NASATECHNICAL Memorandum

NASA TH X-3069

ad an an transformer and

DEVELOPMENT OF A COMPUTER PROGRAM TO OBTAIN ORDINATES FOR NACA 6- AND 6A-SERIES AIRFOILS

by Charles L. Ladson and Cuyler W. Brooks, Jr.

Langley Research Center

Hampton, Va. 23665

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . SEPTEMBER 1974

1. Report No. NASA TM X-3069	2. Government Access	ion No.	3. Reci	pient's Catalog No.
A Title and Subtitle	l	and the state of the second	5 Berr	ort Date
			S	eptember 1974
DEVELOPMENT OF A CC	MPUTER PROGRAM	и то овт	AIN 6. Perfo	erming Organization Code
ORDINATES FOR NACA 6	- AND 6A-SERIES A	JR FOILS		
7. Author(s)			8. Perfo	orming Organization Report No.
Charles L. Ladson and Cu	yler W. Brooks, Jr.		L	-9558
0. Beefermine Oreceivation Name and Adde			10. Work	Unit No.
9. Fertorning Organization Name and Addit	755		5	01-06-05-07
NASA Langley Research C	lenter		11. Cont	ract or Grant No.
Hampton, Va. 23665				
			13. Туре	of Report and Period Covered
12. Sponsoring Agency Name and Address			Т	echnical Memorandum
National Aeronautics and S	Space Administration	ı	14. Spon	soring Agency Code
Washington, D.C. 20546				
15. Supplementary Notes			I	
16. Abstract			······	
A computer program	n was developed to p	roduce the	e ordinates for a	irfoils of any thick-
ness, thickness distributio	n, or camber in the	NACA 6-	and 6A-series.	For the 6-series
and for all but the leading	edge of the 6A-serie	es, agreen	ent between the	ordinates obtained
from the new program and	previously publishe	d values i	s generally with	in 5×10^{-5} should
Near the leading edge of the	o 61 coriog airfoile	differen	and up to 2 E x 1	0^{-4} shand one found
itear the reading edge of th	le un-series arrous	, unteren	$\cos up \ to \ 5.5 \times 1$	to chord are found,
17. Key Words (Suggested by Author(s))		18. Distribut	ion Statement	
Airfoils		Uncl	aggified Unlig	
Wings			assilleu – Uillii	nited
Rotorcraft			assineu – Oilin	nited
				nited
			assineu – Omr	STAR Category 01
	20. Consider Cl. 17.4.4.4.1	1		STAR Category 01
19. Security Classif, (of this report)	20. Security Classif. (of this	page)	21. No. of Pages	STAR Category 01

1

*For sale by the National Technical Information Service, Springfield, Virginia 22151

Ξ 1 III II KANA

_

. .

DEVELOPMENT OF A COMPUTER PROGRAM TO OBTAIN ORDINATES FOR NACA 6- AND 6A-SERIES AIRFOILS

By Charles L. Ladson and Cuyler W. Brooks, Jr. Langley Research Center

SUMMARY

A computer program was developed to produce the ordinates for airfoils of any thickness, thickness distribution, or camber in the NACA 6- and 6A-series. For the 6-series and for all but the leading edge of the 6A-series, agreement between the ordinates obtained from the new program and previously published values is generally within 5×10^{-5} chord. Near the leading edge of the 6A-series airfoils, differences up to 3.5×10^{-4} chord are found. The program which is given in the appendix will also produce plots of the nondimensional airfoil ordinates and a punch card output of ordinates in the input format of a readily available program for determining the pressure distributions of arbitrary airfoils in subsonic potential viscous flow.

INTRODUCTION

The NACA 6-series airfoil sections were developed in the early 1940's, and discussions of the method of the derivations and the resulting ordinates have been published in references 1 and 2. As aircraft speeds increased, more attention was focused on the thinner airfoils of this series. However, difficulties were encountered in the structural design and fabrication of these thinner sections because of the very thin trailing edges. As a result, the NACA 6A-series airfoil sections were developed, and details of these have been published in reference 3. Essentially, the modification consisted of a nearconstant slope from about the 80-percent chord station to the trailing edge and an increase in the trailing-edge thickness from zero to a finite value.

Recently, parametric theoretical studies have been made to investigate the use of these airfoil sections for both rotorcraft and conventional aircraft. The results of one investigation are presented in reference 4 and show advantages of an NACA 6-series cambered airfoil for use as a tail rotor on helicopters. It was tedious and expensive to make these studies because no method was available for calculating the desired ordinates rapidly and accurately. Because the 6-series airfoils do not have an analytic expression for the ordinates, use must be made of the ordinates published in references 1 to 3. Also, the ordinates are not linear with variations in thickness-chord ratio so that airfoils obtained by linearly increasing or decreasing the ordinates of an originally derived shape will be approximate, as mentioned in reference 1. The published ordinates have been cross-plotted as a function of thickness and published in reference 5, but the values must be read off the graphs and only 26 longitudinal locations from nose to tail were available.

An attempt, using a derivative of the NACA 4-digit series, to provide a computer program for ordinates of the NACA 6-series airfoils was made in reference 6. However, as stated in the reference, the resulting accuracy of only 3.5×10^{-3} chord is not sufficient for many applications.

The purpose of this paper is to review the basic design procedure for the NACA 6-series airfoils and to describe a program which will generate sufficiently accurate ordinates for airfoils of any thickness, thickness distribution, or camber with an acceptable expenditure of computer time.

SYMBOLS

а	basic length, usually considered unity
А	mean-line designation, fraction of chord from leading edge over which design load is uniform
с	airfoil chord
C	airfoil chord on computer-generated plots
CLI	design section lift coefficient
x	distance along chord
x	distance along chord on computer-generated plots
У	airfoil ordinate normal to chord, positive above chord
Y	airfoil ordinate normal to chord on computer-generated plots
Z	complex variable in circle plane
z'	complex variable in near-circle plane
δ	local inclination of camber line (or mean line)
2	

$$\epsilon$$
 airfoil parameter, ϕ - θ

ζ complex variable in airfoil plane

 θ angular coordinate of z'

 ϕ angular coordinate of z

 ψ airfoil parameter determining radial coordinate of z

$$\psi_0$$
 average value of ψ , $\frac{1}{2\pi} \int_0^{2\pi} \psi \, d\phi$

Subscripts:

- u upper surface
- 1 lower surface
- t thickness

cam cambered

ANALYSIS

Basic Airfoil Derivation

As described in references 1 and 2, the basic symmetrical NACA 6-series airfoils were developed by means of conformal transformations. The use of these transformations to relate the flow about an arbitrary airfoil to that of a near circle and then to a circle had been developed earlier and the results are presented in reference 7. The basic airfoil parameters ψ and ϵ are derived as a function of ϕ , where $\theta - \phi$ is defined as $-\epsilon$. Figure 1, taken from reference 1, shows the relationship between these variables in the complex plane. These parameters are used to compute both the airfoil ordinates and the potential flow velocity distribution around the airfoil. For the NACA 6-series airfoils, the shape of the velocity distribution and the longitudinal location of maximum velocity (or minimum pressure) were prescribed. The airfoil parameters ψ and ϵ which give the desired velocity distribution were obtained through an iterative process. Then the airfoil ordinates could be calculated from these parameters by use of the equations presented in references 1 and 7. Thus, for each prescribed velocity distribution, a set of basic airfoil parameters is obtained. However, as stated in reference 1,

it is possible to define a set of basic parameters ψ and ϵ which could be multiplied by a constant factor to obtain airfoils of various thickness-chord ratios while maintaining the minimum pressure at the same chordwise location. Thus, for each NACA 6-series airfoil family (i.e., 63-, 64-, or 65-series) there is one basic set of ψ and ϵ values.

Calculation of Symmetrical Airfoils

There is a unique curve of ψ and ϵ as a function of ϕ for each NACA 6-series airfoil family. This curve can be scaled by a constant factor to provide airfoils of different thickness within this family. A computer program could therefore be developed to calculate the airfoil ordinates for given values of ψ and ϵ . Although the values of these basic airfoil parameters were not published, tabulated values existed in files or could be computed by the method of reference 7 from published airfoil ordinates. For the 6-series airfoils, values of ψ and ϵ were available for 21 values of ϕ , and 26 values were available for the 6A-series airfoils. To provide more values of ψ and ϵ for storage in a computer subroutine, a fit to the original values was made with an existing parametric linked cubic spline-fit program and nine additional values were obtained between each of the original values. This process was carried out for each airfoil series, and the results were stored in the computer program as two subroutines for each airfoil family.

To calculate the ordinates for an arbitrary airfoil, the program first determines which airfoil series is desired and calls for the subroutine for this series. The airfoil represented by the stored values of ψ and ϵ is calculated and its maximum thicknesschord ratio is determined. The ratio of the desired value to that obtained in this determination is calculated. Then, ψ and ϵ are multiplied by this ratio to arrive at a new airfoil thickness-chord ratio. The iteration is repeated until the computed thicknesschord ratio is within 0.01 percent of the desired value, or until 10 iterations have been performed. Usually convergence occurs within four iterations. After the iterative process has converged within the limit established, any residual difference between the computed thickness-chord ratio and that desired is eliminated by linearly scaling the y ordinate and its first and second derivatives by the appropriate scale factor. The first and second derivatives of the airfoil ordinates as a function of chord are computed by a subroutine labeled "DIF" in the program. Although these ordinates and slopes are calculated at more than 200 internally controlled chord stations, a subroutine is used to interpolate between these points (by use of a vertical axis parabolic curve fit labeled "FTLUP") so that the output will be in specified increments of chord stations. As the leading edge is approached, the increments become smaller. As programed, ordinates are printed at increments of 0.00025c from the leading edge to x/c = 0.01250, at increments of 0.0025c from x/c = 0.01250 to 0.1000, and at increments of 0.01c from x/c = 0.1000 to the trailing edge.

4

:

:

Calculation of the Leading-Edge Radius

The values of leading-edge radius of these airfoils, published in references 1 to 3, were initially determined by plotting the ordinates to a large scale and fairing in the best circle fit by hand. Values of the tangency point between the circle and airfoil surface obtained in this manner were not published. To provide smooth analytic ordinates around the leading edge for the computer program, a tilted ellipse has been used. This tilted ellipse is described by the basic ellipse function plus an additive term, linear in x, which vanished at the origin, and thus has three arbitrary constants. The resulting fit to the airfoil ordinates is exact for the ordinate itself and the first derivative, and quite close for the second derivative, though examination of the second derivative in the region of tangency generally reveals a small discrepancy. The ellipse is defined so that it has the same ordinate and slope as the airfoil surface at the eleventh tabulated value of ϕ in the airfoil parameter subroutine. (The eleventh stored point is actually the second point of the original tabulated values.) This tangency point is usually located at about the 0.005 chord station but varies with airfoil thickness and series. By use of this method a smooth transition between airfoil and ellipse is produced, the tangency point is known, and there is a continuous variation of leading-edge shape with thickness-chord ratio. The nondimensional radius of curvature of the ellipse at the airfoil origin is also calculated in the program and its value is in close agreement with the published values of the leading-edge radius for known airfoils.

Calculation of Cambered Airfoils

To calculate ordinates for a cambered airfoil, the desired mean line is first computed and then the ordinates of the symmetrical airfoil are measured normal to the mean line at the same chord station. This procedure leads to a set of parametric equations, where $(y/c)_t$, $(y/c)_{cam}$, and δ are all functions of the original independent variable x/c. The ordinates on the cambered airfoil, $(x/c)_{cam}$ and $(y/c)_{cam}$, are given by

$$(x/c)_{cam} = (x/c) - (y/c)_t \sin \delta$$
$$(y/c)_{cam} = (y/c)_{cam} + (y/c)_t \cos \delta$$

where δ is the local inclination of the camber line and $(y/c)_t$ is assumed to be negative to obtain the lower surface ordinates. This procedure is also described in reference 1. The local slopes of the cambered airfoil can be shown to be

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{\mathrm{u}} = \frac{\tan \delta \sec \delta + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{\mathrm{t}} - \left(\frac{\mathrm{y}}{\mathrm{c}}\right)_{\mathrm{t}} \left(\frac{\mathrm{d}\delta}{\mathrm{d}x}\right)\tan \delta}{\sec \delta - \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{\mathrm{t}} \tan \delta - \left(\frac{\mathrm{y}}{\mathrm{c}}\right)_{\mathrm{t}} \left(\frac{\mathrm{d}\delta}{\mathrm{d}x}\right)}$$

and

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{1} = \frac{\tan \delta \sec \delta - \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{t} + \left(\frac{y}{c}\right)_{t} \left(\frac{\mathrm{d}\delta}{\mathrm{d}x}\right)\tan \delta}{\sec \delta + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{t} \tan \delta + \left(\frac{y}{c}\right)_{t} \left(\frac{\mathrm{d}\delta}{\mathrm{d}x}\right)}$$

by parametric differentiation of $(x/c)_{cam}$ and $(y/c)_{cam}$ with respect to the original x/c and use of the relationship

$$\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\mathrm{cam}} = \left(\frac{\mathrm{d(y/c)}_{\mathrm{cam}}}{\mathrm{d(x/c)}}\right) \left(\frac{\mathrm{d(x/c)}_{\mathrm{cam}}}{\mathrm{d(x/c)}}\right)$$

The mean line for all cambered airfoils of the NACA 6-series is the single analytic expression presented in reference 1 and is a function of the design lift coefficient and type of loading desired. The calculation of these camber lines has been included in the program so that any desired combination of airfoil family, thickness-chord ratio, design lift coefficient, and type of loading may be obtained. The design lift coefficient and type of loading desired are input variables. The A = 0.8 modified mean line which is used with the NACA 6A-series airfoils (see ref. 3) has also been incorporated. As the reference indicates, this mean line loading should always be used with the 6A-series.

The standard mean line loadings for the 6-series airfoils consist of loading uniform over the entire chord (A = 1.0), or a uniform loading to a given chord station followed by a value decreasing linearly to zero at the trailing edge. By combining two or more types of loading, many different types of mean lines can be obtained. For example, reference 8 presents data for airfoils which combine two mean lines to give zero loading to the 60-percent chord station followed by a linearly increasing load to the trailing edge. This procedure produces the so-called S-type mean line, having negative camber forward and positive camber aft. Other references have combined up to four mean lines to produce desired types of loadings. The program presented herein can combine up to 10 different mean line combinations if desired.

RESULTS AND DISCUSSION

Program Capabilities

The program which has been developed from the analysis described is presented in the appendix. The output of the program consists of tabulated ordinates, computergenerated plots of nondimensional ordinates, and punched card listings of the ordinates. The punched cards are in the format of the input of the program described in reference 9 so that pressure distributions over the generated shape may be readily obtained. To show graphically the capabilities of the program, sample computer plots are presented

6

a statement of all a large of the

in figures 2 to 9. The subscript designations of the lift-coefficient range of minimum drag for these airfoils, as described in references 1 to 3, have been deleted in the computer plots and tables. Figure 2 illustrates the possibility of changing the thickness-chord ratio for a fixed series. Figures 3 and 4 show the series variations within the NACA 6 and 6A families of airfoils, respectively. The variations in design lift coefficient are shown in figures 5 and 6, respectively. By combining more than one mean line for a given airfoil, the variations illustrated in figure 7 may be obtained. If a thickness-chord ratio of 0.0 is specified, the shape of the mean line or combination of mean lines is calculated. The results of this procedure are shown in figures 8 and 9. Note that the mean lines of figure 9 are those for the airfoils of figure 7.

Sample Output Tabulations

Sample computed ordinates for both a symmetric and a cambered airfoil are presented in tables I and II, respectively. Printed at the top of the first page for each table is the airfoil designation and a listing of the input variables. There follows a summary of parameters such as the longitudinal location of maximum thickness (the point when the slope changes sign), the values of the location of the nose ellipse fit and its radiuschord ratio at the origin, and the number of iterations and scaling factor used to determine the airfoil from its basic parameters. Both nondimensional and dimensional ordinates are listed. The dimensional quantities have the same units as the input value of the chord. First and second derivatives of the surface slope are also presented for the symmetric airfoils, but only first derivatives are tabulated for the cambered airfoils.

Accuracy of Results

About 25 cases, including several from each airfoil family, were computed for thickness-chord ratios from 0.06 to 0.15 and the results were compared with the values published in references 1 to 3. For the NACA 6-series airfoils the agreement was generally within 5×10^{-5} chord. The NACA 6A-series airfoils show differences of as much as 3.5×10^{-4} chord near the leading edge, but from about x/c = 0.10 to x/c = 0.95 the accuracy is about the same as for the 6-series. A plot showing a comparison of the present method with published ordinates for the first 0.05 chord of an NACA 64A-015 airfoil is shown in figure 10. This is the case of poorest agreement found in the comparisons made. The equations for the airfoil geometry dictate that the trailing-edge thickness be zero; however, the 6A-series have a finite trailing-edge thickness. The best result for these airfoils can be obtained by using the ordinate and slope at x/c = 0.95 and extrapolating to the trailing edge.

Card Input Format

The input to the program is in a card format as follows:

<u>CARD 1</u> – Tabulated data title card. Any designation may be used in columns 2 to 80. CARD 2 – Airfoil and camber line series designations are as follows:

NACA airfoil family	Card designation*	Columns
63-series	63	9, 10
64-series	64	
65-series	65	
66-series	66	
67-series	67	
63A-series	63A	8, 9, 10
64A-series	64A	
65A-series	65A	•

Camber line	Card designation*	Columns
NACA 6-series	63	19, 20
	64	
	65	
	66	
NACA 6A-series	63A	18, 19, 20
	64A	
	65A	•

*These are Hollerith cards; designations must be in exact columns.

2

-

1 Millio

CARD 3 - Airfoil parameter card. (Note that cards 3 to 6 are in floating point mode. Numbers are entered with a decimal point.)

Description	Variable	Columns
Thickness-chord ratio of airfoil (i.e., 0.120)	TOC	1-10
Published leading-edge radius may be entered if desired (not used in program)	LER	11-20
Model chord used for listing ordi- nates in dimensional units	CHD	21-30
Design lift coefficient (i.e., 0.20); set to 0.0 for a symmetrical airfoil	CLI	31-40
Mean line chordwise loading (use 0.8 for 6A-series airfoils)	A	41-50
Number of mean lines to be summed (if only one, leave blank or insert 1.0)	CMBNMR	51-60

 $\frac{\text{CARDS 4, 5, and 6}}{\text{These cards are not necessary for only one mean line.}} - Up to nine additional mean lines may be summed on these cards.$

Description	Variable	Columns
Design lift for second mean line	CLI	1-10
Loading for second mean line	Α	11-20
Design lift for third mean line	CLI	21-30
Loading for third mean line	A	31-40
Design lift for fourth mean line	CLI	41-50
Loading for fourth mean line	А	51-60
Design lift for fifth mean line	CLI	61-70
Loading for fifth mean line	A	71-80

 $\frac{\text{CARD 7}}{\text{columns 1 to 80.}}$ - Title card for plot of airfoil ordinate. Any designation may be used in

CONCLUDING REMARKS

A computer program has been developed to calculate rapidly the ordinates for airfoils of any thickness, thickness distribution, or camber in the NACA 6- and 6A-series. The program is included as an appendix to this report. Comparisons of the computergenerated ordinates with previously published ordinates for the same airfoil show that the agreement is generally within 5×10^{-5} chord. Exceptions were noted for the leadingedge region of the 6A-series airfoils, where differences of as much as 3.5×10^{-4} chord occurred. The program will also produce plots of the airfoil nondimensional ordinates and a punch card output of ordinates in the input format of a readily available program for determining the pressure distributions of arbitrary airfoils in subsonic potential viscous flow.

Langley Research Center,

National Aeronautics and Space Administration, Hampton, Va., June 25, 1974.

10

÷

Ē

Ξ

H at a **GUID**

UNIMAR II

COMPUTER PROGRAM FOR ORDINATES OF NACA 6- AND 6A-SERIES AIRFOILS

The program presented herein is written in the Langley Research Center version of FORTRAN IV and has been used on the Control Data series 6000 computer systems. The computational program, the basic airfoil parameter subroutine, and the plotting routine are presented. In the airfoil program, two subroutines (FTLUP and DIF) are used. The first subroutine is used to interpolate between a series of consecutive points using a parabolic curve fit, and the second subroutine is used to define the slope at a given point in a consecutive series of points. Any standard subroutines which have these capabilities can be substituted for those used herein. Also, several unlisted subroutines are used in the plotting routine, which is presented as a guide for users. The program requires about 73000₈ storage locations and takes about 20 seconds to compile. Each case takes approximately 12 seconds to execute on the Control Data 6400 computer system.

	PROGRAM LADSON(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,PUNCH)		100000
00:0013	UIMENSION XU(200), XL(200), YU(200), YL(200)	A 20	200000
000003	COMMUN /MAIN/ YSTART(3),CHD,KON,TITLE1(8)	A 30	300000
000003	DIMENSION XA(32), XAJ(32), YAU(32), XAL(32), YAL(32), NAME(8)	A 40	400000
000003	UIMENSIGN XT(201), YT(201), YTP(201), YTPP(201), PHI(201), EPS(201	A 50	500000
	[]), PSI(201)	A 60	600009
000003	DIMENSION CLICIO), ACLO, TANTHOCIO), YCMB(10), TANTH(10), YCP2(10	A 70	700000
	<pre>I), [F6XA(10)</pre>	A 80	800000
000003	INTEJER SERIET, SERIEC	A 90	000006
000003	COSH(X)=0*0*(EXP(X)+EXP(-X))	A 100	1000000
00:016	SINH(X)=0.5*(EXP(X)-EXP(-X))	A 110	1100000
090030		A 120	1200000
000032	PI=3.141592654	A 130	1300000
000033	YSFART(1)=1.0	A 140	1400000
000035	YSTARI(2)=4.0	A 150	1500000
000036	Y ST ART (3) = 7.0	A 160	1600000
000040	C = NC ×	A 170	1700000
000040	DX=0.01	A 180	1800000
000342	DN 23 I=1,10	A 190	1900000
000044	[F5XA(I)=0	A 200	2000000
640000	20 CONTINUE	A 210	2100000
	C INPUT PARAMETERS NURMALIZED BY THE CHURD (CHD)	A 220	2200000
	C TOC - T/C, THICKNESS, RLE - LEADING EDGE RADIUS, XM - X(YMAX)/CHOR	A 230	2300000
	C DX - INTERVAL/CHORD, CHD - CHURD IN DESIRED UNITS	A 240	2400000
	C SET UP PLUTTING ROUTINE	A 250	2500000
000047	CALL PSEUDU	A 260	2600000
000050	CALL LERJY		2600001
	C KEAD LOCATIONS FOR PUNCHED OUTPUT	A 270	2700000
000051	REAU (5,430) N,(XA(I),I=1,N)	A 280	280000
	C . READ SPECIFICATIONS FOR PROFILE	A 290	290000
000006	30 READ (5,440) NAME,SERIET,SERIEC,TOC,RLE,CHD,CLI(1),A(1),CMBNMR	A 300	300000
0001T4	I CAY = CA BRAN	A 310	3100000
000110	IF (ICKY.LT.I) ICKY=I	A 320	32 000 00
000122	IF (ENDFILE 5) 40,50	A 330	3300000
	C EVD PLUTTING AFTER LAST CASE	A 340	340000
00125	40 CALL CALPLT (0,0,999)	A 350	350000
000130	STOP	A 360	3600000
000132	50 CUNTINUE	A 370	3700000
	C REAU ADDITIONAL ADDITIVE CAMBERLINES	A 380	3800000
000132	IF (ICKY.0T.1) READ (5,450) (CLI(J),A(J),J=2,ICKY)	A 390	390000
000151	I CKYP= I CKY+ I	A 400	400000
000153	D0 60 J=[CKYP,10	A 410	4100000

12

.

i THE OTHER PROPERTY. 1000 ŧ -

4 1 10

0.00 × 0.00 × 0.00

÷

=

1.1.10.10.11

000154	CT1(1)=0°0	۷	420	4200000
00155	A(J)=CL1(J)	< ◄	430	4300000
000157	50 CUNTINUE	4	440	4400000
001000	K ON=K UN+1	۷	450	4500000
000162	FRAC=1.U	٩	460	4600000
J	PRINT INPUTS	۹	470	4700000
000163	PRINT 500, NAME	۷	480	4800000
171000	PRINT 460, TOC,RLE,CHD,(CLI(J),J=1,ICKY)	٩	490	4900000
000212	PRINT 470, (A(J),J=1,ICKY)	A	500	5000000
ں	COLUMN HEADING FORMATS	۷	510	5100000
د	SLUPE UF CAMBERLINE AT ORIGIN, TANTHO	۷	520	5200000
000225	L=0	۸	530	5300000
000226	CLIS=CLI(1)	۷	540	5400000
00.0227	AS=A(1)	۷	550	5500000
162000	70 L=L+1	۷	560	5600000
000233	A(l)=A(L)	۷	570	5700000
000234	CLI(I)=CLI(L)	۷	580	5800000
00.0236	X=0•0	۷	590	5900000
000230	Y=0.0	٩	600	6000000
000237	XC=0.0	۹	610	6100000
000240	YC=0•0	۷	620	6200000
000241	C.0=(1)UX	٩	630	6300000
000242	YU(1)=0.0	۷	640	6400000
000243	XL(1)=3.0	۷	650	6500000
000244	YL(1)=0.0	۷	660	6600000
000245	XUC = 0.0	۷	670	67 000 00
000246	YUGEO.O	4	680	6800000
000247	XtC=0.0	۸	690	0000069
00250	YL.C=0.0	۷	700	7000000
000251	XAU(1)=0.0	A	710	7100000
000252	YAU(1)=0.0	۷	720	72 00 0 00
000253	XAL(1)=J.O	4	730	7300000
000254	YAL (1) = 0.0	۷	740	7400000
000255	X II Q	۷	750	7500000
000256	U=0•035	۷	760	7600000
000260	V=-(A-U)/ABS(A-U)	۷	770	7700000
003265	0MXL = (1 - 0) + ALOG(1 - 0)	۷	780	7800000
000274	AMXL = (A - U) * ALOG(ABS(A - U))	4	790	1900000
000303	UMXL1=-ALOG(1U)-1.	۷	800	8000000
000910	AMXL I=-ALOG (AB S(A-U)) +V	٩	810	8100000
000317	UMXL Z= 1./(1U)	٩	820	82 00 0 0 0
000321	AMXL 2=-V/AbS (A-U)	۷	830	8300000
003325	IF (A.LT.E.OR.ABS(1A).LT.E) GO TO 80	۹	840	8400000

22 00 0 0 0 12600000 12700000 11100000 11400000 11600000 11700000 2000000 12100000 (23 00 00 2400000 12500000 1070000 0800000 0000060 11000000 11200000 11300000 11500000 11800000 1900000 .0500000 0000090 0000016 9800008 0000066 0000000 010000 02 00 0 0 10300000 0400000 9300000 9500000 8600000 8800000 8900000 9000006 9100000 9200000 9400000 0000096 8700000 3500000 A1190 A I I 80 A1200 960 980 066 A1000 A1110 A1120 A1130 A1140 A1150 A1160 A1170 A1210 A1220 A1230 A1240 A1250 A 1260 A1270 940 950 970 A1060 A1070 A1080 930 01C1V A1020 A1030 A1040 A1050 0901A A1100 860 870 880 890 006 016 920 850 4 ٩ ٩ 4 ٩ 4 4 4 4 < • ⊲ đ 2=.5*(A-U)*AMXL-.5*(l.-U)*UMXL-.25*(A-U)**2+.25*(l.-U)**2 Zl= 2*((A-U)*AMXLl-AMXL-(1.-U)*OMXL1+OMXL+(A-U)-(1.-U)) TANTHO(L)=CLI*(/I/(I.-Q*A)-I.-ALOG(U)-H)/PI/(A+1.)/2.0 IF (ICKY-GT.LaND.L.LT.ICKY) GD TO 70 H=(0.5*(1.-4)**2*4L06(1.-4)-0.25*(1.-4)**2)/(1.-4)+6 FIRST STATION AFT UF ORIGIN ON UNCAMBERED PROFILE (PHI, EPS) (PHI,EPS) (PHI , EPS) (PHI,EPS) (PHI,EPS) (PHI,PSI) [PHI , PSI SKIP THICKNESS COMPUTATION AFTER FIRST PASS SLOPE JF PROFILE AT ORIGIN, UPPER AND LOWER 22= •5*(A-U)*AMXL2-AMXL1- •5*(1•-U)*OMXL2+OMXL1 Z1=U*AL0G(U)-.5*U-.5*(1.-U)*OMXL1+.5*OMXL-.5 PHEP63 PHE P64 **PHE P65** PHE P66 PHPS63 **PHP S64** PHE P67 G=-{A*A*(.5*AL06(A)-0.25)+0.251/{1.-A} CALL CALL CALL CALL CALL CALL CALL IF (ABS(A-1.).LT.E) GO TO 100 TANTHO(1) = TANTHO(1)+TANTHO(J) . 641 63) 65) 66) 67) 631 64) START LUUP FUR X INCREMENT IF (ICKY.EQ.1) GO TO 130 IF (1.61.1) GU TO 240 IF (A.LT.E) GO TO 90 (SEKIET.EQ.10H (SERIET.EW. 10H (SERIET.EU. LOH (SERIET.E.J. 10H (SEAIET.EQ. IOH IF (SERIET.EW. 10H (SEALET.E. 10H SELECT SERIES DO 120 J=2,ICKY $\gamma LP = -1/T ANTHO$ CHINAT/L-= 9UY YPP=10.**10 Yp=10.**10 GU TO 110 11XW0-=17 60 TO 110 CUNTINUE Z=. JJ02 5 **CONTINUE** CONTINUE H=J.0 H=-.5 Q=1.0 ŭ=1.0 [=] H=0 ц, u. u. 1 Ц Ц 140 130 120 100 110 80 60 . ں J Ċ, ں ں 000565 000545 000524 000526 000527 000531 000531 000535 000541 000551 0005555 000561 000516 000520 000522 000454 000455 000456 000460 000500 000510 000511 000512 000516 000436 000453 003350 000414 000427 000432 000437 000461 000346 003377 00336 000362 000427 144000

14

APPENDIX

11.010

-

or the other t

ে हो रही होती। हि दि दि हो र रो र ही दी तोति जा र हो रहे देव के स**तीती.** तीता को दि**ल्ला कि वित्ये के का तोव र जा लागविक र र स्वाकि वित्ये के कि**

12800000	12900000	13000000	13100000	13200000	13300000	13400000	13500000	13600000	13700000	13800000	13900000	14000000	14100000	14200000	14300000	14400000	14500000	14600000	14700000	14800000	14900000	15000000	15100000	15200000	15300000	15400000	15500000	15600000	15700000	15800000	15900000	16000000	16100000	16200000	16300000	16400000	16500000	16600000	16700000	16800000	16900000	17000000
A1280	A1290	A1300	A1310	A1320	A1330	A1340	A1350	A1360	A1370	A1380	A1390	A1400	A1410	A1420	A1430	A1440	A1450	A1460	A1470	A1480	A1490	A 1500	A1510	A1520	A1530	A1540	A1550	A1560	A1570	A1580	A1590	A1600	A1610	A1620	A1630	A1640	A1650	A1660	A1670	A1680	A1690	A1700
5) CALL PHPS65 (PHI, PSI)	5) CALL PHPS66 (PHI,PSI)	7) CALL PHPS67 (PHI,PSI)	A) CALL PHEP63A (PHI,EPS)	<pre>A) CALL PHEP64A (PHI,EPS)</pre>	<pre>\) CALL PHEP65A (PHI,EPS)</pre>	4) CALL PHPS63A (PHI,PSI)	<pre>A) CALL PHPS64A (PHI,PSI)</pre>	A) CALL PHPS65A (PHI,PSI)				I TERATION							<pre>baselinglessignment in the second in the second</pre>	<pre>[] #S [N(PHI(J)-EPS(J) #ACRAT)</pre>	(1	. (r)						J-1).6T.0.0) XTP=XT(J-1)+YTP(J-1)*(XT(J)				Τ,ΥΤ)										
IF (SERIET.EQ.IOH 6	IF (SERIET.EQ.IOH 6	IF (SERIET.EQ.IOH 6	IF (SEKIET.EQ.IOH 63	IF (SERIET.EQ.IOH 64	IF (SERIET-EU-IOH 65	IF (SERIET_EQ_IOH 63	IF (SERIET.EQ.10H 64	IF (SERIET.EQ.10H 65	RAT=1.0	I T=0	ACRAT=1.0	C LUOP START FOR THICKNESS	150 CONTINUE	[T = [T +]	PKINT 510, IT,RAT	ACRAT=ACRAT*RAT	YMAX=0.0	DO 160 J=1,201	XT(J)=-2.0*COSH(PSI(J)*ACR	YT(J)=2.0*SINH(PSI(J)*ACRA	IF (YT(J).GT.YMAX) XYM=XT(IF (YT(J).GT.YMAX) YMAX=YT	150 CONTINUE	XTP=1.0	DO 170 J=2,201	YTP(J)=01F(J,5,201,XT,YT)	IF (J.LT.3) GU TO 170	IF (YTP(J).LT.0.0.AND.YTP([[]]]] []] []] []] []] []] []] []] []]	170 CONTINUE	YTP([])=10.**6	CALL FILUP (XTP,YM,2,201,X	UO 180 J=2,201	YTPP(J)=DIF(J,5,201,XT,YTP	180 CONTINUE	YTPP(1)=10.**6	X0=XT(1) X	XT = XT(201)	TK=2。*YM/(XL-XD)	IF (TUC.LE.E) GO TO 190	C TEST THICKNESS	RAT = TOC/TR
000571	000575	00000	000605	000611	000615	000621	000625	000631	000635	000636	000637		000641	000641	000643	000652	000654	000655	000656	000672	000706	000713	000717	000721	000723	000724	000731	000733		0.00752	000754	000756	000762	000764	177000	000773	000775	000776	000100	001003		00100

