
Copyright zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1993 by the  Genetics  Society of America 

Development of a Core RFLP Map in Maize Using an 
Immortalized F2 Population 

J. M. Gardiner,* E. H. Coe,*>t>l S. Melia-Hancock,* D. A. Hoisington* and S. Chao* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
*Department of Agronomy, University zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Missouri-Columbia,  Columbia,  Missouri 6521 1, ?U.S.Department of Agriculture, 

Agricultural Research  Service, Plant Genetics Research Unit  and  Department zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Agronomy, University of Missouri,  Columbia, 
Missouri 6521 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, and  $International  Maize  and  Wheat Improvement Center, Lisboa 27, 06600 Mexico, D.F., Mexico zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Manuscript  received  September 9, 1992 
Accepted  for  publication March 19, 1993 

ABSTRACT 
A map derived  from  restriction  fragment  length  polymorphisms  (RFLPs) in maize (Zea mays L.) is 

presented. The map was constructed in an  immortalized Tx303 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX C0159 FP mapping  population 
that allowed  for an unlimited  number of markers to be  mapped  and  pooled Fs seed to be distributed 
to other laboratories. A total of 215  markers  consisting of 159  genomic  clones, 16 isozymes and 35 
cloned  genes of defined function have been  placed on 10 chromosomes. An examination of segregation 
data has  revealed  several  genomic  regions with aberrant segregation  ratios  favoring  either  parent or 
the  heterozygote.  Mapping  of  cloned  genes  and isozymes that have been  previously  mapped by 
functional  criteria has provided  29  points of alignment with the classical maize genetic map. Screening 
of all mapped  RFLP  probes  against a collection of U.S. Corn Belt germplasm using EcoRI, Hind111 
and EcoRV has resulted in a set of 97 core markers being defined. The designation of a set of core 
markers  allows the maize genome  to  be  subdivided  into a series of  bins  which  serve as the backbone 
for maize genetic information  and  database  boundaries. The merits  and  applications of core  markers 

v 

and bins are discussed. 

M AIZE (Zea mays L.) is a  plant of agronomic 
importance  that  embodies many of  the  features 

of a model genetic system. It has a well developed 
genetic  map  that encompasses over 600 genetic loci, 
many of which are expressed  as  seedling or kernel 
factors that  are easily diagnosed and manipulated 
(COE, NEUFFER and HOISINGTON 1988). The cytoge- 
netics of maize is also well developed and has played 
a pivotal role in defining many key aspects of chro- 
mosome behavior in addition to equipping the maize 
geneticist with a  rich  resource of tools for  addressing 
genetic  problems (CARLSON 1988). Recessive genes 
can be  mapped to  19 of the  20  chromosome  arms 
using B-A translocations (BECKETT 1978)  and domi- 
nant  genes can be localized using waxy-marked trans- 
location stocks (ANDERSON 1956; BURNHAM 1966). 
Compound  translocations have been  constructed  that 
allow gene  dosage  experiments to be  conducted (BIR- 
CHLER 1982). Last, several well characterized  transpo- 
son systems are available for tagging and cloning  genes 
of interest (WALBOT and MESSING 1988). 

The application of restriction  fragment  length pol- 
ymorphisms (RFLPs) to genetic  mapping in maize has 
helped to  further characterize the maize genome.  This 
is due,  at least in part,  to  the fact that maize is highly 
polymorphic (EVOLA, BURR and BURR 1986). Using 
pooled data  from several F2 populations, HELENTJARIS 
et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. (1986)  constructed  the  first published RFLP 
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map  for maize. WEBER and HELENTJARIS (1989)  re- 
fined this RFLP  map using B-A translocations to 
define  regions of the  centromeres.  In  the process of 
developing the linkage map, HELENTJARIS, WEBER 

and WRIGHT (1 988) observed  that  29% of their cloned 
maize sequences  hybridized to mappable duplicate 
nucleotide sequences. Comparison of these duplicate 
loci residing  on  pairs of chromosomes  indicated  that 
they were generated by a  nonrandom process that 
preserved  their  linear order. BURR et al. (1988)  de- 
veloped an  RFLP map based on segregation  data in 
two recombinant  inbred  populations (Tx303 X 
C0159  and  T232 X CM37) deriving  map distances 
as the  average of the  recombination values in the two 
populations.  Another  RFLP  map has been  developed 
by the Agrigenetics Company using two F2 popula- 
tions and a  recombinant  inbred  population (MURRAY 

et al. 1988; SHOEMAKER et al. 1992).  Further, BEAVIS 

and GRANT (1 99 1)  applied  a statistical treatment  de- 
signed to test for  homogeneity of recombination 
among populations, and have presented  comparative 
maps and a composite RFLP  map based on pooled 
data sets and common  markers from  four F2 popula- 
tions. 

