (master) and picking
(slave) robot of this navigation system starts from the starting point, stops repeatedly
between inter-rows of the apple trees, drives out of the rows, turns at the head of the
ground, enters the next row of apple trees for operation, and finally stops at the endpoint.
The temporary stopping point is the point where the autonomous navigation system of
the joint orchard harvesting robot stops in the row of apple trees, and the safety distance
threshold between the two robots at this point is 0.35 m. When the combined orchard
harvesting robot stops driving, the GNSS coordinate values and heading values provided
by the robot are recorded in real-time, the current row spacing values of the apple trees, the
distance between the center points of the two robots, the apple trees on the side where the
robotic arm is located, and the following distance between the two robots are measured.
This stop-drive experiment was repeated three times in the test area. The experimental
scenarios are shown in Figure 17.

The distance from the center of the transport robot to the left apple tree (the robot arm
is closer to the left apple tree), and the distance from the center of the picking robot to the
left apple tree, are measured, respectively, when the master-slave robot is stopped. Then,
the spacing between the rows of apple trees on both sides is measured and, finally, the
position deviation of the center point of the transport robot from the center point of the
apple tree row (cited as the master’s position deviation) and the position deviation of the
center of the picking robot from the center point of the apple tree row (cited as the slave’s
position deviation) is calculated based on the measured values. The position deviation
here is taken as the absolute value of the calculated value, as shown in Tables S2, S3 and S5
in the Supplementary Materials. The master-slave robot stopped 40 times in total. The
first 20 times were for the master-slave robot to go from the start point to the turning point
within the first row, and the last 20 times for the master-slave robot to go from the turning
point to the endpoint within the next row. In the first row, there were apple trees on only
one side of the apple tree row at stops 3, 5, 10, 12, 15, and 17, and at stops 2, 4, 6, 9, 11, 13,
15, and 19 in the next row. This shows that relying on the detection of apple tree trunks to
achieve stops within the orchard rows is reliable, even for the case of missing apple trees
on one side.
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The master’s position deviation decreased gradually with the increase in the number
of trials, as shown by the decrease in the mean value of the deviation from 0.027 m to 0.02 m.
The standard deviation of the deviation decreased from 0.01 m to 0.006 m, indicating a
smooth change in position deviation. For example, the position deviation was 0.027 m for
the third (missing apple tree) stop in the first trial in row 1, 0.039 m for the fourth stop, and
0.021 m for the fifth (missing apple tree) stop. The same situation occurred successively
in the first row and the other unilateral stops in the next row. The maximum value of the
position deviation was 0.053 m at the thirteenth stop in the first row and the minimum
value is 0.009 m at the ninth stop in the next row. The deviation of the main robot position
at both ends of the stop was mostly smaller than the average value. For example, at the
first stop in the second row, the position deviation was as low as 0.012 m.

The slave’s position deviation also decreased gradually with increasing number of
trials, but the change was not obvious. For example, the mean value of the deviation
decreased from 0.037 m to 0.034 m in the first-row trial and from 0.048 m to 0.045 m in
the second-row trial, but the mean value of the deviation in the first-row trial was smaller
than the deviation in the second-row trial. The standard deviation of the deviation values
decreased from 0.02 m to 0.008 m, indicating a relatively smooth variation of the position
deviation. Similar to the position deviation of the transport robot, the position deviation
of the picking robot was more pronounced when there were one-sided apple trees in the
rows. For example, on the first trial in row 1, the position deviation was 0.032 m for third
stops, 0.063 m for fourth stops, and 0.02 m for fifth stops. The same situation occurred
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successively at the first row and the next row other unilateral stopping points. Unlike the
transport robot, which has a low position deviation at both ends of the fruit tree rows, the
maximum value of the position deviation of the picking robot was 0.397 m at the first stop
in the second row, while the minimum value was 0.011 m at the twelfth stop in the second
row. For example, the maximum position deviation at the 20th stopping point was 0.019 m,
while the average deviation was 0.034 m.