1840000018500000 8200000 .7100000 17200000 7300000 17400000 17500000 17600000 177 00 0 00 17800000 17900000 8000000 8100000 .830000 8600000 8700000 8800000 18900000 9000006 00000161 19200000 19300000 19400000 9500000 00000961 9700000 19800000 00000661 20000000 20100000 202 000 00 20400000 20500000 20600000 20700000 20300000 20800000 20900000 21100000 21200000 21000000 21300000 A1940 A1950 A2010 A1710 A 1720 A1730 A1740 A1750 A1770 A1780 A 1 790 A1810 A1820 A1830 A1840 A1850 A1860 A1870 A1880 A1890 A1900 A1910 A1920 A1930 A1970 A1990 A2000 A2030 A1760 A1800 A1960 A1980 A2020 **A2040** A 2050 A2060 A2070 A2080 A 2090 A2110 A2120 A2130 A2100 IF (I.EQ.I) PRINT 520, XYM,YMAX,XTP,YM,XT(11),YT(11),YTP(11),RNP,R IF (ALI.3T.E.DR.ICKY.GT.IJ PRINT 540, X,XU(I),YU(I),XUC,YUC,YUP,XL 1(1),YL(1),XLC,YLC,YLP ٨N= XT(IL) * (YTP (IL) * XT(IL) - YT(IL)) / (XT(IL) *(2.*YTP(IL) - GN) - YT(IL)) BN= SQKT((YT(11)-GN*XT(11))**2/(1.-(XT(11)-AN)**2/AN**2)) IF (ALL-LE-E-AND-ICKY-EQ-I) PRINT 550, X,Y,YP,YPP,XC,YC PAINT CAMBERED CULUMN HEADINGS AND ORIGIN POINT IF (ALL-GT-E-OR-ICKY-GT-I) PRINT 490 F PRINT UNCAMBERED COLUMN HEADINGS AND ORIGIN POINT If (ALI-LE-E-AND-ICKY-EQ-I) PRINT 480 IF (AbS(RAT-1.0).6T.0.0001.AND.IT.LE.10) G0 T0 150 YTP(J)=BN**2*(AN-XT(J))/AN**2/{YT(J)-CN*XT(J))+CN YTPP(J)=-&N**4/AN**2/{YT(J)-CN*XT(J))**3 FIT TILTED ELLIPSE AT ELEVENTH PROFILE POINT YT(J)=BN*SQRT(1.-(XT(J)-AN)**2/AN**2)+CN*XT(J) SCALE LINEARLY TO EXACT THICKNESS CN=2.*YTP(11)-YT(11)/XT(11)+0.1 YTPP(J)=SF*YTPP(J)*(XL-XD) IF (XT(J).LE.E) GU TU 220 (DX-TX)/(DX-(C))X)=(C)XX IF (TOC.LE.E) GO TU 230 YT(J)=SF*YT(J)/(XL-XD) IF (I.GT.1) GO TO 210 IF (TUC.LT.E) SF=0.0 XTP=(XTP-X0)/(XL-X0) YMAX=YMAX*SF/(XL-XD) (DX-7X)/(CX-WAX)=WAX **ΥΤΡ(J)=SF*ΥΤΡ(J)** YM=YM*SF/(XL-X0) ALI = ABS (CLI(1)) DO 200 J=1,201 00 220 J=1,10 RNP= BN*#2/AN LAT, ACRAT, LT XL(1)=0.0 X=0.00025 XL(1)=0.0 CUNTINUE CONTINUE CONTINUE CONTINUE SF=RAT 0•0=X 200 210 220 230 190 S J ں J 001024 001035 001056 001066 001223 001025 001030 001045 001046 001053 001053 001003 001066 001076 001134 001153 001162 001164 001222 001225 001242 001355 00100 160100 001051 001001 001100 0011177 001120 761100 001106 001222 001273 001350 001041 170100 001311

16

ավելինինի երենությելին մերելին առում է ուներին անձածենին ամնեններին մեննիներին մենաներին մենեներին հետուներին հ

一個

APPENDIX

031360	240 CONTINUE	A2140	21500000
0-2100	C INTERPOLATE FUR THIGNNESS AND DERIVATIVES AT DESTARD VARGES OF A CALLE FILLD (Y.V.2.201.XT.YT)	A2160	2160000
001364	CALL FTLUP (X.YP.2.201.XT.YTP)	A2170	21700000
001370	CALL FILUP (X, YPP, 2, 201, XT, YTPP)	A2180	21800000
	C COMPUTE CAMBERLINE	A2190	21900000
001374		A 2 2 0 0	22000000
001375	A (1) = A S	A2210	22100000
001376	CLI(I)=CLIS	A2220	22200000
001400	250 L=L+1	A2230	22300000
001402	A(1) = A(L)	A2240	22400000
001403	C T I (1) = C T I (T)	A2250	22500000
001405	XC=X*CHD	A2260	22600000
001407	Y C=Y + CHD	A2270	22700000
001410	XLL=X*ADG(X)	A2280	22800000
001413	Q=1•0	A2290	22900000
001+15	<pre>IF (AdS(1A).LT.E.AND.ABS(1X).LT.E) G0 T0 300</pre>	A2300	23000000
001430	IF (A.LT.E.AND.(IX).LT.E) GO TO 310	A2310	23100000
144100	IF (AðS(A-X).LT.E) 30 TO 260	A2320	23200000
001445	IF (ABS(1X).LT.E) GJ TD 280	A2330	23300000
001450	IF (AbS(A-1.).LT.E) GU TU 290	A2340	23400000
001454	V =- (A-X) / ABS (A - X)	A2350	23500000
001461	0WXC = (1 • - X) * AL 06(1 • - X)	A2360	23600000
001467	AMXL=(A-X) *ALOG(ABS(A-X))	A2370	23700000
001476	0MXL1=-AL0G(1X)-1.	A2380	23800000
001503	AmxLl=-ALUG(ABS(A-x))-1•	A2390	23900000
001512	0WXL2=1./(1X)	A2400	24000000
001514	A:MXL Z= 1 • / (A-X)	A2410	24100000
001520	Z=。5*(A-X)*AMXL-。5*(1。-X)*OMXL-。25*(A-X)**2+。25*(1。-X)**2	A2420	24200000
001534	Z]= *5*((A-X)*AMXL]-AMXL-(IX)*OMXL]+OMXL+(A-X)-(IX))	A2430	24300000
001551	Z2=*5*(A-X)*AMXL2-AMXL1-*5*(1X)*OMXL2+OMXL1	A2440	2440000
001563	IF (A.LE.E) GO TO 270	A2450	24500000
001566	G=-{	A2460	24600000
001577	H={0.5*(14)**2*4LUG{1A}-0.25*(1A)+6	A2470	24700000
001611	GU TO 320	A2480	24800000
001612	260	A2490	24900000
001522	21=5*(1X)*(-ALUG(1X)-1.)+.5*(1X)*ALOG(1X)5*(1X)	A2500	25000000
001037	ZZ=-ALUG(1X)-0.5	A2510	25100000
001644	G=+(A**2*(。5*ALOG(A)-0。25)+0。25)/(1.~A)	A2520	2520000262
001055	H={0.5*(1A)**2*ALDG(1A)-0.25*(1A)**2)/(1A)+G	A2550	2230000
001667	G0 T0 320	A2540	25400000
001670	270 G=25	0447A	
001671	H=-•5	N9628	nnnn962

010100		A2570	25700000
		A2580	25800000
001 100 t	₀=-(A**∠*(。S*ALUG(A)-0。25)+0。25)/(I.•+A)	A2590	25900000
C07100	H= (0.5* (1A) * * 2 * ALUG (1A) - 0.25* (1A) * * 2) / (1A) + G	A2600	26000000
111100	2=*2*(A-1*)**2*2*ALUG(Ab5(A-1*))-0*25*(A-1*)**2	A2610	26100000
	LI=+ (A-1.)*ALUG(ABS(A-1.)) 75 10 4410	A2620	26200000
741700		A2630	2630000
11144	6U 1U 3ZU 36A r-a o	A2640	26400003
		A2650	2650000
C4/TOO	D=H J=O	A2660	26600000
242100		A2670	2670000
001756	<pre>ctt=_Xt*ALUG(te-X) 71=Atuct1Yt+1</pre>	A2680	26300000
001763		A2690	2690000
001766		A2 700	27000000
001766		A2710	27100000
001767		A2720	27200000
001770		A2730	27300000
122100	7 K - C - C - C - C - C - C - C - C - C -	A2740	27400000
001772		A2750	27500000
211100		A2760	27600000
C11100		A2770	27700000
	6U 1U 3ZU 310 C- 35	A2780	27800000
00000		A2790	27900000
100200		A2800	28000000
500200		A2810	28100000
		A2820	28200000
500200		A2830	28300000
900200		A2840	28400000
110200		A2850	28500000
210200	52U TCMB(L)=CL1*(2/(IW#A)-XLL+G-H#X)/PI/(A+I.)/2. Veres	A2860	28600000
		A2870	28700000
160200	IT IX.EI	A2880	28800000
	14411111111111111111111111111111111111	A2890	28900000
002050		A2900	2900000
00204	IT (IFOAA(L)=E4+1) IANNA(L)==5.0	A2910	29100000
100200		A2920	29200000
		A293U	29300000
002065		A2940	29400000
002000		A2950	29500000
70000	IF (ADDIL=A/*GI*E) GU U 340 Vrajiji,	A2960	29600000
002075		A2970	2970000
010205	240 UT 250 240 DT 410 DT 40	A2980	29800000
	0+0 FIA=FI*(A+1	A2990	29900000

18

į

11.11

002101	YCP2(L)=CLI*{Z2/(IQ*A)-I./X)/PIA	A3000	30000000
002112	350 CUNTINUE r mantfifa camberiine option	A3020	30200000
002112	IF (SERIEC.EQ.IUH 634.0R.SERIEC.EQ.IOH 644.0R.SERIEC.E	A3030	30300000
	1Q.10H 65A) GU TU 360	A3040	30400000
002125	G0 TU 380	A3050	30500000
002120	360 YCMB(L)=YCMB(L)*0.97948	A3060	30600000
007130	TAN TH(L)=TANTH(L)*0.97948	A3070	30700000
002132	YCP2(L)=YCP2(L)*0.97948	A3080	30800000
002134	IF(ABS(A		30900001
002146	PRINT 5.30	A3100	31000000
002151	READ (0,500) NPWIPE	A3110	31100000
002157	IF (KUN.EQ.3) KUN=0	A3120	31200000
002162	IF(KÜN.EQ.O) CALL NFRAME	A3121	31300001
002164	GU TO 30	A3130	31400000
002165	370 CONTINUE	A3140	31500000
002165	<pre>IF (TANTH(L).LE24521*CLI) YCMB(L)=0.24521*CL[*(1X)</pre>	A3150	31600000
002175	<pre>[F { TANTH(L) LE24521*CLI) YCP2(L)=0.0</pre>	A3160	31700000
002203	<pre>IF (TANTH(L).LE24521*CLI) TANTH(L)=-0.24521*CLI</pre>	A3170	31800000
002211	<pre>IF (TANTH(L).LE24521*CLI) IF6XA(L)=1</pre>	A3180	31900000
002217	380 CUNTINUE	A3 190	32000000
002217	IF (ICKY.GT.I.AND.L.LT.ICKY) GO TO 250	A 3200	32100000
002227	IF (ICKY_E4_1) 60 TO 400	A3210	32200000
002230	DO 390 J=2,ICKY	A3220	32300000
002231	YCMB(1)=YCMB(1)+YCMB(1)	A3230	32400000
002233	TANTH(1)=TANTH(1)+TANTH(J)	A3240	32500000
002235	YCP2(1)=YCP2(1)+YCP2(J)	A3250	32600000
002237	390 CONTINUE	A3260	32700000
002241	400 CONTINUE	A3270	32800000
002241	F = SQKT(1.+TANTH**2)	A3280	32900000
002245	THP = YCP 2/F ** 2	A3290	33000000
002247	SINTH=TANTH/F	A3300	33100000
002251	COSTH=1./F	A3310	33200000
	C CAMBERLINE AND DERIVATIVES COMPUTED	A3320	33300000
002253	[=[+]	A3330	33400000
	C COMBINE THICKNESS DISTRIBUTUION AND CAMBERLINE	A3340	33500000
002255	XC(1)=X-X+81N1H	A3350	33600000
002260	Y U(I) = Y C MB + Y * C DS T H	A3360	33700000
002263	XL(I)=X+Y*SINTH XL	A3370	33800000
002266	YL(I)=YCMB-Y*CUSTH	A3380	33900000
	C SELECT VALUES FOR PUNCHED OUTPUT	A3390	34000000
002271	IF (ABS(X-XA(K)).GT1**6) GO TO 410	A3400	34100000
005200		07604	~~~~~~

202302	Y AUT (X) = Y U (I)	A3420	34300000
002303	(V) = X (()	A3430	34400000
002305	۲۹۲ (۲) = ۲۲ (۲) کار (A3440	34500000
002200	▼ # 六 + 1	A3450	34600000
0.0231.0	410 CONTINUE	A3460	34700000
	C MULTIPLY BY CHORD	A3470	34800000
0 1 2 3 1 0	XUC = XU(I) *CHD	A3480	34900000
215200		A3490	35000000
002314	XLC=XL(1)*CHD	A3500	35100000
002315	YLC=YL([])*CHD	A3510	35200000
0.02317	IF (ALI.LE.E.AND.ICKY.EQ.I) GO TO 420	A3520	35300000
	C FINU LUCAL SLUPE UF CAMBERED PROFILE	A3530	35400000
002331	YUP={[TANTH*F+YP-TANTH*Y*THP]/{F-YP*TANTH-Y*THP]	A3540	35500000
002342	YLP=(TANTH*F-YP+TANTH*Y*THP)/(F+YP*TANTH+Y*THP)	A3550	35600000
002354	IF (TUC.LT.E) GU TU 420	A3560	35700000
002357	420 CUNTINUE	A3570	35800000
	C FIND X INCREMENT	A3580	35900000
002357	IF (X.LE.0.0975) FRAC=0.25	A3590	36000000
002364	IF (X.LE.J.01225) FKAC=0.025	A3600	36100000
	C PRINT PRUFILE IN APPROPRIATE FORMAT	A3610	36200000
176200	IF (ALL.GT.E.DK.ICKY.GT.I) PRINT 540, X,XU(I),YU(I),XUC,YUP,XL	A3620	36300000
	1(1),YL(1),ALC,YLC,YLP	A 3630	36400000
002435	IF (ALI.LE.E.AND.ICKY.EQ.I) PRINT 550, X,Y,YP,YPP,XC,YC	A3640	36500000
	C INCREMENT X AND RETURN TO START OF X LOOP	A3650	36600000
002400	X=X+FRAC*DX	A3660	36700000
002471	FRAC=1.0	A3670	36800000
002472	IF (X.LE.1.0) GU TU 140	A3680	36900000
	C PLUT AIRFOIL PRUFILE	A3690	37000000
002474	CALL PLOT (XU,XL,YU,YL,I)	A3700	37100000
	C PUNCH SELECTED OUTPUT	A3710	37200000
002500	PUNCH 560, TITLE1,(XAU(J),J=1,32)	A3720	37300000
	*,(YAU(J),J=I,32)		37400000
	*, (XΔL(J),J=I,32)		37500000
	*,(YAL(J),J=[,32)		37600000
	C REFURM TU READ FUR NEXT CASE	A3730	37700000
ひ し2536	GU [U 30)	A3740	37800000
	C.	A3750	37900000
002537	430 Fürsart (13/(8F10.0))	A3760	38000000
002537	440 FURMAT (3A10/2A10/6F10.0)	A3770	38100000
002537	450 FURMAI (3F10.0)	A3780	38200000
164200	460 FUK4AT (5H0T4)C=,F10.6,5H RLE=,F10.6,5H CHD=,F10.6/5H CLI=,10F10.6)	A3790	38300000
002537	470 FURMAT (5H A=,10F10.6//)	A3800	33400000
002537	480 FURMAT (9X,3HX/C,1UX,3HY/C,8X,5HDY/DX,6X,7HD2Y/DX2,22X,1HX,12X,1HY	A3810	38500000

20

1.000

-

V DEPENDING STOLEN

APPENDIX

		A3820	3860000U
002537	490 FORMAT (110HOUNCAMBERED UPPER SURFACE VALU	A3830	38700000
	IES LOWER SURFACE VALUES /6X,	A3840	38800000
	2 3HX / C. J. J. X. 4H XU/C. 7X. 4H YU/C. 8X.2H XU. 9X. 2H YU. 6X. 7HD YU/DXU. 12X. 4H XL/C.	A3850	38900000
	37X++HYL/C-4X,2HXL,9X,2HYL,6X,7HDYL/DXL)	A3860	39000000
007537	500 FURMAT (8A10)	A3870	39100000
162200	510 FURMAT (5H RAT(.12.2H)=, F10.5)	A3880	39200000
002537	520 FORMAT (//16H PEAK IS AT X/C=,F10.6/16H MAXIMUM Y/C IS .F10.6/34H	A3890	39300000
	ISLUPE CHANGES SIGN AT X/C, Y/C = ,2F10.6/20H X/C FIT OF ELLIPSE ,F	A3900	39400000
	210.6/20H Y/C FIT OF ELLIPSE .FI0.6/22H SLOPE FIT OF ELLIPSE .FI0.6	A3910	39500000
	3/51H RADIUS AT ORIGIN OF ELLIPSE THRU XT(11)/C,YT(11)/C,F10.6/39H	A3920	39600000
	4RATID OF T/C INPUT TO T/C COMPUTED IS ,FI0.6/31H CUMULATIVE SCALIN	A3930	39700000
	56 DF EPS.PSI .FID.6/22H NUMBER OF ITERATIONS=,110)	A3940	39800000
155200	533 FURMAT (53H MODIFIED CAMBER LINE OPTION ALLOWED ONLY FOR A=0.8)	A3950	39900000
002537	540 FURMAT (FIU.6.4X.5F11.6.6X.5F11.6)	A3960	40000000
002537	550 FGRMAT (4F13.6,10K,2F13.6)	A3970	40100000
002537	560 FORMAT (8A10/(8F10.5))	A3980	40200000
002537	END	A3990-	40300000

,

L AUSON

PROGRAM LENGTH INCLUDING I/U BUFFERS 016235 FUNCTION ASSIGNMENTS COSH - JOODOG SINH - JOODIT STATEMENT ASSIGNMENTS

STATEM	ENT	ASSIGNMEN	4T S							
30	ı	000055	40	I	000125	50	ł	000132	70	ł
80	1	000427	С Л	I	000436	001	1	000454	110	1
120	ı	000512	0.5.1	ł	000516	140	I	000531	150	I
160	ł	111000	170	۲	000752	061	I	001024	210	I
220	ī	J01162	23 <i>ù</i>	ł	001222	240	ļ	001360	250	ł
260	ł	J01612	270	1	021670	280	I	001674	290	I
300	ł	001766	015	1	002000	320	1	002012	330	I
340	I	J02076	300	I	002112	360	I	002126	370	1
3 80	ł	J02217	400	1	002241	410	I	002310	420	I
430	ı	JJ2671	440	ł	002674	450	ł	002677	460	I
470	ı	002711	400	I	002715	490	ł	002725	500	I
019	ł	JJ276J	520	I	302764	530	I	003033	540	I
550	I	003046	500	ł	00×052					

000231 000461 000641 001653 001400 001744 002165 002357 002357 002756 002756

> BLUCK NAMES AND LENGTHS MAIN - J00015

1AIN - J00015

VARIABLE	ASS IGNMENTS	Ś								
- V	007750	ACRAT -	ŧ	010122	ALI	ŧ	010136	AMXL	I	101010
AMXLI -	010103	AMXL2	1	010105	٨N	I	010133	AS	t	010064
I N D	010134	CHD .	I	1002500000	CLI	I	007736	CL I S	ł	010063
CMJNMR -	010055	CN	ī	21010	COSTH	ł	010146	хq	I	010050
۱ س	J10046	EPS	1	007114	u.	ī	010143	FKAC	I	010061
ا و	010106	Ţ	I	011010	1	I	010051	ICKY	ł	010056
1 CKYP -	010060	IFOXA	I	010032	IT	I	010121	- 7	I	010057
I X	010075	NUX	ı	000004001	Ļ	t	010062	z	I	010052
NAME -	005127	NPWIPE -	1	010142	OMXL	ł	001010	OMXL1	I	010102
JMXL2 -	010104	- - - - - - - - - - - - - - - 	ı	000003	١d	I	010047	PIA	I	010141
- ISd	007425	3	ł	010107	KAT	I	010120	R L E	ļ	010054
I dNX	df1010	SERIEC -	I	010045	SERIET	I	010044	SF	ł	161010
SINTH -	010145	TANTH -	t	010006	TANTHO	I	007762	ТНР	ł	010144
TITLEL -	J00005C01	TUC .	ł	010053	TR	ı	010130	Ð	ŧ	010076

22

1

1.1

-

CONTRACTOR NO. 101

A BANKING A

010073 005137 010124 010070 010074 010114 005761 010116 005027 XAL XLC XT YC YLC YLC YUP 004667 003537 010140 010071 010071 004357 010123 005450 010072 010113 XA XSV XSV YAUC YAUC ZZ ZZ ZZ 010065 010067 010127 003227 005067 010020 004047 010126 F F F F F F F F F F F F X0 XU YAL YCP2 YY YSTART YU Z1 ×× UNUSED COMPILER SPACE 025500 START OF TEMPOKARIËS 003055 START DF INDIRECTS 003210 START UF CUNSTANTS 010077 004727 010137 0101255 0101255 0101255 010066 010115 006272 010111 002541 ҮСМВ Үср Үтрр NAX XLL XTP Y Z >

APPENDIX

C SUBJUTINE DUDI (XU,XL,YU,YLI) XLYL - LONER SURFACE POINTS B D00010 CUNU - UPPER SURFACE POINTS XLYL - LONER SUFFACE POINTS B D00011 CUNU - UPPER SURFACE POINTS B C D00011 CUNU - UPPER SURFACE POINTS B C D00011 CUNU - UPPER SURFACE POINTS C C D00011 CUMUN XULI) XLYL - LONER SUFFACE C C D00011 CUMUN SULI) CALL CALL CLALL C C C D00012 CHTER HEIGHT FOR LABELS AND SCALES NO SCALES C C C D00044 UN HEILE NUTO SUNCL C C C C C D00044 UN HEILE NUTO SUNCL C		0 4040000	00000604 0	0 40700000	0 40800000	0 40900000	0 41000000	0 41100000	0 41200000	0 41300000	0 41400000	0 41500000	0 41600000	0 41700000	41800000	00000614	4200000	42100000	42200000	42300000	9 42400000	9 42500000	1 42600000	42700000	42800000	42900000	43000000	43100000	43200000	43.300000	43400000	43500000	43600000	43700000	43800000	43900000	44000000	44100000	44200000	44300000	44400000	44500000
SUBROUTINE PLOT KULKU, YULYLI) SUBROUTINE PLOT KULKU, YULYLI) 7 - WUHER OF POINTS, XLYU - LOHER SUFFACE POINTS, XLYU - LOHER SUFFACE POINTS, XLYU - LOHER SUFFACE POINTS, XLYU - LOHER SUBFACE POINTS, XLYU - LOHER ASSUMED THE SAME 000010 FEAD 30, CITTLEL(X), XLII), XLII), XLII), XLII), XLII, XLII), XLII, XLII), XLII, XLII), XLII, XLII), XLII, XLII, XLII), XLII, XL		<u>م</u> م	5 CC 2 CC 2 CC	8	8	8	₽ 8	ο ο ο	б я	õ.		3 1 5									210	220	230	240	250	260	270	280	290	300	310	320	330	340	055	360	370	980	390	400	410	+20
000010 0080010 ke DUT (XU,XL,YU,YL,1) 000010 0080010 ke DUT (XU,XL,YU,YL,1) 000010 1 - WUHER OF POINTS. XLYL - LOWER SUFFACE POINTS. 000010 1 - WUHER OF POINTS. XLYL - LOWER SUFFACE POINTS. 000010 1 - WUHER OF POINTS. XLYL - LOWER SUFFACE POINTS. 000010 1 - WUHER OF POINTS. XLYL - LOWER SUFFACE POINTS. 000010 1 - WUHER OF POINTS IN COLL 000011 1 - WUHER OF POINTS INTO SINGLE ARRAY 000011 1 - WUHER OF ALL CALPIT (11,000,-3) 000012 1 - WUHER OF ALBELS AND SCALES OF ALL 000014 1 - WUHER OF ALL CALPIT (11,000,-3) 000045 1 - WUHER OF ALLABELS AND SCALES OF ALL 000045 1 - WUHER OF ALBELS AND SCALES OF ALL 000045 1 - WUHER OF ALL 000045 1 - WUHER OF ALL 000045 1 - WUHER OF ALL 000055 1 - WUHER OF ALL 000056 1 - WUHER OF ALL 000057 1 - WUHER OF ALBELS AND SCALES OF ALL 000057 1 - WUHER OF ALL 000057 1 - WUHER OF ALL 000058 2 - WUHER OF ALL 000059 2 - WUHER OF ALBELS AND SCALES OF ALL <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>w</td><td></td><td></td><td></td><td></td><td>1 C</td><td></td><td></td><td></td><td>ממ</td><td>D (</td><td>жО (</td><td>x</td><td>an 1</td><td>60 (</td><td>80</td><td>Ċ,</td><td>æ</td><td>8</td><td>8</td><td>6</td><td>α,</td><td>æ (</td><td>00 (</td><td>n a</td><td>то (</td><td>ю (</td><td>~ 0</td><td>£</td><td>ec (</td><td>æ (</td><td>10 1</td><td>8</td></td<>										w					1 C				ממ	D (жО (x	an 1	60 (80	Ċ,	æ	8	8	6	α,	æ (00 (n a	то (ю (~ 0	£	ec (æ (1 0 1	8
000010 000010 000010 000045 00005 000045 000005 00005 00005 00005 00005 00005 00005 00005 00005 00005 00005 00005 00005 00005 00005 000000	SUBROUTINE PLOT (XU, XL, YU, YL, I)	C AUTYU - UPPER SURFACE PUINTS. XL,YL - LOWER SURFACE POINTS	COMMON / MAIN/ YSTART(3), CHD, K, TTT, EXCO.	UIMENSIUN XU(1), XL(1), YU(1), YI(1), YIEEO	READ 30, (TITLE1(N),N=1,8)	LF (MDU(K,3).EQ.1) CALL CALPLT (1.0,0.03)	C LETTER HEIGHT FOR LABELS AND SCALES			C LUAU PROFILE POINTS INTO SINGLE ARRAY								K PREID D										[*C+=(1+W))	C SCALE FACTUR	X1M+2]=1.0/XPG			CALL AXES (U., YSTART(K), 90., YPG, Y(M+1), Y(M+2), YTTC, YDV, 1H - HCT 1,	V ALL AKES (0., YSTART(K), 0., XPG, X(M+1), X(M+2), XTTC-VAL, 11 - UCT		C CABEL AKES AND TITLE	CALL NUTATE (XX,YLABEL,HGT, 3HX/C,0.,3)	T L A B L L = Y L A G E L - I + D * HG T	CALL NUTATE (0.0,YLABEL,HGT,TITLE1,0,80)		CALL NUIAIE (92, YS, HGT, 3HY/C, 0, 0, 3)	
			01000	01000	010000	17000	00037	0004-0	-	00.04	00043	00045	00047	00052	00054	00060		00000	00062	00067	02000	12000	1000	0072		9200C	41000		00111	10101	1010	2010	0124	0146		0142	0156 0156	1410	0101 0165	0170		

44600000	44700000	4480000	44900000	45000000	45100000	45200000	45300000	45400000	45500000	45600000	45700000	45800000	45900000	46000000	
430	440	450	460	470	480	490	500	510	520	530	540	550	560	570-	

 C
 RELOCATE DRIGIN

 000174
 CALL CALPLT (0.0,YSTART(K),-3)

 000201
 LAP=0

 000202
 PLUT PRUFILE

 000212
 CALL LINPLT (X,Y,M.1).LAP,0,1,0)

 000221
 CALL LINPLT (X,Y,M.1).LAP,0,1,0)

 000225
 CALL LINPLT (X,Y,M.1).LAP,0,1,0)

 000225
 CALL LINPLE

 0002226
 CALL NFRAME

 0002226
 CONTINUE

 0002226
 RETURN

 000227
 33 FORMAT (BAID)

.

PLOT

SUBPROGRAM LENGTH 002150 FUNCTION ASSIGNMENTS

000277 1 BLJCK NAMES AND LENGTHS MAIN - 000015 STATEMENT ASSIGNMENTS 20 - 000226 30 •

J02147 000326 002137 002142 1 1 1 1 LAP XX YPG 002134 L 000005C01 >> C02141 >> 002145 >> 0021445 >> L – TITLE1 – XTIC – YLABEL – YTIC – 002132 TITLE1 -002132 TITLE1 -002136 XTIC -002143 YLABEL -000000C01 YTIC -. YSTART . VDC X X PC X X X VARLABLE ASSIGNMENTS HGT – 002133 K M – 002135 N XDV – 002140 XP Y – 001230 YD J02146 1.1.1

START OF CUNSTANTS 000231

ΥS

START UF TEMPORARIES 000301

START OF INDIRECTS 000306 UNUSED COMPILER SPACE 035400

•

26

A THE A THE A THE A

11

Ē

		٦ ں	10	100000
	FUNCTION UIT TETTIANTIVANUT SUBROUTINE REVISED 08-01-68 ####################################	С С	20	+62 000 00
		ლ ს	30	46300000
	C THIS TOWNER TO SUCCESS Y AND Y IN C CIVEN TABLE. THE N-POINT	ν υ	• •	46400000
	C LA FUK ING UESINGUNA ANU A INA CATAGO ANDARA	ທ ບ	20	46500000
	C LAGRANGIAN LOUNDER 10 COLO MILLI I COLO	و د	÷ 05	46600000
	° i ≡ INTEGER. THE POINT OF X AND Y AT WHICH DEKIVATIVE IS FOUND	C	10	46700000
	r m = INTEGER, 1-5, TO DETERMINE THE POINT FORMULA, N. N=2+M+1	မ ပ	80	46800000
	C ND INTEGER THE NUMBER OF POINTS IN TABLE OF VARIABLES	с С	06	46900000
	C VADI - APRAY DE INDEPENDENT VARIABLE, X. VARI(NP)	C 1 C	00	4700000
	C VANT ANNO 1 100 100 100 100 100 100 100 100 100	C 1]	10	47100000
		c 12	20	47200000
010000	U DIMENSION VARIAND, VARDAND, X(11), Y(11)	C 13	30	47300000
0 1 0 0 0		C I	40	47400000
010000		C 12	50	47500000
	IF (M.LT.I) RETURN	ן ד טי	60 10	47600000
000015	N=>***+1	ن ر	2	4110000
210000	IF (M.GT.5.UR.N.GT.NP) RETURN	ĩ ں	80	47800000
120000		ٽ ن	90	4790000
		ы С	00	48000000
160000		C 5	10	48100000
660000	ALL AN DU NEUNDI GO TO 10	C 2	20	48200000
000034	TH (TOTESTONONACTION NOT AND A CONTRACT	ы С	30	48300000
440000	NET I TO TO TO TO	с С	40	48400000
000044	IT (Lettend) K=I - [ND-N]	N U	50	48500000
		й С	60	48600000
240000		C 2	10	48700000
000054		C C	80	48800000
connn		Й U	06	48900000
960000		с С	001	49000000
00000		ຕ ບ	110	49100000
		с С	120	49200000
000000		3 0	130	49300000
000000		с С	140	49400000
0,000		с С	150	49500000
1/0000		с С	360	49600000
000013		с С	170	49700000
000014	UC 20 I=T)N TE /I EO IV CO TO 30	с С	380	49800000
010000		С Э	190	49900000
001000		ს 4	00	50000000
501000		Φ υ	÷10	50100000
00100		4 U	+20	50200000
DUULLI				

50300000 50400000	50500000	50800000
430	450	470
440	460	480-

000000

Δ=Δ ≁ Γ	C=C+1./T	40 CUNTINUE	0[F=A*3+Y(K)*C	KETURN	ĒNŪ
000114	000116	000120	000123	000127	0.11.00

28

5

1.000000000

_

ΟIF

SUBPRUGRAM LENGTH 000213

FUNCTIUN ASSIGNMENTS						
STATEMENT ASSIGNMENTS 10 - 000052 30	I	000103	40	I	000120	
BLOCK NAMES AND LENGTHS						
VARIABLE ASSIGNMENTS A – 000205 B	۱	000200	J	ļ	000207	DIF
l 112000 - I	١	000203	×	I	000201	Ē
MX - 000202 ML	11	212000	¥ ¥	1 1	000200	z >
START OF CONSTANTS						
000132						
START DF TEMPORARIES 000135						
START DF INDIRECTS 000143						
UNUSED CUMPILER SPACE 036000						