Previously, an  RFLP  map was constructed in a 
Tx303 X C0159 F2 population that had  not been 
immortalized and was not  scored  for isozyme segre- 
gation (HOISINGTON and COE 1990).  This  paper  pre- 
sents an  RFLP  map  constructed in an immortalized 
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Tx303 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX C0159  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF2 (IF2) population.  Immortalized 
FP (IF4 signifies a  set of mapping  strains  derived by a 
procedure  that maintains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ie., "immortalizes") the  het- 
erozygous alleles in each individual F2 plant by pooled 
random  mating in the Fs and subsequent  generations. 
Because the genotype of the FP is maintained in each 
pooled IF2 family and allows the distribution of RFLP- 
typed IF2 seed, one  of  the main disadvantages to 
RFLP mapping in a transient F2 population is over- 
come. Additionally, all molecular markers  mapped in 
this study have been characterized for allelic variation 
in nine  inbred maize lines representing  a  range of 
U.S. Corn Belt germplasm. This has allowed for  the 
designation of a subset of RFLP probes as core  mark- 
ers  that are relatively polymorphic and evenly spaced 
throughout  the  genome yet  yield an easily interpret- 
able hybridization pattern.  This is crucial because this 
core  marker set allows the minimal genome coverage 
necessary to  map any  quantitative or qualitative  trait. 
The designation of a set of core  markers has facilitated 
the dissection of the maize genome  into  a series of 
computer-sortable and subdividable bins that  serve as 
collection points for  mapped  genetic loci. It is antici- 
pated  that these core  markers and subsequently de- 
fined bins will form  the genomic backbone necessary 
for  the  integrated  mapping  project  ongoing in this 
laboratory. 

MATERIALS AND METHODS 

Materials: All chemicals were reagent grade or better 
and purchased from Sigma  Chemical Company, St. Louis, 
Missouri, or Fisher Scientific, St. Louis,  Missouri. Restric- 
tion  enzymes and agaroses were from Bethesda Research 
Laboratories, Gaithersburg, Maryland. Radioisotope 
(dCTS2P, 3000 mCi/mol) was from New England Nuclear, 
Boston,  Massachusetts. 

Plant  materials: ATx303 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX CO159 F2 population was 
produced using  CO159  as the male parent. Leaf material 
was sampled from each of 56 F2 plants, quick frozen in 
liquid nitrogen, and freeze dried  for 3-5  days. Care was 
taken in sampling to leave enough leaf area  to allow an ear 
to be produced. When F3 leaf material was used, equal 
amounts from 12 to 20  F3 plants from a single  F2 ear were 
sampled and bulked as one sample just  prior  to freeze 
drying. After freeze drying, the samples were ground  to  a 
fine powder in a  Tecator Cyclotec  sample mill (Fisher Sci- 
entific cat. no. TC1093-002)  and  stored  at  -20" until used 
for DNA extraction. Alternatively, after freezing in liquid 
nitrogen, leaves  were  placed  in a  -80" freezer until space 
was available on the freeze dryer.  This did not affect the 
quality or yield  of  DNA obtained. The heterozygosity  of the 
F2 population was "immortalized" as  follows. Forty Fs seeds 
from each  F2 plant were planted in  two  rows  of 20. On 
successive pollinating days,  pollen from five plants in one 
row was bulked and used to pollinate five plants in the 
corresponding row  of plants from that family.  Both  rows 
were used  as  pollen parents to the corresponding row. A 
minimum  of  20 ears were bulked to immortalize the Fe. 

DNA isolations: Total maize genomic DNA was pre- 
pared using the method of SAGHAI-MAROOF et al. (1984) 
with the following modifications. DNA was treated with 

RNAase A  (0.5 mg/500 mg dried tissue) just  prior to iso- 
propanol precipitation. After isopropanol precipitation the 
DNA was spooled out using a glass hook and resuspended 
in T E  (10 mM Tris  pH  8.0,  1 mM EDTA) and extracted 
with phenol followed by a chloroform extraction. The DNA 
was brought to 0.25 M NaCl and precipitated with  2.5 
volumes of  cold ethanol. Spooled DNA  was  washed  in 76% 
ethanol, 0.2 M sodium acetate, followed by 76% ethanol, 10 
mM ammonium acetate  and resuspended in TE at  a final 
concentration of 0.6 mg/ml. DNA was stored at 4" for short 
times and at -20" for longer periods. 

Plasmids were isolated from 10-ml cultures using a scaled 
down  version of the method of BIRNBOIM (1983). Inserts 
were obtained by digesting 20  pg  of each plasmid  with the 
appropriate enzyme and electrophoresing in TAE (40 mM 
Tris,  5 mM sodium acetate, 0.5 mM EDTA, pH 8.0) gels 
prepared using low melting point (LMP) agarose. Agarose 
plugs containing the excised insert in T E  were diluted to a 
final concentration of 10 ng/pl. 

Sources of RFLP  probes: Probe sources are listed in 
Table 1. University of Missouri,  Columbia  (UMC) probes 
were developed from a PstI genomic library kindly provided 
by TIM HELENTJARIS. Native  Plants Incorporated  (NPI) 
probes were  supplied by SCOTT WRIGHT, Salt  Lake  City, 
Utah. Pioneer (PIO) probes were provided by DAVID GRANT 
at Pioneer Hi-Bred International, Johnston, Iowa.  Brook- 
haven National Laboratory (BNL) probes were  kindly pro- 
vided by BENJAMIN BURR  at Brookhaven  National Labora- 
tory, Upton, New York. Sources of other RFLP probes 
representing DNA sequences with  known functionality are 
described in Table 2. 

