NASA Technical Memorandum 105327

M. David Kankam

Lewis Research Center
Cleveland, Ohio
and
Owen Benjamin
Cornell University
Ithaca, New York

November 1991

NoS^

TABLE OF CONTENTS

Abstract 1
L. Introduction 1
L. Modeling of Drive Sources 2
II. 1 Pulse Width Modulated Inverter 2
II. 2 Six-Step Inverter 5
II. 3 Pulse Density Modulated Inverter 6
U. Induction_Machine Modeling 8
III. 1 Basic Machine Equations 8
III. 2 Transformation to d-q Variables 10
III. 3 Reference Frames 11
III.3.1 Arbitrary Reference Frame 11
III.3.2 Synchronous Rotating Reference Frame 11
III.3.3 Multiple Reference Frame 12
III. 4 Derivation of Multiple Reference Frame Voltages 13
IV. Simulation_Results 16
IV. 1 Parameters of Induction Machine 16
IV. 2 6-Step Inverter Induction Machine Drive 17
IV. 3 PWMI - Induction Machine Drive 22
IV. 4 PDMI - Induction Machine Drive 24
Y. Summary 26
References 27
Appendices
A1. Flow Charts 28

Development of a Computer Algorithm for the Analysis of Variable-Frequency A.C. Drives - Case Studies Included

M. David Kankam
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

and
Owen Benjamin*
Cornell University
Ithaca, New York 14850

Abstract

This report documents the development of a computer software for performance prediction and analysis of voltage-fed, variable-frequency AC drives for space power applications. The AC drives discussed include the pulse width modulated inverter (PWMI), the six-step inverter and the pulse density modulated inverter (PDMI), each individually connected to a wound-rotor induction motor. Various d-q transformation models of the induction motor are incorporated for userselection of the most applicable model for the intended purpose.

Simulation results of selected AC drives correlate satisfactorily with published results. Future additions to the algorithm are indicated in the Summary. These improvements should enhance the applicability of the computer program to the design and analysis of space power systems.

L INTRODUCTION

Variable-frequency drives have been extensively documented in the literature. Most publications deal with a particular problem area and application. In the realm of space mission applications, there is a need to incorporate flexibility for options and assessment on various potential voltage-fed inverters as possible drive sources for selected A.C. machinery.

This report describes the development of a computer algorithm for performance prediction and the analysis of variable-frequency A.C. drives. These drives have a potential application in space missions. Among the AC drives discussed are the pulsewidth modulated inverter(PWMI), the six-step inverter and the pulse density modulated inverter(PDMI). A general synthesis of the PWMI output is described. The outputs of the inverters are d-q transformed for subsequent excitation of a similarly transformed, symmetrical induction machine model. The algorithm accommodates transformation in the arbitrary, fixed, synchronously rotating and multiple reference frames of operation. A complete flow-chart of the algorithm is provided in the Appendix.

Simulation results obtained by the algorithm are compared with pertinent publication for verification. Salient characteristics of the results are discussed. Included in the summary are planned additions for subsequent incorporation in the algorithm. These extensions should further improve the usefulness of the algorithm for studies relating to space power applications.
*1991 Summer OAI/NASA Collaborative Aerospace Intern at Lewis Research Center.

L. MODELING_OF DRIVE SOURCES

This section discusses various AC drives individually applied to a three-phase symmetrical induction machine. These drives permit a comparison of the effects of their output harmonic content on the performance characteristics of the induction machine. Also, the use of these drives demonstrates the flexibility of the developed algorithm in its choice of a particular drive for the intended application.

U. 1 Pulse Width Modulated Inverter (PWMU)

A Pulse Width Modulated Inverter has been simulated from development of an analytical procedure for deriving input harmonic voltages applicable to a variable frequency AC drive. The synthesis for obtaining an analytical expression for the line-to-line synchronized voltage waveform, $\mathrm{v}_{\mathrm{L}-\mathrm{L}}(\mathrm{t})$, from a line-to-line voltage envelope, $\mathrm{v}_{\mathrm{e}}(\mathrm{t})$, and a continuous pulse operator, $v_{p}(t)$, is shown schematically in Fig. II-1. A summary of the method follows. The complete modeling details of the PWMI is contained in a NASA-Lewis 1990 Summer Report.[1]

(e) Line-to-Line Voltage

Fig. II-1 - Synthesis of Line-to-Line Synchronized Voltage Waveform

The voltage envelope controls the output frequency of the synchronized waveform, while the voltage pulse operator controls the number of pulses within a half cycle and the duration of time the switches stay closed.

Reference [2] shows that the general synchronized voltage waveform, in Fig. II-1, has the
following constraints:

$$
\begin{gather*}
\omega_{\mathrm{p}} /_{\omega} \geqslant 6 \\
0 \leqslant \tau /_{T_{p}} \leqslant 1 \tag{1}\\
\mathrm{dE} /{ }_{\mathrm{dt}}=0
\end{gather*}
$$

where,

$$
\begin{aligned}
E= & \text { amplitude (d.c. volts) of the line-line voltage envelope } v_{e}(t) ; \\
\omega= & 2 \pi / T=\text { fundamental frequency of the output voltage (rad } / \mathrm{s}) \\
& \text { of the inverter; } \\
\omega_{p}= & 2 \pi / T_{p}=\text { multi-pulse frequency (rad/s) } \\
= & \text { time interval between leading edges of two consecutive pulses } \\
& \text { of the voltage operator } v_{p}(t) . \\
T= & \text { pulse width (secs) of } v_{p}(t) . \\
T_{M}= & \text { mode period (secs) }=T / T_{6} .
\end{aligned}
$$

The synthesized line-to-line output waveform of the PWMI is obtained from the relation:

$$
\begin{equation*}
v_{L-L}(t)=v_{e}(t) * v_{p}(t) \tag{2}
\end{equation*}
$$

The voltage operator is defined in eqn. (3),

$$
v_{p}(t)=\left\{\begin{array}{lr}
g_{p}(t), & 0 \leqslant t \leqslant \pi / 3 \omega \tag{3}\\
g_{p}(t-\pi / 3 \omega), & \pi / 3 \omega \leqslant t \leqslant 2 \pi / 3 \omega \\
g_{p}(t-2 \pi / 3 \omega), & 2 \pi / 3 \omega \leqslant t \leqslant \pi / \omega
\end{array}\right.
$$

The Fourier expression for the unity amplitude multipulse operator is stated in eqn. (4).

$$
\begin{align*}
g_{p}(t) & =\frac{\tau}{T_{p}}+\sum_{n}^{\infty} \frac{\sqrt{2}}{n \pi} \sqrt{1-\cos n \omega_{p} \tau} \cdot \sin \left(n \omega_{p} t+\eta\right) \\
n & =\tan ^{-1}\left(\frac{\sin n \omega_{p} \tau}{1-\cos n \omega_{p} \tau}\right) \tag{4}\\
n & =1,2,3,4, \ldots \ldots
\end{align*}
$$