1 1 1 1

	SUGRUUTINE FILUP (X,Y,M,N,VARI,VARD)	0	10	50900000
	C ****UUCUMENT DATE 7/7/69 SUBROUTINE REVISED 7/7/69 ****	0 ***	50	5100000
	C MUUFFICATION OF LIBKARY INTERPOLATION SUBROUTINE FTLUP	0	30	51100000
110000	I DIMENSION VARI(1), VARD(1), V(3), YY(2)	0	40	51200000
110000	I DIMENSION II(43)	C	50	51300000
	C INITIALIZE ALL INTERVAL POINTERS TO -1.0 FOR MONDTONICITY C	ECK D	60	51400000
110000	I DATA {[[(J], J=[, 43]/43+-1/	0	70	51500000
110000	I MA=I ABS (M)	0	80	51600000
	C ASSIGN INTERVAL POINTER FOR GIVEN VARI TABLE	0	06	51700000
	C THE SAME POINTER WILL BE USED ON A GIVEN VARI TABLE EVERY TIM	0	100	51800000
000012	2 LI=MUU.LUCF{VARI(1),43)+1	C	110	51900000
000025	2 I=11((L)		120	52000000
000027	7 IF (I.GE.O) GU TO 60	G	130	52100000
1 € 0000	I IF (N.LT.2) GO TO 60	0	140	52200000
		0	150	52300000
650000	5 IF (VAKI(2)-VARI(1)) 20,20,40		160	52400000
		0	170	52500000
000036	D IU K=LOCF(VARI(1))	Ω	180	52600000
000045	PRINT I 70, U,K, (VARI (U), J=1,N), (VARD(U), J=1,N)			52700000
601000		٥	200	52800000
	C MUNITUNIC DECREASING	C	210	52900000
000105	5 20 00 30 J=2,N	C	220	5300000
211000	IF (VARI(J)-VARI(J-I)) 30,10,10	0	230	53100000
000116	5 30 CONTINUE	0	240	53200000
121000		0	250	53300000
	C MUNITUNIC INCREASING	a	260	53400000
000121	L 40 D0 50 J=2,N	a	270	5350000
000123	3 IF (VARI(J)-VARI(J-I]) 10,10,50	0	280	53600000
121000	7 50 CUNTINUE	۵	290	53700000
		a	300	53800000
251000	60 [F (I_LE_0)]=]	0	310	53900000
661000 1 / 1 / (((a	320	54000000
141000		٥	330	54100000
64T000	5 LF (MA.NE.0) GU TU 80	с С	340	54200000
	C ZEKU OKDEK	۵	350	54300000
000144	+ 70 Y=VARD(1)	۵	360	54400000
641000		0	370	54500000
	C C LUCATE I INTERVAL (X(I)-LE-X-LI-X(I+I))	٥	380	54600000
041000	0 80 IF ((VAKI(I)-X)*(VAKI(I+I)-X)) 110,110,90	C	3 90	54700000
	C IN GIVES DIRECTION FOR SEARCH OF INTERVALS	0	400	54800000
CCTOOO	V0 IV IV<	a	410	54900000
	L IF X UUTSIDE ENDPUINTS, EXTRAPOLATE FROM END INTERVAL	0	420	55000000

17

11111

-

0.01000	TOO TE (TITATI LE OL EO TO 110	0	30	55100000
201000	TO IT ATTINICES OF O THE	D 44	40	55200000
		0 45	50	55300000
01000	TF ((VARI(T)-X)*(VART(T+1)-X)) 110,100	0	60	55400000
011000		0	70	55500000
		0 4£	80	55600000
000176	V=[VARI(I]+(VARI(I+1)-X)-VARD(I+1)+(VARI(I)-X))/(VARI(I+1)-VARI(I))	0	90	55700000
		D 50	00	55800000
116000		0 51	10	55900000
117000	C SECOND JADER	0	20	56000000
112000	120 [F (N_FG_2) GJ TO 10	0	30	56100000
112000		0 27	40	56200000
000216	IF (I.FO.1) GO TO 130	0	50	56300000
011000		0	60	56400000
112000	SK=VARI(I+1)-VARI(I)	ís O	70	56500000
000221	F ((X**(X-VAHI([-1))) - LT-(SK*(VARI([+2)-X])) GO TO 140	с D	80	56600000
000231		ñ O	90	56700000
000223		0 6(00	56800000
222000		0	10	56900000
000235		0 0	20	57000000
		0 0	30	57100000
10000		ê G	40	57200000
000243	YY(1)={ VARU(1) * V(2)-VARD(L+1)*V(1))/(VARI(L+1)-VARI(L))	0	50	57300000
000252	YY(2)=(VARD(L+1)*V(3)-VARD(L+2)*V(2))/(VARI(L+2)-VARI(L+1))	0 D	60	57400000
000263	Y={YY{!]*V(3]-YY(2]*V(1))/{VARI(L+2]-VARI(L)}	D 6	70	57500000
000073		D 6	80	57600000
000075		0 6	06	57700000
		0 7	00	57800000
0.00776	170 FORMAT (1H1.50H TABLE BELOW CUT OF ORDER FOR FTLUP AT POSITION ,	0 7	10	57900000
	115./31H X TABLE IS STORED IN LOCATION .06.//(8615.8))	0 7	20	58000000
000276	END	0 7	30-	58100000
-				

FTLUP

SUBPROGRAM LENGTH 0004444

FUNCTION ASSIGNMENTS

STATÉMENT 10 -	A S S I G NMEN	1TS 1.5	1	000105	Ċ					
		0	I	COTODO	0	1	000116	40	ļ	000121
	171000	0	I	000132	02	ł	000144	80	١	000146
- 06	000153	100	ŧ	000102	110	I	000174	120	ł	112000
- 081	000231	0+T	I	000233	150	I	000235	160	I	000273
170 -	000304)) 4		
BLOCK NAME	S AND LEN	11 TH C								
VARIABLE Z	ASSIGNMENT	S.					,			

VARIABLE	ASS IGNMEN1	r s								
- 1	000436	II	I	000361	N I	I	000441	~	I	000440
' ×	00437	ر_	I	000443	۲I	1	000435	MA	I	000434
SK	000442	>	I	000354	۲۲	1	000357			

START OF CONSTANTS 000300

START OF TEMPORARIES 000321

START JF INUIRECTS 000337

UNUSEU CUMPILEN SPACE 035200

.

• • • • •

.

to a an contract -
	SUBRUUTINE PHE	P63(PHI,EP:	()			58200 0
000005	DIMENSION PHI	(1),EPS(1)				5830000
000005	UIMENSION PHIL	D(201) + EPSI	D(201)			58400000
000005	DATA (PHILD(I)	. EPSLO(I).	[=1,25)/			58500000
		0.0000.	.01569.	.00164,	.03139,	58600000
	1 0.0327.	.04708	.00487.	.06278.	.00641,	5870000
	1 .0784A.	00789.	.05419.	.00928.	.10990,	58800000
	1 .01057	12562.	. 01174.	.14135,	.01278.	5890000
	15708	01367	.17277.	.01439.	.18846,	5900000
		- 20415	01542	.21987.	.01576,	591 00000
	1	.01601.	25129	.01619.	.26701.	5920000
	1 -01632.	-28273.	.01642.	.29844,	.01651.	5930000
	1 -31416.	.01661.	.32987.	.01673,	. 34559.	5940000
	1 .01688.	.36130,	.01705.	.37700.	.01725/	5950000
000005	DATA (PHILD(I	. EPSLU(I),	I=26,50)/			5960000
	1 .39271.	.01747.	.40842.	.01771.	.42412,	2970000
	1 01797.	.43983,	.01824,	.45553,	.01853.	5980000
	47124.	.01884,	.48695,	.01916,	.50266,	2990000
	1 .01949.	.51837.	. C1984.	.53407,	.02020.	0000009
	1 54978.	.02058,	.56549,	.02097,	.58120.	60100000
	1 .02137	.59691,	.021 79.	.61261,	.02223.	6020000
	1 .62832.	.02268,	.64403,	.02315,	.65974,	6030000
	1 .02363.	.67545.	.02413,	.69116,	.02464.	6040000
	1 .70687.	.02517.	.72257,	.02571,	.73828,	6050000
	1 02620.	.75399.	.02683,	.76969.	.02741/	60600000
000005	DATA (PHILD(I	(I) 'EPSLD(I),	I=51,75)/			60,000
	1 .78540,	.02801,	.80111,	.02862,	.81682.	6080000
	1 .02924,	.83253,	.02988.	.84824,	.03052,	00000609
	l .86395,	.03118,	.87965.	.03185,	.89536,	6100000
	1 .03253.	.91107.	.03323,	.92677.	•03393,	6110000
	1 .94248,	.03465,	.95819.	.03538,	• 97390.	61200000
	1 .03611,	.98961,	.03686.	1.00532,	.03762,	61300000
	1 1.02103.	.03839,	1.03673,	.03917,	1.05244,	6140000
	1 .03995.	1.06815,	.04075,	1.08385,	.04156,	6150000
	1 1.09956,	.04237,	1.11527,	•04319•	1.13098,	6160000
	1 .04402,	l.14669,	.04486,	1.16240,	.04571/	6170000
000005	DATA (PHILD(I), EPSLD(1),	[=76,100)/			6180000
	1 1.17811.	.04657,	1.19381,	.04743	1.20952.	6190000
	1 .04831.	1.22523,	•04919,	1.24093,	.05008.	
	1 1.25064,	.05098,	1.27235,	.05189.	1.28806,	
	1 .05280,	1.30376,	.05372,	1.31947.	• 05464•	0000229
	1 1.33518,	• 05556.	1.35089,	.05548,	l.36624,	100000 ZD

62500000 62400000 62600000 62700000 62800000 63000000 62900000 63100000 63200000 63300000 63400000 63500000 63600000 63700000 63900000 64000000 64100000 63800000 64200000 64300000 644 00 0 0 0 64500000 64600000 64700000 64800000 64900000 65000000 65100000 65200000 65300000 65400000 65500000 65600000 6570000 65800000 65900000 66000000 66100000 66200000 66300000 66400000 66500000 56600000 L.44513. .06357, 1.52367, .06757 1.60221. .07111, 1.68075, .07411, 1.75929, .076501 .07822. 1.99491. .07944. 2.07346, .07880. 2.15200, .07726. 2.23054, .07483. 2.54470. L. 83783, l.91637, 2.30908, 2.38762. .06723, 2.46617, .06214, • 05921 .05628, .03491 2.85885, .07922. 2.78032, .07148. 2.62325, .04973 2.70178 .02690, • 04256 1.39801, •06099 .06522, .06905, . +7654 -L.63362. .07238. ..71217, .07514. .07097. .07727, .86925, .07871. .07941, 1.55509, 2.02633, 2.10487, .94779, .07929. .07829. 2.18341. 2.26196. 2.41905, .06529. .49757, 2.57613, 2.65465. .07359. .06989. .05989, .05374, .04693, 2.73320, 2.81173, 2.89027, .07640, 2.34049. .03955, .03174, I=101,1251 I=126,150) I=151,175) [=176,201) .05831. 42942 .06273. L. 50796. 1.58650, .06681, 1.97921, . 67044. l. 66504, .07356. L. 74358, .07607. 1.82212. 1.90067. • C 7946 • 2.13629. 2.37191, 2.05775. .07900, .07764. 2.21482, .07539, .07793. 2.29338, .07222, •06322• .05751. 2.60754. .07908, .06815, 2.45046. 2.52899, 2.68607, 2.76462. .03647, .05109, 2.84314, • 02853 • • 04404 [], EPSLO([] (), EPSLD(I) , EPSLU(I .06011. .161791, L. 33230. L.46084. .06832, 1.69646. .07464, .07848, .07933, 2.01062, , EPSLU(I .06440. .07176, 1.7750.0, .07690, 1-85354, 2-08917, .07685. L.53938, .07938, .07855, 2.16770, 2.24625, .07423. .07070. .06628, 2.48147, •04834• 1.93208, 2.32479, 2.40334. .06103, 2.50042 .05502, 2.63895. .04106, 2.87456, .033333 2.71749 2.79603, DATA (PHILD(DATA (PHILD) 1.41372, UATA (PHILU DATA (PHILD) .06187. .05740. 1.49225, .06976, .07298, .07552. 1.96350, .07945, .06602. 1.57080. L.04933, 1.72738, .07761. 1.88496. .07491. .07591. l.8064l, 2.04204, .07910. 2.12058. .07794, 2.19911, 2.27767, 2.35619. .06904, 2.43476, .06427. 2.51327, .05871. .05243, .07293, 2.59134, 2.67035, .04549, 2.74891, .03802, 2.82743. .03014. 000000 000000 000000 00000

34

10.00

i i

0000000	000000
000000	000000
000000	000000
000000	000000
202000	
00000	000000

	-	2.90598.	.02527.	2.42169.	-02363.	2.93740.
	4		• • • • • • •			
	٦	.02198,	2.95310,	.02032,	2.96881,	.01865,
	7	2.98451.	.01698,	3.00022,	.01530.	3.01593,
	-	.113610.	3.03164,	.01192,	3.04735,	.01023.
	4	3.06305,	.03853,	3.07876,	.00683,	3.09447.
	7	.00512,	3.11018,	.00342.	3.12588,	.00171.
	-	3.14159.	0.00000			
000015	00	0 201 J=1,20	1			
000006	4	11(7)=PHILD(1 1			
010010 20	01 EF)CJS(J)=EPSLD(17			
000014	X	ETURN				
000015	ŝ	Q,				

35

ø

	SUBROUTINE PE	1EP63A(PHI,E	PS J			00000629
000005	UIMENSION PHI	[(1),EPS(1)				6800000
000055 00005	UIMENSIUN PHI UATA (PHILÜ(]	(),EPSLD(I),	LU(251) [=1,25)/			6820000
	1 0.00000	0.00000	.01459.	.00138,	.02917.	6830000
	1 .03276,	.04376.	.00413,	.05835,	.00548.	6840000
	1 .07294,	.00683,	.08754.	.00815,	.10213,	6850000
	1 .00945.	.11673.	.01072.	.13133,	-01196,	6860000
	l .14594,	-01317.	.14925,	•01344,	.15256,	6870000
	1 .01370,	.15537.	.01396.	.15919,	.01421,	6880000
	1 .16250,	.01445,	.16581,	•01469,	.16912,	6890000
	1 .01490,	.17244,	.01510.	.17575.	.01529,	00000069
	1 .17407,	.01546,	.18420,	.01568,	.18933,	00000169
	1 .01585,	.19447,	.01599,	.19960,	.01610/	69200000
000005	DATA (PHILD()	<pre>I), EPSLU(I),</pre>	1=26,50)/			6930000
	1 .20474,	.01617.	.20988,	.01623,	.21501,	6940000
	1 .01628,	.22015.	.01631.	.22529,	.01635,	6950000
	L .23043,	.01638,	• 24002 •	.01647,	.24960,	6960000
	1 .01657.	.25918,	-01670-	.26877,	.01684,	6970000
	l .27835,	.01698,	.28793.	.01713,	.29751.	6980000
	1 .01723,	.307.09.	.01741.	.31667,	.01754,	00000669
	1 .32626,	.01764,	• 33981 •	•01775+	.35335,	7000000
	1 .01781,	.36691.	.01785.	• 380:46+	.01787.	70100000
	L .3940L.	.01787.	.40756,	.01788,	.42111,	70200000
	1 .01788,	.43466,	.01791.	.44821,	•01796/	7030000
00005	DATA (PHILD((1), EPSLD(1),	L=51,751/			70400000
	1 .46176,	.01304,	.47241,	.01814.	-48306,	70500000
	1 .01820,	.49371,	.01841,	• 50436 •	.01857,	7060000
	10616. 1	.01875,	.52566.	.01895,	.53631,	70700000
	1 .01917,	• 54096 •	•01939•	.55761.	.01963,	7080000
	l .5u826,	.01987,	.57741,	.02009,	.53655,	10900000
	1 .02031,	.59570.	.02053,	.60485,	.02075,	7100000
	1 .01399,	.02094,	.62314,	.02121,	• 63229,	71100000
	I .U2144	.64143,	.02168,	.65058,	.02192,	71200000
	l .05973,	"Û221o,	.67542.	.02257,	.69111,	71300000
	1 .02299,	.70530,	.02342,	.72249,	.02385/	71400000
000005	DATA (PHILD(<pre>II, EPSLO(I),</pre>	I=76,1001/			7150000
	1 .13dlå,	.02429,	.75386,	.02475,	.76955,	71600000
	L .02521,	.78524.	.02569.	.80093,	.02618,	71700000
	L -81652.	.02669.	.83032	.02715.	.84402,	71800000
	1 .02762,	.85772,	.02810,	.87143,	.02859,	1190000
	1 .8ôjlj,	.02909.	.85883	.02960,	.91253.	7200000

i

	1 .03011	92623.	.03063	•63663•	.03115.	72100000
	1 .95363	03168,	.96612,	.03216.	.97860,	7220000
	1 .03265	99109,	.03314,	1.00358,	.03363,	7230000
	1 1.01607	• • 03412,	1.02856,	.03462,	l.04104,	7240000
	1 .03513	, L.05353.	• 03564 •	1.06602,	.03616/	7250000
000005	DATA (PAIL	0(I),EPSLU(I)	, I=101, 125)/			7260000
	1 1.07850	03609.	1.09023,	.03719.	1.10196,	7270000
	1 .03769	, I.11309,	.03821,	1.12541.	.03873,	7280000
	1 1.13714	03925.	1.14887,	.03979,	1.16060,	7290000
	1 .04033	, 1.17232,	.04037.	1.18405,	•04143•	7300000
	1 1.19577	• 04198.	1.20699,	.04253,	1.21821,	7310000
	1 .04307	1.22942,	.04362.	1.24064,	.04418.	7320000
	1 L.25136	• •04473•	1.26307,	.04528,	1.27429,	7330000
	1 .04584	, 1.28551,	.04639,	1.29672,	• 046 94 •	7340000
	1 1.30794	04749.	1.31876,	.04801,	1.32958,	7350000
	l .04853	• 1.34041,	.04904,	1.35123,	.04955/	7360000
000005	DATA (PHIL	U(I), EPSLD(I)	, I=126, 150)/			7370000
	1 1.30205	• • 05 00 5 •	1.37288,	.05056.	1.38370,	7380000
	1 .05136	1.39453.	.05155,	1.40535.	• 052 05 •	1390000
	1 1.41617	, .05254,	1.42675.	.05302.	1.43732,	1400000
	1 .05350	1.44789,	.05398,	1.45847.	• 05445 •	7410000
	1 1.46904	• • 05492•	1.47961.	.05538,	1.49019,	742 000 00
	1.05585	• 150076,	.05630,	1.51133,	.05676.	7430000
	1 1.52191	• • 05721.	1.53232,	.05764.	I.54273.	1440000
	1 .05807	, 1.55315,	.05850,	1.56356,	.05892,	7450000
	1 1.57397	05933,	I.58439,	.05973.	l.59480,	7460000
	1 .00012	1.60522,	. C6050,	. 1.61563,	.06088/	7470000
000005	DATA (PHIL	0(I) 'EPSLD(I)	, I=151, 175)/			7480000
	1 1.62605	• • 06124.	1.63637,	.06158,	1-64669,	1490000
	1 .06192	, 1.65701,	.06224.	1.66733.	.06255,	7500000
	1 1.67765	• • 06286•	1.68797,	.06315,	1.69829,	7510000
	1 .00344	, 1.70862,	.06372,	1.71894,	.06399,	7520000
	1 1.72926	, .00425,	1.73961,	.06451,	1.74996,	7530000
	1 .06475	, 1.70031,	.06500.	1.77066.	.06523,	7540000
	1 1.73101	• • 06546,	1.79136,	.06567.	1.80171,	7550000
	1 .00588	, 1.81206,	.06608,	1.82241,	.06626,	7560000
	1 1.å3276	• • 06643•	1.84322.	.06660,	1.85368,	7570000
	1 .00675	, 1.80414,	.06689.	1.87461,	.06702/	75800000
000005	DATA (PHIL	0(I) *EPSL0(I)	, I=176, 200)/	_		1590000
	1 1.48507	• • 06714.	l. 89553,	•06724•	1. 90600,	7600000
	1 .00733	 1.91646. 	.06740.	1.92692.	.06746.	7610000
	I I. 93738	• • 06751,	1.94807,	.06754,	L.95875,	7620000
	1 .06755	, 1.96943,	.06756.	1.98011,	• • 06754 •	7630000

16500000 76600000 784,00000 79200000 0000096/ 76700000 16800000 76903000 7000000 77100000 77200000 7300000 77400000 7500000 776 00000 77700000 77800000 00000611 8000000 78100000 78200000 78300000 78500000 18600000 1870000 78800000 8900033 79000000 00000161 79300000 0000076. 19500000 00000161 6400000 2.01216, .06728. 2.06637, .06667. 2.12176. 2.23697. . 00257. 2.36129, .05767, 2.42853, 2.50106, .05050. 2.58031. .04421, 2.66966, .03649. 2.80690. .02056, 2.17842, .06434. 2.29758, 3.01607, .06029, .00339, .06571 .05448. 2.03353, .06632. 2.20184, .04834. .03125, .06748. .06707, 2.08853. 2.14392, .06522. .06367. 2.26038, .06173, 2.32306, .05927. 2.38677. .05648. 2.45755+ .05330. 2.53005. 2.61606, .04120. 2.70539, 2.89056, .01363, 3.09975, CALL FILUP(PHI(J), EPS(J), 2, 251, PHILD, EPSLD) I=201,225) , 1=226,251) PHI(J)=FL0AT(J-1)*3.141592654/200. .06736, 2.05529, 2.16671, .06681. .06295, 2.34855. .05821, .05517, 2.48650. 2.65180, 2.0C148. .06593. .06464, 2.22526. 2.28483. .06078. 2.41402, .05138. 2.56243. .04565, .03807. 2.11068, 2.76507, .02408, 2.97423, .00679. • EPSLD(1). , EPSLU(I). .05376, .06650, .05712. .06752. 2.02284, .06718, 2.07745, .06548. 2.19013, .06401. 2.24868, .06217, 2.31032. .05979. 2.37403, 2.44304, .04957, 2.59819. .04273, 2.63753, .03491, .01738. 3.05791, 2.13284, 2.51556, 2.84873, 0.00000

DATA (PHILD(I) .06695, 2.09961, .06613.

1.99080. .06742. 2.04421,

000005

2.15530,

.06494, 2.21355, .06332. 2.27209, .06126. 2.33580, .05875, 2.34951, .05533,

000005

A (PHILU(I)

UAT

2.47205, .05222, 2.54455. • <u>04</u>703, 2.63393, 2.72.325. .02764,

.03965.

.01020.

2.93240,

END

APPENDIX

38

.

1.000

1 - 1 - 1

The sound have a start to serve

Understanding and the second of the second s

L BALLERGERS D.

attraction of the second se

	SUBKUUTINE PH	ЕР64(РНІ, ЕР	S)			7980000
000005	DIMENSION PHI	(1),EPS(1)				00000661
000005	DIMENSION PHIL	LD(201),EPS	LD(2CL)			80000008
00005	DATA (PHILD(I), EPSLD(I),	I=1,25)/			8010000
	1 0.00000	0.00000.0	.01568,	.00233,	.03136,	8020000
	l .00464,	.04705,	.00692,	.06274.	.00914.	8030000
	1 .07843.	.01129.	•03414.	.01336,	.10985,	8040000
	1 .01531,	.12558,	• 91210 •	.14132,	•01883,	8050000
	1 .15738,	.02035,	.17274,	.02169.	.13842,	8060000
	1 .02287,	•20411•	.02390,	.21981,	.02480,	8070000
	1 .23552,	.02557,	.25124,	.02624.	.26697,	8080000
	1 .02632,	.24270.	.02731.	.29843,	.02774.	8090008
	1 .31416,	.02812,	.32987,	.02846,	.34558,	8100000
	1 .02677,	.36129,	.02905,	.37700,	.02931/	8110000
000005	DATA (PHILU(I), EPSLD(1),	I=26,50)/			8120000
	1 .39271,	.02957,	.40842,	.02982,	.42412,	8130000
	1 .03007.	.43983,	.03033.	.45553,	.03060,	8140000
	1 .47124,	.03090.	•48695•	.03122.	.50266,	8150000
	1 .03158,	.51837,	.03196,	.53408,	.03236,	8160000
	1 .54979,	.03280.	.56549,	.03326,	.58120,	8170000
	1 .03375.	.59691,	.03427.	.61262,	.03481,	8160000
	1 .62832,	.03538,	.64403.	.03598,	.65975,	8190000
	1 .03660.	.67546.	.03725.	.69117,	.03792,	8200000
	1 .70683,	.03862,	.72258,	.03935,	.73829,	8210000
	1 .04010,	.75399.	.04087.	.76970.	.04167/	8220000
000305	DATA (PHILD(I), EPSLD(I),	1=51,75)/			8230000
	1 .78540,	.04250.	.80111.	.04335,	.81683,	8240000
	1 .04423,	.83254,	.04512,	.84825.	.04605,	8250000
	1 .86396,	.04699.	.87967,	.04796,	.89537.	8260000
	1.04896,	.91108,	• 64 998 •	.92678,	.05102,	8270000
	1 • 94248•	.05208,	.95820,	.05317,	.97391,	8280000
	L .05428,	.98962,	.05541.	1.00533,	.05657,	8290000
	1 1.02104,	.05774,	1.03675,	•05894 •	1.05245,	8300000
	1 .uoJl6,	1.06816,	.06140.	1.08386,	.06267.	8310000
	L 1.09956,	.06395,	1.11528,	•06526•	1.13099,	8320000
	1 .05058,	1.14671,	.06793.	1.16242.	.06931/	8330000
000005	DATA (PHILD(I), EPSLD(1),	1=76,1001/			8340000
	1 I.17813,	.07070.	1.19384,	•07213,	1.20954,	8350000
	1 .07357,	1.22524,	.07505.	l.24094,	.07655,	8360000
	L 1.25064,	.07808.	1.27236,	.07964.	l.23807,	8370000
	1 .08123,	1.30378,	.08284,	1.31949,	.08447.	8380000
	1 1.33520,	.08613,	1.35091,	.08780.	1.36661,	8390000

		.03949.	L.38232.	•061160	1.39802,	.09290.	8400000
	-	1-413149	• 794AD •	1-429429	• 46990.	1.44512,	8410000
		.09808,	l.46083,	• 09980.	L.47653,	.10151,	8420000
	ר ר	l.49223,	.10321,	1.50794,	.10488,	1.52365,	8430000
	-1	.10653,	1.53936,	.10815,	1.55508,	.10972/	8440000
000005	DAT	A (PHILD(I), EPSLD(I),	f=101,125)/			8450000
	1	1.57080,	.11125.	1.58649,	.11273,	1.60218,	8460000
	-1	.11415,	1.61788,	.11553,	1.63358,	.11686.	8470000
	T T	l.64929,	 11814. 	1.66500,	.11938,	1.68072.	8480000
		.12057,	1.69643,	.12171.	1.71216,	.12281,	8490000
	- -	1.72738,	.12386,	1.74358,	.12487,	1.75928,	8500000
	~	.12583,	1.77498,	.12675,	1.79068,	.12762,	8510000
	1	1.80639,	.12844.	1.82210.	.12922,	1.83781,	8520000
	~•	.12994,	1.85353,	.13062,	1.86924.	.13125,	8530000
	 	l.88496,	.13182,	1.90066,	.13234,	1.91637,	8540000
	1	.13281,	1.93207,	.13322,	1.94778,	.13358/	8550000
000005	DATA	A (PHILD(I	, EPSLD(1),	I=126,1501/			8560000
	L L	l • 96349•	.13389,	1.57920,	.13414,	1.99491,	8570000
		.13434,	2.01062,	.13448,	2.02633,	.13456,	8580000
	-1	2.04234,	.13459,	2.05775,	.13456	2.07346,	8590000
	-	.13447,	2.08917,	.13433,	2.10488,	.13413,	8600000
	, 1	2.12059,	.13337,	2.13630,	.13354.	2.15200,	861 00000
	1	,13316,	2.16771,	.13272,	2.18341.	.13222,	862 0000
	1 6	2.19911,	.13166,	2.21483,	.13104,	2.23055.	8630000
	٦	.13035,	2.24627,	.12960,	2.26198,	.12879.	8640000
	1	2.27770,	.12792,	2.29340,	.12698,	2.30911,	8650000
	-1	.12598,	2.32481,	.12492.	2.34050,	.12380/	8660000
000005	0414	A (PHILUCI),EPSLD(I),	[=151,175)/			8670000
		2.35619,	.12261,	2.37192,	.12136,	2.38765,	8680000
	٦	.12004,	2.40337.	.11866.	2.41909,	.11722.	8690000
	1	2.43480,	.11572,	2.45051,	.11416,	2.46621,	8700000
		.11254,	2.48190,	.11087,	2.49759,	.10914,	8710000
	- -	2.51327,	.10735.	2.52901,	.10550,	2.54474.	8720000
	-1	.10360.	2.56047.	.10164,	2.57619,	.09963,	8730000
	1	۰ <i>.</i> 94 ا 9 <i>.</i> 5	.09757.	2.60760,	•09545	2.62330.	8740000
	1	.09328,	2.63895,	.09105,	2.65467,	.08876.	8750000
	1	2.67035,	.08645,	2.68609,	.08406.	2.70182,	3760000
	ľ	. J ðló2,	2.71755,	.07913,	2.73327,	.07660/	8770000
000005	JAT	A (PHILU([), EPSLD(I),	I=176,201)/			8780000
	- J	2.74898,	.07402,	2.76468.	.07139,	2.78038.	8790000
	-1	.06873,	2.79607,	.06603,	2.81175.	• 06329•	8800000
	1	2.82743,	.06052,	2.84316,	.05770.	2.85889,	8810000
		.02486,	2.87461,	.05198,	2.89032.	.04907,	8820000

40

APPENDIX

;

÷

A PERSONAL PROPERTY.