Restriction digestion, agarose  gel  electrophoresis  and 
Southern  transfer: Maize genomic DNA (40-80 rg) was 
digested in a total volume of 300 rl with 2.5 units of 
restriction enzyme/pg DNA for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 hr at 37"  to ensure 
complete digestion. DNA  was precipitated and resuspended 
in a smaller volume, which allowed DNA to be loaded at a 
concentration of  10  Pg/lane.  Agarose TAE gels (0.7%) were 
run overnight until the bromphenol blue tracking dye had 
migrated 5.5 cm. Gel dimensions were 20 cm X 25 cm, 
which  allowed four sets of combs with 25 or 30 wells to be 
used on a single  gel. After electrophoresis, gels  were stained 
in ethidium bromide (1 pg/ml), briefly destained in distilled 
H 2 0  and photographed. Gels  were then denatured in 3 
volumes of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.4 N NaOH, 0.6 M NaCl for 40 min, followed 
by neutralization in 3 volumes  of 0.5 M Tris,  pH 7.5, 1.5 M 
NaCl for 40 min. DNA  was then blotted onto nylon  mem- 
branes (MSI Magnagraph, Fisher  Scientific)  with 25 mM 
NaP04, pH 6.5, using a method modified after  SOUTHERN 
(1983) which  utilized  cellulose  sponges for wicking. After 
blotting overnight with one change of paper towels,  mem- 
branes were briefly  washed  in 2 X SSC (1 X SSC; 150 mM 
NaCI, 15 mM sodium citrate),  dried,  and UV-cross-linked 
with a Stratalinker according to manufacturer's recommen- 
dations (Stratagene, San  Diego, California). Membranes 
were then baked at  92"  for 2-3 hr. 

Oligolabeling, hybridizations  and  autoradiography: 
Oligolabelings were done using 50 ng of probe insert DNA 
and 5.0 pl of dCT3'P for a 250-cm2 membrane (FEINBERG 
and VOGELSTEIN 1984). Incorporation levels  were  high 
enough so that no additional purification of the radiolabeled 
insert was necessary. Filters were prehybridized at  65" in a 
buffer which  consisted  of 5 X SSC,  50 mM Tris,  pH 8.0, 
0.2% sodium  dodecyl sulfate (SDS), 10 mM EDTA,  pH 8.0, 
0.1 mg/ml denatured sonicated salmon sperm DNA and 1 
X Denhardt's solution (0.02 g Ficoll 400, 0.2 g polyvinyl- 
pyrollidone 40000, 0.02 g bovine serum albumin, fraction 
V). After 4 hr, the prehybridization solution was removed 
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TABLE 1 

Sources of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARFLP probes and  markers used in map  construction 

No. of 
Laboratory loci 

No. of 
loci  in 

Source designator mapped core map Reference 

Brookhaven National Laboratoriesa BNL 18 12 BURR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 988) 
Native Plants Incorporatedb NPI 20 12 HELENTJARIS et al. (1 986) 
Pioneer Hi-Bred Internationalb P I 0  15 5 BEAVIS and GRANT ( 199 1 )  

University of Missouri-Columbia” UMC 99 68  This paper 
Rhone-Poulenc Agrochimie‘ RPA 7 0 G .  FREYSSINET (personal communication) 
Functional Probes UMC 40 0 Table 2 

Isozymes N A ~  16 0 STUBER and GOODMAN (1 983) 

Total 215 97 

BNL and UMC probes are available from this laboratory. 
P I 0  and NPI probes are available from DAVID GRANT at Pioneer Hi-Bred International, Des Moines,  Iowa. 
RPA probes are available from G. FREYSSINET, Rhone Poulenc Agrochimie, Lyon, France. 

a Isozyme  loci are defined and designated by their  gene  product. 

and replaced with hybridization buffer (3.0 m1/250 cm’) 
which contained 10% dextran sulfate (Pharmacia, Piscata- 
way,  New Jersey) and  denatured radiolabeled probe. Mem- 
branes were hybridized overnight  at  65 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO .  Membranes were 
washed briefly in 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX SSC, 0-5% SDS to  remove  the bulk 
of the radioactivity, followed by three  l-hr washes in 0.1 X 
SSC, 0-1 % SDS at  65”.  After washing membranes were 
exposed to x-ray film (Kodak  X-Omat brand) with the aid 
of an intensifying screen.  Exposure times  were  generally 
overnight  to several days. 

Isozyme analysis: Isozyme analysis was conducted by 
Biogenetic Services, Brookings, South  Dakota, using the 
methods of STUBER et al. (1988). Ten individual  etiolated 
FS seedlings  were  typed to reconstitute  the genotypes of 
each of the  56 F2 individuals. 