Equation (5) shows the general Fourier expression of the line-to-line voltage

$$
\begin{equation*}
v_{L-L}(t)=\sum_{k} a_{k} \operatorname{Cos} k \omega t+b_{k} \operatorname{Sin} k \omega t, k=1,5,7, \ldots \tag{5}
\end{equation*}
$$

where the coefficients are

$$
\left.\begin{array}{l}
a_{k}=\frac{E}{\pi}\left[\frac{2 \tau}{k T} \cdot \sin \frac{2 \pi k}{3}+\sum_{n=1}^{\infty} F_{n}\left(\frac{3 n \omega_{p}}{\omega} \cdot \cos n+2 k \sin \frac{\pi k}{3} \cdot\left(G_{n}\right)\right)\right. \tag{6}\\
b_{k}=\frac{E}{\pi}\left[\frac{3 \tau}{k T_{p}} \quad+\sum_{n=1}^{\infty} F_{n}\left(\frac{2 n \omega_{p}}{\omega} \cdot \sin \frac{\pi k}{3} \cdot\left(J_{n}\right)-3 k \sin n\right)\right. \\
H_{n}
\end{array}\right]
$$

Other variables in eqn. (6) are given in eqn. (7).

$$
\begin{aligned}
& F_{n}=\frac{\sqrt{2}}{n \pi} \sqrt{1-\cos n \omega_{p} \tau} \\
& H_{n}=\left(\frac{n \omega_{p}}{\omega}\right)^{2}-k^{2} \\
& G_{n}=-2 \sin \left(\frac{n \pi \omega_{p}}{3 \omega}+\eta\right)+\sin n \\
& J_{n}=-2 \cos \left(\frac{n \pi \omega_{p}}{3 \omega}+\eta\right)+\cos n \\
& k=1,5,7,11,13, \ldots .
\end{aligned}
$$

Typical values used in subsequent simulation are summarized below.

```
E = 115v D.C
\omega = operating frequency
    = 12 Hz, 30 Hz, 54 Hz
\omega
        = 60 Hz
\omega
```



```
V base
    =51.77v
```


U.2. Six-Step Inyerter

Figure II-2a shows a schematic for the basic circuit of a six-step inverter induction motor drive. Typically, the control of the magnitude of the dc link voltage, V_{I}, is achieved by maintaining a constant v / f ratio.

Fig. II-2a - Inverter-Induction Motor Drive

The six-step inverter is designed so that the output separates in six distinct 60 degree periods in one cycle. This form of output is sometimes referred to as the "staircase" waveform, depicted in Fig. II-2b for one phase voltage of the inverter.[3]

Fig. II-2b - Output Voltage Waveform of a Six-Step Inverter

Fig. II-2b - Output Voltage Waveform of a Six-Step Inverter

U. 3 Pulse Density Modulated Inverter (PDMI)

Analysis of the output of the Pulse Density Modulated Inverter is based on a synthesized waveform in reference[5] and shown in Fig. II-3. Using a constraint of zero voltage switching, a low frequency voltage component, v_{Lf}, is derived from complete half cycles of the high frequency link voltage, v_{Hf}.

Fig. II-3 - PDM Synthesis of low-frequency Voltage
The third waveform, v_{LF}, displayed in Fig. II-3 is the output synthesized from the first two input wave signals. This waveform may be Fourier analyzed and applied to a connected AC machine. This is achieved by either a programmed logic or some form of a modulation scheme. Fourier analysis of the this particular frequency output is shown below.
$v_{L f}(t)=\Sigma\left\{\mathrm{a}_{\mathrm{k}} * \sin \left(k^{*} \omega t\right)+\mathrm{b}_{\mathrm{k}} * \cos \left(k^{*} \omega t\right)\right\}$,
where

$$
\begin{align*}
& a_{k}=\left(2 * E_{m} * \omega_{L f}\right) / \pi^{*} \\
&\left\{\int_{d}^{2 d}-f_{c}(t) d t+\int_{2 d}^{3 d} f_{c}(t) d t+\int_{4 d}^{5 d} f_{c}(t) d t+\int_{5 d}^{6 d}-f_{c}(t) d t+\int_{7 d}^{8 d}-f_{c}(t) d t+\right. \\
& \int_{8 d}^{9 d} f_{c}(t) d t+\int_{9 d}^{10 d}-f_{c}(t) d t+\int_{10 d}^{11 d} f_{c}(t) d t+\int_{12 d}^{13 d} f_{c}(t) d t+\int_{13 d}^{14 d}-f_{c}(t) d t+ \\
&\left.\int_{15 d}^{16 d}-f_{c}(t) d t+\int_{16 d}^{17 d} f_{c}(t) d t+\int_{18 d}^{19 d} f_{c}(t) d t\right\} \tag{8}
\end{align*}
$$

and
$\mathrm{f}_{\mathrm{c}}(\mathrm{t})=\sin \left(\omega_{\mathrm{Hf}}{ }^{*} \mathrm{t}\right)^{*} \cos \left(\mathrm{k}^{*} \omega_{\mathrm{Lf}}{ }^{*} \mathrm{t}\right)$,
$d=\pi /\left(19^{*} \omega_{\mathrm{Lf}}\right)$.
Expansion and simplification of eqn. (8) results in the expression of eqn. (9).

$$
\begin{align*}
& a_{k}=\left[E_{m}{ }^{*} \omega_{L f} f \pi\right] *\left\{\left[\left(-\cos \left(d^{*} \alpha\right)-\cos \left(3 * d^{*} \alpha\right)+\cos \left(4 * d^{*} \alpha\right)+\cos \left(6 * d^{*} \alpha\right)-\cos \left(7 * d^{*} \alpha\right)-\right.\right.\right. \\
& \cos (11 * d * \alpha)+\cos \left(12 * d^{*} \alpha\right)+\cos \left(14 * d^{*} \alpha\right)-\cos \left(15 * d^{*} \alpha\right)- \\
& \cos \left(17^{*} \mathrm{~d}^{*} \alpha\right)+\cos \left(18^{*} \mathrm{~d}^{*} \alpha\right)-\cos \left(19 * \mathrm{~d}^{*} \alpha\right)+2 * \cos \left(2 * \mathrm{~d}^{*} \alpha\right)- \\
& 2 * \cos (5 * d * \alpha)+2 * \cos \left(8 * d^{*} \alpha\right)-2 * \cos \left(9 * d^{*} \alpha\right)+ \\
& \left.\left.2 * \cos \left(10^{*} \mathrm{~d}^{*} \alpha\right)-2^{*} \cos \left(13^{*} \mathrm{~d}^{*} \alpha\right)+2^{*} \cos \left(16^{*} \mathrm{~d}^{*} \alpha\right)\right) / \alpha\right]+ \\
& {\left[\left(-\cos \left(d^{*} \beta\right)-\cos \left(3^{*} d^{*} \beta\right)+\cos \left(4^{*} d^{*} \beta\right)+\cos \left(6^{*} d^{*} \beta\right)-\cos \left(7^{*} d^{*} \beta\right)-\right.\right.} \\
& \cos \left(11^{*} d^{*} \beta\right)+\cos \left(12 * d^{*} \beta\right)+\cos \left(14^{*} d^{*} \beta\right)-\cos \left(15^{*} d^{*} \beta\right)- \\
& \cos (17 * d * \beta)+\cos (18 * d * \beta)-\cos (19 * d * \beta)+2 * \cos (2 * d * \beta)- \\
& 2^{*} \cos \left(5 * d^{*} \beta\right)+2 * \cos \left(8^{*} d^{*} \beta\right)-2^{*} \cos \left(9^{*} d^{*} \beta\right)+ \\
& \left.\left.\left.2 * \cos \left(10^{*} \mathrm{~d}^{*} \beta\right)-2 * \cos \left(13^{*} \mathrm{~d} * \beta\right)+2 * \cos \left(16^{*} \mathrm{~d} * \beta\right)\right) / \beta\right]\right\} \text {, } \tag{9}
\end{align*}
$$