The distance between the center point of the front end of the picking robot and the
fruit basket of the transport robot was measured at the stopping point, and then the error
of the picking robot following the transport robot in the apple tree rows was calculated
according to the safety setting threshold between the robots, where the error was taken
as the absolute value of the calculated difference (cite as the following error), as shown in
Tables S4 and S5 in the Supplementary Materials. The mean error value fluctuated from
0.01 m to 0.02 m, and the standard deviation of the error varied from 0.007 m to 0.013 m,
indicating that the method of maintaining a fixed formation by detecting the position of
the fruit basket is effective and that the system operates smoothly when the slave follows
the master in the row. Unlike the phenomenon of position deviation variation from the
robot, the following error of both robots also appeared to vary significantly in the section
with apple trees on both sides. For example, the maximum interval value between robots
was 0.007 m at the seventh stop in the first row, 0.034 m at the eighth stops, and 0.022 m
at the ninth stops. The same phenomenon also occurred at the sixteenth and seventeenth
stopping points in the next row.

The actual walking paths of the transport robot and the picking robot in the orchard
are shown in Figure 18, where the stopping points of the transport robot in this path are
shown in Figure 18a and the stopping points of the picking robot in this path are shown in
Figure 18b. It can be seen that the routes of the two robots almost overlap when driving
between rows, and the intervals between the stopping points are almost the same, but
there is a large position error when turning. To analyze the operation of the autonomous
navigation system of the combined orchard harvesting robot more visually, the course
deviation and lateral deviation between the two robots were calculated and plotted in
Figure 18c,d. It is obvious from the figure that when driving at the head of the orchard, the
heading deviation of the two robots was mostly within 0.05 m, and the lateral deviation
was 10◦, with a small variation. While the maximum value of heading angle deviation
was less than 90◦ and the maximum value of lateral deviation was less than 1 m when the
ground head turned, and the change was drastic. This is similar to the variation of heading
angle and lateral deviation in Figure 12 of the previous simulation experiment.

The above experimental results show that the developed orchard joint harvesting
robot autonomous navigation system completes repeated stops between rows of apple
trees at a speed of 0.5 m/s and makes continuous turns without collisions.
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Figure 18. Results of autonomous navigation experiments with transport and picking robots. (a)
Stopping points of the transport robot; (b) stopping points of the picking robot; (c) heading deviation
between transport and picking robots; (d) lateral deviation between transport and picking robots.

4. Discussion

The distance between apple tree plants is about 2 m. When the transport or picking
robot is between apple tree rows, each driving distance is about one plant distance, and
too fast a speed leads to larger inertia when the robot stops, thus affecting the following
error of the joint picking autonomous navigation system. At the same time, when the robot
speed is too fast, the central control unit cannot provide the transport robot with accurate
positioning point information in the middle of the apple tree rows. After a preliminary
practical test, the driving speed of the robot was set to 0.5 m/s during the experiment.

(1) The experimental results of the communication system showed that the master-slave
robot can send messages via point-to-point in the orchard. Although the information
interaction between master and slave robots showed communication packet loss as
the communication distance increased, when the distance between robots (50 m)
was greater than the maximum distance of a single row of apple trees (47.4 m), the
packet loss rate of the communication system was less than 1.2% and the number of
packet losses was negligible. This indicates that when the combined harvesting robots
traveled in the middle of the apple tree rows within 50 m, there was little medium
to affect the communication between the robots in the space above the weeds under
the tree canopy. Although the distance between robots changes during travel, the
distance interval is typically less than 10 m, which means that the master-slave robot
can maintain operation within the communication distance of a strong signal. Thus, a
Wi-Fi-based master-slave robot communication system can meet the communication
needs of collaborative operations in orchards.

(2) The position deviation values of the master and slave robots decreased as the number
of trials increased when the combined harvesting robot was driving in the orchard
rows, For example, the position deviation of the master robot decreased from 0.027 m
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to 0.02 m, which may be because the robot’s tracks flattened the weeds and floating
soil on the ground during repeated driving in the orchard, thus reducing soil-induced
slippage. However, the average value of position deviation of the slave robot increased
from 0.037 m to 0.048 m, which may be because during the turning process the master-
slave robot switched to command navigation, and as the master robot pulled the
trailer to turn, the heading of the trailer changed significantly, resulting in a larger
angle of heading change when the robot turned from the ground for the next row (the
heading difference between the master-slave robot was greater than 10◦ less than 90◦).
This, in turn affects the size of the position deviation. For example, at the first stop in
the next row, the maximum value of the position deviation was 0.397 m. The position
deviations of the master and slave robots varied considerably at the stopping point,
which was either the next or the previous point of the one-sided apple tree stopping
point. For example, in the first row, the maximum value of position deviation was
0.019 m at station 12 (lack of apple trees) and 0.053 m at station 13, which could be due
to the change in canopy density from dense to sparse, or from sparse to dense. This
variation led to deviations in the trunk centroids identified by the master robot and
caused position deviations in the slave following the master. The position deviations
at both ends of the apple tree rows were mostly smaller than the average deviation,
probably because there was no interference from other apple trees and the trunks of
the apple trees were thick enough for the master robot to identify the trunks. For
instance, the maximum position deviation in the first row was 0.025 m, which is
0.002 m less than the average position error value of 0.027 m. The same situation
occurred within the apple tree rows. For example, in the second row, the minimum
value of position deviation for station 9 (the missing apple tree) was 0.009 m.