-

-

-

11 MMI 1.

000000000000
000000000000000
0000000000000
000000000000000
00000000000000
4 M M F 0 0 0 0 1 N M 4
. დი

2.90603, .04614, 2.92173, .04318, 2.93743,	.04020, 2.95313, .03720, 2.96882, .03417,	2,98451, .03113, 3.00023, .02807, 3.01594,	.02499, 3.03165, .02189, 3.04736, .01879,	3.06307, .01567, 3.07878, .01255, 3.09448,	.00942, 3.11018, .00628, 3.12589, .00314,	3.14159, 0.00000/	201 J=1,201	(())=bhito()	5())=EPSLO())	IURN	
1 2.90603	1 .04020	L 2.98451	I .02499	1 3.06307	1 .00942	1 3.14159	D0 201 J=1	$IHd = (\Gamma) IHd$	201 EPS(J)=EPS	RETURN	

00005	SUBROUTINE PH	HEP64A(PHI,E	(S4)			8950000 8960000
000005	DIMENSION PHI DATA (PHILU()	(L)(25L),EPS	LD(251)			8970000 89807000
	1 0.0000.	0.00000	.01458,	.00149.	.02936,	8990000
	L .00297,	.04403,	.00445	.05872,	.00591,	0000006
	1 .07340,	.00736.	.08803,	.00878.	.10277,	00000106
	1 .01018,	• 11 746•	.01156.	.13216,	•01290•	9020000
	1 .14680,	.01420,	.15019,	•01449•	•15352•	9030000
	1 .01477,	.15685,	.01505,	.16018,	.01532,	90400000
	1 .10351,	.01558,	.16684.	.01583,	.17017.	9050000
	1 .01606,	.17350,	.01628,	.17684.	.01648.	00000906
	1 .18017,	.01667.	.14528,	.01690.	.19039,	90000206
	1 .01709,	.19551,	.01724.	.20062.	.01736/	90800000
000005	DATA (PHILU()	(), EPSLD([),	I=26,50)/			00000606
	1 .20574,	.01745,	.21086,	.01752,	.21598,	00000016
	1 .01753,	.22109,	.01762.	.22621,	-01767.	00000116
	·L .23133,	.01772,	.24090.	.01782,	.25046,	00000716
	1 .01796.	.26003,	.01811.	.26959,	.01828.	00000016
	1 .27915,	.01845,	.28871,	.01861,	.29827.	00000716
	1 .01877,	.30783.	.01891.	.31739.	.01903,	9150000
	1 .32695,	.01912,	.34040,	.01919,	.35384,	00000916
	1 .01920,	.36723,	.01916.	.38072,	.01908,	0000016
	1 .39417,	.01897,	.40761,	.01886,	.42105,	00000016
	1 .01374,	.43450,	.01862,	• + 4 1 9 4 •	.01854/	00000616
000005	DATA (PHILD((), EPSLD(I),	, I=51,751/			92000000
	1 .40139,	.01848,	.47194,	.01846,	.48249,	92100000
	L .01847,	.49304,	.01851,	.50359,	.01856,	92200000
	1 .51414,	.01864;	.52469,	.01873,	.53523,	9230000
	1 .01883,	.54578.	.01895,	.55633,	.01907.	9240000
	I .56688,	.01921,	.57595.	.01933,	.58502.	9250000
	1 .01945,	.59410	.01958,	.60317,	.01972.	9260000
	1 .61224,	.01985,	.62131,	•01999,	.63038,	92700000
	1 .02013,	.63945.	.02028,	.64352,	.02043,	92800000
	1 .65759.	.02058,	.67317.	.02084,	.68874.	9290000
	1 .02111.	.70432.	.02139.	.71989,	.02169/	00000066
000005	DATA (PHILD)	[],EPSLD([],	/1=76,130)/			93100000
	1 .73546,	.02199,	.75104,	.02231,	.76661,	9320000
	1 .02264,	.78218,	.02299,	.79776.	.02335,	9330000
	L .81333,	.02373,	•82695•	.02408,	.84057.	9340000
	L .02444.	.85419,	.02482,	.86781,	.02520,	9350000
	1 .88142,	.02560,	• d9504 •	.02601,	.90866.	9360000

42

:

.

i t i t

1 1 1

•

				00200	02728-	93700000
×	L .02643.	.92228,	• CR0ZD •	• 40000 •	. 47437	9380000
	L .94951,	17170.	• 106 31 4 • • • • • • • •	.00022	02025	00000686
	1 .02852,	. 58679.	.028939	• 7776 • • • • • • • • • • • • • • • • •	1 02450-	0400000
	1 1.01165,	.02977,	1.02401.	* 02020*		00000146
	1 .03064,	L.04892,	.03108,	• C C T O O • T	renten •	94200000
000005	DATA (PHILD(I),EPSLD([],	1=101,121,101=1	67660	1 09714-	9430000
	L 1.07377,	.03198,	L. U8540.	• 77200 ·	03378	94400000
	1 .03280,	1.10882.	• 13332 •	1-12020		9450000
	1 1.13219,	.03425	1.1438/ ,	• 134121		94603000
	1 .03521,	1.16723,	.03571,	1.1/8/1,		94700000
	1 1.19059.	.03674,	1.20180,	.03724,	1.21501,	94800000
	03776.	1.22423+	.03828.	1.23544.	• 03882 •	
	1 1.24665.	.03936,	1.25786,	• 03990.	1.26907,	9490000 06000000
	1 .04045.	1.28028,	.04100.	1.29149,	.04156,	00000130
	-02000-1 1	-04212	1.31357,	•04266+	1.32444,	00000166
	1	1.33531.	.04375,	1.34618,	• 04429/	00000130
	L	(1) (1) (1)	I=126,150)/			000000000
conno		04484	1.36792.	.04539,	1.37878,	9540000
		1 38965	.04649 .	1.40052,	.04704.	00000555
		04760-	1 4 2 2 0 4 •	.04814.	1.43268,	0000956
		1 46 22 3.	04923	1.45397.	.04978,	6210000
		102020	1 - 47527.	.05087.	1.48591,	95800000
	L 1.404029		05104.	1.50721.	.05248,	9590000
	1 .05141,	1.440201		1 - 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1.53883.	9600000
	l 1.51785,	•105CU •	1.020349	. 55020.	.05504	00000196
	1 .05403,	1.54932.	• 10404 •	1,00,000	1 50127.	962 00 0 0
	1 1.57029,	. 05552.	1.580/81	• 00000 •	147728/	9630000
	1 .05647,	L. 60176.	• C2043•	1.012279		9640000
000005	DATA (PHILD(I),EPSLD(I)	, [=151,1C1];		1 - 44340	9650000
	1 1.62274,	.05781,	1.63312.	• 77860 •	L.04040	9660000
	1 .05862,	1.65387,	• 05:901 •	1.00423		9670000
	1 1.67463,	.05976.	1.68501,	.06011.	L 645 344	96800000
	1 .00045.	1.70577.	.06079,	1.11619	• 11100 •	00000696
	l 1.72553,	•06143,	1.73692.	. 06174.	1.41.32.	00000026
	1 .06204,	1.75771,	•06233	1.6811,	• 70707 •	00000179
	1 1.77851,	.06289.	1.78890.	.06316.	L. (993U.	000000
	1 .06341.	1.80970,	.06365,	1.82009.	• 06389	00000216
	1 1.83049,	.06411,	1.84100,	•06432+	1.85104 1.00105	
	1 .00452,	1.86201,	.06471.	1.87252,	.06484/	9150000
000005	DATA (PHILD([], EPSLD([])	, 1=176, 2001,			01400000
	1 1.88303,	.06505,	1.89354.	.06520,	I.90405.	
	1 .06534,	1.91455,	.06546,	1-92506+	• 16550 •	97800000
	I 1.93557.	.06567.	1.94630,	• 62259	L. 40 / 04 •	00000626
	1 .06582.	1.96777,	.06587,	1.97850,	476COD -	

	l 1.98923,	• 06 594 •	1.99996.	.06595.	2-01069-	00000000
	l .06594,	2.02142.	.06593.	2.03215.	.06590.	
	1 2.04238,	.06546.	2.05401	06580	2,065142	
	1 .0.573.	7 07627.	04545	2 00260		00000206
		• 1 7 1 1 0 F 1 • 7	• .00.00.•	1 10 1 4 0 •	• cccon •	9830000
	1 2.058339	• 16544•	2.10965,	.06531,	2.12078,	98400000
	1 .06517,	2.13191,	.06502,	2.14304,	.06485/	9850000
000002	DATA (PHILD((I) JEPSLD (I),	I=201,2251/			98600000
	1 2.15416,	.00466,	2.16592,	• 00445 •	2.17767,	9870000
	1 .06422,	2.18943,	.06398,	2.20118,	.06371.	98800000
	1 2.21293,	• 06344•	2.22469,	.00314.	2.23644.	00000686
	1 .06283,	2.24819,	.06251,	2.25994,	.06216.	00000066
	L 2.27169,	.06180,	2.28447,	.06140,	2.29725.	00000166
	1 .06097,	2.31002,	• 06053	2.32279,	.06007.	9920000
	1 2.33557,	.05960,	2.34834,	.05912,	2.36111,	9930000
	1 .05362,	2.37389,	.05811,	2.38666,	.05760,	660000466
	1 2.39943,	• 05707,	2.41397,	.05646,	2.42850,	6950000
	l .05584,	2.44304,	.05520,	2.45757,	• 05454/	00000966
000005	DAFA (PHILU(I) + EPSLD (I),	I=226,251)/			00000266
	1 2.47210,	• 05 3 4 4 •	2.48663.	.05312,	2.50115.	00000866
	l .05235,	2.51568,	.05154.	2.53020,	.05068.	0000666
	1 2.54471,	• 2 4 5 7 7 •	2.56262,	.04856,	2.58052,	10000001
	L .04728,	2.59842,	.04592,	2.61631,	.04451.	10010000
	1 2.63420,	•04304•	2.65209,	.04154.	2.66997.	100000
	L .04000	2.68735,	.03844,	2.70573,	.03687.	10030000
	1 2.72362,	.03530,	2.76541,	.03165,	2. B0720.	10040000
	L .02834,	2.84899,	.02446.	2.89079,	.02091.	10050000
	I 2.93259,	.01739.	2.97439.	.01389,	3.01619,	100600000
	L .01040,	3.05799,	.00693.	3.09979,	.00346,	10070000
	1 3.14159,	0.00000/				10080000
000005	D0 201 J=7.2	10				1 00900000
000006	PHI(J)=FLOAT	(J-1) *3.1415	92654/200.			10100000
000013 2	01 CALL FTLUP(P)	4[(1),EPS(J)	,2,251,PHIL	.D,EPSLD)		101100000
000035	KH-OKN FNO					101200000
c 20000	ENU					10130000

44

a solution is a deliver to the contraction of the optimization of the contraction of t

the state of the s

I a substant of the substant of t

	PHILIPPIC PHILIPPIC	CD4 C1011 CD	10			101400000
00005	DIMENSION PHI	(T), EPS(T)	10			101500000
000005	DIMENSION PHI	LD(251).EPS	LD(251)			101600000
00005	DATA (PHILD().FPSLD([).	[=1.25)/			10170000
	1 0.0000-	0.0000	.01484.	• 001 56 •	.02967,	101800000
	100312.	04451	00466	.05935.	.00618,	10190000
	1 .07420.	.00767.	.08904.	.00913.	.10389,	10200000
	1 .01054	.11875.	.01191.	.13361,	.01322,	102100000
	1 .14848.	01446	.15175.	.01473.	.15503.	102200000
	1 .01499.	.15830.	.01524.	.16157,	.01549,	10230000
	1 .16485	01572	.16812.	.01595,	.17140,	102400000
	1 .01616.	17468	.01636.	.17795.	.01655,	102500000
	1 18123	.01671.	.18623,	.01693,	.19123,	102600000
	1 01712,	.19623,	.01727,	.20123,	.01740/	10270000
000005	DATA (PHILD(I	. (I) . EPSLD (I).	I=26,50)/			102800000
	1 .20023.	.01750,	.21124.	.01759.	.21624,	10290000
	.01766.	.22124	.01773.	.22625,	.01780.	10300000
	1 23125.	.01783.	.24072.	.01804,	.25018,	103100000
	1 .01822	.25964,	.01842,	.26910.	.01863,	10320000
	1 .27855.	.01884,	.28802.	.01903	.29748,	103300000
	1 .01920.	.30694,	.01934,	.31640.	•01945+	103400000
	1 .32586,	.01950,	.33918,	•01949,	.35250,	103500000
	1 .01938,	. 36582,	.01919,	.37915,	•01895.	103600000
	1 .39247,	.01866,	.40580,	.01836,	.41912,	10370000
	1 .01805,	.43245,	.01775,	.44577,	• 01749/	1 03800000
000005	DATA (PHILD()	(), EPSLD([),	1=51,75)/			103900000
	1 .45910	.01728.	.46962,	•01716,	.48015,	10400000
	1 .01708,	.49098,	.01703.	.50120,	.01702,	104100000
	1 .51173,	.01704,	.52226.	•01708,	.53278,	104200000
	1 .01714,	.54331,	.01722.	•55384•	.01731,	10430000
	1 .56436,	.01741,	.57344.	•01751.	.58252.	10440000
	1 .01760.	.59160,	.01771.	.60068,	.01782.	104500000
	1 .60976,	.01794,	.61884,	.01806,	.62792.	104600000
	1 .01820,	.63700,	.01834.	.64607,	.01850,	104700000
	1 .65515,	.01867,	.67086.	.01898,	• 68656 •	104800000
	1 .01933,	.70226,	.01971.	.71797.	.02012/	10490000
000005	DATA (PHILU([], EPSLD([),	,I=76,1001/			1 05000000
	1 . 73 367,	.02055,	.74937.	.02100,	.76508.	10210000
	1 .02147,	.78078,	.02196.	.79648.	. • 02246•	105200000
	1 .81218,	.02298,	.82590,	.02343,	.83962,	10530000
	1 .02390,	.85333,	.02437,	.86705,	.02485.	10540000
	L .88077,	.02534.	. 89448	.02584,	.90820,	ממת מחיכיכת T

07300000 05700000 05800000 05900000 06600000 06800000 01100000 07200000 05600000 06000000 00100000 06200000 06300000 06400000 .06500000 0670000 00000690 07000000 01400000 07500000 07600000 07700000 07800000 01900000 08000000 08200000 08100000 08300000 08400000 08500000 08700000 08900000 00000160 08600000 08800000 00000060 0020000 00000860 0000000000 09500000 00000960 00000260 000008601 • 02744• • 97449• .03020, .03631. L-15786. .03957, .04294. ..27281. .04650. • 05414 1.49387, .06233. .06645. .07792. 1.03735, I.21605. .43935. .05819. .54816, . 60214, .07433. .70963, 1.76325, • 03321, L. 38434, L • 09872 .05023, .81683, • 08819. .97823. .07049. 1.65598 .08121 .03408 .87046, .03641. .92417 .08949, .93563, .02853, .03759. .18151, .29551. • 49666 • .03137, .04091. .23876. .05177. .46116, .56975. .67744, .08508, .08876, 2.00006, .12238, .04434 .04798. .35114, .40648, .05575, .05984, .51567, .06399. .06808, . 62373, .07205, .07580, .73109, .07928. .78468, .08242. .08718, .94566. .06249, .83826, .89194. .03445 I=101,125) =126,150) =176,2001 =151,175) .56192. .02963, 1.08689. .04225, 1.02478, 1.14603. .04577, L. 31793, 1.37328, -05334, . 05737, .03259. -03568, 1.20469. l.26146, • 04947 • .06150, .06563, L. 59134, 1.64525, .07358, 02689, .03890. ..42845, [•48296**•** .53737. .06969. .65890. .07722. . 75254, .08058, .8C611, .08599. 1.91343. .08787. .96732, .C8927, . 85972 .08355).EPSLD(I) , EPSLD(1) , EPSLD (I .03385, .04724, .05099. .02800, .05901. .07127, , EPSLU (I L.11055, .04025, L.39541, .05495. .45025, .-50477, .06316, .06727, .07507. .. 77396. .08182, .98706, .03078. .03694, .169691 1.22740, .043o3, .28416, 1.34007, L.61293, .72030, .07861, ..82754, .08459, 92192 .04992 1.89120, C3680. .9349**1**. .03848, 1.93915, UATA (PHILD(A (PHILU(.02636, DATA (PHILD(A (PHILU(.02907, 1.01221, 1.07506. .03506, 1.36221, .03198, 1.13421, .03824, 1.25011. .04505, 1.30636, .04872, • 05 255 • .05655, 1.47206. .06067, .06481, 1.63452, .07051, .07994, .08299. 1.90268, .08754, 1.19334, .04158, 1.41754, 1.52057, 1.58055, .06889. .07282, 1.68817, L.74182, l. 34898, .08555, 1.79539. l.95640, .06903, DAT DAT 00000 000005 000005 000005

APPENDIX

46

- 1

111

A set of the set of

1.340

	1 2.	.01098,	•08969,	2.02190.	.08988, 2.05455	2.03282.	100000000000000000000000000000000000000
	• ~ 	04557	-14060-	2.07682.	.09050	2.08806.	110100000
	, , , ,	09.056.	2.09931.	.09061.	2.11056.	.09062	11020000
	~	12180.	.09061.	2.13305.	.09058,	2.14429,	110300000
		09052	2.15554.	.09043,	2.16679,	.09032/	11040000
00005	DATA	(PHILD(I	. EPSLD(I),	I=201,2251/			11050000
	1 2.	17803.	.09017,	2.18979.	.08999,	2.20155,	11060000
		.08977.	2.21330,	• (8953	2.22506,	.08925.	110700000
	1 2.	23681,	. 08894,	2.24856,	.08861,	2.26032,	11080000
	-	08824.	2.27207,	.C8785.	2.28382.	.08743,	110900000
	1 2.	29557.	.0869.8.	2.30822,	.08647,	2.32088,	111000000
		08593.	2.33353,	.C8536.	2.34618,	.08477,	111100000
	L 2.	.35883,	• 08414•	2.37148.	.08348,	2.38412,	111203000
	-	.08279,	2.39677,	.08208.	2.40942.	.08134,	111300000
	1 2,	42206,	.08056,	2.43618,	.07967.	2.45029,	111400000
	-	.07872.	2.46440.	.07772.	2.47851,	.07666/	111500000
00005	DATA	(PHILD(I	, EPSLO(I),	I=226,2511/			111600000
	1 2.	.49260,	.07552.	2.50669.	.07429,	2.52077,	111700000
	, ,	.07297,	2.53483.	.07155,	2.54888,	.07000.	111800000
	1 2,	.56292.	.06833,	2.57978.	.06615,	2.59661,	111900000
	-	.06380,	2.61343,	.06132.	2.63024,	.05873.	112000000
	1 2	. 64 704 ,	.05606,	2.66383,	.05334.	2.68062,	11210000
	-	.05060,	2.69740,	.04788.	2.71420,	.04519.	112200000
	1 2,	.73100,	.04258,	2.77185,	.03664.	2.81276,	112300000
		.03122.	2.85373,	.02628,	2.89475.	.02176,	11240000
	1 2.	.93582,	.01759.	2.97693,	.01371,	3.01807,	112500000
	-	.01008,	3.05923.	• 0 0 6 6 2 •	3.10041,	.00328,	112600000
	1 3	.14159,	0.00000				112700000
000005	D0 2	01 J=1,20	T				112800000
00000	PHI (J)=FLUAT(J-1)#3.141	592654/200.			11290000
000013 2	01 CALL	FT LUP (PH	I(J),EPS(J)	,2,251,PHIL	D,EPSLD)		11300000
000024	RETU	R Z					
000025	END						11320000

000005	SUBROUTINE PHI	EP65A(PH1,E	PS)			113300000
000005	DIMENCION DHE	1 11 2 2 1 2 2 7 1 1 2 2 2 2 2 2 2 2 2 2	1013611			11340000
000005	DATA (PHILOCI	. () () () . () . () . () . () . () . () . () . () . () . () . () . () . () . () . () . () .	LU(231) [=1.25)/			113500000
	1 0.00003	0.0000.	.01453	-00137.	- 02 907 -	11270000
	1 .00274,	.04360,	.00410.	.05814,	.00545.	11380000
	1 .07267,	.03679,	.08721,	.00811,	.10175,	113900000
	1 .00941,	.11630.	.01070.	.13084,	.01195,	11400000
	L .14539,	.01318,	.14877,	.01346,	.15214,	114100000
	1 .01374,	. 15:55/2.	.01401,	.15889,	.01427,	114200000
	1 .16227,	.01453,	.16564,	•01477•	.16902,	114300000
	1 .01500.	.17240,	.01521.	.17578,	.01541,	114400000
	1 .17916,	.01559,	.18436,	.01583,	.18956,	114500000
	1 .01632,	.19477,	.01618,	.19997,	.01630/	11460000
000005	DATA (PHILUCI), EPSLD(I),	I=26,501/			11470000
	1 .20518,	.01640,	.21039,	.01648,	.21559,	11480000
	l .01654,	• 22080,	.01660,	.22601,	.01665,	114900000
	L .23122.	.01671,	.24077.	.01683,	.25032,	115000000
	1 .01693,	.25987,	.01715,	.26941,	.01732.	115100000
	L .2789b,	.01749.	.28851,	• 01 766 •	.29805,	115200000
	1 .01732,	.30760,	.01796,	• 31714,	.01807.	115300000
	1 .32669.	.01814,	• 33996.	.01819,	.35322,	11540000
	I .01816,	•36649,	.01807,	.37976,	.01793,	11550000
	1 .39302,	.01775,	.40629,	.01755,	.41956,	115600000
	1 .01732,	.43283,	.01708,	.44610,	.01684/	115700000
000005	DATA (PHILD(I), EPSLD(I),	I=51,75)/			115800000
	1 .45937,	.01661,	.46976,	•01644,	.48015,	11590000
	l .01628,	.49054,	.01614.	.50093	.01601,	116000000
	1 .51132,	.01549,	.52171,	.01578,	.53210,	116100000
	1 .01569,	• 54:249	.01561,	.55288,	.01554,	116200000
	1 .50327,	•01549,	.57223,	.01546,	.58118,	11630000
	l .01543,	.59014,	.01541,	•59909•	.01541,	116400000
	1 .60805,	.01541,	.61700,	.01542,	.62596,	11650000
	l .01544,	.63491,	.01547,	.64387,	.01551,	116600000
	1 .05232,	•01555•	. 66829,	.01565,	.68376,	116700000
	1 .01577,	.69923.	.01590,	.71470,	.01607/	116800000
000005	DATA (PHILU(I,),EPSLD(I),	I=76,1001/			11690000
	1 .73017,	.01625,	• 14564 •	.01645,	.76110.	117000000
	I .01668,	. 77657,	.01693,	• 79204•	.01720.	117100000
	1 .80750,	.01750.	.82106,	.01778,	.83461,	117200000
	1 .01807,	.84816,	• C1837,	.86172.	.01869.	117300000
	1 .87527,	• 01 90 2 •	.88882,	•01936•	.90237,	117400000

0

APPENDIX

48

.

_

	01020	01502.	02005.	. 92948.	-02040-	117500000
	1 04203-	.02076.	.95538.	.02108.	.96772.	117600000
	- [7](0) - [- 58007.	.02174.	.99242,	.02207.	117700000
		07240	1-01711.	.02274.	1.02945,	117800000
		1 06180-	.02344	1.05415.	.02381/	117900000
		([] · EPSI 0 (])	1=101-1251/			11800000
		-02418-	1.07810.	.02454,	1.08971,	118100000
	100011	1-10132	02528	1.11293,	.02567.	118200000
	1 1.12454	02607	1.13615,	.02647.	1.14776,	118300000
	1 .02639	1.15937.	.02731.	1.17098,	.02775,	118400000
	1 1.18259.	.02819.	1.19373.	.02863,	L.20486,	118500000
	70920 1	1.21600	.02952.	1.22713.	.02998,	118600000
	1 1.23827	.03044.	1.24940.	.03091,	1.26054,	118700000
	1 03138.	1.27167,	.03185,	1.28281,	.03232.	118800000
	1 1.29394.	.03280,	1.30473.	.03326.	1.31552,	118900000
	1 .03371,	1.32631,	.03417.	1.33711,	.03463/	119000000
00005	DATA (PHILD	(I) EPSLD(I)	, I=126,1501/			11100001611
	1 1.34790.	.03510,	1.35869.	.03557,	l • 3694 E+	11920000
	1 .03604.	1.38027.	.03652	1.39106,	.03701.	119300000
	1 1.40185.	.03750.	1.41248,	.03800	I.42312,	11940000
	1 -0.3851.	1.43375,	.03902.	1.44438,	• 03 954 •	11950000
	I 1.45501.	.04007.	1.46564,	•04060•	1.47628,	11960000
	1 .04114.	I.•48691,	•04169.	1.49754,	.04224,	11970000
	1 1.50817.	.04279.	1.51872,	04335,	1.52927,	11980000
	1 .04391,	1.53983,	• 04447 •	1.55038,	.04502.	11990000
	1 1.56093.	.04558.	1.57148.	.04614,	1.58203.	12000000
	1 .04669,	1. 59258,	.04723.	1.60314,	.04777/	120100000
400000	DATA (PHILU	(I), EPSL0(I)	, I=151,1751/			120200000
	1 1.61369,	.04830,	1.62418,	.04882,	1.63467,	12030000
	1 .04933	1.64516,	•04984•	1.65565,	.05033.	12040000
	1 1.66014,	• 05082,	1.67663.	.05130.	1.68712,	120500000
	1 .05177,	1.69762,	•05224•	1.70811.	.05270,	12060000
	1 1.71860,	.05316,	1.72914.	.05361,	1.73967.	12070000
	1 .05406,	1.75020,	• 05449 •	1.76074.	.05493,	12080000
	1 1.77127,	05535,	1.78191,	•05577.	1.79234.	000006021
	1 .05618,	1.80288,	.05657.	1.81341,	• 05696+	12100000
	1 1.82395,	05734,	1.83460,	.05771.	l.84526,	121100000
	1 .05807,	1.85591,	.05842	1.86657,	.05876/	121200000
000005	DATA (PHILL	(I) , EPSL0(I)	, [=176,200)/			12130000
	1 1.87722	.05908.	1.88788.	•05939•	I.89853.	121400000
	1 .05969,	1.90919,	.05997,	1.91985.	.06023,	121500000
	1 1.93050	.06049.	1.94138,	.06073	1.95225,	12160000
	1 .06095	, 1.96313,	.06116,	1.97401,	.06135.	121 700000

	1 I.98488,	.06153,	1.95576,	.06170.	2.00664,	12180000
	1 .06185,	2.01751,	.06199.	2.02839,	.06212,	12190000
	1 2.03927,	.06224.	2.04786.	.06232,	2.05645.	122000000
	1 .06240,	2-06504,	.06247,	2.07363,	.06254.	122100000
	1 2.08222	.06259,	2.09081,	.06264.	2.09940,	122200000
	1 .06-268,	2.10799,	.06272,	2.11658,	.06274/	122300000
000005	DATA (PHILU((I) , EPSLD (I),	I= 201,225)/			122400000
	1 2.12517,	.06276,	2.13979,	.06277,	2.15441,	12250000
	1 .06275,	2.16903,	.06271,	2.18365,	.06264,	12260000
	1 2.19826,	.06255,	2.21288.	.06242.	2.22750,	12270000
	1 .06226,	2.24211.	.06207,	2.25673.	.06185,	122800000
	1 2.27134,	.06159.	2.28424.	.06134.	2.29714,	12290000
	1 .06106,	2.31003,	.06075	2.32292,	.06042,	12300000
	1 2.33582,	.06007.	2.34871,	.05970,	2.36160,	123100000
	1 .05932.	2.37449,	.05891,	2.38739,	.05850,	123200000
	1 2.40028,	.05807,	2.41490,	.05756.	2.42952,	123300000
	1 .05704,	2.44413,	•02650.	2.45875,	.05592/	12340000
000005	DATA (PHILD((), EPSLD(),	I=226,251)/			12350000
	1 2.47336,	.05531,	2.48798,	.05466.	2.50259,	12360000
	1 .05397,	2.51719,	.05323	2.53180,	.05244,	123700000
	l 2.54640,	.05159,	2.56435,	.05046,	2.58229,	123800000
	1 .04925,	2.60023,	.04795,	2.61816,	.04659,	12390000
	1 2.03610,	•04517•	2.65402,	.04370,	2.67195,	124000000
	1 .04220,	2.68987,	• 04065 •	2.70779.	.03909,	124100000
	1 2.72571,	.03751,	2.76731,	.03383,	2.80891,	124200000
	1 .03013,	2.65050,	.02640,	2.89209,	• 02266,	12430000
	l 2.93368,	.01891,	2.97526.	.01514,	3.01684,	124400000
	1 .01136,	3.05843.	.00758,	3.10001,	.00379.	124500000
	L 3.14159,	0.00000				124600000
000005	DO 201 J=1,2	01				124700000
0 00006	PHI(J)=FLOAT	(]-1)*3.1415	92654/200.			12480000
000013 21	01 CALL FILUP(PI	HI () , EPS()	*2,251,PHIL	0, EPSL D)		12490000
000024	RETUKN					125000000
000025	END					125100000

50

ł 1

contract I is the solution of the test of the second second

= Ē

(1 + 1)

	SUBROUTINE PI	HE P66(PHI, EI	(S)			12520000
000005	DIMENSION PH	I(1), EPS(1)				125300000
000005	DIMENSION PH	ILD(201),EPS	SLD(201)			125400000
000005	DATA (PHILD([], EPSLD([],	,I=1,25)/			12550000
	1 0.00000,	0.00000	.01570.	.00145,	•03139,	12560000
	1 .00290,	• 04 709 •	.00433.	•06279•	.00574.	12570000
	1 .07849,	-00712,	.09420	•00847,	.10991,	125800000
	1 .00978,	.12563,	.01105.	.14135,	.01225,	12590000
	1 .15708,	.01340,	.17277,	•01447,	.18847,	12600000
	l .01547,	.20417,	.01638.	.21987,	•01719,	12610000
	1 .23559,	.01789,	.25130,	.01847,	.26701,	12620000
	1 .01893,	.28273,	•01924•	.29844.	.01940,	12630000
	1 .31416,	.01940,	.32987,	.01924,	.34558,	12640000
	1 •01893,	.36129.	•01850•	.37699.	/66210.	12650000
000005	DATA (PHILD()	I) , EPSLD(I)	, I=26,50)/			12660000
	1 .39270,	.01741,	.40841.	.01679,	.42411,	12670000
	1 .01616,	•43982•	.01556,	.45553,	•01499.	12680000
	1 .47124,	• 01 450,	• 48694 •	.01410.	• 50265.	12690000
	1 .01379,	.51836,	.01356.	• 53406,	-01340.	12700000
	1 .54977,	.01331,	• 56548,	.01327,	.58119.	127100000
	1 .01328,	.59690	•01333,	.61261,	.01340.	12720000
	1 .62832.	•01350	• 64403 •	.01361,	. 65974,	12730000
	1 .01373,	.67545,	•01387,	.69116,	.01402,	12740000
	1 .70686,	.01419,	. 72257 .	.01438,	. 73828,	127500000
	1 .01458,	.75399,	.01480.	.76969,	-01504/	12760000
000002	DATA (PHILD()	I) • EPSLD (I)	I=51,751/			127700000
	1 .78540,	.01530,	.80111,	.01558,	.81682,	127800000
	1 .01588,	.83253,	.01620,	.84824,	.01654,	12790000
	I .86394.	.01689.	.87965,	.01726,	. 89536.	128000000
	1 .01765,	.91107,	.01805,	.92677,	•01847,	12810000
	1 .94248,	.01890,	.95819,	•01934,	• 97390,	12820000
		.98961,	• 02026 •	1.00532,	.02074.	12830000
	1 1.02103,	• 02124.	1.03673.	•02174,	1.05244,	12840000
	1 .02226.	1.06815.	.02279,	1.08385,	.02334,	12850000
	1 1.09956.	.02390.	1.11527,	•02447•	1.13098,	12860000
	1 .02506,	I.14669,	.02566.	1.16240,	• 02627/	12870000
500000	DATA (PHILD()	[],EPSLD([),	[=76,100)/			12880000
	1 1.17811,	.02690.	I. 19381,	•02754•	1.20952,	12890000
	1 .02819,	1.22523,	.02885,	1.24093,	.02952,	12900000
	L 1.25664,	.03020,	1.27235,	.03089,	1.28806,	12910000
	L . U3160,	1.303/7,	• 03231 •	L.31948,	.03304,	12920000
	4 1-33519,	.03378,	1.35090,	.03453,	1.36660,	12930000

129400000 31300000 31500000 32000000 132100000 32200000 32500000 32600000 32800000 32900000 33000000 33100000 33300000 33400000 33500000 30200000 30300000 30400000 30600000 30800000 31100000 31400000 31600000 32300000 32400000 32700000 133200000 133600000 29600000 29700000 29800000 29900000 30000000 30100000 30500000 30700000 30900000 31000000 31200000 31700000 31800000 31900000 .08797. .05509, 2.85891, .03688. 2.23052, .08959. .08474. .1997. 2.70183, . 44514 .04113. . 52368, -04574/ L. 60223. .05067, .05612, .06231. . 83 784. .06889, .91636, .075241 .99489. .08082, 2.07343, .08515. 2.15196, .08808. 2.30906. 2.387621 2.46617, 2.54473. 2.62328. .07341. 2.78039. .04354. 1.68077 .75931, .08959, .06510, .06129, .05064. .94776. .08886. .08914, 2.41905, 2.57616. .07031, 2.81176. 2.89035, L-39802, .03853, 1.47656. .04293, 1.55510, .04767, .63365, .71218, .05851. .79072. .06493, .86925. .07149. .07760. 2.02632, .08272, .08649. 2.18339. .08978. 2.34048, .08687, 2.49757. .08300 .07752. 2.65467. 2.73328, 2.26194, 2-10484 •05277 [=101,125) =126,150) =151,175) I=176,201) 2.37191. .08843. .08551, 2.29336. .08101. .05722, 2.84317, .03608, L • 58651 • 1.66507. L.97918, .07979. 2.05773, .08440. 2.13625, .08761, 2.21482. •08941+ 2.45046. 2.52900, .07485. 2.68609. 2.76469. 1.42943, .04966. .05498, .06103. . 90066, .07402. 2.60758. .04596 .04025. 1.50798. .04479. .82214. .C8972. L. 74359. .06758, .06691 I), EPSLU(I EPSLU(I .07644. 2.16768. I), EPSLD(I 2.40333, 2.48187. 2.56045. .04202. 1.61794, .05171, .08180. 2.08913. .08850, 2.24623. .08972, .08/45, .07875, .07190. .06323, 2.79608, .05290, ..38231, .03770. i.46035. , EPSLU(I .04670, .05730, L.77501. L.85355, .07020+ L.93206, 2.01060, .045854 .08940, . C8390, 2.67463, 1.53939. .06362, 2.63898 2.71756, 2.32477 DATA (PHILD(DATA (PHILU(DATA (PHILU(DATA (PHILD(2.19911, .08832. .07277. 1.96347, .07872. 2.04204. .03708, .08916. .08622. 2.67035, 2.74899, .03938, 1.57080, .05976. .06625, 2.27765, 2.01327, 1.49227, •04386+ 1.04936, .05386. L.88496, .08359. 2.12054, 2.35019. .03203, 2.59188, .07622, .05928, 2.82743. .03530. 1.41372, .04866, L.72788, L-80643, .03978. 2.43476, • 06 864 .04433. 000000 000002 000005 000002

APPENDIX

A THE & M. R. A. L. P. LEWIS CO., N. P.

~**P**

888888888888888888888888888888888888888	
000444444444	

-	2.90606,	.04108,	2.92176.	.03856,	2.93746,
T	.03601,	2.95315,	.03341,	2.96883.	.03077,
1	2.98451,	.02810,	3.00023,	.02539.	3.01595,
1	•02264•	3.03167,	.01987,	3.04738,	.01707,
-1	3.06309,	.01426,	3. 07879,	.01143,	3.09449,
-	.00858,	3.11019,	.00573,	3.12589,	.00287,
1	3.14159,	0.00000			
ă	U 201 J=1,20	11			
đ	HI(7)=PHILO(()			
201 E	PS(J)=EPSLD((1)			-
ď	ETURN				
ū	ND				

.