where
$\alpha=\omega_{\mathrm{Hf}}+\left(\mathrm{k} * \omega_{\mathrm{Lf}}\right)$
$\beta=\omega_{\mathrm{Hf}}-\left(\mathrm{k} * \omega_{\mathrm{Lf}}\right)$.
A similar derivation holds for b_{k} if

$$
\begin{equation*}
\mathrm{f}_{\mathbf{S}}(\mathrm{t})=\sin \left(\omega_{\mathrm{Hf}}{ }^{*} t\right)^{*} \sin \left(\mathrm{k}^{*} \omega_{L f}{ }^{*} t\right) \tag{10}
\end{equation*}
$$

is substituted for $\mathrm{f}_{\mathrm{c}}(\mathrm{t})$ in eqn. (8). This yields the expression of eqn. (11).

$$
\begin{align*}
& b_{k}=\left[E_{m}{ }^{*} \omega_{L f} f \pi\right] *\left\{\left[\left(-\sin \left(d^{*} \alpha\right)-\sin \left(3^{*} d^{*} \alpha\right)+\sin \left(4^{*} d^{*} \alpha\right)+\sin \left(6^{*} d^{*} \alpha\right)-\sin \left(7 * d^{*} \alpha\right)-\right.\right.\right. \\
& \sin \left(1 *^{*} d^{*} \alpha\right)+\sin \left(12{ }^{*} d^{*} \alpha\right)+\sin \left(14^{*} d^{*} \alpha\right)-\sin \left(15^{*} d^{*} \alpha\right)- \\
& \sin \left(17^{*} \mathrm{~d}^{*} \alpha\right)+\sin \left(18{ }^{*} \mathrm{~d}^{*} \alpha\right)-\sin \left(19^{*} \mathrm{~d}^{*} \alpha\right)+2 * \sin \left(2 * \mathrm{~d}^{*} \alpha\right)- \\
& 2 * \sin \left(5 *{ }^{*} * \alpha\right)+2 * \sin \left(8{ }^{*}{ }^{*} \alpha \alpha\right)-2 * \sin \left(9{ }^{*} d^{*} \alpha\right)+ \\
& \left.\left.2 * \sin \left(10^{*} d^{*} \alpha\right)-2 * \sin \left(13^{*} d^{*} \alpha\right)+2^{*} \sin \left(16^{*} d^{*} \alpha\right)\right) / \alpha\right]+ \\
& {\left[\left(\sin \left(d^{*} \beta\right)+\sin \left(3^{*} d^{*} \beta\right)-\sin \left(4^{*} d^{*} \beta\right)-\sin \left(6^{*} d^{*} \beta\right)+\sin \left(7 * d^{*} \beta\right)+\right.\right.} \\
& \sin \left(11^{*} d^{*} \beta\right)-\sin \left(12^{*} d^{*} \beta\right)-\sin \left(14^{*} d^{*} \beta\right)+\sin \left(15^{*} d^{*} \beta\right)+ \\
& \sin (17 * d * \beta)-\sin (18 * d * \beta)+\sin (19 * d * \beta)-2 * \sin (2 * d * \beta)+ \\
& 2 * \sin (5 * d * \beta)-2 * \sin \left(8^{*} d^{*} \beta\right)+2 * \sin (9 * d * \beta)- \\
& \left.\left.\left.2 * \sin \left(10^{*} d^{*} \beta\right)+2 * \sin \left(13^{*} d^{*} \beta\right)-2 * \sin \left(16^{*} d^{*} \beta\right)\right) / \beta\right]\right\} \tag{11}
\end{align*}
$$

Each of the above voltage sources is subsequently used as a driving source to simulate the performance of a wound-rotor induction motor.

U. INDUCTION MACHINE MODELING

This section describes the derivation of the $\mathrm{d}-\mathrm{q}$ transformation model of an induction machine. Various forms of the model are discussed for the arbitrary, synchronous rotating and the multiple reference frames.

U. 1 Basic Machine Equations

A schematic diagram of the connections and conventions of an ideal, two-pole, threephase, symmetrical induction machine and its magnetic axes representations are shown in Figs. III1 and III-2, respectively.

Fig. III-1 - Connections and Current Conventions for Three-Phase Induction Motor

Fig. III-2 - Relative Positions of the Magnetic Axes of Stator and Rotor Windings.

With the appropriate subscript for the stator (as, bs, cs) and rotor (ar, br, cr) phases, the following voltage eqn. (12) is applicable to each of the six windings shown in Fig.III-2.

$$
\begin{equation*}
v=p * \lambda+r^{*} i \tag{12}
\end{equation*}
$$

where λ, r and p are the total flux linkage, the winding resistance and the differential operator $d / d t$, respectively.

The flux-linkage equations[4] for a three-wire machine are summarized in eqn. (13)

$$
\begin{align*}
& \left.\begin{array}{ccc}
L_{r r} \cos \theta_{r} & L_{r r} \cos \left(\theta_{r}+\frac{2 \pi}{3}\right) & L_{r r} \cos \left(\theta_{r}-\frac{2 \pi}{3}\right) \\
L_{r r} \cos \left(\theta_{r}-\frac{2 \pi}{3}\right) & L_{r r} \cos \theta_{r} & L_{r r} \cos \left(\theta_{r}+\frac{2 \pi}{3}\right) \\
L_{r r} \cos \left(\theta_{r}+\frac{2 \pi}{3}\right) & L_{r r} \cos \left(\theta_{r}-\frac{2 \pi}{3}\right) & L_{r r} \cos \theta_{r} \\
L_{\pi r} & 0 & 0 \\
0 & L_{r r} & 0 \\
0 & 0 & L_{r}
\end{array}\right] \times\left[\begin{array}{c}
i_{0 r} \\
i_{0 r} \\
i_{a r} \\
i_{e r} \\
i_{b r} \\
i_{r}
\end{array}\right] \tag{13}
\end{align*}
$$

where

$$
L_{s s}=L_{S}-L_{s m} \quad ; \quad L_{r r}=L_{r}-L_{r m}
$$

The parameters $L_{s m}$ and $L_{r m}$ are the mutual inductances between the individual stator and individual rotor phases, respectively. The term θ_{r} is the angular displacement between corresponding phases of the stator and rotor axes, as shown in Fig. III-2. The time varying coefficients in eqn. (13) may be eliminated by means of transformation equations.