(3) When the master-slave robot travels at a fixed speed of 0.5 m/s, there may be incom-
plete filtering of ground points or too many filtering points due to the close distance
between the master and the slave robot and the small height of the apple basket,
resulting in errors when the slave robot extracts the apple basket feature points and
fits the fruit basket center-of-mass points. For example, in the first row, the maximum
following error was 0.044 m for the fourth stopping point and 0.004 m for the third
stopping point (with fruit trees on one side). Similarly, the following error on entering
or leaving a row of fruit trees was less than the error mean or close to the error mean,
which may be due to significant changes in the ground,. The algorithm can easily
distinguish between ground points and fruit baskets. For example, the maximum
following error for the 20th parking point in row 1 was 0.019 m, which is 0.001 m
larger than the error mean of 0.018 m.

The almost overlapping driving trajectories of the master-slave robot show that the
pure tracking algorithm can ensure that the robots follow the waypoints in a relatively
stable manner. However, due to the different distance lengths, and directions provided by
the artificially selected GNSS steering points, a large angle change between the trailer and
the tractor behind the master robot at the ground head turn led to a large deviation between
the motion trajectory of the slave robot (tracking the navigation points of the trailer motion
model) and that of the master robot. The experimental results show that the maximum
lateral deviation of the master-slave robot during the turn was less than 1 m, the minimum
lateral deviation was greater than 0.3 m, the maximum heading deviation was less than
90◦, and the minimum heading deviation was greater than 10◦.

To reduce the lateral deviation and heading deviation of the master-slave robot at the
ground head turn, future research will focus on optimizing the pure tracking algorithm,
designing fuzzy PID control rules based on the experimentally derived adjustment range
of the robot’s lateral deviation and heading deviation, and using this rule and the pure
tracking algorithm to enable the robot to adjust the turning radius according to the change
in waypoint distance. At the same time, the robot tracking speed may be slowly increased
or decreased at the beginning and end of each waypoint tracking segment to reduce the
robot’s inertia.
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5. Conclusions

Based on the process of commercial apple harvesting, our research developed an
autonomous navigation system for a combined orchard harvesting robot using two master-
slave navigation methods, Wi-Fi point-to-point communication technology, target feature
extraction, and pure tracking control technology, in which the transport robot is the master
and the picking robot is the slave. The performance of this combined harvesting robot
navigation system was verified through orchard trials.

The experimental results show that the packet loss rate of the communication system
was less than 1.2% when the interval distance of the joint harvesting robots was within
50 m, which meets the communication requirements of the master and slave robots in
the orchard. The combined harvesting robot achieved the stop-drive function according
to the apple tree planting situation when driving in the row at a speed of 0.5 m/s, and
the system ran smoothly. However, the impact of the change in trailer heading when the
master vehicle was towing the trailer around a turn resulted in a significant error when the
slave vehicle entered the next row and came to a stop. The error value gradually decreased
after changing the master-slave navigation method and can be used for in-row cooperative
operations. The maximum value of the position error of the master robot was 0.053 m, the
minimum value was 0.008 m, the mean value of the error was 0.024 m, and the standard
deviation of the error was 0.009 m. The maximum value of the position error of the slave
robot was 0.397 m, the minimum value was 0.011 m, the mean value of the error was
0.041 m, and the standard deviation of the error was 0.056 m. The safety distance between
master and slave robots was within the set threshold (0.35 m), where the maximum value
of the following error was 0.044 m, the mean value of error was 0.013 m, and the standard
deviation of error was 0.01 m. Therefore, the system can meet the demands of cooperative
operation without collision. The combined harvesting robots could achieve smooth turns
according to commanded navigation during the turns, but the course deviation (greater
than 10◦ less than 90◦) and lateral deviation (greater than 0.3 m less than 1 m) between
robots during the turns were largely due to the trailer motion model.

6. Patents

A dual navigation mode orchard joint harvesting robot autonomous navigation
system V1.0.
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