Linkage analysis: Multipoint  maximum likelihood link- 
age analysis was performed  at a Sun 4.0 workstation  (Sun 
Microsystems, Palo  Alto,  California) using MAPMAKER 
(LANDER et al. 1987). Initially, unordered linkage groups 
were generated using a  minimum  log likelihood difference 
(LOD) score of 3.0 and a recombination fraction  of 0.4. A 
three-point  map was constructed using the  “three  point  and 
orders”  command.  Markers  that could not  be  fitted  to  the 
three-point  framework were mapped to  an interval using 
the multipoint “try” and  “compare” commands. Once a 
consistent order was derived  for a particular  chromosome, 
the  “ripple”  command was used to  determine which final 
order was the most likely for  adjacent pairs of loci. 

RESULTS 

Choice of probes  and  enzymes: A  PstI  genomic 
library was used as a  source of probes  (1 -2 kb) because 
we and  others (HELENTJARIS et al. 1986; BEAVIS and 
GRANT 1991; BURR et al. 1988) have found it to be 
relatively rich in  low copy sequences. Tx303  and 
C0159 parents whose genomic DNA had  been cut 

with EcoRI, HindIII, EcoRV and BamHI restriction 
endonucleases displayed polymorphisms with 60% of 

random PstI inserts used as probes with one  or  more 
enzymes. Those  probes  that did not  detect  RFLPs 
with the first four enzymes were further screened 
with XbaI, DraI, XhoI and BglII, among which 50% 
of the probes  hybridized to polymorphic  bands. In 
general, only the first four restriction enzymes were 

employed to screen the PstI library, with the second 
four enzymes being used to detect polymorphisms for 
random genomic PstI or functional clones that were 
regarded as critical for  alignment to  other RFLP 
maps. Using this approach,  199  RFLP loci were 
mapped (Table  1, Figure 1). Additionally, 16 isozyme 
loci were mapped. 

RFLP map  generation  and  evaluation: A 215- 
locus data set was loaded  into MAPMAKER, and 
evaluated, which generated 11 unordered linkage 
groups using a minimum LOD of 3.0  and  a recombi- 
nation  fraction of 0.4. Eleven linkage groups were 
obtained due  to  the failure to establish linkage be- 
tween the  three most distal markers  on  chromosome 
arm  2s (NPI239, BNL8.45, UMC53) and UMC6. This 
is most  likely due  to missing data in key individuals 
and  the large  distance involved. The  three most distal 
markers  on 2s were assigned on  the basis  of a previous 
map (COE, NEUFFER and HOISINGTON 1988)  and com- 
parison to  other published RFLP maps (BURR et al. 
1988; BURR and BURR 199  1 ; HELENTJARIS et al. 
1986). 

There were several chromosomal  regions  that  ex- 
hibited  distorted  segregation ratios as diagnosed by a 
chi square goodness of fit test for the expected 1:2:1 
segregation  ratio for codominant loci (Table 3). Two 
genomic  regions  were skewed in favor of the  C0159 
parent.  One region on chromosome  2  centered 
around UMC4 and was significant at  the  0.01  proba- 
bility  level. This region was bounded proximally by 
PI0200005  and UMC125A and distally by  UMC122 
and UMC137, each of  which were significantly skewed 
at the  0.05 probability level. The second region was 
on chromosome 5, bounded by the proximal and distal 
markers UMC126 and UMC108, respectively. 
UMC126,  UMC54 and UMC141 were significantly 
skewed at  the  0.01 probability level. UMC51  in this 
region was difficult to  evaluate because it was scored 
as presence vs. absence and critical genotypes (homo- 
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TABLE 2 

Mapped loci of functional  significance 

Locus Clone (name/size) Chromosome Apparent function Reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~~ ~~ ~~ 

UMC194(GPR) 
UMC195(HSP26)’ 

UMC185(P) 
UMCl96(UNT) 

LIMCl81(Bz2) 
UMC 1 9 7(  b32) 
UMCl84A/B(Glb) 
UMC198(Whp) 
UMCPlOA/B(SSU) 
UMC208(cpPGK) 

UMC199(A1) 
UMC24(CAB) 
UMC2OO(Adh2) 

UMC191(GPC) 

U ~ C 2 O l ( N R )  
UMC202(PRH) 
UMCl93A/B/C(Orp) 
UMC209(PRK) 
UMCZOj(GPC) 

UMCl72(OEC33) 

UMC204(Brl) 
UMC205(Pl) 
UMCl8O(PEPl)  

UMCl70(RAB17)g 
UMC 173(PDK) 

UMC189(A l )  

UMC206(HSP70) 
UMC186A/(Bsl)  
UMC207(Shl)  
UMCl92(Bz l )  
UMCU25(Wx) 

UMC 1 90( CSS)  

UMC188(GPA) 