U.2 Transformation to d-q Yariables

Fig. III-3 illustrates the angular relation of the stator and rotor axes relative to an orthogonal set of $d-q$ axes. The transformation axes are rotating at an arbitrary electrical angular velocity, ω. It is noteworthy that the stator as-bs-cs set is fixed in the stator. Similarly, the ar-br-cr set is fixed in the rotor and, thus, rotates at the rotor electrical angular velocity, ω_{r}.

Fig. III-3 - Axis of 2-pole, 3-phase symmetrical machine.

In conjunction with Fig. III-3, and by means of geometric projections, it can be shown that the transformation from the machine a, b, c co-ordinates to the $d-q$ reference frame is given by eqn. (14),

$$
\left[\begin{array}{c}
f_{q s} \tag{14}\\
f_{d s} \\
f_{o s} \\
f_{q r} \\
f_{d r} \\
f_{o r}
\end{array}\right]=2 / 3\left[\begin{array}{lrrrl}
\cos (\theta) & \cos (\theta-2 \pi / 3) & \cos (\theta+2 \pi / 3) \mid \\
\sin (\theta) & \sin (\theta-2 \pi / 3) & \sin (\theta+2 \pi / 3) \mid & 1 \\
1 / 2 & 1 / 2 & 1 / 2 & 1 & {[0]} \\
- & - & - & - & - \\
& {[0]} & \overline{\cos (\bar{\beta})} & -\overline{\cos (\beta-2 \pi / 3)} & -\overline{\cos (\beta+2 \pi / 3)} \\
& & 1 \sin (\beta) & \sin (\beta-2 \pi / 3) & \sin (\beta+2 \pi / 3)
\end{array}\right] *\left[\begin{array}{l}
f_{a s} \\
f_{b s} \\
f_{c s} \\
f_{a r} \\
f_{b r} \\
f_{c r}
\end{array}\right]
$$

where $\beta=\theta-\theta_{\mathrm{r}}$,
and θ is a continuous function. In these equations, the variable ' f ' represents either voltage, current, or flux-linkage.

U. 3 Reference Frames

U.3.1 Arbitrary Reference.Frames

The transformation equation (14) may be used to transform the stator and rotor voltages and currents of eqns (12) and (13) to the form shown in eqn. (16).
$\left[\begin{array}{c}v_{d s} \\ v_{q s} \\ v_{d r}^{\prime} \\ v_{q r}^{\prime}\end{array}\right]=\left[\begin{array}{llll}r_{s}+L_{s s}{ }^{*} p & -\omega^{*} L_{s s} & M^{*} p & -\omega^{*} M \\ \omega^{*} L_{s s} & r_{s}+L_{s s^{*} p} & \omega^{*} M & M^{*} p \\ M^{*} p & -\left(\omega-\omega_{r}\right) M & r_{r}^{\prime}+L_{r r}^{\prime}{ }^{*} p & -\left(\omega-w_{r}\right) L_{r r}^{\prime} \\ \left(\omega-\omega_{r}\right) M & M^{*} p & \left(\omega-\omega_{r}\right) L_{r r}^{\prime} & r_{r}^{\prime}+L_{r r}^{\prime}{ }^{*} p\end{array}\right] * \cdot\left[\begin{array}{c}i_{d s} \\ i_{q s} \\ i_{d r}^{\prime} \\ i_{q r}^{\prime}\end{array}\right]$

By setting the speed ω, of the arbitrary reference frame, in eqn. (16), equal to the speed of the desired reference frame, the voltage equations may be expressed in any reference frame. The stationary or stator reference frame voltage equations may be obtained by setting ω equal to zero in eqn. (16). Setting ω equal to ω_{T}, the electrical angular velocity of the rotor, gives a reference frame fixed in the rotor.

U.3.2 Synchronous Rotating_Reference Frame

The synchronously rotating reference frame voltage equations are obtained by setting ω equal to the electrical angular velocity, ω_{e}, of the fundamental frequency components of the applied stator voltages. This substitution yields equation (17).
$\left[\begin{array}{c}v_{d s} \\ v_{q s} \\ v_{d r}^{\prime} \\ v_{q r}^{\prime c}\end{array}\right]=\left[\begin{array}{llll}r_{s}+L_{s s}{ }^{*} p & -\omega_{e}{ }^{*} L_{s s} & M^{*} p & -\omega_{e}{ }^{* M} \\ \omega_{e}{ }^{*} L_{s s} & r_{s}+L_{s s}{ }^{*} p & \omega_{e}{ }^{*} M & M^{*} p \\ M^{*} p & -\left(\omega_{e}-\omega_{r}\right) M & r_{r}^{\prime}+L_{r r}^{\prime}{ }^{*} p & -\left(\omega_{e}-w_{r}\right) L_{r r}^{\prime} \\ \left(\omega_{e}-\omega_{r}\right) M & M^{*} p & \left(\omega_{e}-\omega_{r}\right) L_{r r}^{\prime} & r_{r}^{\prime}+L_{r r}^{\prime}{ }^{*} p\end{array}\right] *\left[\begin{array}{c}i_{d s} \\ i_{q s} \\ i_{d r}^{\prime} \\ i_{q r}^{\prime e}\end{array}\right]$

All entries in the impedance matrix of either eqn. (17) or (16) are in actual units. For steady-state operation, the operator ' p ' is replaced by the appropriate ' $\mathrm{j} \omega_{\mathrm{a}}$ ' term where ω_{a} is the frequency of the voltages in the transformed frame.

W.3.3 Multiple Reference_Erame

The voltage equations are linear if constant rotor speed is assumed. In that case, the principle of superposition can be used to obtain the machine performance due to the total harmonic content in the source voltages. For balanced sinusoidal applied voltages, the synchronously rotating d-q transformed voltages become constant voltages. This can be verified via application of eqn. (14) to such input source voltages, with the arbitrary speed ω set to the fundamental source frequency ω_{e}. The resulting constant voltages facilitate computation of constant-speed electrical transients and steady state performance by means of d.c. circuit theory.

In the case of possible harmonic content in the source voltages, each of the harmonic components forms a balanced set of voltages in the synchronously rotating reference frame. Each of these balanced set of voltages becomes constant when transformed to a particular reference frame in which d.c. circuit theory can be used. If this is done, the resulting currents can then be back-transformed to the synchronously rotating reference frame. Subsequently, the final currents can be used to generate the constant-speed performance of the connected machine. Thus, the socalled multiple reference frame [4] application expedites the calculation of steady-state performance from any periodic stator voltage waveforms. Also, it eliminates the need to use phasors and complex impedances.