	SUBROUTINE PH	EP67(PHI, EP	S.)			134900000
200005	DIMENSION PHI	LD(251),EPS	LD (251)			135100000
00005	DATA (PHILD(I),EPSLD(1),	[=1,25]/	11100		125200000
	1 0.00000	0.4485. .04485.	.00482.	.05980.	.00640.	135400000
	1 .07476.	.00796.	.08971.	.00949.	*10468*	135500000
	1 .01100.	.11964,	.01246.	.13461,	.01388.	135600000
	l .14959.	.01525.	.15280,	.01554,	.15601,	135700000
	1 .01582,	.15922,	.01610,	.16243,	.01637,	135800000
	1 .16565.	.01664.	.16886,	.01690,	.17207.	135900000
	1 .01714.	.17529,	.01738,	.17850.	.01761.	13600000
	1 .18172,	.01782,	.18687.	.01813,	.19201,	136100000
	1 .01841,	.19716.	.01865,	.20231,	.01888/	136200000
00005	DATA (PHILD(]	.), EPSLO(I),	I=26,50)/			13630000
	1 .20747,	.01908,	.21262,	.01927,	.21777.	13640000
	1 .01945,	.22293.	.01962.	.22808,	.01979.	13650000
	1 .23323,	.01996,	.24276.	.02029.	.25229.	13660000
	1 .02063,	.26182.	.02097,	.27135,	.02131.	13670000
	1 .23088,	.02164,	.29041,	.02195,	.29994.	13680000
	L .02224.	.30947.	.02249.	.31900.	.02269.	13690000
	L .32853,	.02285,	.34180,	.02298.	.35507,	13700000
	1 .02301,	.36834.	.02296,	.38162.	.02284,	137100000
	1 .39489,	02267,	.4C817,	.02245	.42144,	137200000
	1 .02220,	.43472,	.02194,	•44199.	.02168/	137300000
000005	DATA (PHILD(1	(), EPSLD([),	I=51,751/			13740000
	1 .46127,	.02143,	•47164.	• 02125	.48201,	137500000
	1 .02108,	.49238,	.02093	• 50274.	•02079+	137600000
	1 .51311,	.02067,	.52348,	.02055,	. 53385,	137700000
	1 .02045,	•54422•	.02035	.55458.	.02026,	137800000
	l .53495.	.02017,	.57385,	.02010.	.58275,	13790000
	1 .02004,	.59165.	.01998,	.60055,	.01992,	13800000
	1 .60945,	.01987.	.61835,	.01983,	.62725.	13810000
	1 .01979,	.63615,	.01975,	•64505•	.01972.	13820000
	1 .65395,	.01970,	•66928•	• 01967.	.68461,	13830000
	1 .01966,	• + 6 6 6 4 4 •	.01967.	.71527,	• 01 969/	13840000
000005	DATA (PHILU()	(),EPSLD(),	I=76,100)/			13850000
	1 .73060.	.01973,	.74593,	.01978.	.76126,	138600000
	1 .01985,	. 77658,	.01992,	.19191.	.02001,	13870000
	1 .80724,	.02010,	.82061,	.02019,	.83397,	138800000
	1 .02029,	.84734	.02039.	.86070.	.02051,	13890000
	I .87407,	.02062,	.88743.	.02075,	• 90080,	13900000

000

54

1

4

_

-

	1 -02088.	-91416-	.02102.	.97753.	.02117.	139103000
	1 .94089,	.02133,	. 55309.	.02148,	. 96530.	13920000
	1 .02164,	.97750,	.02180,	.98970,	.02198,	13930000
	1 1.00190,	.02216.	1.01410,	.02234,	1.02630,	13940000
	1 .02254,	1.03850,	.02274 .	1.05070,	.02295/	13950000
000005	DATA (PHILD((),EPSLD(),	I=101,1251/			13960000
	1 1.06289,	.02316,	1.07435,	.02337,	1.08580.	13970000
	1 .02359,	1.09726.	.02381,	1.10871,	.02404,	13980000
	1 1.12017,	.02427.	1.13162,	.02451,	1.14308,	13990000
	1 .02476,	1.15453,	.02501.	1.16599,	.02527,	14000000
	1 1.17744,	.02553,	1.18840,	.02579,	1.19936,	140100000
	1 -02606,	1.21033,	.02632.	1.22129,	.02660,	140200000
	1 1.23225,	.02688.	1.24321,	.02716,	1.25417,	140300000
	1 .02745.	1.26513,	.02175,	1.27609,	.02805,	14040000
	1 1.28706,	.02836,	1.25770.	.02866,	1.30835,	14050000
	1.02897,	1.31900,	.02928,	1.32965,	.02960/	140600000
000005	DATA (PHILD(I), EPSLU(I),	, [=126,150]/			14070000
	1 1.34030,	.02992,	1.35094,	.03025	1.36159,	14080000
	1 .03059,	1.37224,	•:03093	1.38289.	.03128,	14090000
	1 1.39353,	.03163,	1.40401,	.03199,	1.41450,	14100000
	1 .03235,	1.42498,	.03271,	1.43546.	•03309,	141100000
	I I.44594,	.03346,	1.45642,	.03385,	1.46690,	141200000
	1 .03424,	1.47738,	.03464.	1.48786,	.03505,	14130000
	l l.49834,	.03546,	1.50878,	.03588,	1.51921,	14140000
	1 .03630,	1.52965,	.03673	1.54008,	-03717,	141500000
	1 1.55052,	.03762	1.56095,	.03807,	1.57139,	14160000
	1 .03852,	1.58182,	.03899.	1.59226,	. 03945/	14170000
000005	DATA (PHILD((I) CTS43 (I)	, I=151,1751/			14180000
	1 1.60269,	.03993	L. 61319,	.04041,	1.62369,	14190000
	1 .04090	1.63420,	.04139.	1.64470,	• 04190+	142000000
	1 1.65520,	• 04241•	1.66570,	.04293,	1.67620.	142100000
	1 .04346,	1.68670,	• 04400 •	1.69720,	.04455,	142200000
	1 1.70773,	.04511,	1.71841,	.04570,	1.72913,	142300000
	1 .04629,	1.73984,	.04690.	1.75056.	• 04752,	142400000
	1 1.76127,	.04815,	1.77199,	.04880.	1.78270,	142500000
	l .04945,	1.79341.	.05011.	1.80413,	.05078,	142600000
	1 1.81484,	• 05145	1.82589,	.05216,	2.83694,	14270000
	1 .05238,	1.84799,	.05360,	1.85904,	.05434/	14280000
000005	DATA (PHILU((1), EPSLD(1),	, I=176,200)/			14290000
	1 1.87009,	.05509,	1.88113.	.05584,	L. 89218,	14300000
	1 .05661,	1.90323,	.05739.	1.91427,	.05818,	14310000
	1 1.92531,	.05899,	1.93688,	.05985,	1.94844,	143200000
	1 .06072,	1.95999,	.06160,	1.97155,	.06250.	143300000

$143400000\\143500000\\143600000\\143600000\\143700000\\143800000\\143800000\\144000000\\1440000000$	144100000 144200000 144300000 144500000 144500000 144600000 144800000 144900000 144900000 144900000	145100000 145200000 145300000 145500000 145500000 145500000 145800000 146100000 146100000 146100000 1462000000	146700000 146500000 146500000
2.00622. .06711. 2.06522. .07204. 2.12606.	2.18810. 08097. 2.25190. 08421. 2.31733. 08634. 2.38516. 08726. 2.45566.	2.53000, .08333, .08333, .07351, .07351, .07351, .07351, .07351, .02314, .03183, .03183, .00511,	
•06432 2.02933 •06905 2.08956 •C7398 2.15041	.07854. 2.21361. .08240. 2.27744. .08520. 2.34445. .08685. 2.41232. 2.41232. 2.48542.	.08594 2.55965 2.65965 2.64239 2.64239 2.64239 2.06911 2.72698 2.90274 2.90274 3.10176	.D,EPSLD)
1.99467. .06617. 2.05305. .07105. 2.11389. .07586.	<pre>1= 201, 22 3) / 2. 17534, 0.08020, 2. 23914, 2. 23914, 2. 23914, 2. 30376, 2. 30376, 2. 37159, 2. 37159, 2. 44078, 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2</pre>	, I=226, 251)/ 2.51515, 2.59147, 2.59147, 2.67629, 2.67629, 2.67625, 2.78356, 2.78356, 2.96231, 2.96231, 2.96231, 2.96231,	552654/200. 1,2,251,PHIL
06340. 2.01778. 06805. 2.07739. 2.07392. 2.13424.	.1, EPSLU(11, .07765, .08171, .08171, .08171, .08471, .08471, .2.33089, .0862, .08731, .08731, .2.47054,	<pre>[], EPSLD([]), .C3646, 2.54483, 2.625444, 2.625444, 2.625444, 2.67088, 2.67088, 2.71007, 2.71007, 2.71007, 3.05653, 3.06193, 0.000000/</pre>	01 (J-1)*3.1419 HI(J),EPS(J)
L L 98311. L 2.06524. L 2.04089. L 2.0172. L 2.10172. L 2.10173.	UATA (PHILU(1) 1 2.16259, 1 2.16259, 1 2.2637, 1 2.29021, 1 2.35802, 1 2.35802, 1 2.42590, 1 2.42550, 1 2.42555, 1 2.425555, 1 2.42555, 1 2.425555, 1 2.425555, 1 2.425555, 1 2.425555, 1 2.425555, 1 2.425555, 1 2.425555, 1 2.425555, 1 2.425555, 1 2.4255555, 1 2.4255555, 1 2.4255555, 1 2.4255555, 1 2.4255555, 1 2.4255555, 1 2.4255555, 1 2.425555555, 1 2.42555555, 1 2.425555555, 1 2.425555555555, 1 2.4255555555555555555555555555555555555	DATA (PHILD() 1 2.50029, 1 2.57444, 1 2.57444, 1 2.65933, 1 2.65933, 1 2.65933, 1 2.6526, 1 2.74389, 1 2.74389, 1 2.94251, 1 3.14159,	00 201 J=1.2 PH(J)=FLUAT 201 CALL FTLJP(P Return ENU
	00000	000002	000005 000006 000013 000024 000025

1

.

-2 1

	SUBRUUTINE PHI	PS63(PHI, PS	[]			14680000
000005	DIMENSION PHI	(1),PSI(1)				14690000
000005	DIMENSION PHIL	L U(201), PSI	LD(201)			14700000
000005	DATA (PHILD(I	, PSILD(I),	I=1,25 1/			147100000
	1 3.00000	.15066,	.01571.	.15058,	.03142,	147200000
	1 .15035,	.04713,	.14999,	.06284,	.14950,	147300000
	1 .07855,	•14841•	• 05426 •	.14823,	.10997.	147400000
	L .14748.	.12567,	.14668,	.14138,	.14583.	147500000
	1 .15708,	.14497,	.17279,	.14410,	.18850,	14760000
	1 .14323,	.20420,	.14238,	.21991,	.14155,	147700000
	1 .23561,	.14074,	.25132,	•13998,	.26703.	147800000
	1 .13927,	.28274,	.13862,	.29845,	.13804,	14790000
	1 .31416,	.13753.	.32986.	.13711,	.34556,	14800000
	1 .13676.	.36127,	.13648,	.37698,	.13627/	14810000
000005 000005	DATA (PHILU(I	, PSILU([),	I=26,501/			148200000
	1 .39268,	.13610,	.40839,	.13598,	.42411,	148300000
	1 .13590,	.43982,	.13584.	.45553,	.13579.	14840000
	1 .47124,	.13576,	.48.695,	.13573,	• 50266.	14850000
	1 .13570,	.51837.	.13567,	.53408,	.13564,	14860000
	1 .54973,	.13561,	.56549,	.13558,	.58120.	148700000
	1 .13555,	.59691,	.13552,	.61261,	.13550.	14880000
	1 .62832,	13547,	.64403.	.13544,	.65974,	14890000
	l .13542,	- 67544.	.13539.	.69115,	.13536,	14900000
	1 .70680.	.13533.	.72257.	.13529,	.73828,	14910000
	l .13525,	.75.498.	.13521.	.76969,	.13516/	149200000
000005	DATA (PHILD(I	, PSILD(I),	I=51,75)/		-	149300000
	1 .78540,	.13511,	.80111.	.13505,	.81682,	14940000
	1 .13499,	 83252 	.13491,	.84823,	.13483,	149500000
	L .86394.	.13475,	.87965,	.13465,	• 89536,	14960000
	L .13454,	.91106,	.13442.	.92677,	.13428,	14970000
	1 .94248.	.13414,	.95819,	.13398,	.97390.	14980000
	1 .13381.	.98961,	.13363,	1.00531,	•13343+	14990000
	1 1.02102,	.13321,	1.03673,	.13299,	l.05244,	15000000
	L .13275,	1.06815,	.13249,	1.08385,	.13222,	150100000
	L 1.09956,	.13194,	1.11527,	.13164,	1.13098,	150200000
	1 .13133,	1.14669,	.13100,	1.16240,	-13065/	150300000
000005	DATA (PHILD(I	+(1)07154.(I=76,100)/			150400000
	1 1.17311,	.13028,	1.19381,	.12988,	1.20952,	15050000
	1 .12947,	1.22523,	.12903,	1.24093,	.12857,	150600000
	1 1.25664.	.12408,	1.27235.	.12756,	1.28807,	150700000
	L .12702.	1.30378,	.12644.	1.31949,	.12584,	150800000
	1 1.33520.	.12521,	1.35090,	.12455,	l.36661,	15090000

	10205	120321	1 2212	1 30803	.12246.	15100000
	1 1 41272	121600-1	4 CIC21 •	12020	1.44515.	151100000
		1 - 46086.	11907	1-47657.	.11817.	151200000
	I 1.49228.	11 724.	1.50799	11628.	1.52369.	15130000
	1 11579.	1-53940	11428	1.55510.	.11324/	151400000
00005	DATA (PHILD)	[] .PSILD([])	I=101.125)/			151500000
	1 1.57080.	.11218.	1.58652,	.11109,	1.60223,	151600000
	1 10998.	1.61794,	.10884,	1.63365,	.10768,	151700000
	1 1.64936.	.10650.	1.66507,	.10530,	1-68077,	151800000
	1 10407.	1.69648.	.10283.	1.7121.8,	.10157,	15190000
	1 1.72788.	.10029,	1.74359,	.09899.	1.75931,	15200000
	1 .09767	1.77502.	• 06634 •	1.79073.	•09499 •	152100000
	1 1.80044.	.09363	1.82214,	.09224,	1.83785,	152200000
	1 .09035,	1.85355,	• C 8944 •	1.86926,	.03801,	15230000
	1 1.88496.	.08657,	1.90067,	.08512,	1.91638,	15240000
	1 .08365,	1.93209,	.08217,	1.94780.	- 08068/	152500000
000005	DATA (PHILD)	(I) •PSILD(I)	, I=126,150)/			152600000
	1 1.96351,	. C7917,	1.97922,	.07766	l.99493,	152700000
	1 .07614,	2.01063.	.07461,	2.02634.	.07307.	152800000
	1 2.04204,	.07153,	2.05775,	•06998•	2.07346,	15290000
	1 .06842.	2.08916,	.06687.	2.10487,	.06530.	153000000
	1 2.12058,	.06374,	2.13628,	.06217.	2.15199.	153100000
	1 .06060,	2.16770,	• 05904 •	2.18340.	.05747.	153200000
	1 2.19911,	.05591,	2.21481,	.05435,	2.23052.	153300000
	1 .05230.	2.24623.	.05125.	2.26193,	.04970,	15340000
	1 2.27764.	.04817,	2.29335.	• 04664 •	2.30906,	15350000
	1 .04512.	2.32477,	.04362,	2.34048.	.04213/	153600000
000005	DATA (PHILD)	(I) JASILD(I)	, [=151,175)			153700000
	1 2.35619.	.04065,	2.37189,	.03919,	2.38759,	153800000
	L .03774,	2.40330,	.03631.	2.41900,	.03490.	15390000
	1 2.43471,	• C3350,	2.45042.	•03213,	2.46613,	15400000
	1 .03077.	2.48184,	•02943•	2.49755.	.02811,	154100000
	1 2.51327,	.C2682,	2.52897,	.02555.	2.54467,	154200000
	I .02430.	2.56037.	.02308,	2.57608,	.02188,	154300000
	1 2.59179.	.02071,	2.60749,	.01956,	2.62321,	15440000
	1 .01844,	2.63392.	.01735,	2.65463.	.01630,	15450000
	1 2.67035.	.01527,	2.68605,	.01428,	2.70175,	154600000
	1 .01331.	2.71745,	.01239,	2.73316,	.01149/	15470000
000005	DATA (PHILD	(1) (1) 5110(1)	, I=176, 201)			15480000
	L 2.74887.	.01062.	2.76458,	.00979.	2.78029.	15490000
	1 .00899,	2.79600.	.00823,	2.81171.	.00750.	15500000
	1 2.82743,	.00630.	2.84313.	.00614.	2.8584,	155100000
	1 .00551,	2.87454.	.00491,	2.89025,	.00435,	155200000

1

1

j,

4 4 4

ŝ

Ę

0000	0000	0000	0000	0000
- 8 8 8	ŏŏŏ	ŏŏ	ŏŏ	ŏŏŏ
240	30	ωŌ	0-	1 m v
ົດທີ່ທີ	in in	ŝ	99	000
ີມີທີ່ທີ່	n n n	ŝ	5	ເດີເດ
				~~

	~	2.90596.	.0382	2.92167.	.00332,	2.93737,
	, 4	.00286,	2.95309,	• 00244 •	2.96880,	.00205
	Ļ	2.98451,	•00169.	3.00022	.00137,	3.01592,
		.00108,	3.03163,	.00083,	3.04734,	.00061.
	7	3.00305,	.00042,	3.07875.	.00027,	3.09446
	-	.00015,	3.11017,	.00007.	3.12588,	• 00002 •
	Ч	3.14159,	0.00000			
000005	0	0 202 J=1,20	1			
000000	J	ALL FTLUP(PH	IL (J), PS I (J)	1,2,201,PHI1	-0,PSILD)	
000014	202 C	ONTINUE				
000020	æ	ETURN				
000021	ш	ON				

00005	SUBROUTINE PH	1P 56 3A (PHI ,F				15650000
000005	DIMENSION PHI	(LD(251),PSI	LD(251)			15670000
000005	DATA (PHILD()	(I) • PSILD(I)	I=1,25 1/			15680000
	1 0.00000	.15517,	.01461,	.15507.	.02922,	15690000
	L .15478,	.04383,	.15431,	.05843.	.15368,	15700000
	1 .07303,	.15290,	.08763,	.15199,	. 10222.	157100000
	1 .15097,	.11680,	•14984,	.13138,	.14863,	157200000
	l .14594,	.14735,	.14925,	.14705,	.15257,	15730000
	1 .14675,	.15588,	.14645,	.15919,	.14615,	15740000
	1 .16250,	.14585,	.16582,	.14555,	.16913,	15750000
	l .14525,	•17244•	.14496,	.17576,	.14468,	15760000
	1 .17907.	.14440,	.18420,	. 14397.	.18933,	157700000
	1 .14357,	.19447,	.14318,	.19960,	.14281/	15780000
000005	DATA (PHILD()	(),PSILD(),	I=26,50)/			15790000
	1 .20474,	• 14245+	.20987,	.14210,	.21501,	15800000
	1 .14177,	.22015,	.14145,	.22529.	.14115,	15810000
	l .23043+	.14086,	.24001,	.14035,	.24958,	15820000
	1 .13987,	.25916,	•13944•	.26875,	.13904,	15830000
	1 .27833.	.13867,	.28791.	.13833,	.29750,	15840000
	1 .13802,	.30708,	.13773,	.31667,	.13746,	15850000
	1 .32626,	.13722,	.33980,	.13690,	.35335,	15860000
	1 .13662,	.36690,	.13637,	.38045,	.13614,	15870000
	L .39401,	.13594,	.40756,	.13577,	.42111,	15880000
	1 .13562,	.43466,	.13548,	.44821,	.13537/	15890000
0000 05	DATA (PHILD()	(1) "PSILD(1)	I=51,75)/			15900000
	1 .46176,	.13527,	.47241,	.13520,	.48306,	15910000
	L .13514,	.49371,	.13509,	.50436.	.13504,	159200000
	1 .51501,	.13500,	.52566,	.13496,	.53631.	15930000
	1 .13492,	.54696,	.13489.	.55761,	.13486,	15940000
	1 .50826.	.13483,	.57741.	.13481,	.58655,	15950000
	L .13478,	.59570,	.13476,	.60485,	.13474,	15960000
	L .01399,	.13471,	.62314,	•13469,	•63229.	15970000
	L .13467,	.64143,	.13464,	.65058,	.13462,	15980000
	1 .65973,	.13460,	.67541,	.13456.	.69110,	15990000
	L .13452,	.70679,	.13447,	.72248,	.13442/	16000000
000005	DATA (PHILD(]	(),PSILU(),	I=76,100)/			16010000
	1 .73817,	.13438,	. 15386.	.13432.	.76955,	16020000
	1 .13427,	.78524,	.13420,	.80093,	.13414,	16030000
	l .81662,	.13406,	.83032,	.13400,	.84402,	16040000
	1 .13392,	.85772,	.13384.	.87142.	.13376,	16050000
	l .83512,	.13367,	.89882	.13357,	.91253,	160600000

60

-

. . . .

Ē

	1 .13347, 1	.92623	•13336,	.93993	.13324.	160700000
		• 7 T C T •	4 71 00 4 4	• 46761 •	• 7/ 80U	16080000
	18761. 1	· 60166 ·	.132 /4,	1.00358,	.13260,	16090000
	1 1.01607,	.13245,	1.02855,	.13230,	1.04104,	16100000
	l .13214,	1.05353,	.13197.	1.06602,	.13180/	161100000
000005	DATA (PHILD()	<pre>I) , PSILU(I),</pre>	I=101,125)/			161200000
	1 1.07850,	.13162,	1.09023,	.13145	1.10196,	161300000
	1 .13127,	l. 11369,	.13108,	l.12541,	•13089,	16140000
	1 1.13714,	.13068,	1.14887,	.13047,	1.16059,	16150000
	1 .13024,	1.17232,	.13001,	1.18405,	.12976,	16160000
	1 1.19577,	.12950,	1.20699,	.12923,	1.21821,	16170000
	1 .12896,	1.22943,	.12867,	1.24064.	.12837,	16180000
	1 1.25186,	.12806,	1.26308,	.12774,	1.27429,	16190000
	1 .12741,	1.28551,	.12706,	1.29672,	.12670,	16200000
	1 1.30794,	.12634,	L.31876,	.12597,	1.32959,	162100000
	1 .12560,	I.34041,	.12521,	1.35124.	.12481/	162200000
00005	UATA (PHILU(]	<pre>I) , PSILD(I),</pre>	[=126,150)/			162300000
	1 1.36206,	.12440,	l.37289,	.12398,	1.38371,	162400000
	1 .12355,	1.39453,	.12310,	1.40535,	•12264•	16250000
	1 1.41617,	.12217.	1.42675,	.12170,	1.43733,	16260000
	L .1212L	1.44790,	.12072.	1.45847.	.12021,	16270000
	1 1.46905,	.11969,	L.47962.	.11916,	1.49019,	16280000
	L .11862,	1.50077,	.11807.	1.51134,	.11750,	16290000
	1 1.52191,	.11693,	1.53232.	•11636,	1.54274,	16300000
	1 .11577,	1.55316,	.11518,	1.56357,	.11458,	163100000
	1 1.57399.	.11397,	1.58440,	 11335, 	1.59481,	163200000
	1 .11272,	1.60523,	.11208.	1.61564,	.11143/	163300000
00000	DATA (PHILU(I	(),PS(LU(I),	I=151,175)/			163400000
	1 1.62605,	.11078,	1.63637,	.11012.	1.64670,	163500000
	1 .10945,	1.65702,	.10878,	1.66734,	.10810,	16360000
	1 1.67766.	.10741,	1.66798,	.10671,	1.69830,	163700000
	1 .10601,	1.70862,	-10530,	L.71894,	.10458,	163800000
	1 1.12926,	•10385	I. 73961.	.10312,	1.74996.	16390000
	1 .10238,	1.76031,	.10164,	1.77067,	.10089,	16400000
	1 1.78101,	.10013,	1.79136.	.09936,	1.80171,	164100000
	1 .09860.	1.81206,	•05782 •	1.82241,	•00104•	164200000
	1 1-83276,	•09625+	1.84322,	.09545,	1.85369,	164300000
	1 .09465,	1.86415,	•09384•	1.87461,	.09302/	164400000
00000	DATA (PHILD(]	(), PSILU(),	1=176,2001/			164500000
	1 1.38508,	.09220,	1.89554,	•09137,	1.90600,	16460000
	1 .09054,	1.91646,	.08971,	1.92692,	.08887,	164700000
	L 1.93738,	- C8802,	l.94807,	.08716,	1.95875,	164800000
	l .Ud629,	1.96943,	.08541,	1.98012,	• 08454 •	16490000

		3260	00100 C	08778	2 01216	1650000
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.02284.	- C8100-	2.03353.	.08012.	165100000
	1 2.04421	.07923	2.05529.	.07830.	2.06637.	165200000
	1 07738.	2.07744,	.07646,	2.08852	.07553,	165300000
	I 2.09960.	.07461,	2.11068.	.07369.	2.12176.	165400000
	1 .07278.	2.13284.	.07186,	2.14392.	.07095/	165500000
000005	DATA (PHILU(I), PSILD(I),	1=201,2251/			165600000
	1 2.15500,	.07005,	2.16671,	.06910,	2.17841,	165700000
	1 .06815,	2.19012,	.06721,	2.20183,	.06628,	165800000
	L 2.21354,	.06535,	2.22525,	.06443.	2.23696,	16590000
	L .06351,	2.24867,	.06259,	2.26038.	.06168.	166000000
	1 2.27209.	.06078,	2.28483,	.05980,	2.29757,	166100000
	L .05382,	2.31031,	. C5785.	2.32305,	.05688,	166200000
	L 2.33579,	.05593,	2.34854.	.05497,	2.36128,	166300000
	·1 •05403+	2.37402,	.05309,	2.38676.	.05216,	166400000
	1 2.39951,	.05123.	2.41401,	.05019,	2.42851,	16650000
	1 .04916,	2.44302,	.04813.	2.45752,	.04711/	166600000
000015	DATA (PHILD((1) PSILD(1),	, I=226,251)/			16670000
	1 2.47203,	.04608,	2.46653,	.04506,	2.50103.	166800000
	L .04403,	2.51554,	•04299 •	2.53004.	.04195,	16690000
	1 2.54455,	•04090•	2.56241,	.03958,	2.58028,	16700000
	1 .03826,	2.59814,	• 03694 •	2.61601,	.03563,	167100000
	1 2.63388,	.03435.	2.65175,	.03311.	2.66962,	167200000
	1 .03191,	2.68750,	.03077.	2.70537,	.02970,	167300000
	1 2.72325,	.02871,	2.76503,	.02675,	2.80682,	167400000
	1 .02524,	2.84864,	.02412,	2.89046.	.02333,	167500000
	1 2.93230,	.02282,	2.97414,	.02253,	3.01600,	167600000
	1 .02240,	3.05786,	.02238,	3.09973,	.02241,	167700000
	1 3.14159,	.02243/				167800000
000005	DO 202 J=1,2	101				16790000
000000	CALL FTLUP(P	L)IS4 (L) IH	1,2,251,PHIL	.0,PSILD)		16800000
000014	202 CUNTINUE					168100000
000020	RETURN					168200000
000021	END					168300000

62

The distribution of the strength of the streng

	SUBROUTINE PH	PS64(PHI,PS	[]			168400000
000005	DIMENSION PHI	(I),PSI(I)				168500000
000005	DIMENSION PHIL	_D(201),PSI	LD(201)			
000005	DATA (PHILD(I	, PSILU(I),	I=1,25)/			168700000
	1 0.00000	.25269,	.01573,	.25265,	.03145.	168800000
	1 .25251.	.04717,	.25227,	•06289•	. 25193,	16890000
	1 .07861.	.25147,	•09432.	.25090,	.11002,	16900000
	1 .25020.	.12572,	.24937,	.14140,	.24841,	169100000
	1 .15708.	. 24 73 0,	.17280,	.24605,	.18851,	169200000
	1 .24467.	.20422.	.24321,	.21992,	. 24170.	16930000
	1 .23562.	.24016.	.25132,	.23864,	.26702.	16940000
	1 .23715,	.23272.	.23573.	.29844.	. 23442,	169500000
	1 .31416,	.23325,	.32984,	.23224.	.34553,	16960000
	1 .23138,	.36122.	.23066,	.37693,	.23006/	169700000
000005	DATA (PHILD(I	, PSILD(I),	I=26,50)/			16980000
	1 .39264,	.22956,	.40836,	.22916,	.42408,	16990000
	1 .22884,	.43980,	.22858.	.45552,	.22836,	17000000
	1 .47124,	.22818,	.48695,	.22802.	.50266,	170100000
	1 .22788,	.51837,	.22175.	- 53408	.22764.	17020000
	1 .54979,	.22755,	.56549,	.22747.	.58120,	170300000
	1 .22740,	.59691,	.22736.	.61261,	.22732,	17040000
	1 .62832,	.22730,	.64403.	.22729.	.65973,	17050000
	1 .22730,	.67544,	.22731,	.69115.	.22733,	170600000
	1 .70686,	.22736,	.12257.	.22739,	. 73827,	17070000
	1 .22742,	.75398,	.22745.	.76969.	.22748/	17080000
000005	DATA (PHILD(I), PSILD(1),	I=51,75)/			17090000
	1 .78540,	.22751,	.80111,	.22753,	.81682,	171000000
	1 .22755.	.83252,	.22756,	.84823,	.22756,	171100000
	1 .86394,	.22755,	.87965.	.22753.	. 89536,	171200000
	1 .22751,	.91106.	.22747.	.92677,	.22742.	171300000
	L .94248,	.22736,	.95819,	.22729.	. 97390.	171400000
	1 .22720,	.98961,	.22709,	1.00531,	.22697.	171500000
	1 1.02102,	.22683,	1.03673,	.22668,	1.05244.	171600000
	1 .22650,	1.06815,	.22630,	1.08385,	.22608,	171700000
	1 1.09956,	.22584,	1.11527,	.22557,	1.13098,	171800000
	1 .22528,	1.14669,	.22497,	l.lo240,	.22462/	171900000
000005	DATA (PHILD(I	, PSILD(I),	I=76,1001/			17200000
	L 1.17811,	.22426,	1.19381,	.22386.	l.20952,	172100000
	1 .22345,	1.22523,	.22300.	1.24093,	.22253.	172200000
	1 1.25664,	.22203,	1.27236,	.22150	1.28808,	172300000
	1 .22094,	1.30379,	.22034.	1.31951,	.21969.	172400000
	1 1.33522,	.21899,	1.35093,	.21823,	1.36663,	172500000

	1 21741.	1-33233.	.21652.	1.39803,	.21554.	172600000
	1 1.41372	-21449.	1.42946.	.21334,	1.44519.	172700000
	1 21211.	1.46091.	.21080.	1.47663,	.20940.	172800000
	1 1 49234	20794	1.50804.	.20641.	1.52374,	17290000
	1 20481	1.53943	20315	1.55512.	. 20143/	17300000
000006	TO DE LE	1101124-11	T=101.1251/			173100000
		19966	1.58653.	-19784.	1.60226.	173200000
	1 1 1 1 4 5 9 6 5	1.61798.	19405	1.63370.	.19209.	173300000
	1 1 54441	19008	1.66511.	.18804.	1.68081.	173400000
	1 18596.	1.69051.	.18384.	1.71220,	.18169.	173500000
	1 1.72783.	.17950.	1.74361.	.17727,	1.75933,	17360000
	1 .17501.	1.77505.	.17273.	1.79076,	.17041,	173700000
	1 1.80647.	.10806.	1.82218,	.16569,	1.83768,	173800000
	1 .16329.	1.85357.	.16087.	1.86927,	.15843 ,	173900000
	L 1.83496,	.15596,	1.90068.	.15347.	1.91640,	174000000
	.15095	1.93211,	.14842,	1.94782,	.14587/	174100000
000005	DATA (PHILU	(I) *PSILD(I)	, I=126,150)/			174200000
	1 1.90353,	.14330,	1.97924,	.14072,	1.99494.	174300000
	1 .13812,	2.01364,	.13551,	2.02634.	.13288,	174400000
	1 2.04204.	.13024,	2.05775.	.12759,	2.07346.	174500000
	1 .12492.	2.08917,	.12225,	2.10488,	.11957,	174600000
	1 2.12059.	.11688,	2.13629.	.11418.	2.15200,	17470000
	I .11149.	2.10770.	.1C878,	2.18341,	.10608.	174800000
	1 2.19911,	.10338,	2.21481.	• 10:068 •	2.23051,	174900300
	1 .09798.	2.24622,	.09529.	2.26192.	.09260.	1 75000000
	L 2.27763.	.08992,	2.29334.	• 08.7 25 •	2.30905.	1 751 00 000
	1 .U8429,	2.32476,	.08195.	2.34047,	.07932/	175200000
00000	DATA (PHILU	(I),PSILD(I)	,I=151,175)/			17530000
	L 2.35619.	.07671,	2.37188,	•07412•	2.38757.	1 75400 000
	1 .07156.	2.40327,	• 06901 •	2.41897,	• 06649•	17550000
	1 2.43408,	.06399.	2.45039,	.06152.	2.46610,	1 75600000
	1 .05908.	2.43142,	.05667,	2.49754,	.05428,	175700000
	1 2.51327,	. 05193,	2.52895.	• 04962	2.54464,	175800000
	L .04734,	2.56034,	.04510,	2.57604.	.04289,	000006511
	1 2.09174	.04073.	2.66745.	.03860,	2.62317,	1 76000000
	I .03651,	2.63889,	.03447,	2.65462,	.03247.	1/01000
	L 2.67035,	.03051,	2.68603,	.02861,	2.70172.	1 /6200000
	1 .02075,	2.71741,	.02494,	2.73311,	.02318/	1 76300000
000005	DATA (PHILD	(I) *PSILU(I)	, I=176,2011/	_		1 /640000
	1 2.74832,	.02148,	2.76453,	.01983,	2.78024.	176500000
	1 .01825,	2.79597,	.01672,	2.81170.	.01525,	17660000
	1 2.82743,	.01385,	2.84312.	.01252,	2.85881,	
	1 .01125,	2.87451,	.01006.	2.89021.	•00892+	I 76800000

t

đ

|--|

	89, 3.0/8/4, 1600014, 3.12	89, 3.00014, 3.125 16, .00014, 3.125 00/	89, 3.0/8/4, 3.1258 16, .00014, 3.1258 00/ SI(J),2,201,PHILD,PSILD	89, 3-018/4, 3-1258/ 16, .00014, 3-1258/ 00/ SI(J),2,201,PHILD,PSILD	89, 3-01814, 3-1258 16, -00014, 3-1258 00/ SI(J),2,201,PHILD,PSILD
.00227, 3.03162		3.14159, 0.00000	L FTLUP(PHI(J),PSI		
	, + -	+	0005 DU 2 0006 CAL	0005 1 1 3 0006 CAL	0005 0005 0014 0014 0020 RET(