UMCI82(R) 

pZmGprotein/l.2 kb 
pHSP2611 .O kb 

p-VB.412.8 kb 
pZm7ggl0.9 kb 

pbz2pP300/0.3 kb 
pb3211.0 kb 
pClblS/2.0 kb 
pC2c4611.5 kbb 
pZmSSU/l.O kb 
pPGK/I .O kb 

pAI-upstream/l.O kb 
pZLH511.2 kb 
pZmL841/1.0 kb 

pGAPClS, pZm910.3 

pZmnr 112.1 kb 
pZmPP1/0.2 kbd 
pTrpBl1.5 kb 
pPRKlI.0 kb 
pGAPC2S10.3 kb 

kbc 

p12-610.6 kb 

pBz2.112.1 kb‘ 
pSalIlPst1 1.0 k d  
pPEPC112.8 kb 

pM3-410.9 kb 
pPPDK410.6 kb 

pAI-downstream/0.9 

pHSP7014.0 kb 
pDW20/0.6 kb 
p246Al2.5 kb 
pBzIcDNA/l.8 kb 
pBF225, pWx513.4 kb’ 

p21.216.0 kb 

pCAPAlS,pZm57/0.4 

oR-ni: 1/0.6 kb 

kbh 

k d  

1 
1 

1 
I 

1 
1 

112 
2 
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3 

3 
3 
4 

4 

4 
4 

411017 
5 
6 

6 

6 
6 
6 

6 
6 

9 

8 
815 
9 
9 
9 

9 

10 

10 

G protein subunit 
26-kD heat shock protein 

Pericarp color (PI gene) 
Unidentified transcript 

Bz2 gene 
Endosperm albumin (Albl  gene) 
Embryo globulin (Glbl  gene) 
Chalcone synthase (Whpl gene) 
RuBP carboxylase small subunit 
Chloroplast phosphoglycerate 

Anthocyaninless (A1 gene) 
Chlorophyll a lb  binding protein 
Alcohol dehydrogenase (Adh2 

Glyceraldehyde-3-phosphate de- 
hydrogenase (Gpc l  gene) 

Nitrate reductase 
Type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 protein phosphatase 
Tryptophan synthase B subunit 
Phosphoribulokinase 
Glyceraldehyde-3-phosphate de- 

33-kD oxygen evolving polypep- 

Bzl  homolog 
Purple plant (P11 gene) 
Phosphoenolpyruvate carbox- 

Responsive to abscisic acid 
Pyruvate orthophosphate 

dikinase 
A1 homolog 

70-kD heat shock protein 
Barley stripe  retrotransposon 
Shrunken kernel (Shl gene) 
Bronze kernel (Bzl  gene) 
Waxy kernel (Wxl gene) 

Sucrose synthase (Cssl gene) 

Glyceraldehyde-3-phosphate de- 

Seed color (R1  gene) 

kinase 

gene) 

hydrogenase 

tide 

ylase 

hydrogenase (Gpa 1 gene) 

C. HAN (personal communication) 
NIETO-SOTELO, VIERLINC and  Ho 

LECHELT et al. (1 989) 
W. CAMPBELL (personal communica- 

MCLAUCHLIN and WALBOT (1987) 
DIFONZO et al. (1988) 
BELANCER and KRIZ (1 989) 
WIENAND et al. (1 986) 
BROCLIE et al. (1 984) 
LONCSTAFF et al. (1989) 

O’REILLY et al. (1985) 
MAYFIELD and TAYLOR (1984) 
SACHS et al. (1 985) 

BRINKMANN et al. ( 1  987). RUSSELL and 

GOWRI and CAMPBELL ( 1989) 
SMITH and WALKER (1 99 1) 
K. CONE (PERSONAL COMMUNICATION) 

RAINES et al. (1989) 
RUSSELL and SACHS (1  989) 

SHEEN,  SAYRE  and BOGORAD (1987) 

K. CONE (personal communication) 
CONE, BURR and BURR (1 986) 
HUDSPETH et al. (1  986) 

CLOSE, KORTT and CHANDLER (1989) 
SHEEN  and BOCORAD (1 987) 

N. FEDOROFF, personal communication 

ROCHESTER, WINTER and SHAH (1 986) 
JOHNS et al. (1989) 
BURR and BURR (1 982) 
FEDOROFF, FURTEK and NELSON (1984) 
SHURE, WESSLER AND FEDOROFF (1983) 

and  EVOLA,  BURR and BURR (1986) 
MCCARTY, SHAW and  HANNAH (1987) 

and GUPTA et al. (1987) 
BRINKMANN et al. (1987) and RUSSELL 

and SACHS (1989) 
DELLAPORTA et al. (1988) 

(1 990) 

tion) 

SACHS (1 989) 

L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 .  . -  

a Previously designated UMC195(HSP33). 
A 1.5-kb probe  for  the C 2  locus on chromosome 4 revealed an RFLP that maps to the Whpl  locus on chromosome arm 2L, a region of 

pCAPClS is a 260-bp 3’UTR subclone of pZm9, obtained  from M. SACHS. 
UMC202(PRP) locus was detected using a  150-bp  5’UTR subclone of pZmPPl. 
pBz2.1 is a 2.1-kb PstI fragment from Br l  that gives a complicated hybridization pattern with a single RFLP that maps to chromosome 

fpSalI/PstI is a 1.0-kb subclone of the C l  probe. It detects  an  RFLP that maps to P11 on chromosome 6 ,  a region of known  DNA 

known  DNA sequence homology to C 2  (WIENAND et al. 1989). 