The synchronously-rotated harmonic voltages, to be derived later, will show that each of the positively rotating voltages(that is fundamental, seventh harmonic, etc.) transforms to a voltage of frequency $(k-1) \omega_{e}$, where k is the harmonic order. Thus, unity value of k denotes a d.c. or constant value for the transformed fundamental frequency component. Similarly, all negatively rotating voltages $\left(k=5,11\right.$, etc.) transform to voltages with frequency $(k+1) \omega_{e}$. Hence, the voltage equations for the symmetrical induction machine in any reference frame is given by eqn. (16) in which the arbitrary reference frame speed, ω, is set equal to the speed of the desired frame. When this is done, the resulting multiple reference frame equations are those summarized in eqn. (18). It is emphasized that in eqn. (18), the letter ' n ' takes on the value $+k$ or $-k$, depending on the application of a positive or negative-sequence voltage, respectively. Since d.c. theory applies to all harmonic terms in the respective multiple reference frames, the time-derivative operator ' p ' is set to zero in the steady-state performance calculation.
$\left[\begin{array}{c}v_{d s} \\ v_{q s} \\ v_{d r}^{\prime} \\ v_{q r}^{\prime} \\ {[\mathrm{V}]}\end{array}\right]=\left[\begin{array}{llll}r_{s}+L_{s s}{ }^{*} p & -n^{*} \omega_{e}{ }^{*} L_{s s} & M^{*} p & -n^{*} \omega_{e}{ }^{*} n^{*} M \\ n^{*} \omega_{e}{ }^{*} n^{*} L_{s s} & r_{s}+L_{s s}{ }^{*} p & n^{*} \omega_{e}{ }^{*} n^{* M} & M^{*} p \\ M^{*} p & -\left(n^{*} \omega_{e}-\omega_{r}\right) M & r_{r}^{\prime}+L_{r r}^{\prime}{ }^{*} p & -\left(n^{*} \omega_{e^{-}} \omega_{r}\right) L_{r r}^{\prime} \\ \left(n^{*} \omega_{e}-\omega_{r}\right) M & M^{*} p & \left(n^{*} \omega_{\left.e^{-}-\omega_{r}\right) L_{r r}^{\prime}}\right. & r_{r}^{\prime}+L_{r r}^{\prime}{ }^{*} p\end{array}\right] *\left[\begin{array}{c}i_{d s} \\ i_{q s} \\ i_{d r}^{\prime} \\ i_{q r}^{\prime}\end{array}\right]$

The impedance matrix, [Z], of eqn.(18) has been used for computer simulation to verify some published results. For ease of comparison, the [$Z]$ matrix has been per-unitized and expressed in eqn. (19).
$[\mathrm{Z}]=\left[\begin{array}{llll}r_{s} & -f r^{*} n^{*} X_{S s} & 0 & -f r^{*} n^{*} X_{m} \\ f r^{*} n^{*} X_{S S} & r_{S} & f r^{*} n^{*} X_{m} & 0 \\ 0 & -a k f^{*} f r^{*} X_{m} & r_{r}^{\prime} & -a k f^{*} f r^{*} X_{r r}^{\prime} \\ a k f^{*} f r^{*} X_{m} & 0 & a k f^{*} f r^{*} X_{r r}^{\prime} & r_{r}^{\prime}\end{array}\right]$
where the per-unit values in eqn. (19) are defined below, namely

$$
\begin{aligned}
& f r=\omega_{e} / \omega_{\mathrm{b}} \\
& f r^{*} X_{s s}=\left(\omega_{e} / \omega_{\mathrm{b}}\right) * \omega_{\mathrm{b}}^{*} L_{s s} \\
& f r^{*} X_{m}=\left(\omega_{e} / \omega_{\mathrm{b}}\right)^{*} \omega_{\mathrm{b}}^{*} M^{*} \\
& f r^{*} X_{r r}^{\prime}=\left(\omega_{e} / \omega_{\mathrm{b}}\right)^{*} \omega_{\mathrm{b}}^{*} L_{r r}^{\prime} \\
& a k f=n-\left(\omega_{r} / \omega_{e}\right) \\
& \left(n \omega_{e}-\omega_{r}\right) M=\left(n-\omega_{r} / \omega_{e}\right) f r * X_{m}=a k f * f r * X_{m} \\
& M p=j(k-+1) *\left(\omega_{e} / \omega_{\mathrm{b}}\right)^{*} \omega_{\mathrm{b}} * M=j(k-+1) f r * X_{m}
\end{aligned}
$$

U. 4 Deriyation of Multiole_Reference Frame Voltages

Consider a three-phase machine operated from a balanced source with a fundamental frequency, ω_{e}. Using eqn. (13), the $\mathrm{d}-\mathrm{q}$ stator voltages fixed in the stator $(\theta=0)$ are given by eqn (20).

$$
\left[\begin{array}{l}
v^{s} d s \tag{20}\\
v^{s}{ }_{q s}
\end{array}\right]=2 / 3\left[\begin{array}{lll}
0 & \operatorname{sqrt(3)/2} & -\operatorname{sqrt(3)/2} \\
1 & -1 / 2 & 1 / 2
\end{array}\right] *\left[\begin{array}{c}
\mathrm{v}_{\mathrm{as}} \\
\mathrm{vbs} \\
\mathrm{vcs}
\end{array}\right]
$$

i.e.
$v_{d s}^{s}=1 / \mathrm{sqrt}(3)\left(\mathrm{v}_{\mathrm{bs}}-\mathrm{v}_{\mathrm{cs}}\right)$
$v_{q s}=v_{\text {as }}$

For a harmonic-rich source, the input voltages are periodic and sinusoidal. Hence, eqn. (21) gives the Fourier expansion of the transformed voltages.

$$
\begin{align*}
& v^{s} d s=\sum_{k=1}^{\infty}\left\{\mathrm{v}_{\mathrm{kdc}} \cos \left(k \omega_{e} t\right)+\mathrm{v}_{\mathrm{kds}} \sin \left(k \omega_{e} t\right)\right\} \\
& v_{q s} s_{d}=\sum_{\mathrm{k}=1}^{\infty}\left\{\mathrm{v}_{\mathrm{kqc}} \cos \left(k \omega_{e} t\right)+\mathrm{v}_{\mathrm{kqs}} \sin \left(k \omega_{e} t\right)\right\} \tag{21}
\end{align*}
$$

When expressed in terms of the voltages $v_{d s}^{s}$ and $v_{q s}^{s}$, the applied stator voltages in the synchronously rotating frame are shown in eqn. (22).

$$
\begin{align*}
& v_{d s}^{e}=v_{q s}^{s} \sin \left(\omega_{e} t\right)+v^{s} d s \cos \left(\omega_{e} t\right)=v^{+e} k d s+v^{-e} k d s \\
& v^{e} e_{q s}=v_{q s}^{s} \cos \left(\omega_{e} t\right)-v_{d s}^{s} \sin \left(\omega_{e} t\right)=v^{+e} e_{k q s}+v^{-e} k q s \tag{22}
\end{align*}
$$

Substitution of eqn. (21) into eqn. (22) will show that the voltages $v^{+e} k d s$ and $v^{+e} k q s$ of the positive sequence applied voltages form a series of balanced sets. For $k>1$, these sets rotate at an electrical angular velocity of $(\mathrm{k}-1) \omega_{e}$ in the counterclockwise direction with regard to the synchronously rotating frame. Similarly, $v^{-e} k d s$ and $v^{-e} k q s$ of the negative sequence applied voltages rotate at the frequency $-(\mathrm{k}+1) \omega_{e}$ in the clockwise direction with respect to the synchronously rotating reference frame.