00005	SUBROUTINE PH DIMENSION PHI	IP S64A (РНІ, Р	(15)			178200000
000005	DIMENSION PHI DATA (PHILD(1	(1) • PSILD(I)	LD(251) I=1.25)/			178300000
4 1 1 1	1 0.00000	.15365,	.01470,	.15355,	.02940,	17850000
	1 .15324,	.04410.	.15275,	•05880•	.15209,	178600000
	1 .07349.	.15129,	.C8818,	.15035.	.10286.	178700000
	1 .14930,	.11753,	.14816,	.13220,	.14693.	178800000
	1 .14686,	.14565,	.15019,	.14535,	.15352,	17890000
	1 .14505,	.15685,	.14475,	.10019.	• 14444 •	1 7900000
	1 .16352,	• 14414,	.16685,	.14384,	.17018,	179100000
	1 .14353,	.17351,	.14323.	.17684.	.14293,	179200000
•	1 .18017,	.14203.	.18528.	.14218,	.19040,	179300000
	1 .14174,	.19551,	.14130,	.20063,	.14087/	179400000
00005	DATA (PHILU()	(I) • PSILO(I)	1=26,50)/			17950000
	1 .20574,	• 14044•	.21086,	.14003.	.21598,	1 79600000
	1 .13963,	.22139.	.13924,	.22621,	.13886,	1797.00000
	L .23133,	.13849,	.24088,	.13783,	.25044,	179800000
	1 .15722,	.26000,	•13665 •	.26956,	.13612,	000006621
	1 .27912,	.13502,	.28869,	.13516,	.29825,	13000000
	1 .13473,	.30782,	.13432.	.31739,	.13395,	180100000
	L .32695,	.13359,	.34039,	.13313,	.35384,	18020000
	1 .13271,	.36728,	.13233.	.38072.	.13199,	18030000
	1 .39416,	.13107,	.40761,	.13139,	.42105,	18040000
	1 .13113,	.43450,	.13090,	• +62 ++ -	.13069/	18050000
000005	DATA (PHILD()	[],PSILD([],	, [=51,75)/			18060000
	1 .46139,	.13051,	.47194,	.13037.	.48249.	18070000
	1 .13024,	.49303	.13013,	.50358,	.13003,	18080000
	1 .51413.	.12993,	.52468,	.12985.	.53523,	18090000
	1 .12977,	.54578.	.12971,	.55633,	.12966,	18100000
	L .55668,	.12961,	.57595,	.12958.	.58502,	181100000
	1 .12955,	.59409.	.12953,	.60317,	.12952,	181200000
	1 .61224,	.12951,	.62131,	.12950,	.63038,	18130000
	1 .12949,	.639+5,	.12949,	.64852,	.12949,	13140000
	1 .65759,	.12949,	.67316.	.12948.	.68374,	18150000
	1 .12947,	.70431,	.12947,	.71989.	.12946/	181600000
000005	DATA (PHILU()	(1),PSILU(1),	, I=76,1001/			18170000
	1 .73540.	.12945.	. 7,5103.	.12944,	.76661.	181800000
	1 .12943,	.78218,	.12942.	.79776.	.12941,	18190000
	1 .81333,	.12940,	.82695.	.12939.	.84057,	18200000
	1 .12939,	.85418,	.12933,	.86780,	.12937.	182100000
	l .8d142,	.12936,	.89504,	.12934,	.90866,	182200000

66

1

;

	1 .12932,	.92228,	.12930,	.53589,	.12927,	18230000
	I .94951,	.12923,	• 96196 •	.12920,	.97436,	18240000
	1 .12915,	.98679,	.12910.	• 99922	.12905,	18250000
	1 1.01164,	.12899,	1.02407,	.12892,	1.03650,	18260000
	1. 12885.	1.04892,	.12878,	1.06135,	.12869/	18270000
000005	DATA (PHILD(I), PSILD(I),	, I=101,1251/			18280000
	1 1.07377,	.12861,	1.08546,	.12852,	1.09714.	18290000
	1 .12843,	1.10882,	.12833,	1.12050,	.12822,	18300000
	1 1.13218,	.12811.	L.14386,	.12800,	1.15554,	18310000
	1 .12783,	1.16723,	.12775,	1.17891,	.12761,	18320000
	l l.19059,	.12747,	1.20180,	.12733.	1.21301,	18330000
	1 .12718,	1.22422,	.12702,	1.23543,	.12685,	1 834 000 00
	1 1.24665,	.12668,	1.25786,	.12650,	1.26907.	18350000
	1 .12631,	1.28028,	.12611,	1.29149,	.12590,	18360000
	1 1.30270,	.12569,	1.31357,	.12547,	1.32444,	18370000
	L .12524,	1.33531,	.12500,	1.34618,	.12475/	18380000
000005	DATA (PHILD((I) "PSILD(I)	, I=126,150)/			18390000
	1 1.35705,	.12448,	1.36792,	.12420,	1.37879,	18400000
	1 .12390,	1.38966,	.12358,	1.40052,	.12325,	18410000
	1 1.41139,	.12289,	1.42204.	.12252,	1.43269,	18420000
	1 .12212.	l • 44 33 4 •	.12171.	1.45398,	.12128,	18430000
	L L.46463+	.12083,	1.47528,	.12036,	l.48592,	18440000
	1 .11988,	1.49657,	•11938•	1.50721,	.11887,	18450000
	1 1.51785,	.11834,	1.52835,	.11781,	1.53884,	18460000
	1 .11727,	l.54933,	.11672,	1.55982,	.11615,	18470000
	1 1.57030,	.11557,	1.58079,	.11499,	1.59128,	18480000
	l .11439,	1.60177,	.11378,	1.61225,	.11316/	18490000
000005	DATA (PHILD(I),PSILD(I),	, I=151,175)/			18500000
	1 1.62274,	.11253,	1.63312,	.11189,	L.64350,	185100000
	1 .11125,	1.65388,	.11059.	1.66426.	.10993,	185200000
	1 1.67464,	.10925,	1.68502,	.10857,	1.69540.	185300000
	L .10783,	1.70578,	.10719,	1.71615,	.10648,	18540000
	l 1.72653,	.10577,	1.73693,	.10505,	1.74732,	18550000
	L .10433,	1.75772,	.10360,	1.76812,	.10286,	18560000
	1 1.77851,	.10212,	1.78891,	.10137,	1.79931,	1 85 7 00 000
	1 .10061,	1.80970,	• 09985 •	1.82009,	•09908.	18580000
	I 1.83049,	.09831,	1.84100,	.09752.	I.85151,	18590000
	1 .09672,	1.86202,	.09592,	1.87253,	.09512/	18600000
000005	DATA (PHILD(I), PSILD(I),	,I=176,200)/			18410000
	1 1.88304,	.09431,	l.89354,	.09349,	1.90405.	18620000
	1 .09267,	1.91456,	.09184,	1.92507,	•09101•	18630000
	1 1.93557,	.09017,	1.94631,	.08931,	1.95704,	18640000
	1.06845,	1.96777,	.08758.	1.97850,	.08670.	1 8650000

	1 1.98923.	.08583,	1.99996.	•C8495,	2.01069.	18660000
	1 .08406.	2.02142.	.08318.	2.03215.	.08229.	18670000
	1 2.04283.	.C8140,	2.05401.	.08048,	2.06514,	18680000
	L .07955,	2.07627.	.07863,	2.08740,	.07770.	18690000
	1 2.09852,	.07678,	2.10965,	.07585,	2.12078,	18700000
	I .07493,	2.13191.	.07401.	2.14304,	.07309/	187100000
6000	DATA (PHILD)	(), PSILD()),	I=201,2251/			187200000
	1 2.15416,	.07217,	2.16592,	.07120.	2.17767,	187300000
	L .07023.	2.18942,	.06927.	2.20117,	.06831,	187400000
	1 2.21293,	.06735,	2.22468.	.06639,	2.23643.	187500000
	1 .00545.	2.24819,	.06450,	2.25994.	.06356,	18760000
	1 2.27169.	.06262,	2.28447.	.06161,	2.29724.	187700000
	1 .06050,	2.31001,	.05960.	2.32276.	.05861,	187800000
	1 2.33556.	.05762.	2.34833.	.05664,	2.36111,	18790000
	1 .05507,	2.37348,	.05470,	2.38666.	.05375,	1 88 000 000
	1 2.39943.	.05279.	2.41396	.05172.	2.42849,	1 381 0000
	I .05066	2.44302.	.04960.	2.45754,	.04855/	18820000
2005	DATA (PHILU((I) .PSILD(I),	I=226,251)/			18830000
	1 2.47207,	•04149•	2.48660,	• 04644 •	2.50113.	18840000
	1 .04538,	2.51560,	.04432,	2.53019,	.04324,	18850000
	L 2.54471.	.04216.	2.56260,	.04081,	2.58049.	1 3 3 6 00 0 0
	1 .03945.	2.59837.	•03809+	2.61626,	.03675,	18870000
	1 2.63415,	.03543,	2.65203.	•03414,	2.66993,	18880000
	1 .03291,	2.64782.	.03173,	2.70572.	.03061,	18390000
	1 2.72362,	.02958,	2.76535,	.02751,	2.80711,	18900000
	1 .02589,	2.84898.	.02465,	2.89067,	.02374.	189100000
	1 2.93247,	.02312.	2.97428.	.02273,	3.01610,	18920000
	1 .02252.	3.05793,	.02243,	3.09976,	.02242,	18930000
	1 3.14159.	.02243/				18940000
0005	00 202 J=1,2	01				18950000
3006	CALL FTLUP (P	HI (J) PSI(J)	1,2,251,PHIL	.D.PSILD)		18960000
0014	202 CONTINUE					1 897 000 00
0020	KETUKN Land					189800000
1700	ENU					

4

AND AN ALL ALL -

to Reff and 4 for

the second second

1

68
	SUBROUTINE PHP	565(PHI, PS	[]			19000001
000005	HING NOISNEWIG	(1), PSI(1)				190100000
000005	DIMENSION PHIL	.D(251),PSI	LD(251)			190200000
000005	DATA (PHILD(I)	, PSILD(1),	[=1,25)/			190300000
	1 0.00000	.17464,	.01486,	.17457,	.02972,	19040000
	1 .17437,	•04458•	.17404,	• 05944 •	.17360.	19050000
	l .07429,	.17303,	.08914.	.17236,	.10398,	19060000
	L .17159,	.11882,	.17073.	.13365,	.16977,	19070000
	l .14348,	.10872,	.15176,	.16848,	.15503,	19080000
	l .lu824,	.15831,	.16799.	.16159,	.16773.	190900000
	1 .15486,	.lo747,	.16814.	.16721,	.17141.	19100000
	l .16694,	.17409,	.16666.	.17796,	.16638,	191100000
	1 .18123,	.16609,	•18624•	.16563,	.19124,	191200000
	1 .16516,	.19624,	.16468,	.20124,	.16420/	191300000
000005	DATA (PHILU(I)	, PSILD(I),	[=26,50)/			19140000
	1 .20624,	.16371,	•21124•	.16321,	.21625,	19150000
	l .16272,	.22125,	.16223.	.22625,	.16175,	191600000
	1 .23125,	.16127,	.24070.	.16041,	.25015,	191700000
	1 .15959.	.25960.	.15881,	.26906,	.15808,	19180000
	1 .27352,	.15740,	.28798,	.15676,	.29744,	000006161
	l .15616,	.30691.	.15562,	.31638,	.15512,	19200000
	l .32586,	•15468,	.33917,	.15413,	.35249,	192100000
	1 .15368,	.36581,	.15331.	.37913.	.15301,	192200000
	1 .39246,	.15278,	.40578.	.15261,	.41911,	192300000
	L .15249,	.43244,	.15241.	.44577,	.15237/	192400000
600000	DATA (PHILD(I)	.PSILU(I).	l=51,751/			192500000
	1 .45910,	.15235.	.46962,	.15235,	.48015,	19260000
	1 .15230.	.49068,	.15238,	.50121,	.15241,	192700000
	L .51173,	.15245,	.52226.	.15251,	.53279.	192800000
	1 .15257,	.54331,	.15264.	.55384,	.15272,	19290000
	1 .56430.	.15231.	.57344,	.15289,	.58252,	19300000
	1 .15298.	.59160,	.15308,	.60068,	.15318,	193100000
	1 . 60976,	.15328,	.61884.	.15339,	.62791,	193200000
	1 .15350,	-63699	.15361,	.64607,	.15372,	193300000
	l .65515,	.15383,	• 67085 •	.15402.	•68656,	19340000
	1 .15422,	•70226•	.15440,	• 71 796 •	.15459/	193500000
000005	DATA (PHILU(I)	, PSILD(I),	[=76,100)/			19360000
	1 . 73366,	.15477,	.14937.	15496,	.76507,	193700000
	1 .15513,	. 78077,	.15531.	.79648,	.15548,	193800000
	1 .81218.	.15564,	.82590,	.15578,	.83961,	19390000
	1 • 1992 •	.85333.	.15605,	.86704,	.15618,	19400000
	1 .83076,	.15630,	.89448,	•15642,	. 90819,	19410000

70

.

_

	1 2.01100.	.10725,	2.02191,	.10594,	2.03283,	19850000
	1 .10463,	2.04374,	.10332,	2.05466,	.10199,	19860000
	1 2.06557,	.10066,	2.07682,	.09929,	2.08807,	19870000
	1 .09791,	2.09932,	.09652.	2.11056,	.09513.	1 9880000
	1 2.12181,	.09374,	2.13305,	.09234.	2.14430.	19890000
	1 .09094,	2.15554.	.08953,	2.16679.	.08811/	1 9900000
000005	DATA (PHILD(I), PSILD(I).	, I=201,2251/			000001661
	1 2.17803,	. C86ú9,	2.18979,	.08520,	2.20154.	199200000
	1 .08370,	2.21330,	.C8220,	2.22505,	.08070,	1 993 00 000
	L 2.23630,	.01919,	2.24856,	.07768.	2.26031,	199400000
	1 .07617,	2.27206,	.07465,	2.28382,	.07314.	199500000
	1 2.29557,	.07163,	2.30822,	.07000,	2.32086,	1 9960000
	1 .06838,	2.333519	.06675.	2.34616,	.06514,	19970000
	1 2.35881,	.06352,	2.37146.	• 16190 •	2.38411,	1 99800000
	1 .06030.	2.39676.	.05870.	2.40941,	.05710,	19990000
	1 2.42206,	.05551,	2.43614.	.05374,	2.45023.	20000000
	1 .05199,	2.46431,	.05024,	2.47839,	.04850/	200100000
000005	DATA (PHILU([],PSILUAT)	, I=226, 251)/			20020000
	L 2.49248,	.04677,	2.50656.	• 04504 •	2.52065,	200300000
	1 .04333,	2.53474,	.04162,	2.54883,	.03992,	200400000
	1 2.56292,	.03824,	2.57971,	.03624,	2.59651,	20050000
	1 .03426,	2.61330,	• 03230 •	2.63010,	.03037.	200600000
	L 2.64691,	.02848.	2.66372.	.02662,	2.68053.	20070000
	1 .02431,	2.69735.	.02305.	2.71417,	.02134,	20080000
	1 2.73100.	.01970.	2.77194.	.01597,	2.81292.	20090000
	1 .01263,	2.85393,	.00968,	2.89497,	.00712,	201000000
	1 2.93604,	.00495,	2.97712,	.00317,	3.01823,	201100000
	1 .00178,	3.05934,	.00019.	3.10046,	.00020.	201200000
	1 3.14159,	0.0000/				20130000
000005	00 202 J=1,2	01 				201403000
000000	CALL FILUP(P	HI (1) , PS I ()),2,251,PHI1	D, PSILD)		201006102
000014	202 CONTINUE					20100012
000020	KETUKN					
000021	ENU					000000 TOZ

_ _

0						
	SUBROUTINE PH	HP Su5A (PHI,P	SI)			00000202
000005	UIMENSION PHI	11119 421111 11012511-DCI	10(251)			202100000
000008	DIACNSICN FIL	1 - DS [1 0 [] - 21	[=1.25]/			202200000
		-14761.	.01455.	.14748.	-02910.	20230000
	1 14709.	04364	.14649.	.05819,	.14570.	202400000
	1 .0773.	.14476.	.C8727.	.14369,	.10181,	20250000
	1 14253	.11634.	.14131,	.13087,	.14007,	202600000
	1 14534	.13832.	.14877.	.13854.	.15214.	202700000
	1 13326.	15552.	.13798.	.15890.	.13770.	20280000
	1 10227+	.13743,	.16565.	.13716,	.16903,	20290000
	1 .1369U.	.17240,	.13665,	.17578.	.13640,	20300000
	1 17916.	.13616.	.18436,	.13581,	.18956,	203100000
	1 .13547.	.19477.	.13515.	.19997.	.13484/	20320000
200000	DATA (PHILU((1) .PSILD(1),	I=26,501/			203300000
	1 -20518.	13455	.21039.	.13426.	.21560.	203400000
	1 -13396.	.22080.	.13371.	.22601,	.13345,	203500000
	1 23122	.13318.	.24077.	.13270,	.25032.	20360000
	1 13221.	.25986.	.13172,	.26941,	•L3124•	203700000
	1 27896.	.13075.	.28850,	.13026,	.29805,	203800000
	1 12976	.30760.	.12926.	.31714,	.12876,	20390000
	1 32009.	12825.	.33995.	.12753,	.35322,	20400000
	1 12681.	30648.	.12610.	.37974.	.12541,	204100000
	1 39301.	.12475.	.40628.	.12415,	.41955,	2.042.00.000
	1 1/359	43282	.12311.	.446.09.	.12270/	20430000
500000	DATA (PHILU(I) .PSILD(I)	I=51,751/			204400000
	1 .45437	12239.	.46975,	.12221,	.48014.	20450000
	1 12209.	.49053.	.12202.	.50092,	.12199,	20460000
	1511c [.12199.	.52170,	.12203,	.53210.	204700000
	1 12209	.54249.	.12216,	.55288,	.12224.	20480000
	1 .56327.	.12233.	.57223.	.12240,	.58118.	20490000
	1 .12240,	.59014.	.12253.	• 60665 •	.12259,	20500000
	1 .00305.	.12265.	.61700.	.12271,	.62596,	205100000
	1 .12277.	.63491,	.12283,	.64387,	.12289,	205200000
	1 .02282.	.12295,	.66829,	.12305,	. 68376.	20530000
	1 .12316.	.09923.	.12326,	.71470,	.12337/	205400000
300000	DATA (PHILD(I), PSILD(I)	, I=76, 1001/			20550000
	1 .73016,	.12348,	.74563,	.12359,	.76110.	20560000
	1 .12370.	. 77 65 7.	.12381,	.79204,	.12391,	205700000
	L 80750.	.12401.	.82106,	.12410.	.83461,	20580000
	1 .12418,	.84816,	.12426,	.86171,	•12434•	20590000
	1 .87527.	-12441.	.88882,	.12448,	.90237,	206000000

ļ

......

10101010

-

A LILL FRUIT A LILL

1 1 1

	1 -12455.	.91592.	.12461.	.92948.	.12467.	206100000
	1 .94303.	.12472.	.95538.	.12477,	.96772.	20620000
	1 .12482,	.98007.	.12486,	.99241,	.12489,	20630000
	1 1.03476,	.12492,	1.01711,	.12495,	1.02945,	20640000
	l .12498,	1.04130,	.12500,	1.05414.	.12501/	20650000
00005	DATA (PHILD(1), PSILD(1),	I = 101, 1251/			20660000
	1 1.06649,	.12502,	I. C7810,	.12503,	1.08971,	20670000
	1 .12503,	1.10132,	.12502,	1.11293,	.12501,	20680000
	1 1.12454.	.12500,	1.13615,	.12498,	1.14776.	20690000
	1 .12495,	1.15937,	.12492,	1.17098,	.12489,	20700000
	1 1.18259,	.12435,	1.19372,	.12481,	1.20486.	207100000
	1 .12476,	1.21599,	.12471,	1.22713,	.12465.	20720000
	1 1.23827,	.12459,	1.24940,	.12452,	1.26054,	20730000
	l .12445,	1.27107,	.12437,	1.28281,	.12428,	20740000
	1 1.23394,	.12419,	1.30473,	.12409,	1.31552,	20750000
	1 .12398,	1.32631,	.12387.	1.33710.	.12375/	20760000
200005	DATA (PHILD)	(), PSILD([),	I=126,1501/			207700000
	1 1.34790,	.12362,	1.35869,	.12349.	1.36948.	20760000
	1 .12334,	1.38027,	.12319,	1.39106,	.12303,	20790000
	1 1.40185,	.12286,	1.41248,	.12268,	1.42311,	20800000
	1 .12249,	1.43375,	.12229,	1.44438,	.12208,	20810000
	1 1.45501,	12186.	1.46564 ·	.12163,	1.47628,	208200000
	1 .12138,	1.48691,	.12113,	1.49754,	.12085,	20830000
	1 1.50817,	.12057,	1.51872,	.12027,	1.52928,	20840000
	1 .11996,	1.53983,	.11964,	1.55038.	.11930.	20850000
	1 1.56094,	.11894,	1.57149,	.11857,	1.58204,	20860000
	1 .11818,	1.59259,	.11778,	1.60314,	.11736/	20870000
00005	DATA (PHILD)	I), PSILU(I),	I=151,175)/			20880000
	l l.61369,	.11693,	1.62418,	.11648,	1.63468,	20890000
	1 .11002,	1.64517,	.11554,	1.65566,	.11504.	20900000
	l l.óooló,	.11453,	1.67665,	.11400,	1.68714,	20910000
	1 .11346,	1.697,63,	.11291.	1.70811,	.11234,	20920000
	1 1.71860,	.11175,	1.72914,	. 11115,	1.73968,	209300000
	11054,	1.75021,	.1001.	1.76075,	.10928,	20940000
	1 1.77128,	.10863,	1.78182,	.1.0797.	1.79235,	20950000
	L .10730,	l.80289,	.10662,	1.81342,	.10594,	20960000
	l 1.d2395,	.10524,	1.83461,	.10453,	1.84527,	20970000
	1 .13381,	1.85592,	.10308,	1.86658,	.10235/	20980000
000005	DATA (PHILU(I) , PSILD(I),	I=176,200)/	_		2090006602
	1 1.87723,	.10161,	1.88789,	.10086.	1.89854,	21000000
	1 .10010,	1.90920,	• 09933 •	1.91985,	.09856,	21010000
	l 1.93050,	•C9778,	1.94138.	.09698.	1.95226,	21020000
	1 .09617,	l.96314,	.09535,	1.97402,	.09452.	21030000

212800000 212900000 21300000 213100000 213400000 213500000 213600000 213700000 211700000 211800000 211900000 212000000 212100000 212400000 212600000 212700000 2132000 00 213300000 211000000 211200000 211300000 211500000 211600000 212200000 212300000 212500000 21050000 210600000 210800000 210900000 211100000 211400000 210400000 210700000 .05030. .07106. 2.29713, .06559. 2.50256. .04834. 2.58225, .04114, 2.67189. .03421. 2.80877. .02539. 3.01671. .08579. 2.11831, 2.17601. .07616, 2.36159, .06011. .022481 2.06185, 2.23560, 2.42950, 2.00664, .05427 .08113, .02355. .03052. 2.08444, .07413, 2.25943. .06338. 2.38738. .05783. .05191, 2.53178, .04564, 2.61810, 2.70777. 3.09996, 2.02839. .08853, .08394, .07919. 2.19985, C6892 2.32292. 2.45872, .03823. .09285, 2.14089, .89190. CALL FTLUP(PHI(J), PSI(J), 2, 251, PHILD, PSILD) I= 201, 225), I=226,251) •04953 • .02266. 2.41489. 2.48795. 2.57510. 1.99577. .0116. 2.05056. .08671. 2.10702, 2.16409. .07717. .07209. .05545. .04263, 2.65396, .03549. .C8207, 2.22368, 2.28424. 2.34870, .06119, 2.56432. 2.76723. .02675. .06670. .PSILU(I). , PSILD(1 •05904, .05309, 2.51717, •04713+ .03967. .03300, .02434. .0369. 2.01752, .08943 2.07314, .08487, 2.12960, .08019, 2.18793. .07515, 2.24751, .07004, 2.31002. .06448. 2.37449, 2.44411, 2.60018, 2.68983, 2.85033. 3.05834, .02242/ 2 UATA (PHILU(I) DG 202 J=1,20 DATA (PHILD(2.47334, .02301, 2.15217, .07818. .06229. 2.40028, 2.63603, 2.72571, .02844, 2.93350. 3.14159, 1.98489. 2.03927. 2.09573, .08301, 2.21170, .07311. 2.27134, .06781. 2.33581, .05072. 2.54640, .04413, .03633, .09201, .08763. .05664 CONTINUE RETURN ENO ENO 202 000014 000020 000000 000000 000000 200000 000021

APPENDIX

74

.

a - - - -

a. I. of

.

1 . . . l

il àtre a c

	SUBROUTINE PH	IP So6(PH1, PS	(1)			21380000
000005	UIMENSION PHI	(1) 154 (1)				21390000
000005	DIMENSION PHI	(LD(201),PSI	(10(5CI)			21400000
000005	DATA (PHILD(I	(),PSILD([),	I=1,25)/			214100000
	1 0.00000	.16457,	.01573,	.16455,	.03145,	214200000
	l .ló449,	.04718,	.16437,	.06290,	.16416.	214300000
	1 .07862,	 16386, 	.09433	.16345,	.11003,	214400000
	1 .16232.	.12572,	.16223,	•14141•	.16139,	21450000
	L .15708.	.16037,	.17280,	.15916,	•18851,	214600000
	l .15779,	.20422,	.15631,	•21992•	.15475,	21470000
	1 .23562,	.15316.	.25131,	.15157,	.26701.	21480000
	1 .15002,	.28272.	.14856,	•29844•	.14722,	21490000
	1 .31416,	. 14604,	.32984,	.14506.	.34552,	21500000
	1 .14427,	.36122,	.14364,	.37693,	.14316/	215100000
000005	DATA (PHILD(I	, PSILD(I),	1=26,50)/			215200000
	1 .39264,	.14281,	.40835.	.14257,	.42407,	21530000
	l .14242,	.43980,	.14235,	•45552•	.14233,	21540000
	1 .47124,	.14236,	• 48696 •	.14241,	-50267,	21550000
	l .14248,	.51838,	.14257,	•53409	.14267,	21560000
	l .54479,	.14280,	.56550,	•14294•	.58121,	215700000
	1 .14310,	.59691,	.14327,	.61262.	• 14346,	215800000
	1 .62332,	.14366,	• 64403 •	.14387,	.65973,	21590000
	1 .14410,	.67544,	.14433.	.69115,	.14457,	21600000
	1 .70686,	.14481,	. 72257 .	.14506,	. 73827,	216100000
	1 .14530,	.75398,	. 14554 .	.76969,	.14578/	216200000
000005	DATA (PHILD(I),PSILD([),	I=51,75)/			21630000
	1 .78540,	.14601,	.80111.	.14623,	. 81682,	216400000
	L .14645,	.83252,	.14665,	.84823,	.14685,	21650000
	L .06394,	•14704•	.87965,	.14722.	.89536,	216600000
	l .14740,	.91106.	.14757,	.92677,	.14774,	21670000
	l .94248,	.14790,	.95819,	.14806,	.97390,	216800000
	1 .14821,	.98960,	.14835,	1.00531,	.14849.	21690000
	I 1.02102,	.14862,	1.03673,	.14875,	1.05244,	217000000
	1 .14886,	1.06814,	.14897,	1.08385,	.14908,	217100000
	1 1.09950.	.14917,	1.11527,	.14925,	1.13098,	217200000
	1 .14933.	1.14668 ,	.14940	1.16239,	.14945/	217300000
000005	DATA (PHILU(I	(1),PSILU(1),	I=76,1001/			217400000
	1 1.17810,	.14950,	l.19381,	.14954,	1.20952,	21750000
	L .1+957,	1.22522*	.14959,	1.24093,	.14961,	21760000
	1 1.25664,	.14961,	1.27235.	.14960,	1.28806,	21770000
	L .14959,	1.30376,	.14956,	L.31947,	.14953,	217800000
	1 1.33518,	• 14943 •	1.35089,	.14943	1.36660.	21790000

	1 .14936. 1 1.41372.	1.38230. 14908.	.14928. 1.42943.	1.39801.	•14918, 1.44514.	21800000
	1 .1483,	1.46085,	.14869.	1.47655.	-14853	218200000
	1 1.49226.	.14835,	1.50797,	.14816,	1.52368,	21830000
	1 .14796,	1.53939,	.14774,	1.55509,	.14750/	21840000
20000	DATA (PHILD([],PSILD([],	I=101,1251/			21850000
	1 1.57080,	.14725,	1.58651,	.14698,	1.60222,	21860000
	1 .14669,	1.61793,	.14638,	L.63364,	.14606,	21870000
	1 1.04934,	.14571,	1.66505,	.14533,	1.68076,	21880000
	L .14494,	1.69647,	.14452	1.71217,	.14407,	21890000
	L 1.72784,	.14360,	1.74360,	.14310,	1.75932,	21900030
	L .1425a,	1.77504.	.14198,	1.79075,	.14135,	21910000
	L 1.80647,	.14067,	1.82217,	.13992,	1.83788,	21920000
	1 .13910.	1.85358,	.13820,	1.86927,	.13722.	21930000
	l l.88496,	.13015,	1.90070,	.13498,	1.91642.	21940000
	L .13371,	1.93214,	.13236,	1.94786,	.13093/	21950000
000005	DATA (PHILD(<pre>(1).PSILU(1).</pre>	I=126,150)/			21960000
	L 1.90357,	.12942,	1.97927,	.12786,	1.99497,	21970300
	1 .12623,	2.01067,	.12456.	2.02636,	.12284.	21980000
	1 2.04204,	• 12 108,	2.05777.	.11929,	2.07345,	21990000
	L .11746,	2.C8920,	.11561,	2.10492,	.11373,	22000000
	L 2.12062,	.11182,	2.13633,	.10987,	2.15203,	22010000
	1 .10790,	2.16773,	.10590.	2.18342.	-10386,	22020000
	1 2.19911,	.10160,	2.21483,	•02660 •	2.23055,	22030000
	1 .09758,	2.24620,	.09542,	2.26197,	.09325,	22040000
	1 2.27768,	.09106,	2.29338,	.08885,	2.30905,	22050000
	1 .08662,	2.32479.	.08439,	2.34049,	.08214/	220600000
000005	DATA (PHILD(<pre>[],PSILD(I),</pre>	I=151,1751/			22070000
	1 2.35619,	• C7989•	2.37190,	.07763,	2.38761,	22080000
	1 .07537,	2.40331,	.07311,	2.41902,	.07085,	220900000
	1 2.43473,	.C6859,	2.45043.	.06633.	2.46614,	22100000
	L .06407,	2.48185,	.06182,	2.49756,	.05957,	221100000
	1 2.51327,	.05733,	2.52897,	.05510.	2.54467,	221200030
	1 .05287,	2.56037,	• 05066	2.57637,	• 04846,	22130000
	1 2.59178,	.04627,	2.66749,	•04411•	2.62320,	22140000
	L .04196,	2.63491,	.03983.	2.65463,	.03773,	22150000
	1 2.07035,	.03506,	2.68004.	.03362,	2.70173,	22160000
	1 .03161,	2.71742,	.02964,	2.73312,	.02770/	22170000
000005	UATA (PHILU([], PSILD([],	I=176,201)/			22180000
	1 2.74882,	.02540,	2.76453,	.02395,	2.78025.	221900000
	1 .02215,	2.79597,	•02039.	2.81170.	•01869.	222000000
	1 2.02743,	.01705.	2.84311,	.01547,	2.85880,	222100000
	1 .01390,	2.87449,	.01250.	2.89019,	.01112.	22220000

76

.