6 .  

homology to C l  (CONE and  BURR  1988). 
Previously designated UMCl7O(DHN). 
pAI-downstream contains most of the A1 coding region and hybridizes with two loci, one of  which detects an RFLP on chromosome 

arm 8L.  
’ pBF225 is a 3.4-kb PuuI genomic subclone of pWx5 which contains an  1 1-kb EcoRI insert  that spans the transcribed region. 
j pGPAlS is a 400-bp XhoIIEcoRI subclone derived from the 3’UTR of pZm57, obtained from M. SACHS. 
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FIGURE I.-Maize core  RFLP map. Maize chromosomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI through 10 are shown  with the short  arm toward the  top of the page. 
Chromosome I has been split in order for it to be  fit into space limitations. Symbols for loci are shown on  the right with their cumulative 
distance from the most  distal marker  on  the  short arm shown on the left. Markers that could not be placed with a LOD of 3.0 or greater  are 
denoted by a dotted line on the  right. Discrepancies relative to RFLP maps of other laboratories are discussed  in the text. Loci  with distorted 
segregation ratios are denoted with an asterisk, see Table 3 for exact details. Core markers are boxed, generally not greater than 30 cM 
apart. Core bins are shown on the left, spaced between core  markers  that  delineate the boundaries for that bin. Bins are labeled from the 
end  of  the short arm  to  the tip of the long arm such that its chromosome location is denoted and followed by a decimal pointing system that 
allows for further subdivisions and computer sorting. Distances greater than 30 cM are double-binned and await an  appropriate  marker to 
divide them into two separate bins. 

zygous Tx303) were indistinguishable  from  hetero- region  were significantly deviant at  the 0.01 probabil- 
zygotes in the pooled class. UMC209(PRK) and i ty level  with the exception of the proximal and distal 
UMC108 were significantly skewed at  the 0.05 prob- markers, which were significantly deviant at  the 0.05 
ability level. A  region on chromosome I bounded probability level. Additionally, two regions were 
proximally by PZ0200644 and distally by UMC83 was skewed toward the heterozygote at  the 0.01 probabil- 
skewed toward  the Tx303 parent. All markers in this ity level. The first region, on chromosome 3, was 
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TABLE 3 

Loci showing distorted segregation 

Locus Chromosome CO Tx/CO 

PI0200644 
UMC58 
P10200855 
UMC128 
Mdh4 
UMC83 
U M C l 2 5 A  
P10200005 
UMC4 
UMC122 
UMC137 
UMC92 
E4 
UMCIO2 
UMC26 
BNL5.37 
UMC40 
BNL7.71 
UMC  126 
UMC54 
U M C l 4  I 
UMC209(PRK)  
UMClO8 

I 
I 
1 
1 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
5 
5 
5 
5 
5 
5 
5 

7 
6 

7 
6 

6 

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
15 
15 
15 
16 
16 
6 
7 

10 
9 
4 

10 
6 

19 
22 
20 
18 
21 

29 
28 
24 
28 
28 
30 

34 
34 
37 
35 
34 
41 
40 
40 
41 
41 
40 
32 
32 
31 

24 
33 

29 

T, 

20 6.1* 
22 9.2** 
25  12.1** 
22 9.2** 
22 9.2** 
20 6.2* 

5 7.3* 
5 7.3* 
4  9.3** 
5 6.8* 
6 6.2* 
9 12.4** 
9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10.4** 
6 9.7** 
6 12.4** 
3 24.0*** 
6 10.8** 
6 9.1* 
3 11.3** 
3 13.2** 
2 12.9** 
5 7.7* 
6 8.1* 

The number of individuals for each of the  three genotypic 
classes. CO = CO159 homozygote, Tx = Tx303 homozygote, Tx/ 
CO, = Tx303/CO159 heterozygote. 

Chi square values, * P C  0.05; * *  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP < 0.01; *** P < 0.001, 

defined by UMC92 and BNL5.37,  but was bisected 
into two smaller regions by UMCIO whose codominant 
segregation  ratio  did  not  deviate  from the  expected. 
A second region of preferential heterozygosity on 
chromosome 5 was defined by UMC40 and BNL7.71. 

In  general,  the  map  generated  (Figure  1)  compared 
well with the  other published RFLP maps (BEAVIS and 
GRANT  1991; BURR et ai. 1988; HELENTJARXS et al. 
1986). There  are, however,  a few discrepancies worth 
noting. The terminal  pairs of markers, UMCI I I and 
BNL8.23,  UMC104 and PI0100017, and NPI220 and 
N P I l I 4 ,  for  chromosome arms 4 L ,   5 L  and 8s respec- 
tively, are inverted on  the present  map as compared 
to  the most recent version of the BNL  map (B. BURR, 
personal  communication). The 8s markers NPI220 
and NPI l14  and 5 L  markers UMC104 and PI0100017 
are also inverted on  the present  map  relative to  the 
NPI  (HELENTJARIS, WEBER and WRIGHT 1988)  and 
Pioneer (BEAVIS and  GRANT  1991) maps. There  are 
several regions  where the  order of a  cluster of tightly 
linked markers on  the present  map  does  not reconcile 
with that given in the most recent version of the  BNL 
map (B. BURR,  personal  communication). This was 
not  surprising, since these cases generally deal with a 
cluster of markers spaced only a few centimorgans 
apart unflanked by any proximal or distal markers. 
An example of this type of situation is seen in the 