In a manner consistent with the forms in eqn. (22), the " + -ke" variables in the multiple reference frame are obtained from the " + -e" of the synchronously rotating reference by use of eqns. (23) and (24).[4],

where $f_{d s}{ }^{+-k e}, f_{q s}{ }^{+-k e}$ represent variables in the multiple reference frame, and $f_{k d s}{ }^{+-e}, f_{k q s^{+-e}}$ represent variables in the synchronous reference frame. It is noteworthy that, for stator only-fed induction machine, the rotor windings are shorted. Hence, for voltage representation, $v_{a r}{ }^{\nu} b r$, and $^{v}{ }_{c r}$ are 0 . Consequently, so are all the rotor variables subscripted "dr", etc. in eqns. (23) and (24).

Eqns. (25) represent a given set of 3 phase, balanced nonsinusoidal voltages,
$v_{a s}=\Sigma\left\{V_{k}{ }^{*} \cos \left(k^{*} \omega_{e}{ }^{*} t\right)\right\}$,
$v_{b s}=\Sigma\left\{V_{k}{ }^{*} \cos \left[k\left(\omega_{e}{ }^{*} t-2 \pi / 3\right)\right]\right\}$,
$v_{c S}=\Sigma\left\{V_{k}{ }^{*} \cos \left[k\left(\omega_{e}{ }^{*} t+2 \pi / 3\right)\right]\right\}$,
where $\mathrm{k}=1,5,7,11, \ldots$
The synchronously rotating reference frame voltages are as expressed in eqn. (26),

$$
\left[\begin{array}{l}
v^{e} k d s^{+-} \tag{26}\\
v^{e} e_{k q s^{+-}} \\
v^{\prime} e_{k d r}^{+-} \\
v^{\prime} e_{k q r}^{+-}
\end{array}\right]=\left[\begin{array}{l}
-+V_{k+-} * \sin \left((k-1) \omega_{e} t\right) \\
V_{k+-} * \cos \left((k-+1) \omega_{e} t\right) \\
0 \\
0
\end{array}\right]
$$

where the positive superscripts refer to positive-sequence applied voltages, $\mathrm{k}_{+}=1,7,13 \ldots$ and the negative superscripts denote negative-sequence applied voltages, $\mathrm{k}_{-}=5,11 \ldots$ The variable $\mathrm{V}_{\mathrm{k}+-}$ represents the magnitude of the appropriate source harmonic voltage applied to the machine. Comparison of eqns. (23) and (24) and (26) shows that, for voltage considerations, eqn. (27) holds.

$$
\begin{align*}
& {\left[\begin{array}{llllll}
+e_{k d s} & f^{+e} k q s & f^{+e} k d r & f^{+e}{ }_{k q r}
\end{array}\right]^{\mathrm{T}} \equiv\left[\begin{array}{lll}
v^{e} \\
d s k+ & v^{e} & v_{q s k+}^{\prime e} \\
d r k+ & v^{\prime} e_{q r k+}
\end{array}\right]^{\mathrm{T}}} \\
& {\left[f^{e}{ }_{k d s} \quad f^{e}{ }_{k q s} \quad f^{e}{ }_{k d r} \quad f^{e}{ }_{k q r}\right]^{\mathrm{T}} \equiv\left[\begin{array}{lllll}
v^{e} \\
d s k- & \left.v^{e}{ }_{q s k-} \quad v^{\prime} e_{d r k-} \quad v^{\prime} e_{q r k-}\right]^{\mathrm{T}}
\end{array}\right.} \tag{27}
\end{align*}
$$

Thus, substitution of eqn. (26) into eqns. (23) and (24) gives the multiple reference frame voltages in eqn. (28).

$$
\left[\begin{array}{c}
v_{d s}^{+-k e} \tag{28}\\
v_{q s}^{+-k e} \\
v_{d r}^{\prime}+-k e \\
v_{q r}^{\prime}+-k e
\end{array}\right]=\left[\begin{array}{c}
0 \\
v_{k+-} \\
0 \\
0
\end{array}\right]
$$

The impedance matrix of eqn. (17) and the voltage magnitudes of eqn. (26) may be used to simulate the machine performance in the synchronously rotating reference frame.

For steady state operation, the operator ' p ' in the impedance matrix is replaced by " $\mathrm{j}\left(\mathrm{k}_{+}-1\right) \omega_{e}$ " for stator applied positive sequence voltages, and " $\mathrm{j}\left(\mathrm{k}_{-}+1\right) \omega_{e}$ " for negative sequence voltages. For simulation in the multiple reference frame, eqns. (19) and (28) are used. It may be recalled from section III. 3.3 that all p-dependent terms are non-existent due to the resulting timeinvariant voltages in the multiple reference frame. The following section discusses some
simulation results.

IV SIMULATION RESULTS

Results of computer simulations of a symmetrical induction machine are described for the various drive sources discussed in section II. The developed computer algorithm for the simulation is flow-charted in Appendix A1.

LY. 1 Parameters of Induction Machine

The following values in Table I are used for simulating the impedance matrix in the multiple reference frame. All values are in per-unit[4] unless otherwise stated.

TABLE I - Summary of Induction Machine Parameters

Parameter	Value $^{\uparrow}$
r_{S}	0.0453
r_{r}^{\prime}	0.0222
$X_{l s}$	0.0775
$X^{\prime} l r$	0.0322
X_{m}	2.0420
$X_{s s}=X_{l s}+X_{m}$	2.1195
$X_{r r}^{\prime}=X^{\prime} l r+X_{m}$	2.0742
ω_{b}	$2 \pi^{*} 60 \mathrm{rad} / \mathrm{s}$
$\mathrm{fr}=\omega_{e} / \omega_{b}$	1.0
s	0.03
$\omega_{r}=\omega_{e}^{*}(1-s)$	$\left(2 \pi^{*} 60\right)(0.97) \mathrm{rad} / \mathrm{s}$

s-slip; $\quad \omega_{b}$ - base electrical angular velocity
\ddagger per-unit values unless stated otherwise

LY,2.Six-Step Induction Motor Drive

The simulation of a six-step induction motor drive seeks to validate the derived analytic relations and computer algorithm by comparing the simulated results with published data. The source input voltages are taken from reference[4]. The harmonic voltage magnitudes in the multiple reference frame are indicated in Table II. Note that the rotor voltages are zero due to shorting of the rotor windings. Also, consistent with eqn. (28), only the q-axis voltages exist in the multiple reference frame.