the state of the state

where is the second of the solution of

÷

- 11 -

11.11.11

÷

00000000000	0
00000000000	0
000000000000	0
	Ō.
0000000000000	<u>o</u> .
<u>u</u> 4 n 6 b 6 0 - n n u	4
	m.
	2
~~~~~~~~~~~~~~~	~

		2.90590. .00740. 2.98451.	.00981, 2.95305, .00439,	2.92161. .00631. 3.00020.	.00857, 2.96878, .00356,	2.93733, .00531, 3.01590,
		•18200-	3.03160,	.00216.	3.04731,	.00159,
		3.00302,	•01100•	3.07873,	.00071.	3.09444,
	~-	• 00 04 0.	3.11016,	.00018,	3.12587,	• 00004 •
	-	3.14159,	J. CJOUO/			
000005	00	1 202 J=1,20.				
00000°	CA	ALL FTLUP (PH	(L)IS4,(L)I	,2,201,PHIL	(D.PSILD)	
000014	202 CO	IN TINUE			•	
070000	¥	TURN				
000021	μ	0				

22350000 223600000 223700000 223800000	22390000	22400000	224100000	22420000	22430000	224400000	22450000	22460000	22470000	22480000	22490000	22500000	225100000	22520000	22530000	22540000	22550000	22560000	22570000	22580000	22590000	22600000	22610000	22620000	22630000	226400000	22650000	22660000	22670000	22680000	22690000	22700000	22710000	22720000	22730000	227400000	22750000	
	.02998,	.17976.	.10483,	.17614,	.15601,	.17345,	.17208,	.17174,	.19201,	.16959/		.21777,	.16764,	.25229,	.16426,	• 29993•	.16048,	.35505.	.15641,	.42142.	.15348/		.48200,	.15207.	.53384,	.15129,	.58275,	.15075,	.62725,	.15034,	.08461,	-14994/		.76125.	.14982,	.83397,	.14986,	
	.18026,	• 05995 •	.17885,	.13468.	-17447.	.16244.	.17276.	.17850.	.17092.	.20231,		.16879.	.22808,	.16653,	.27135,	.16272,	.31899,	.15885,	.38159.	.15507.	.44798,		.15277,	.50274.	.15171,	.55458.	.15105.	.60055,	.15057,	• 64505.	.15016,	.71527,		.14986,	.19191,	.14982.	.86070,	
I) LD(251) T=1.25 )/	.01499.	.18002.	.08988.	17725	-15280-	.17380,	.16886.	.17207.	.18686,	.17001.	I=26,501/	.21262.	.168C2,	.24277,	.16502,	.29041,	.16121.	.34178.	.15717,	.4C814,	.15396,	I = 51, 751/	.47164,	.15228,	.52348,	.15142.	.57385.	.15085.	.61335.	.15041,	.66928,	.15000.	I=76,100)/	.74593,	.14982.	.82061,	.14985,	
2667(PHI, PS (1), PSI(1) _0(251), PSI(1).	.18028,	.04497.	17938.	.11976.	.17480.	15923.	.17310.	.17529.	.17141.	.19716.	. PSILD(I).	.16918,	.22293,	.10726,	.26182.	.10344,	• 309461	.15978.	.36832,	.15572,	.43470	, PSILU(1),	.15306,	.49237.	.15188.	.54421,	.15116.	.59165.	.15066,	.63al5.	.15027,	• 96669 •	1.PSILU(I).	.14990.	. 77 658.	.14982,	.84734.	
SUBROUTINE PHE DIMENSION PHIL DIMENSION PHIL			1 .07492	1 17815			1 16565.	1 17241	1 .13172.	1 17045.	DATA (PHILD(I	1 20745.	1 16840.	1. 23323.	1 .16578.	1 .28088.	1 .16196.	1 32853.	1 .15798.	1 39480	1 .15449.	DATA (PHILU(I	1 46127.	1 15251.		115150.	1 .56495.	1 15095,	1 +0.0945	1 .15049.	1 .55395.	1 L5J07.	DATA (PHILD(	1 .73.060.	1 14984	1 80724	14983	
000005 000005 000005											000005											200000											200006					

.

APPENDIX

÷

-

-

1

M 6 1

(1) A Line of the station of the line of the state of

227700000 227800000 227900000 228000000	228200000 228200000 228400000 228600000 228600000 228800000 228800000	228900000 22900000 229100000 229100000 229400000 229400000 229400000 229400000 229400000 229400000	22980000 22990000 23000000 230100000 230200000 230400000 230400000 230400000 230400000 230400000 230400000 230900000 230900000	231100000 231200000 231400000 231500000 231500000 231500000 231500000 231800000 231900000
.14999, .96529, .15014, 1.02629,	.150580, .15048, .15048, .1.14308, .15067, .15084,	1.2541/, .15099, 1.30835, .15107/ 1.36159, .15110, 1.41449, .15109,	1.46690, .151921, .151921, .15090, .15065/ .15065/ .15030, .15030, .14982, .14914,	1.78270, .14822, .14824, .14698/ .14698/ .14539, .14539, .14329,
.92753, .15005, .98969, .15021,	.15038. .15038. .15056. 1.16599. .15074.	.15091, 1.27609, .15103, 1.32965, .15108, 1.38289, .15110, 1.43546,	.15108, 1.48786, .15100, 1.54008, .15081, 1.59226, 1.5053, 1.5013, 1.5013, 1.4957, 1.4957, 1.75055,	.14880, 1.4776, 1.4776, 1.85903, 1.4639, 1.91427, 1.91427, 1.97156,
.14996, .95309, .15011, 1.01409,	l=101,125)/ 1=101,125)/ 1.07435, 1.15045, 1.13162, 1.18840, 1.18840, 1.15081,	<pre>1.24321, 1.15096, 1.25770, 1.126,150)/ 1.35094, 1.35094, 1.40401, 1.40401, 1.15110,</pre>	<pre>1.45642,     15106,     15106,     1.5034,     1.5034,     1.5071,     1.5071,     1.61319,     1.5038,     1.5038,     1.4993,     1.71841,     1.71841,     1.4929, </pre>	<pre>1. 77198, 1. 4842, 1. 42589, 1. 4725, 1. 4725, 1. 4725, 1. 4724, 1. 4313, 1. 4376, 1. 4376,</pre>
-91416, -15002, -97749, -15018,	1, PSILD([]), 1, 09726, 1, 09726, 1, 15052, 1, 15453, 1, 21032, 1, 21032,	- 15088, 1.26513, .15101, 1.31900, ),PSILD([], .15108, 1.37224, .15110, .15110, 1.42498,	• 15109 1.47738 1.47738 • 15102 1.52965 1.58182 1.58182 1.58182 1.50869 • 15022 1.4970 • 14970 1.73984	.14897, 1.79341, .14800, 1.84798, 1.84798, 1.90322, 1.90322, 1.90322, 1.56000,
1 .14993, 1 .94089, 1 .15008, 1 1.00189,	DATA (PHILU(I DATA (PHILU(I 1 1.0289, 1 1.0289, 1 1.017, 1 1.0017, 1 1.0744, 1 1.0744, 1 1.0744, 1 1.0744,	L L.25225 L L.25225 L .15094 L .15104 UATA (PHTLU(I L .15109 L .15109 L .15109 L .15110,	1 1.445944 1 .151074 1 .150974 1 .150976 1 .150769 1 .150769 1 .150769 1 .150469 1 .150469 1 .150039 1 .150039 1 .150039 1 .150039	1 1.76127, 1 1.76127, 1 .14862, 1 .14752, 1 .14752, 1 1.87008, 1 1.92531, 1 .14420, 1 .14420,
	000002	000002	<u>د</u> 00000	00005

						000000000000000000000000000000000000000
	l 1.98312,	.14279,	I.99468,	•14221	4 C 7 D N 7	
	1 .14171.	2.01779,	.14111.	2.02934.	.14048,	23210000
	1 2 04:039	13981.	2.05308.	.13905.	2.06526,	232200000
		2 07 74 5	. 95751	2.08962.	.13648.	232300000
		13551	7 11 3 97	13449	2.12613.	232400000
		110001 C	72751	2.15044	13106/	23250000
00000	614661° 1 JULING) VIVU	11.PSTID(1).	1=201.2251/			23260000
	1 2.16254	12980.	2.17538.	.12839.	2.18816.	232700000
	1 12602	2,20093	12538.	2.21370.	.12380,	23280000
	1 2.22646	-12216	2.23922.	.12048.	2.25197.	23290000
		2.26472	.11700.	2.27746,	.11523.	23300000
	1 2.24021.	.11343.	2.30379.	.11150.	2.31737.	233100000
	1 10955	2.33095.	.10758.	2.34453	.10559.	23320000
	1 2.35810-	.10358.	2.37167.	.10154.	2,38523,	233300000
		2.39879.	.09738.	2.41235,	.09526.	23340000
	1 7.42590	.04310.	2.44078,	.09070,	2.45566,	23350000
		2.47053	.06576.	2.48539.	.08324/	23360000
30000	DATA (PHILD)	(1) (1) SQ. (1)	.1=226.2511/	_		23370000
	1 2 50025	-08068-	2-51510.	.07808.	2.52995.	233800000
	1	2.54478.	.07278.	2.55962.	.07008.	23390000
	1 2 7 4 4 4	- 00735.	2-59138.	.06420.	2.60831,	23400000
		2-62523	.05782.	2-64216.	.05463.	234100000
		.05145	2.67603.	.04830.	2.69297.	234200000
	1	2.70993	04212	2.72690.	.03912.	234300000
	1 2.74389.	- 03620	2.78335.	.02979,	2.82290.	234400000
	16870. 1	2.86255.	.01859.	2.90227.	.01386,	23450000
	1 1.94205.	.17900	2.58189.	.00635,	3.02178,	234600000
	1 .00362	3.06170.	.00163.	3.10164,	.00041.	234700000
	1 3,14159	0.00007	e F			234800000
000005	2.1=f 202 10					234900000
200000		U 154.(L) IH	1,2,251,PHIL	.D.PSILDI		235000000
20000	202 CUNTINUE					235100000
000020	RETURN					235200000
120000	END					000005552

ł

A D. AND MARKED

and the second

أيه أساعه فالمناب بالمعالفة المناطع المستقلال فالما

a dia a

4 h. h

_

### REFERENCES

- 1. Abbott, Ira H.; Von Doenhoff, Albert E.; and Stivers, Louis S., Jr.: Summary of Airfoil Data. NACA Rep. 824, 1945. (Supersedes NACA WR L-560.)
- 2. Abbott, Ira H.; and Von Doenhoff, Albert E.: Theory of Wing Sections. Dover Publ., Inc., c.1959.
- Loftin. Laurence K., Jr.: Theoretical and Experimental Data for a Number of NACA 6A-Series Airfoil Sections. NACA Rep. 903, 1948. (Supersedes NACA TN 1368.)
- 4. Robinson, Frank: Increasing Tail Rotor Thrust and Comments on Other Yaw Control Devices. J. Amer. Helicopter Soc., vol. 15, no. 4, Oct. 1970, pp. 46-52.
- 5. Patterson, Elizabeth W.; and Braslow, Albert L.: Ordinates and Theoretical Pressure-Distribution Data for NACA 6- and 6A-Series Airfoil Sections With Thicknesses From 2 to 21 and From 2 to 15 Percent Chord, Respectively. NASA TR R-84, 1961. (Supersedes NACA TN 4322.)
- 6. Kinsey, Don W.; and Bowers, Douglas L.: A Computerized Procedure To Obtain the Coordinates and Section Characteristics of NACA Designated Airfoils. AFFDL-TR-71-87, U.S. Air Force, Nov. 1971.
- 7. Theodorsen, Theodore: Theory of Wing Sections of Arbitrary Shape. NACA Rep. 411, 1931.
- Von Doenhoff, Albert E.; Stivers, Louis S., Jr.; and O'Conner, James M.: Low-Speed Tests of Five NACA 66-Series Airfoils Having Mean Lines Designed To Give High Critical Mach Numbers. NACA TN 1276, 1947.
- 9. Stevens, W. A.; Goradia, S. H.; and Braden, J. A.: Mathematical Model for Two-Dimensional Multi-Component Airfoils in Viscous Flow. NASA CR-1843, 1971.

-

----

## TABLE I

# SAMPLE COMPUTER PRINTOUT OF ORDINATES FOR SYMMETRIC AIRFOIL

NACA 64-012

.010400 CHD= 4.00000 .120000 RLE= 0.000000 -58127 -98427 -99970 1.00000 **0.00000** 2)= 3)= 4)= | ]= R AT ( 10C = RAT( CL I= = **A** RAT ( RAT(

× .009993 .066000 X/C FIT OF ELLIPSE .005524 Y/C FIT OF ELLIPSE .002524 SLOPE FIT OF ELLIPSE .010230 RADIUS AT ORIGIN CF ELLIPSE THRU XT(11)/C, YT(11)/C RATIO OF T/C INPUT TO T/C COMPUTED IS .959994 CUMULATIVE SCALING CF EPS, PSI .571956 NUMBER OF ITERATIONS= 4 X/C DY/DX D2Y/DX2 .374809 SLOPE CHANGES SIGN AT X/C. Y/C = • 666663 • .375985 PEAK IS AT X/C= MAXIMUM Y/C IS

≻

0000*00000*00000*( 2255 4.131807	00000.000000 -1285.416924		0.0000000000000000000000000000000000000	0.000000 0.00018 0.12626
3156 3.121326 3879 2.440607	-3039.945834 -861.366352		. 003 000	015517
4459 2.175085	-1 C12. 81 61 31		•00000	.017834
4964 1.971195	-835.047477		.005000	168610.
5441 1.775869	-594.256452		•008000	C01120*
5873 1.632783	-456.780804		.00700	064620 •
6263 1.534051	-403.760988		.008000	260620.
6639 1.435421	-329.337913		000600.	166970.
6982 1.365550	-295.964554		. 0100010	.021921
7317 1.293897	-253.258692	•	-01100	0.2620.
7636 1.231598	-219.588876		-012000	• 030545
7932 1.184026	-201.449334		000100	•031729
1.135046 <b>1.135046</b>	-179.341768		.014000	.032896
1.090799 <b>1.090799</b>	-160.686953		• 015000	.034019

016000         016000           009710         1.051285         -145.48488           009720         009722         -95605           009721         -009728         -125.3893193           009722         -95605         -97728           009723         -97728         -125.3893193           009724         -9254728         -125.3693193           001032         -9254728         -125.75473           010032         -937865         -975473           010032         -937867         -129.99665           0100342         -919.78766         -022000           0110342         -919.7876         -023000           0110342         -914465         -9264732           0111623         -7777840         -622000           0111624         -777891         -6264732           0111623         -777691         -6264732           0111623         -777692         -627000           0111162         -777951         -52744655           011210         -777621         -52744655           011210         -7775151         -62910           011210         -774623         -61700           0112210         -657661         -617		1/0	X0/V0	D2Y/DX2	×	۲
.009280         1019076         -13893193         .017000           .009280         .995605         -12538681         .018000           .009281         .9954728         -12538681         .018000           .009751         .9954728         -12538681         .018000           .009751         .9954728         -12538681         .021000           .0010427         .854758         -12539544         .021000           .010457         .854756         -120754737         .022000           .010457         .854765         -12078437         .022000           .010457         .854765         -120784737         .022000           .010457         .8544640         -65640810         .027000           .011042         .014890         -65640810         .027000           .011304         .777840         -65640810         .027000           .011304         .770399         -5597403         .025000           .011304         .770394         -5597403         .025000           .011304         .770394         -5597403         .025000           .011304         .770394         -5597403         .025000           .012510         .6649943 <td< td=""><td>• 00</td><td>8774</td><td>1.051285</td><td>-145.484888</td><td>.016000</td><td>.035096</td></td<>	• 00	8774	1.051285	-145.484888	.016000	.035096
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00.	9028	1.019076	-133.893193	.011000	.036113
.0009525         .954728         -120. 202245         .019000           .0009761         .926474         -118. 39285         .021000           .010637         .8877865         -125. 754737         .022000           .010637         .8877865         -125. 754737         .022000           .010647         .8877865         -125. 754737         .022000           .010842         .8833245         -109. 787694         .022000           .011044         .775887         -7.6957         -66.064732         .022000           .0111241         .777840         -66.064732         .022000           .0111623         .744640         -75. 169281         .022000           .0111624         .777840         .7664081         .76.40820           .0111624         .7778445         .033000         .023000           .0111624         .7778445         .033000         .023000           .0112510         .664731         .7446455         .031000           .012510         .664734         .730348         .033000           .012338         .664765         .014043         .033000           .012330         .664734         .733446         .033000           .012510         .664734	.00	9280	.985605	-125.386881	.018000	.037121
009761 $926444$ $-118.339285$ $002000$ $0009761$ $9254764$ $-129.96495$ $0023000$ $0010639$ $8834264$ $-129.187694$ $0023000$ $0010842$ $8874865$ $-129.187694$ $0023000$ $0010842$ $8873264$ $-109.817694$ $0022000$ $0010842$ $8873264$ $-109.64737$ $0022000$ $0011241$ $777840$ $-66.40810$ $022000$ $0011241$ $777840$ $-66.40810$ $022000$ $0011241$ $77007$ $9054732$ $0023000$ $0011264$ $77007666 - 57.169281$ $0023000$ $0012164$ $77007666 - 47.462929$ $0034000$ $0012164$ $6689063 - 55.974043$ $0037000$ $0012164$ $6689063 - 57.169279$ $0034000$ $0012164$ $0680066 - 47.462929$ $0034000$ $0012164$ $6675005 - 43.462929$ $0034000$ $00123164$ $6675005 - 43.462929$ $0037000$ $00123164$ $6675005 - 43.462929$ $0034000$ $00123164$ $6675005 - 43.462929$ $0036000$ $0125710$ $6675005 - 43.462929$ $0037000$ $0125710$ $6675005 - 43.462929$ $0037000$ $0125710$ $6675005 - 43.462929$ $0037000$ $0125710$ $6142270 - 33.643701$ $0037000$ $0133021$ $6142270 - 33.643701$ $0074000$ $0133021$ $6142270 - 33.643701$ $0074000$ $0133021$ $6142270 - 33.643701$ $0074000$ $0133026654310 - 226.9470200740000133$	.00	9525	.954728	- 120. 202245	. 019000	.038098
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00.	9761	•926444	-118.339285	.020000	.039043
.CI02C9         .B77865         -L25.754737         .022000           .0106427         .B544759         -119.018470         .0226000           .0110642         .B544759         -119.018470         .025000           .0110642         .B544759         -119.018470         .025000           .0110644         .795887         -169.08405         .025000           .0111444         .795887         -66.4732         .027000           .0111444         .795887         -66.4732         .027000           .0111804         .750398         -55.0440810         .027000           .0111904         .730398         -55.0440810         .027000           .0111904         .730398         -55.044055         .033000           .0112640         .730398         -55.044655         .033000           .012510         .6664958         -44.4655         .033000           .012670         .715929         -55.044655         .033000           .012671         .730398         -730.18455         .033000           .012673         .6549326         -033000         .044000           .012674         .7550128         .0138000         .044000           .013777         .6544310         .0138000	• 00	9985	902544	- 129. 996495	. 021 000	.039941
$\begin{array}{llllllllllllllllllllllllllllllllllll$	• 5	0209	.877865	-125.754737	.022000	.040836
010639 $633224$ $-109.787694$ $0226000$ $0110942$ $011444$ $778487$ $-68.8378145$ $0226000$ $0111623$ $776387$ $-68.897514$ $027000$ $0111623$ $7778470$ $-68.897514$ $0228000$ $0111623$ $7764640$ $-57.1692981$ $0230000$ $0111623$ $7764640$ $-57.169281$ $0330000$ $0112164$ $7702151$ $-52.974043$ $0330000$ $0123180$ $7702151$ $-52.974043$ $033000$ $0123180$ $7702151$ $-52.974043$ $033000$ $0123180$ $7702151$ $-52.974043$ $033000$ $0123180$ $-7650963$ $-77786979$ $033000$ $0123180$ $-6376056$ $-77.756879$ $033000$ $0122103$ $-67666505$ $-47.462929$ $0336000$ $0122103$ $-6776656$ $-73.462929$ $0336000$ $0122103$ $-6776656$ $-73.462929$ $0336000$ $0122103$ $-6776656$ $-73.462929$ $0336000$ $0122103$ $-6776656$ $-73.462929$ $0376000$ $0122103$ $-6776667$ $-73.462929$ $0376000$ $0133211$ $-623861$ $-33.245275$ $0440000$ $013477$ $-614270$ $-29.4369567$ $0440000$ $013777$ $-623861$ $-32.245275$ $0440000$ $014773$ $-579481$ $-22.6498126$ $0440000$ $014773$ $-57948122$ $-72.6470002$ $0440000$ $014773$ $-5564301$ $-22.65018997$ $0440000$	.01	0427	.854758	-119.018470	.023000	.041708
.010842         .814898         -86.834845         .025000           .011241         .777840         -65.064732         .025000           .0111613         .777840         -65.064732         .025000           .0111614         .777840         -65.064732         .025000           .0111623         .744640         -57.169281         .023000           .0111804         .775929         -55.944655         .033000           .011186         .715929         -55.9446455         .033000           .012510         .664958         -56.29118         .033000           .012510         .6564958         -41.490895         .033000           .012510         .664958         -41.490895         .033000           .012510         .664958         -41.490895         .033000           .012510         .664958         -41.490895         .033000           .01371         .614229         -41.490895         .033000           .01371         .614229         -41.490895         .033000           .01371         .614229         -41.490895         .033000           .01371         .614229         -41.490895         .044000           .013700         .614229         -41.490895	.01	0639	.833224	-109.787694	.024000	•042556
.011044       .795887       -76.897514       .025000         .0111241       .777840       -57.68.902952       .031000         .0111634       .7700151       -52.944655       .031000         .0111634       .715929       -55.844655       .033000         .0111644       .715929       -55.844655       .033000         .0112610       .715929       -55.844655       .033000         .0112104       .715929       -55.844655       .033000         .0112510       .676666       -47.795879       .033000         .012510       .676665       -47.795879       .033000         .012510       .67664958       -46.42929       .034000         .012510       .6764958       -55.848325       .033000         .012510       .6764958       -47.795879       .033600         .012510       .6764958       -47.496895       .034000         .013777       .596468       -34.45577       .044000         .013777       .596668       -34.45577       .044000         .013777       .596668       -34.45577       .044000         .013777       .596668       -34.45577       .044000         .014700       .6579381       -57.56108	.01	0842	.814898	-86.834845	. 025000	• 043366
.011241       .777840       -68.640810       .027000         .011434       .760757       -62.064732       .028000         .011823       .746460       -57.164732       .028000         .011804       .715929       -55.902952       .033000         .012510       .715929       -55.914655       .033000         .012510       .766666       -47.795879       .033000         .012510       .6664958       -45.488326       .033000         .012510       .6664958       -45.488326       .033000         .012510       .6664958       -45.488326       .033000         .012510       .665605       -41.490895       .034000         .012510       .655005       -41.490895       .041000         .0131b4       .653861       -39.680346       .033000         .013152       -39.13181       .074000       .044000         .013321       .614270       -34.55176       .044000         .013321       .614270       -34.5501208       .045000         .013322       .33.45851       .35.55176       .044000         .014072       .574575       .044000       .045000         .014073       .574516       .074200       .045000<	• 01	1044	. 795887	-76.897514	.026000	-044174
.011434       .760757       -62.064732       .028000         .0111623       .715929       -55.94265       .031000         .0111804       .715929       -55.94265       .031000         .0111916       .715929       -55.974043       .028000         .0112510       .744640       -57.169281       .033000         .012510       .664958       -47.796879       .033000         .012510       .664958       -47.796879       .033000         .012510       .664958       -47.490895       .034000         .012510       .664958       -47.490895       .033000         .012510       .664958       -45.48326       .033000         .012640       .664958       -45.48326       .033000         .012640       .664958       -45.4629       .033000         .01377       .655065       -41.490895       .034000         .01377       .657301       -35.21760       .044000         .01377       .59668       -34.65001       .043000         .01377       .597334       -35.21760       .044000         .01377       .5978812       -35.45275       .044000         .01377       .5978812       -34.6500       .048000     <	10.	1241	.777840	-68.640810	. 027000	• 044965
.011623       .744640       -57.169281       .022000         .011804       .730398       -58.902952       .033000         .012164       .702151       -55.844655       .033000         .012164       .702151       -55.844655       .033000         .012510       .6756666       -47.795879       .0332000         .012510       .6766666       -47.795879       .033000         .012510       .6756666       -47.795879       .033000         .012510       .6756666       -47.795879       .033000         .012510       .6756666       -47.795879       .034000         .013103       .644229       .6412929       .034000         .013164       .6542295       -41.490895       .034000         .013127       .6542295       -41.490895       .033000         .013177       .644270       -35.217606       .040000         .013777       .614270       -34.565014       .040000         .013777       .614270       -34.565014       .040000         .013777       .614270       .35.245275       .044000         .014072       .571944       -31.078285       .044000         .014072       .5719468       -32.56501208	•01	1434	.760757	-62.064732	.028000	.045738
.011304 $.730398$ $-58.902952$ $.030000$ $.011986$ $.715929$ $-55.844655$ $.031000$ $.012510$ $.689963$ $-57.291118$ $.033000$ $.012510$ $.6897063$ $-47.795879$ $.033000$ $.012510$ $.6897063$ $-47.795879$ $.033000$ $.012510$ $.664958$ $-47.48326$ $.037000$ $.012510$ $.664958$ $-47.48326$ $.035000$ $.012510$ $.664958$ $-47.48326$ $.035000$ $.012510$ $.664958$ $-47.48326$ $.035000$ $.012510$ $.664229$ $-41.490895$ $.036000$ $.013164$ $.655005$ $-43.462929$ $.036000$ $.013164$ $.655005$ $-43.462929$ $.036000$ $.013164$ $.655005$ $-47.462929$ $.037000$ $.013164$ $.655005$ $-43.462929$ $.036000$ $.013164$ $.655005$ $-43.462929$ $.036000$ $.01377$ $.655016$ $-35.217606$ $.047000$ $.01377$ $.614270$ $-35.217606$ $.047000$ $.01377$ $.695014$ $-35.217666$ $.047000$ $.01377$ $.596668$ $-34.650014$ $.047000$ $.01377$ $.614270$ $-35.217666$ $.047000$ $.01473$ $.571944$ $-31.078286$ $.047000$ $.01473$ $.573634$ $-25.501299$ $.047000$ $.014309$ $.550450$ $-27.501299$ $.047000$ $.0144903$ $.573634$ $-26.741002$ $.047000$ $.014773$ $.5$	10.	1623	•744640	-57.169281	. 029000	.046493
.011986       .715929       -55.844655       .031000         .012164       .702151       -52.974043       .032000         .012510       .689906       -47.795879       .033000         .012510       .684906       -47.795879       .033000         .012510       .684906       -47.795879       .034000         .012510       .684906       -47.492929       .035000         .012510       .644229       -41.490895       .037000         .013104       .655005       -41.490895       .037000         .013303       .644229       -41.490895       .037000         .013377       .653861       -38.031281       .037000         .013377       .653861       -38.031281       .047000         .013477       .653861       -38.031281       .047000         .013577       .659668       -34.650014       .047000         .013777       .571944       -32.245275       .043000         .013777       .579881       -32.245275       .044000         .013777       .5798812       -32.245275       .044000         .013777       .5798812       -32.245275       .044000         .014773       .57798128       -25.445275       .	.01	1304	. 730398	-58.902952	. 030000	.047217
.012164       .702151       -52.974043       .032000         .01251U       .689363       -50.291118       .033000         .01251U       .689363       -50.291118       .033000         .01251U       .684936       -47.795879       .033000         .01251U       .684936       -45.488326       .034000         .01251U       .654956       -47.795879       .034000         .012643       .65505       -41.490995       .03700         .013164       .653861       -38.031281       .039000         .013121       .653861       -38.031281       .039000         .013277       .653861       -38.031281       .03700         .013321       .653861       -38.031281       .04000         .013777       .596668       -34.45575       .044000         .013777       .596668       -34.45575       .044000         .013777       .596668       -32.245275       .044000         .014072       .571944       -31.078285       .044000         .014072       .571944       -31.078285       .044000         .014359       .564310       -22.45760       .044000         .014359       .564310       -26.470002       .044000	.01	1986	.715929	-55.844655	• 031 000	• 047942
.012338.689063-50.291118.033000.012510.676666-47.795879.034000.012678.655005-43.488326.035000.012643.655005-41.490895.037000.0131643.655005-41.490895.037000.0131624.655005-41.490895.037000.0131624.655005-41.490895.037000.0131629.644229-41.490895.037000.013177.614770-36.543701.039000.013177.614770-36.543701.044000.013777.614770-35.217606.044000.013777.596668-34.650014.045000.013777.596668-34.650014.044000.013777.571944-31.078285.044000.014072.598122-33.45501.044000.014072.571944-31.078285.044000.014072.571944-31.078285.044000.014072.571944-31.078285.044000.014072.571944-31.078285.044000.014072.571944-31.078285.074000.014073.571944-31.078285.074000.014073.571944-31.078285.044000.014073.571944-31.078285.074000.014073.571944-31.078285.074000.014073.556491-22.45275.074000.014073.556491-26.470002.074000.014359.556491-26.47003.0	.01	2164	.702151	-52.974043	• 032000	.048654
.012510       .676666       -47.795879       .034000         .012678       .655005       -43.462929       .035000         .012678       .655005       -43.46295       .035000         .013104       .655005       -43.46295       .037000         .013104       .655005       -43.46295       .037000         .013104       .6533848       -39.081281       .037000         .013321       .6533861       -38.543701       .0339000         .01377       .61477       .614701       .044000         .01377       .61477       .614701       .044000         .01377       .61477       .614701       .044000         .01377       .61471       .614701       .044000         .01377       .61471       .614701       .044000         .01377       .59668       -34.55575       .044000         .014359       .570481       -35.245275       .044000         .014359       .571944       -31.078285       .045000         .014359       .5704801       -22.45275       .044000         .014359       .5704801       -22.45086       .047000         .014359       .5704801       -22.47002       .044000	• 01	2338	.689063	-50.291118	.033000	.049353
.012678.664958-45.488326.035000.012640.655005-43.462929.037000.013104.655005-43.462929.037000.013104.655005-43.462929.037000.013104.653361-38.4812.038000.013321.644229-41.490895.037000.013321.653361-38.031281.039000.013477.614270-36.543701.044000.013777.596668-34.45575.044000.013777.596668-34.45275.044000.014072.571944-31.078285.044000.014359.564310-29.934882.044000.014359.571944-31.078285.044000.014359.571944-31.078285.044000.014359.571944-31.078285.044000.014359.571944-31.078285.046000.014359.571944-31.078285.046000.014359.571944-31.078285.046000.014773.571944-31.078285.046000.014773.571944-31.078285.046000.014773.571944-31.078285.046000.014773.570450.27.501208.044000.014773.570450.26.470002.047000.014773.570450.27.501208.044000.014773.570450.26.470002.045000.014773.570450.26.470002.045000.014773.57333.26.5501899.046000	.01	2510	.676666	-47.795879	.034000	.050039
J12640.655005-43.462929.036000.013164.633848-39.680346.037000.013124.633861-38.031281.038000.013321.644229-136.543701.038000.013321.653861-38.031281.039000.013321.653861-38.031281.039000.013322.653861-38.031281.044000.013777.614270.644266.044000.013777.659668.34.55851.044000.013777.596668.34.55851.044000.013777.596668.32.455755.044000.014072.5988122.32.455755.044000.014359.556491.22.94885.046000.014359.556491.22.45275.044000.014359.556491.22.4501208.044000.014359.556491.22.470002.049000.014359.556491.22.470002.049000.014359.556491.22.470002.049000.014359.556491.22.470002.049000.014359.556491.26.470002.049000.014773.556491.26.470002.049000.014359.556491.26.470002.049000.014773.556491.26.470002.049000.014393.537033.25.501899.049000.014908.557033.25.501899.0149000.014908.537033.25.501899.0149000.014908.514003.022184.026000 </td <td>10.</td> <td>2678</td> <td>• 664 95 8</td> <td>-45.488326</td> <td>.035000</td> <td>•050712</td>	10.	2678	• 664 95 8	-45.488326	.035000	•050712
. C13C03. 644.229-41.490895. 037000. 0131b4. 633848-39.680346. 038000. 013321. 633861-38.031281. 039000. 013321. 614770-36.543701. 044000. 013777. 614770-36.543701. 044000. 013777. 614770-36.543701. 044000. 013777. 596668-34.650014. 044000. 013777. 596668-34.650014. 044000. 014072. 598122-33.435851. 044000. 014072. 598122-33.435851. 044000. 014072. 571944-31.078285. 044000. 014072. 571944-31.078285. 044000. 014072. 571944-31.078285. 044000. 014072. 571944-31.078285. 044000. 014072. 571944-31.078285. 044000. 014072. 571944-31.078286. 044000. 014359. 571944-31.078286. 044000. 014359. 571944-31.078286. 044000. 014936. 5564310-22.45275. 044000. 014939. 5564310-22.45275. 044000. 014936. 5564310-22.45275. 044000. 014939. 5564310-22.45275. 044000. 014939. 556431-28.470002. 044000. 014939. 556431-28.470002. 047000. 014939. 543533-26.45018. 047000. 0149391. 0440042. 0140042.	.10.	2640	.655005	-43.462929	. 036000	.051362
.0131b4.633848-39.680346.038000.013321.623861-38.031281.039000.013477.614770-36.543701.040000.013629.625861-36.543701.041000.013777.614770-36.543701.044000.013777.596668-34.650014.047000.013777.596668-34.650014.044000.013777.596668-34.650014.044000.014072.596668-34.650014.044000.014072.598122-33.435851.044000.014072.571944-31.078285.044000.014072.571944-31.078285.044000.014723.571944-31.078285.044000.014733.564310-29.934882.044000.014733.556491-29.934882.044000.014733.556450.27.501208.044000.014733.543634-28.470002.044000.014733.543634-28.470002.047000.014903.556450.27.501208.047000.014934.556450.27.501208.047000.014933.543634-28.4704642.047000.014903.543634-28.47000.014909.0149393.543634-28.47129.006000.0149393.543634-18.1334129.010000.018393.340228-5.194567.020000.021241.353703.327704-4.774443.022103.327704-4.774443.130	. 01	3003	• 644229	-41.490895	.037000	•052013