centromeric  region  on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10s (Figure  1).  A  general order 
of UMCI30,   NPI105,   Glu l  and UMC64 is consistent 
in both maps. Adding PI006005 and UMCI  93B(ORP2) 
to these  markers results in different  orders  for  the 
two maps. The Pioneer map (BEAVIS and  GRANT 
1991)  supports  the BNL map in that PI0060005 is 
more distal on the  short  arm  than G l u l .  There were 
two possible inversions on  chromosome 4 that  are also 
worth  noting. The UMC42 and UMC47 loci, while 
consistent on  both  the BNL and UMC maps, have a 
more distal location with respect to the  short  arm  than 
UMCl93A(Orp) on  the BNL map. The Pioneer  map 
indicated  a  reverse order  for UMC42 and UMC47, but 
provided  no  information  on the orpl locus (BEAVIS 
and  GRANT  199 1). Another possible inversion on 4L 
involved UMC66,  UMC19 and UMC2lOB(SSU), which 
were in reverse order on  the BNL map. The Pioneer 
and  NPI maps indicate an  order consistent with the 
UMC map as does  a teosinte-maize ( Z .  mays ssp. mexi- 
cana X Z. mays ssp. mays) map  generated by DOEBLEY 
et al. (1990)  and  DOEBLEY  and STEC (1991). 

Mapping DNA sequences of functional signifi- 

cance: Particularly important  to  the  construction of 
this RFLP  map was the chromosomal localization of 
35 probes (40 loci) that  represent DNA sequences 
defined by either  their  gene  product or molecular 
function (Table 2). These loci were of crucial impor- 
tance because they not only allowed alignment with 
other  RFLP maps, but alignment with the maize ge- 
netic  map as well (COE, NEUFFER and HOISINCTON 
1988).  In nearly all cases, mapped locations of probes 
with known functional  identities  corresponded with 
locations that  had previously been genetically defined. 
In several cases, additional loci were revealed in ad- 
dition  to  those that  had been genetically defined.  One 
example of this was the  orange  pericarp  (tryptophan 
synthase B) loci, which are duplicate  factors  geneti- 
cally mapped by NEUFFER and  CHANG (1 986)  to  chro- 
mosomes 4 s  and IOL on  the basis of an  orange  peri- 
carp  phenotype in orp l /o rp2  kernels. Loci UMC193A, 
B and C detected by the cloned  probe  revealed, in 
addition to  the two genetically defined loci, a  third 
locus on 7S,  which  may or may not  produce  a  func- 
tional product. A similar situation was seen for A l ,  
which has been  mapped genetically to 3 L  by aleurone 
color expression (EMERSON 19  18). Molecular mapping 
with a  probe  for  the  coding  sequence of the A1 gene 
product  indicated  a second locus on  8L in addition to 
the  one  on 3L.  A  comparable but  more  extended 
result  for AI was seen by WRIGHT and HELENTJARIS 
(1988), who mapped  RFLP loci on I L ,   2L ,   5L  and 7 s  
in addition  to  the 3 L  locus. A third point of interest 
was possible evidence for  a  duplication on 6 L  of  the 
C1 Shl Bzl  region  on 9s. This was indicated by tight. 
linkage (4.0 cM) between UMC204(BZI) and 
UMC205(Pl) on 6L.  Probes  for  these loci arose  from 
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cDNA clones for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABzl and Cl genes. While Cl and P1 
are known to be  duplicate loci (CONE and BURR  1988), 
Bzl has not  been previously linked to P1 on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6L. This 
suggested the presence of a small duplicated  region 
common to 6L and 9s. These findings are consistent 
with those  found by other researchers  (C. J. DOWTY, 
personal  communication). 

Selection of core RFLP markers: A  set of 97  RFLP 
markers  (Table 1, Figure 1) was selected, which 
should in principle  be  distributed relatively evenly 
throughout  the maize genome and allow any quanti- 
tative or qualitative  trait to be  mapped. In  addition  to 
the initial prerequisite of detecting  an  RFLP between 
the C0159  and  Tx303 mapping  parents,  the selection 
criteria  for  core  markers  were  as follows. First,  a  core 
marker  should  be  a low copy probe  that gives an easily 
interpretable  pattern  and is polymorphic across a va- 
riety of inbred lines. The vast majority of probes 
included in this study  were  screened with EcoRI, 
Hind111 and EcoRV (S. JOHNSON, manuscript in prep- 
aration) against nine  inbred lines (Oh40B,  Oh43, 
W8A,  W153R,  C103, Moly,  CI187, B73 and B37) 
that  represent  a  distribution of U.S. Corn Belt germ- 
plasm. For  the most part,  core  markers  are low copy 
probes  that  detect three  to  four alleles utilizing one 
of  the  three enzymes. A few represent  the only probe 
available in a sparsely marked  region of the  genome. 
This may mean that  the genomic  organization of these 
sparsely marked  regions consists of islands of low-copy 
DNA flanked by regions of highly recombinogenic or 

repetitive  DNA. Secondly, core markers  were chosen 
so as not  to have a spacing greater  than 30 cM (22% 
recombination) in most cases,  with an  optimal spacing 
of 15-20 cM. In  12 cases, lack of a  suitable core 
marker necessitated regions greater  than 30 cM to be 
defined between a  pair of core  markers. It is antici- 
pated  that  these  regions will be  subdivided by addi- 
tional core  markers  that are in the process of being 
determined. Last, a strong  preference has been given 
to those probes  (BNL, UMC) that  are available to 
researchers in both  the public and private sectors. 
Probes  for loci defined by NPI or  PI0  are available 
from  Pioneer Hi-Bred International by arrangement. 