TABLE II -Six-Step Voltage Magnitudes in Multiple Reference Frame

Harmonic Order	Value(pu)
$v^{+1 e} q s$	$4 / \pi$
$v^{-5} e_{q s}$	$4 / 5 \pi$
$v^{+7} e_{q s}$	$-4 / 7 \pi$
$v^{-11 e} q s$	$-4 / 11 \pi$
$v^{+13 e} q s$	$4 / 13 \pi$

The inverter constant input voltage V , set to 1.0 pu for the simulation, is the amplitude of the
balanced squarewave voltages at the source.
Table III shows a comparison between the published[4] and calculated steady-state currents in the multiple reference frame. The current values are corrected to the third decimal place. With the exception of the fundamental frequency components, the remaining calculated currents correlate reasonably with the published results. The discrepancy in the fundamental frequency currents is discussed later in conjunction with line current and electrical torque plots.

TABLE III - Comparison of Calculated and Published Per-Unit d-q Currents

n	$i^{n e} d s$		$i^{\boldsymbol{n} \boldsymbol{e}}{ }_{q \boldsymbol{s}}$		$i^{n e} d r$		$i^{\boldsymbol{n e}}{ }_{\boldsymbol{q r}}$	
(+-k)	Refl4l	Calc.	Refl4l	Calc	Refl4]	Calc	Refl4]	Calc.
+1	0.600	0.74120	0.013	1.50260	0	-0.1791	0	-1.5432
-5	-0.460	-0.4602	0.053	0.053	0.453	0.453	-0.053	-0.0533
+7	-0.2360	-0.2360	-0.022	-0.022	0.232	0.232	0.022	0.022
-11	0.096	0.096	-0.005	-0.005	-0.095	-0.095	0.005	0.005
+13	0.069	0.069	0.003	0.003	-0.068	-0.068	-0.003	-0.003

Using the steady state currents shown in Table III, one can calculate the instantaneous stator and rotor phase currents and torque from eqns. (29) to (33).

$$
\begin{align*}
& \mathrm{i}_{\mathrm{as}}=i_{q s}=\Sigma\left[\left(i_{q s}+k e+i_{q S}-k e\right) \cos \left(k^{*} \omega_{e}{ }^{*} t\right)+\left(i_{d s}+k e^{-} i_{d s}{ }^{-k e}\right) \sin \left(k^{*} \omega_{e}{ }^{*} t\right)\right] \tag{29}\\
& i_{d s}=\Sigma\left[\left(i_{d s}+k e+i_{d s}{ }^{-k e}\right) \cos \left(k^{*} \omega_{e}^{*} t\right)-\left(i_{q s}+k e-i_{q s}{ }^{-k e}\right) \sin \left(k^{*} \omega_{e}^{* t)]}\right.\right. \tag{30}\\
& i_{q r}^{\prime}=\Sigma\left[\left(i_{q r}^{\prime}+k e+i_{q r}^{\prime-k e}\right) \cos \left(k^{*} \omega_{e}^{* t)}+\left(i_{d r}^{\prime}+k e-i_{d r}^{\prime}-k e\right) \sin \left(k^{*} \omega_{e}^{*} t\right)\right]\right. \tag{31}\\
& i_{d r}^{\prime}=\Sigma\left[\left(i_{d r}^{\prime}+k e+i_{d r}^{\prime}-k e\right) \cos \left(k^{*} \omega_{e}^{*}\right)-\left(i_{q r}^{\prime}+k e-i_{q r}^{\prime}-k e\right) \sin \left(k^{*} \omega_{e}^{*} t\right)\right] \tag{32}\\
& T=M^{*}(m / 2) *(P / 2) *\left[i_{q s} * i_{d r}^{\prime}-i_{d s} * i_{q r}^{\prime}\right], \tag{33}
\end{align*}
$$

where $\quad P=$ number of poles $=2$
$m=$ number of phases $=3$,
$M=X_{m}$ from impedance matrix
Substitution of eqns. (29) through (32) into (33) yields a torque expression which contains a constant term and second harmonic components of the source constituent harmonics superimposed on it. The expanded torque expression appears in eqn. (34).

$$
\begin{align*}
& +\left[\left(i^{\left.\left.+k e_{q s^{*}} i^{\prime} k e{ }_{d r}+i^{-k e} e_{q s^{*}} i^{\prime}+k e_{d r}\right)-\left(i^{+k e} d s^{*} i^{\prime} k e_{q r}+i^{-k e} d s^{*} i^{\prime}+k e_{q r}\right)\right] \cos \left(2 k \omega_{e} t\right) .}\right.\right. \\
& +\left[\left(i^{\left.\left.+k e_{q s} *_{i}^{\prime} k e_{q r}+i^{+k e} d s_{i}^{*}-k e_{d r}\right)-\left(i^{-k e}{ }_{d s} *_{i}^{\prime}+k e_{d r}+i^{-k e_{q s}}{ }_{i}^{\prime}+k e_{q r}\right)\right] \sin \left(2 k \omega_{e} t\right) .}\right.\right. \tag{34}
\end{align*}
$$

Computer simulation results of the instantaneous phase A current and electrical torque are depicted in Figs. IV-1 and IV-2. The plots in Fig. IV-1 pertain to a comparison between the simulated (b) and published (a) results. The simulated plots are obtained from values in Table III and the expressions in eqns. (29) and (33). The plots shown in Fig. IV-1(a) are taken directly from reference[4]. As pointed out earlier, the calculated d-q harmonic current components match the published data in Table III. The d-q fundamental current components used in the simulation of Fig IV-1(a) are those from reference [4]. Satisfactory correlaton is evident between the simulated and published plots. The torque pulsation is due to the harmonic content of the distorted current. The slight discrepancy in the peak values is attributed to truncation in the number of harmonic source voltages included in the simulation. Of particular interest is the absence of a dc offset in the torque plots. This is inconsistent with the torque eqn. (34).

A repeat of the simulated results is illustrated in Fig. IV-2(b). Here, the simulated d-q fundamental current components, rather than the published values, are used in eqn. (29). These results are compared with those from reference[6], depicted in Fig. IV-2(a). The source voltage magnitudes from reference[6] are neither the same as those from reference [5] or those used in the simulation.

It is evident that the basic form of the results from the simulation and reference[6] are very similar. Furthermore, the torque plots from the simulation and reference[6] clearly demonstrate the d.c offset embodied in the torque expression of eqn. [34]. This suggests a possible error in the reported d-q fundamental current components in reference[5].

(b) Results from Simulation

FIG. IV-1 - Synchronous Speed Operation Using Multiple Reference Frame Approach and Six-Step Inverter Induction Motor Drive

(b) Results from Simulation

FIG. IV-2 - Results of Six-Step Inverter Induction Motor Drive Simulation

LY.3. PWMI - Induction Machine Drive

The simulated per-unit harmonic voltages, using the analytic relations outlined in Section II. 1 are summarized in Table IV for two operating frequencies, 12 and 54 Hz . The resulting multiple reference frame currents for the 12 Hz operation are shown in Table V.