•013321•023861-38.031281•039000•013477•614270-36.543701040000•013629•605074-35.217606041000•013777•596668-34.650014042000•013777•596668-34.650014044000•013777•596668-34.650014044000•014072•598122-33.435851044000•014072•579881-32.245275044000•014072•571944-31.078285044000•014272•571944-31.078285044000•014272•571944-31.078285074000•014272•571944-31.078285074000•014273•571944-31.078285074000•014773•57491-22.94382074000•014773•5564310-29.934882044000•014773•570450-29.934882074000•014773•5564310-29.934882074000•014773•5564310-29.934882074000•014773•5564310-29.934882074000•014903•564310-28.4700020740002•014773•556450-28.4700020740002•014903•556450-28.4700020740002•014773•556450-28.4700020740002•014903•556450-28.4700020700002•014903•550450-28.4700020700002•014903•11037-10.489436070000•017331•440913-14.074642070000<	•01	3164	.633848	-39.680346	• 038000	.052654
.013477.014270-36.543701.040000.013629.605074-35.217606.041000.013629.605074-35.217606.042000.013629.596668-34.650014.042000.014072.596668-34.650014.044000.014072.571944-31.078285.044000.014072.571944-31.078285.044000.014072.571944-31.078285.044000.014359.571944-31.078285.044000.01472.571944-31.078285.074000.014359.564310-29.934882.044000.01473.571944-31.078285.078200.01473.5564981-29.934882.078200.01473.5564981-28.815066.044000.01473.5564981-28.815066.044000.01473.5564981-28.470002.046000.01473.5564981-28.470002.046000.01473.5564991-28.470002.046000.01473.5564991-28.470002.046000.01473.556490-27.501208.046000.014908.557333-25.501899.070000.014773.543634-26.470002.070000.014908.557333-25.501899.040000.014773.617.002.0140138.050000.016180.017331.411037-10.489436.017331.411037-10.489436.070000.018393.411037-5.815760.070000<	•01	3321	. 623861	-38.031281	• 039000	.053285
.013629.605074-35.217606.041000.013777.596668-34.650014.042000.013777.596668-34.650014.042000.014072.571944-31.078285.044000.014072.571944-31.078285.044000.014259.571944-31.078285.044000.014359.571944-31.078285.044000.014359.571944-31.078285.044000.014359.571944-31.078285.046000.014359.5564310-29.934882.046000.014503.556491-29.934882.046000.014773.556491-29.934882.046000.014773.556491-27.501208.046000.014773.556491-27.501208.046000.014773.556491-26.470002.046000.014773.556491-26.470002.070000.014773.543634-26.470002.070000.014773.543634-26.470002.070000.014773.543634-26.470002.070000.014903.5537033-25.501899.070000.014903.14.0046042.017331.14.046042.016180.411037-10.489436.070000.018393.411037-10.489436.070000.019391.387965-369531-6.740138.020337.353858-5.194567.120000.022109.327704-4.774443.130000	.01	3477	•614270	-36.543701	. 040000	.053906
013777.596668-34.650014.042000.013726.588122-33.435851.042000.014072.571944-31.078285.044000.014217.571944-31.078285.044000.014217.571944-31.078285.044000.014259.571944-31.078285.044000.014359.571944-31.078285.044000.01472.571944-31.078285.046000.014500.556491-29.934882.046000.014503.556491-29.934882.046000.014696.556491-29.934882.046000.014773.556491-27.501208.049000.014773.556491-26.470002.048000.014773.556491-27.501208.049000.014773.543634-26.470002.048000.014773.543634-26.470002.048000.014773.543634-26.470002.070000.014773.543634-26.470002.070000.014908.550450-11.037-10.489436.017331.440913-14.046042.070000.017331.440913-14.046042.070000.017331.440913-14.046042.070000.017331.440913-14.046042.070000.017331.440913-14.046042.070000.019391.387764-5.194567.070000.022108.327704-4.774443.120000	.01	3629	. 605074	-35.217606	• 041000	.054517
.013926.588122-33.435851.043000.014072.571944-31.078285.044000.014217.571944-31.078285.044000.014259.554310-22.9934882.046000.014359.564310-29.934882.046000.014503.556491-29.934882.046000.014636.556491-29.934882.046000.0146936.556491-29.934882.046000.0146936.556450-27.501208.048000.014773.553733-25.501899.048000.014773.543634-26.470002.049000.014773.543634-26.470002.049000.014773.5560450-27.501208.049000.014773.543634-25.501899.070000.014773.543634-25.501899.070000.014773.543634-26.470002.040000.014773.543634-26.470002.040000.016180.643603-11.037-10.489436.017331.440913-14.046042.070000.017331.441037-10.489436.070000.017331.440913-14.046042.070000.017331.440913-14.046042.070000.017331.44038-5.815760.070000.017331.3537704-4.774443.120000.022103.327704-4.774443.130000	• 01	3777	• 596668	-34.650014	.042000	.055109
014072       579881       -32.245275       044000         014217       571944       -31.078285       045000         014217       571944       -31.078285       045000         014359       564310       -29.934882       046000         014500       556491       -29.934882       046000         014636       556491       -29.934882       046000         014670       556491       -29.934882       046000         014673       556450       -27.501208       048000         014773       543634       -26.470002       048000         014773       543634       -26.470002       048000         014773       543634       -26.470002       048000         014773       543634       -26.470002       048000         014908       -543634       -26.470002       048000         014908       -543644       -14.046042       070000         017331       -440913       -14.046042       070000         017331       -4403436       -6.740138       070000         017331       -4403436       -6.740138       070000         017331       -5.815760       -6.740138       1100000         022104 <td>•01</td> <td>3926</td> <td>.588122</td> <td>-33.435851</td> <td>• 043 000</td> <td>.055703</td>	•01	3926	.588122	-33.435851	• 043 000	.055703
.014217       .571944       -31.078285       .045000         .014359       .564310       -29.934882       .046000         .014359       .5564310       -29.934882       .046000         .014500       .556491       -28.815066       .047000         .014636       .556491       -28.815066       .048000         .014696       .556450       -27.501208       .048000         .014773       .556344       -26.470002       .048000         .014773       .556450       -27.501208       .049000         .014773       .543634       -26.470002       .048000         .014908       .537033       -25.501899       .040002         .014908       .537033       -25.501899       .070000         .014908       .482103       -14.046042       .070000         .017331       .440913       -14.046042       .070000         .018393       .4411037       -10.489436       .070000         .018393       .4411037       -10.489436       .070000         .019391       .3877965       -8.134129       .070000         .020337       .369531       -6.740138       .100000         .022104       .5.194567       .120000       .120	.01	4072	.579881	-32.245275	• 044000	.056289
.014359.564310-29.934882.046000.014359.556491-28.815066.047000.014636.556491-28.815066.048000.01473.556450-27.501208.048000.01473.556344-26.470002.048000.01473.556450-27.501208.048000.01473.556450-27.501208.048000.014908.550450-26.470002.048000.014908.537033-25.501899.050000.016180.482103-18.897974.050000.016180.482103-18.897974.070000.017331.440913-10.489436.070000.017331.440913-14.046042.070000.018393.4411037-10.489436.080000.019391.387965-8.134129.090000.019391.387965-8.134129.090000.020337.369531-6.740138.100000.022109.327704-4.774443.130000	10.	4217	• 571944	-31.078285	• 045000	.056867
.C14500.556981-28.815066.047000.014636.550450-27.501208.048000.01473.5537333-25.470002.048000.014773.543634-26.470002.048000.014773.543634-26.470002.048000.014733.543634-26.470002.048000.014908.537033-25.501899.050000.016180.482103-18.897974.050000.016180.482103-14.046042.070000.017331.440913-10.489436.070000.018393.411037-10.489436.080000.019391.387965-8.134129.090000.019391.387965-8.134129.090000.020337.369531-6.740138.100000.020337.353858-5.194567.110000.022109.327704-4.774443.130000	10.	4359	•564310	-29.934882	• 046000	.057437
.014636.550450-27.501208.048000.014773.543634-26.470002.049000.014908.537033-25.501899.050000.014908.537033-25.501899.050000.016180.482103-18.897974.050000.016180.482103-18.897974.050000.016180.482103-18.897974.050000.016331.440913-14.046042.070000.018393.411037-10.489436.070000.019391.387965-8.134129.090000.020337.369531-6.740138.100000.020337.353858-5.194567.110000.022109.327704-4.774443.130000	C]	4500	.556981	-28.815066	.047000	•057999
.014773       .543634       -26.470002       .049000         .014908       .537033       -25.501899       .050000         .016180       .482103       -18.897974       .050000         .016180       .482103       -18.897974       .050000         .016180       .482103       -18.897974       .050000         .016180       .482103       -18.897974       .050000         .017331       .440913       -14.046042       .070000         .018393       .411037       -10.489436       .070000         .019391       .387965       -8.134129       .090000         .019391       .387965       -8.134129       .090000         .020337       .369531       -6.740138       .100000         .020337       .353858       -5.194567       .120000         .022109       .327704       -4.774443       .130000	.01	4636	.550450	-27.501208	.048000	.058543
.014908       .537033       -25.501899       .050000         .016180       .482103       -18.897974       .060000         .017331       .440913       -14.046042       .070000         .018393       .4411037       -10.489436       .070000         .019391       .387965       -8.134129       .080000         .019391       .387965       -8.134129       .090000         .019391       .387965       -8.134129       .090000         .020337       .369531       -6.740138       .100000         .022108       .340228       -5.194567       .120000         .0222043       .327704       -4.774443       .130000	010	4773	.543634	- 26. 470002	.049000	.059091
.016180       .482103       -18.897974       .060000         .017331       .440913       -14.046042       .070000         .018393       .4411037       -10.489436       .070000         .019391       .387965       -8.134129       .080000         .019391       .387965       -8.134129       .090000         .020337       .369531       -6.740138       .100000         .0221241       .353858       -5.194567       .120000         .0222103       .327704       -4.774443       .130000	10.	490.8	.537033	-25.501899	.050000	.059633
.017331       .440913       -14.046042       .070000         .018393       .411037       -10.489436       .080000         .019391       .387965       -8.134129       .090000         .019391       .387965       -8.134129       .090000         .020337       .369531       -6.740138       .100000         .020327       .353858       -5.815760       .110000         .022109       .340228       -5.194567       .120000         .0222943       .327704       -4.774443       .130000	.01	6 180	.482103	-18.897974	• 060 000	.064720
.018393       .411037       -10.489436       .080000         .019391       .387965       -8.134129       .090000         .020337       .369531       -6.740138       .100000         .021241       .353858       -5.815760       .110000         .022108       .340228       -5.194567       .120000         .0222943       .327704       -4.774443       .130000	• 01	7331	•440913	-14.046042	.070000	.069326
.019391       .387965       -8.134129       .090000         .020337       .369531       -6.740138       .100000         .021241       .353858       -5.815760       .110000         .022108       .340228       -5.194567       .120000         .0222943       .327704       -4.774443       .130000	.01	8393	.411037	- 10. 489436	. 080000	.073573
-020337 .369531 -6.740138 .100000 -021241 .353858 -5.815760 .110000 -022108 .340228 -5.194567 .120000 -022943 .327704 -4.774443 .130000	.01	1686	•387965	-8.134129	• 000000	•077563
- C21241 - 353858 -5.815760 - 110000 -022108 - 340228 -5.194567 - 120000 -022943 - 327704 -4.774443 - 130000	-02(	0337	.369531	-6.740138	.100000	.081348
-022108 -340228 -5.194567 -120000 -022943 -327704 -4.774443 -130000	• 02	1241	.353858	-5.815760	.110000	.084963
-022943 -327704 -4-774443 -130000	•02.	2108	.340228	-5.194567	.120000	.088432
	• 02.	2943	.327704	-4.774443	.130000	.091771

066760 . 0000	0000 •098105	0000 .101125	0000 .104053	0000 .106895	0000 .109652	0000 .112335	0000 .114944	0000 .117481	0000 .119953	0000 .122363	0000 .124711	0000 .127006	0000 .129251	0000 .131448	0000 .133595	0000 .135699	0000 .137758	earer. 0000	0000 .141771	0000 .143716	0000 145629	0000 .147509	0000 .149357	2/1141. 0000		12/14/1			0000 • 1/3/80		0000 .184694		0000 1943/2	• 19803	0000 .202964	0000 . 206883	966012 0000	266212 • 0000	.217206	161022 • 0000	10000 • 22295 •	90000 OD000
• 140	.150	• 160	.170	• 180	• 1 90	.200	.210	• 220	• 230	•24(	• 25(	• 260	.270	• 280	• 29(	• 300	• 31(	• 320	• 33(	. 340	• 35(	• 36(	.37(	. 38(	• 39(	• •	) <b>7 4 .</b>		- 52(		00.	÷	• 580	• 72	. 76		• 84	88 •	• 92	.96		1 - 04
-4.194250	-3.792967	-3.586336	-3.513660	-3.306920	-3.068947	-2.908264	-2.803309	-2 •674179	-2.527467	-2.362769	-2.180705	-1.985979	-1.907873	-1.947578	-1.813280	-1 • 666697	-1.487686	-1.457313	-1.530565	- 1. 444017	-1.353455	-1.241184	-1.186846	-1.180733	-1.173892	-1.177135	965403	- • 952923	- 847987	838410	-• 768840	/4014/	630416	697222	582839	633926	595725	559363	578859	570007	525489	567896
.316500	.306615	•297336	.288436	.279882	.271930	.264427	.257318	.250411	.243965	.237860	.232097	.227000	.222050	.217258	.212405	.208054	.204286	.200488	.196758	.192922	.189428	.186315	.183221	.180206	.177275	.174422	.163661	.153671	.144668	•136293	.128546	.120926	.113979	.107394	.100967	•094992	.088681	.083071	.077619	. 071700	•066482	.060998
.023747	.024526	.025281	. 326013	.026724	.027413	.028084	.028736	.029370	.029988	.030591	.031178	. 031751	.032313	.032862	•033399	.033925	• 034440	.034946	.035443	.035929	.036407	.036877	. C37339	.037793	.038240	•038680	.040368	.041954	• 043445	.044850	• 046174	• 047420	.048593	.049701	.050741	.051721	• 05 26 39	. C53498	.054302	• C55048	.055739	• C56376
035000	C3750C	040000	.042500	045000	.047500	02000	052500	.055000	.057500	.060000	.062500	.065000	.067500	.070003	.072500	.075000	.017500	.080000	.082500	.085000	.C8750ĉ	000060.	.092500	.095000	.097500	000001.	.110000	.120000	.130000	.140000	•15000C	.160000	.170000	.180000	•19000	.20000	-210 30 0	.220000	.230000	.240000	.250000	.260300

.

84

ţ

;

1911

(a) I different indication in the second state of a line of the line of the line of the second state of the

x /C	Y/C	07/DX	D2Y/DX2	×	7
000022-	.056959	.055975	510045		928766
.280000	.057492	.050372	553912	1 - 1 20000	2299669
.290003	.057972	•045436	-+513047	1-160000	-231886
.300005	.058399	.040450	469388	1.200030	.233591
.310000	.058780	<b>.</b> 035427	502303	1-240000	.235121
•32000	.059112	.030787	465131	1 - 280000	.236446
.330000	.059394	.025770	499237	1.320030	. 237576
•340000	.059628	.020868	535935	1.360000	.238511
.350000	. 359808	•015195	584615	1.40000	. 23923
.360000	.059931	.009286	622033	1.440000	.239725
.370000	. 59993	• 003005	618603	1.480000	.239970
.380000	•059991	003787	739954	1.520000	• 239964
.390000	.059916	010984	691783	1.560000	.239664
•40000	177930.	018318	774158	1. 600000	.239084
.410000	.059549	025535	697321	1.640000	.238197
•420000	• 059258	032895	734415	1. 680000	.237031
•430000	.058895	039294	579401	1.720000	.235581
.440000	.058473	045415	635778	1.760000	• 233893
•450000	.0579.89	051295	549696	1.800000	.231957
.460000	.057449	056766	503231	1.840000	.229795
.470003	.056857	061438	470018	1.880000	.227427
.480000	• 056218	066436	487960	1.920000	.224873
.490000	•055532	070483	427034	1.960000	.222130
.50000	• C54804	075248	480101	2.000000	.219217
•510000	.054031	079248	347595	2.040000	.216124
• 520000	.053220	083100	396654	2.080000	.212882
.530000	.052370	086782	350193	2.120000	.209481
.540000	. C51485	090449	376789	2.160000	. 20 59 39
.550000	.050561	094095	324739	2.200000	.202246
•560000. 	. 049605	- 097024	277649	2 • 240000	.198420
0000/ 4.	•048620	100224	363088	2. 280000	.194479
.580000	.047599	103419	259920	2.323000	.190397
000064.	.046552	106151	304461	2.360000	.186208
•••0000	• 045476	108979	240520	2.400000	• 181903
. t 0000	• 044375	111386	262069	2.440000	.177500
• 6 20 30 0	.043248	113849	231948	2.480000	.172992
.630000	.042098	116246	241424	2.520000	. 168393
-640300	•040925	118227	201310	2.560000	.163698
.650000	<b>.</b> C39732	120453	208074	2.600000	.158926
•660000	.038518	122137	162269	2. 640000	.154072
.670000	.C37287	123971	162453	2.680000	.149150
.680000	.036040	125576	178035	2. 720000	.144161
•690303	.034776	127189	125694	2.760000	.139102

- -----

4 F. F. F.

. . .

н 1

- 4

a substance of the second

## TABLE II

## SAMPLE COMPUTER PRINTOUT OF ORDINATES FOR CAMBERED AI RFOIL

NACA 64-412 TOC= .120000 RLE= .010400 CHD= 4.0C0000 CLI= .400000 A= 1.000000 RAT( 1)= 1.00000 RAT( 2)= .58127 RAT( 2)= .98427 RAT( 4)= .99970

								č			
UNCAMBERED		5	VPER SURFACE	VALUES				5			
X/C	×U/C	YU/C	SX S	2		•	XL/C	7L/C	¥	۲۲	DVL/mxl
0,00000	0.00000	0.00000	0 .00000	0.00000	-5.935031	0	000000	0.00000	0* 000000	000000"0	-5.935031
-000250	000125	.002297	000500	.009188	13.559855		.000625	002149	.002500	008597	-2.315002
000500	000025	003249	000099	.012997	6.749988		.001025	002976	• 00+06	011902	-1.915185
000100	-000105	-004021	-000420	.016083	4.334156		.001395	003630	.005580	014518	-1.591954
00100	- 000259	004648	-001035	.018593	3 • 624101		-001741	- 004145	.006965	016579	-1.451314
001250	-000425	-005201	-001698	.020804	3.142186		.002075	004589	.008302	018358	-1.336971
001500	-000595	.005724	.002381	.022895	2.724023		• 00 2 4 0 5	005007	.009619	020030	-1.221811
-001750	-000774	-006200	<b>•003095</b>	.024801	2.441357		.002726	005382	.010905	021526	-1.133720
-002000	-000959	.006635	.003835	- 026540	2.256836		-003041	005717	.012165	022866	-1.070991
- 002250	-001146	-007055	.004585	.028220	2.080457		• 003354	006039	.013415	024155	-1.006665
-002500	-001339	-007441	.005358	.029764	1.960029		.003661	006328	.014642	025314	960058
-002750	-001534	.007819	.006135	.031277	1.840240		.003966	006612	.015865	026449	911335
000500-	167100-	-008180	.006923	.032721	E006E7.1		• 00 42 69	006880	-017077	027520	868189
.003250	- 001 932	.008518	.007727	.034071	1.663454		•004568	-+007126	.018273	028504	834743
003500	-002133	.008851	•008533	. C35404	1.587210		. 004867	007368	.019467	029474	799841
-003750	-002337	. C09172	146000.	.036689	1.519637		.005163	007600	.020653	- • 030402	767897
00400	-002542	.009482	-010168	.037928	1.460310		.005458	007822	.021832	031288	739033
-004250	-002750	.009776	.010999	.039106	1 .412643		.005750	008029	.023001	032116	71 5268
004500	.002958	-010068	-011832	.040273	1.363756		.006042	008234	.024168	032937	690338
-004750	.003167	.010352	.012670	.041407	1.319231		.006333	008432	.025330	033730	667128
- 005000	.003378	-010627	.013513	.042509	1.278920		.006622	008623	.0264.87	034492	645687
-005250	•003606	.010893	.014424	.043572	1.172685		.006894	008805	.027576	035221	672394
.005500	<b>•</b> 003834	.011158	.015335	.044631	1.139211		.007166	008987	. 02 8665	035947	653717
-005750	.004062	.011416	.016249	.045665	1.108142		.007438	009163	.029751	036651	636104
. 006000	.004292	.011669	-017168	.046674	1 .079408		.007708	009334	. 030832	037334	619589
.006250	•004523	116110.	.018092	.047645	1.055010		-007977	009495	•031908	037981	60 5543
.006500	• 004754	• 012153	10610.	.048612	1 •029966		.008246	009657	.032983	038626	590809
.006750	•004986	•012390	•019944	.049560	1.006346		.008514	009814	.034056	- 039256	576747
- 001000	.005219	.012622	.020874	.050490	<b>•984116</b>		.008781	-*009967	.035126	039869	563373

87

•

--164922 --159709 --154876 --111159 --109100 --194943 --188286 --181844 --175877 --175877 --,496799 --,487437 --,479685 --,470885 --,455269 --,4555269 --,439259 --,439269 --,4138482 --,4138482 --,41288482 --,41288482 -.394908 -.406164 DYL/DXL -.550702 -.539516 -.528063 -.517121 -.383962 --.101350 --.102621 -.103868 -.103868 -.1036279 -.107446 -.10712 -.10810 -.111891 -.072991 -.072148 -.072254 -.072225 -.072225 -.083026 -.083026 -.0888569 -.08885599 -.091465 -.091465 -.097337 -040466 -041033 -041033 -042159 -042754 -042759 -045257 -045257 -045257 -045257 -045257 -045257 -0457351 -0457351 -0457351 -0457351 -0457351 -0457351 -0457351 -0457351 -045237 -050105 -055232 -055232 -055232-.063308 -.065916 -.068386 -.070740 -.098710 ۲ V ALUES .036193 .037255 .039318 .042656 .042656 .0445654 .0445654 .0445654 .0445654 .0445654 .044564 .0448484 .04484848 .0448848 .0448848 .051979 .051979 .051979 .051079 .051072 .059725 .199346 .1998265 .1998265 .1998265 .1998265 .1998265 .1998265 .1998265 .1998265 .250676 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .2200710 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .220740 .22 .320827 .320834 .340839 .340839 .350840 .350840 .350838 .350838 .370834 .370834 .370834 .370834 .370834 .370819 SURFACE ¥ LONER -,019807 -,020290 -,021207 -,021207 -,021642 -,022064 -,022471 -,022866 -,022849 -,0238249 -,0238249 -,023982 -,023982 -.012425 -.012527 -.012527 -.013559 -.014385 -.015385 -.015827 -.015827 -.015827 -.015826 -.015826 -.015856 -.019305 -.024677 -.025012 -.025338 -.025655 -.025967 -.026273 -.026570 -.026862 -.026862 -.027428 -.027703 -.027973 -.010117 -.010258 -.010540 -.010540 -.010676 -.010809 -.010640 -.011806 -.011892 -.011892 -.011892 -.011892 -.012112 -.012219 YL/C .095207 009048 009314 009580 009580 0009545 0010374 010109 010374 011163 011163 011163 011168 011168 011163 011168 011168 01115212 0112712 0122734 .014095 .014094 .014594 .011136 .017136 .017704 .024811 .024812 .024815 .027356 .027356 .027356 .037493 .037493 .100202 .013516 .013776 XL/C .256249 .252240 .248339 .634450 .584021 .547089 .547089 .475091 .441756 .441756 .441756 .3144726 .310480 .370480 .370480 .963247 .944827 .926555 .936642 .891972 .891972 .876434 .835163 .835163 .835163 .835163 .835163 .775640 .775647 .775647 .755634 .755634 .775586 .719627 .719627 .719628 .351908 DYU/DXU .169185 .172043 .172043 .177623 .180335 .183004 .188216 .190758 .193265 VALUES YU UPPER SURFACE .279196 .299173 .299173 .309166 .319161 .329160 .339160 .339166 .349166 .359175 .359181 .039860 041785 .041785 .051455 .051184 .001184 .090577 .100418 .110275 .120144 .130027 .159734 159734 159734 169654 189517 199460 209409 229324 229324 229324 229324 229324 229324 229324 229324 229329 229329 229329 229329 229359 259235 .021807 .022745 .022682 .025682 .025562 .025565 .028398 .023152 .033152 .033152 .033152 .033152 .033152 .033152 .033152 .033153 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .035054 .03505 .269214 S 045751 046408 047054 047690 .016216 016391 016395 016395 016905 016905 022678 022114 022114 022114 0221483 0221483 0221483 0221483 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 033372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 003372 0037 .012850 .013070 .013070 .013590 .013719 .014134 .014134 .014534 .014534 .014534 .014534 .014534 .015105 .015401 .015491 .015491 .015697 .0156938 .0156938 YU/C xU/C *005452 *005920 *005920 *005920 *005921 *005921 *005921 *005921 *005921 *0059245 *0099245 *0099245 *0099245 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0099265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009265 *0009665 *0009665 *0009665 *0009665 *0009665 *0009665 *0009665 *0009665 *0009665 *0009665 *0009665 *0009665 *0009665 *0009665 *0009665 *0009665 *0009665 *0009665 *000965 *0009665 *0009665 *0009665 *0009665 *0009665 *00005 *00005 *00005 *00005 *0005 *00005 *0005 *00005 *00005 *00005 *0005 *0005 *0005 *00005 *00 .057331 .059822 .059822 .0659829 .0657303 .0667303 .072296 .072296 .072296 .072296 .072296 .072296 .072296 .072295 .0922990 .087293 .0922992 .0922993 • 052352 • 054841 UNCAMBERED X/C .007250 .007500 .007750

.065727 .065727 .065727 .078515777 .078515777 .078515777 .07851577 .089505 .089905 .089903 •093686 •095095 .098745 .099763 .100346 DYL /D XL -.097830 -.097830 -.084921 -.079277 -.074095 -.074095 --024762 --017304 --013810 --013810 --010250 --010250 --010251 -013844 -003731 -013911 -013911 -03731 -03731 -058086 -*039743 -.043400 096588 -.055510 -.051538 -.032030 -.028185 .097645 -.064246 -.059847 101157 -.133901 -.133963 -.127895 -.127895 -.121455 -.1214629 -.114629 -.111078 -.140840 -.142969 -.144930 -.146731 -.148383 -.149877 -.151220 -.151220 -.153461 -.154368 -.155124 -.155734 -.156769 -.156838 -.156751 -.156489 -.156489 -.156489 -.15492 -.15492 -.153373 -.153373 -.15401 -.144355 -.144335 -.144335 -.144335 -.13400 -.136720 -.112952 -.116995 -.120761 -.124267 -.127540 -.130592 --103770 --100015 -.088419 --092335 -.084468 -.080475 -.133436 -.136080 -.138552 -.156563 -.096197 --076460 Σ V ALUES 1.960283 2.000000 2.039775 2.079458 2.119199 2.158949 2.158949 2.158949 2.238477 2.238477 2.2318044 2.357643 2.417305 2.517148 2.557302 2.554869 .729584 .769358 .809120 .848872 .848872 .928348 .928348 .928348 1.007792 1.007792 1.007792 1.0156606 1.126910 1.126910 1.226598 1.226598 1.325354 1.365035 1.404713 1.523739 1.563412 1.563412 1.6603085 1.6622759 1.682435 1.682435 1.722113 1.722113 1.722113 1.722113 1.861173 1.880870 1.920573 .410795 .450722 .490622 .530496 .570349 .610182 .64998 .689798 l.444390 l.484065 .437473 SURFACE 2.397652 ᅻ LOWER S -.029522 -.028656 -.027770 --038365 --038592 --038592 --.038623 -.038623 -.038000 -.037160 -.037608 -.036084 -.036084 -.036084 -.036486 -.033475 -.032741 -.031974 -.025942 -.025004 -.021117 -.020119 -.019115 -.028238 -.029249 -.030190 -.031067 -.031885 -.032648 -.037096 -.031182 -.030364 --034638 -.036232 -.038934 -.024049 -.023084 - 037805 -.039210 -.039009 -.038846 -.034180 -.022105 --038104 --039192 -.039188 -.039122 -.026867 --034020 -.035742 --039141 .519864 .529800 .539737 .549677 .559619 .559564 .559564 .5599564 .599413 .629287 .639251 .649217 619326 -.113168 -.117226 -.121393 -.125153 -.132766 -.136151 -.136159 -003342 -005265 -013745 -022359 -030012 -037383 --044512 --051232 -.057156 -.068708 -.099933 0YU/DXU - 244541 - 230218 - 216964 - 204947 - 193767 - 193393 - 173298 - 164009 .073610 .067124 .060632 .087251 .048115 .041820 .027527 .019922 - +085105 --090059 - -095002 -.108660 -.128984 .054548 011826 -.079987 .155197 • 034781 .324487 .324787 .324754 .324354 .3224361 .322574 195754 205234 214198 222659 222659 2330664 2330664 238234 245397 2545397 258591 315450 315450 310359 307472 304352 301033 297505 293782 293782 285858 285749 281473 2777005 272375 267578 262633 257522 257522 257522 257522 2541331 264656 270395 275808 286907 285708 285708 3C8461311293 301986 322880 319568 294417 298345 316194 318262 321622 321221 320077 313871 VALUES UPPER SURFACE 1.032496 1.072790 1.113090 1.556568 1.556588 1.556588 1.596915 1.637241 1.677565 1.677565 2.161051 2.201292 2.241523 2.281745 2.321956 2.42295 2.4527 2.442527 2.442527 2.442527 2.442695 2.522852 2.562998 .389205 .429278 .469378 .569504 .549651 .589818 .630002 710416 750642 790880 831128 871386 911652 951926 951926 0000000 1.193702 .314646 .758205 *798518 2.040275 .080542 •603131 •274329 .354965 .395287 .435610 •475935 .879130 .153394 •919427 .838821 2.12080 YU/C •048934 •051308 •0555465 •055665 •05955665 •053665 •053645 •053645 •053645 •053645 •054648 •064648 •0668952 080720 080959 081122 081197 081189 081197 081090 080090 080644 080644 .0743756 .077590 .076868 .076088 .075258 073446 072465 071437 071437 070368 069251 065657 -063068 -061717 -060333 .079410 .C78863 .070227 .071427 .072552 .072552 .074586 .077822 .079048 .079565 .080019 078468 066895 075497 076341 .379065 .379065 .399229 .409310 .419391 .429391 .429391 .429391 .459707 .459707 .510069 .520136 .520136 .5503263 .5503263 .550381 .550381 .550381 .550381 .550387 .550387 .550387 .550387 .550387 .550783 .630713 .650783 xu/C .097301 .107345 .117345 .117345 .1177454 .157501 .147454 .157501 .177604 .177604 .177604 .227913 .227913 .2281242 .2281248 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281298 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2281288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .23812888 .23812888 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .2381288 .23812885888 .23812888 .2381288 .23812885888 .238128888 .2381288 .23818 •489929 •500000 • 338741 • 348822 318582 358903 479857 .328661 **JNCAMBERED** . 630000 . 650000

89

. . . .

.

		101404		• • • • • • • • •	• 101403	•102008	•101809	.101459	.100742	.100357	.098978	.098168	.096319	•064634	.092801	161060.	.088079	-085174	.081979	•078436	.074342	•010108	.06530.	-059829	.054427	- 048042	.041099	961650°		017610.		008838	+ 4 4 4 7 0 • -	043/12	101890-	1.1001	101000000000
M U ES	7	019620	676710*-	068366	- •064304	060231	056167	052103	048067	- 044049	040062	036117	032231	028401	024641	020964	017381	013904	010552	007336	004273	001370	-001348	. 003863	.006162	• 008217	-010008	904110.	000710*	184610.	C 2 0 C T A*	06/610.	-013132	.011785	-004550	.006088	
R SURFACE V	7	0/1/2/ 0	2 - 1 - 2 - 2 - 2	2.6/6639	2.116542	2.756458	2.796387	2.836330	2.876285	2.916254	2.956237	2.996233	3.036243	3.076267	3.116304	3.156356	3.196422	3.236501	3.276594	3.316700	3.356820	3.396953	3.437099	3.477257	3.517428	3.557611	3.597805	3.638011	3.018220	3.718491	9.120044	3.798924	3.839165	3.879406	3.919637	3.959847	4. uuuuu
I DWFI			COT810-	011001	016076	015058	-+014042	013026	012017	011012	010016	009029	008058	-*001100	006160	005241	004345	003476	- 002638	001834	001068	000342	.000337	• 000966	.001541	.002054	•002502	.002877	011600.	•003370	.003468	.003448	• 003283	.002946	• 002388	-001522	• 000000
	57.12		.659187	.669160	. 679136	•689115	160669.	.709082	.719071	.729064	. 739059	.749058	.759061	. 769067	.779076	. 789089	.799105	.809125	.819148	.829175	.839205	. 849238	.859275	.869314	.879357	.889403	. 899451	.909503	. 919557	.929613	179666.	.949731	162656	.969851	• 979909	.989962	1.000000
			142927	146226	149323	152454	155337	158129	- •160621	-,163518	165494	168130	169811	172064	173672	175530	176812	178051	179163	180112	180713	181413	181813	181840	182318	182233	182096	181618	181350	181016	180356	179640	178799	178376	179623	186149	74.653276
VALUES			. 235657	.229858	.223935	.217884	.211722	.205440	19061	192575	.185990	.179315	.172562	.165727	.158817	.151842	.144808	.137720	.130592	.123427	.116234	.109012	.101775	.094530	.C87274	.080022	.072773	• 065534	.058308	- 051107	.043924	.036761	.029634	.022527	.015415	.008173	£#000000*
		NN.	2.643252	2.683361	2.723458	2-763542	2.803613	2 843670	2.883715	2.923746	2.963763	3.003767	3 .043757	3.083733	3.123696	3.163644	3.203578	3 . 2 4 3 4 9 9	3.283406	3.323300	3.363180	3.403047	3.442901	3 • 4 82 7 4 3	3.522572	3.562389	3.602195	3 •6 41989	3.681774	3.721549	3.761316	3.801076	3-840835	3.880594	3 .920363	3.960153	4.000000
		AU/C	.058914	.057464	.055984	. 054471	052931	.051360	.049765	-048144	046497	044829	043140	.041432	.039704	-037961	.036202	.034430	.032648	.030857	.029058	.027253	.025444	.023632	.021819	. 020006	.018193	• 016384	-014577	.012777	.010981	061600 -	.007409	•005632	•003854	+002043	• 000000
		×U/C	.660813	.670840	-680864	. 690885	200002	10017	720020	23031	140047	750942	760939	CE 6011.	780924	116067	800895	-810875	.820852	.830825	-840795	.850762	.860725	.870686	880643	. 890597	-900549	-910497	.920443	.930387	.940329	.950269	.960209	-970149	.980091	8E0066*	1.000000
	UNCAMBERED	X/C	.660000	670000	680000			- 710000		220000				.770000	TROOCO	790000	800000	- 81 0000	-82000	. 830000	- 840000	. 850000	.860000	AZONCO	- 880000	890000	000006	. 910000	- 920000	-930000	-940000	-950000	. 960000	970000	980000	000066*	1.000000

a strate

. . . . . .

- - -

_



Figure 1.- Illustration of transformations used to derive airfoils and calculate pressure distribution. (From ref. 1.)





3

1

.= ___

-

----







1.46.6





Figure 5.- Variation of design lift coefficient for NACA 64-series 12-percent-thick airfoils.

96

a situation distribution to ability of a 1 to

(1) A state of the second state of the seco





1

NAMES IN THE R.

.....







-

- - -





NASA-Langley, 1974 L-9558

.

,