Freq. W Harmonic Order, Hz	12	54
	Per-Unit	Line-Neutral Voltages
	0.221	1.002
5	0.046	0.272
7	0.034	0.085
11	0.024	0.091
13	0.022	0.121

TABLE IV - Computer Results of Synthesized Pulse Width Modulation Inverter

$n_{(+-\mathrm{k})}$	$i^{n e} d s$	$i^{n e}{ }_{q s}$	$i^{\text {ne }} d r$	$i^{\prime n} e_{q r}$
+1	0.12860	0.2606	-0.0311	-0.2676
-5	-0.0825	0.0096	0.08120	-0.0096
+7	0.04380	0.0040	-0.0431	-0.0040
-11	-0.0200	0.0011	0.01970	-0.0011
+13	0.01570	0.0008	-0.0154	-0.0008

TABLE V - PWMI Steady-State Per-Unit Currents in Multiple Reference Frame
(12Hz Operation)

Substituting the steady state currents from Table V into eqns. (29) - (33) gives the simulated instantaneous currents, and torque in Fig. IV- 4 for the 12 Hz operation. The corresponding plots for the 54 Hz operation are shown in Fig. IV-5.

Fig. IV-4 shows the instantaneous current and torque for the 12 Hz case, while fig. IV- 5 shows the same graphs for the 54 Hz case.

Both Figs. IV-4 and IV-5 display similar harmonic distortion in the current waveforms, and pulsations in the torque. However, no direct comparison can be made with the six-step drive results, since no direct correspondence exists in the resulting voltages of the two drives simulated. Hence, no attempt has been made to put the plots on the same scale for comparison.

FIG. IV-4 - Steady-State Operation Using PWMI : $\mathbf{1 2 H z}$

FIG. IV-5 - Steady-State Operation Using PWMI : 54Hz

IV. 4 PDMI - Induction Machine Drive

Table VI shows the results of computer simulations of the analytical voltage expressions derived in section II.3. The steady-state currents in the multiple reference frame are shown in Table VII. These results relate to a high input frequency which is approximately ten times the low output frequency. For this isolated PDMI operation, Table VI shows relatively high harmonic voltage content in the output of the inverter. This high harmonic content is reflected in the current and torque waveform in Fig. IV-6. This observation contradicts the normally-held view of relatively low harmonic content of PDM inverters. However, it must be noted that this brief analysis has not rigorously developed analytic relations for the PDMI in a manner similar to that of the PWMI. Also, the analysis has not been extended to higher output frequencies of the PDMI, which are more than multiples of ten of the input low frequency.

TABLE VI - Computer Results of Pulse Density Modulated Inverter
[Derived from waveform in reference[5]]

$$
\left[\omega_{\mathbf{H f}} \approx 10 \omega_{\mathrm{Lf}}\right]
$$

Harmonic Order

1	0.585
5	0.153
7	0.067
11	0.205
13	0.238

Per-Unit Voltage

$$
0.585
$$

5
0.153

11 0.205
13
0.238

TABLE VII - PDMI Steady-State Per-Unit Currents in Multiple Reference Frame $\left[\omega_{\mathrm{Hf}} \approx 10 \omega_{\mathrm{Lf}}\right.$]

$n_{(+-\mathrm{k})}$	$i^{n e} d s$	$i^{n e}{ }_{q s}$	$i^{\text {ne }} d r$	$i^{\text {ne }}{ }_{q r}$
+1	0.34060	0.6905	-0.0823	-0.7091
-5	-0.2760	0.0320	0.27170	-0.0320
+7	0.08670	0.0080	-0.0854	-0.0080
-11	-0.1705	0.0092	0.16790	-0.0092
+13	0.16690	0.0081	-0.1643	-0.0081

FIG. IV-6 - PDM Results

\mathbf{V}

SUMMARY

This report is a documentation of a computer algorithm developed to analyze variable-frequency A.C. drives. In particular, it contains a synthesis of a pulsewidth modulated inverter(PWMI), and brief descriptions of a six-step inverter and a pulse density modulated inverter(PDMI) drives.

The PWMI source is generated in the algorithm. However, the six-step and PDM inverter sources are simulated by stating their harmonic voltage components obtained from Fourier analysis. A symmetrical induction machine is modeled in the arbitrary, synchronous and multiple reference frames. These models give the flexibility of selecting the most appropriate model for the intended performance prediction.

The algorithm has been verified by a satisfactory correlation between its simulated results and selected data from publications. The harmonic content of the drive sources manifests itself in the form of distorted line currents and pulsating torque. The level of harmonic distortion is determined by the relative magnitudes of the source harmonic voltage magnitudes.

In its present form, the key area of application of the algorithm is the steady-state performance prediction of induction machine-drives. Planned future extensions of the algorithm include the following:
-synthesis and development of analytic expressions for the PDMI and analysis of the effects of various operating frequencies on the A.C. drive performance.
-automatic transformation of source voltages into any of the standard reference frames, for subsequent hook-up to desired A.C. machine model.
-inclusion of other performance parameters, such as operating speed profiles, and total harmonic distortion(THD) of machine currents.
-inclusion of other A.C. machinery models, for possible trade-off studies towards space power applications.

REFERENCES

[1.] Kankam, M. D. and Tyus, I., "An Efficient Method For Predicting Harmonic Output of Frequency Converters", Report, NASA Lewis Research Center, Summer 1990.
[2.] Dewan, S.B., Forsythe, J.B., "Harmonic Analysis of a Synchronized Pulse-Width Modulated Three-Phase Inverter", IEEE-IGA Conference Record, Oct. 1971, pp 327-32.
[3.] Krause, Paul C., Hake, James R., "Method of Multiple Reference Frames Applied to the Analysis of a Rectifier-Inverter Induction Motor Drive", IEEE Trans. on Power Apparatus and Systems, Vol. PAS-88, No. 11, Nov. 1969, pp. 1635-1641.
[4.] Krause, Paul C., "Method of Multiple Reference Frames Applied to the Analysis of Symmetrical Induction Machinery", IEEE Trans. on Power Apparatus and Systems, Vol. PAS-87, No. 1, Jan. 1968, pp. 218-227.
[5.] Sood, P.K., Lipo, T.A., Hansen, I.G., "A Versatile Power Converter For High-Frequency Link Systems", IEEE Trans. on Power Electronics, Vol. 3, No. 4, Oct. 1988, pp. 383-390.
[6.] Lai, Jih-Sheng, "Simnon Simulation for Induciton Motor Drives", 1990 IEEE Paper, TH0301.

APPENDIX A1

FLOW CHART OF
 VARIABLE-FREQUENCY A.C. DRIVE

PWMI \& PDMI SUBROUTINES

TRANSIENT SUBROUTINE

National Aeronautics and FOURTH CLASS MAIL

Space Administration

Lewis Research Center

Cleveland, Ohio 44135

Officlal Businese

Penalty for Private Use $\$ 300$

Postage and Fees Pard National Aeronatics and Space Adrminst atem NASA 4bt