DISCUSSION 

Choice of probes  and  enzymes: The results using 
size-selected PstI genomic clones as a  source of RFLP 
probes were similar to those  obtained by other labo- 
ratories.  Over 90% of the PstI clones hybridized to 
one or two bands in maize, which was similar to results 
obtained  for  tomato (Lycopersicum  esculentum L.) 
(TANKSLEY et al. 1987)  but  differs significantly from 
rice (Oryza zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsativa L.) where only 58% ofthePst1 clones 
hybridized to low copy sequences. Using the  present 
F2 mapping  parents,  approximately 60% of  the PstI 
inserts  detected  an  RFLP with at least one of the  four 

enzymes tested,  comparable to results obtained by 
BURR et al. (1988).  In  rice, 78% of the PstI clones 
detected  an  RFLP,  but  a  direct comparison to maize 
is not possible since 11 restriction enzymes were  sur- 
veyed. Using tomato  genomic clones that consisted of 
both EcoRI and PstI clones and eleven different en- 
zymes, BONIERBALE et al. (1988)  found  at least one 
RFLP between parents of an interspecific cross in 
potato (Solanum  tuberosum  L.) for 60% of  the probes 
tested.  In barley (Hordeum vulgare L.), the majority 
of PstI clones were  polymorphic with at least one of 
five enzymes in an interspecific cross between barley 
and H. vulgare ssp. spontaneum  C.  Koch emend Bacht. 
(GRANER et al. 1991). Using 85 prescreened PstI 
clones from wheat (Triticum  aestivum L.), HEUN et. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 
(1  99 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1) determined  that  approximately 50% revealed 
polymorphisms in each of two doubled-haploid pop- 
ulations of barley. It  therefore seems reasonable to 
assume,  from the higher plants surveyed to  date, that 
PstI libraries are a  good  source of  low  copy RFLP 
probes. 

RFLP mapping in an immortalized Fn population: 

An RFLP linkage map  constructed in an IF2 mapping 
population encompasses many of the advantages of 
both  recombinant  inbred  and F2 mapping popula- 
tions. RFLP linkage maps have been constructed  from 
pooled F3 individuals in Arabidopsis thaliana (CHANG 
et al. 1988;  NAM et al. 1989), barley (GRANER et ai. 
1991; SHIN et al. 1990), wheat (M. GALE, personal 
communication) and maize (BEAVIS and  GRANT  199 1). 
One advantage of working with bulked F3 plants is 
that large  amounts of tissue can be collected for  pre- 
paring  DNA.  This is particularly important  for A. 

thaliana, which contains  a relatively small amount of 
vegetative material. Even the leaf tissue from  an FZ 
maize plant is eventually exhausted, which means that 
ultimately a  new,  untyped F2 mapping  population will 
be  needed. Pooling of  leaf material  from F3 individ- 
uals while at  the same time systematically crossing Fs 
individuals within each FJ pool has allowed the  pro- 
duction of representative seed for  distribution to 
other laboratories. All a  laboratory  needs to  do is 
plant 10-20 kernels and pool to  reconstitute with 
reasonable  assurance the genotype of an F2 individual. 
By probing DNA from each of the 56 FJ pools and 
comparing  the  resulting  RFLP  pattern  to  our IF2 
database using MAPMAKER (LANDER et al. 1987), 
any  molecular  marker can easily be  mapped. The 
immortalization of individual F2 plants using stag- 
gered planting  dates and pollen bulking to  produce 
pooled seed has allowed maintenance of individual F2 
genotypes with a minimum of genetic  drift. Using this 
approach  the main disadvantages of mapping in an F2 
population have been  overcome. Additionally, map- 
ping in  IF2 populations using MAPMAKER  allows a 
multipoint (as opposed to a two-point) approach to be 
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taken  that makes the most efficient use of codominant 
data.  In this study, full resolution of 112 meiotic 
products is approached by the application of the mul- 
tipoint  treatment. For infinitely small intervals, each 
FP individual approximates two meiotic strand  prod- 
ucts, whereas each recombinant  inbred  approximates 
1.67  strand  products  (HALDANE  and  WADDINGTON 
1931).  For  a  population size  of 56 individuals, stand- 
ard  errors of 3.0 and  4.3 can be calculated for  10  and 
20  percent  recombination, respectively (ALLARD 
1954). Doubling this population size to  112 individ- 
uals would decrease the  standard  errors  to 2.1 and 
3.1, respectively. The present  study  does  not  have the 
benefits of two distinct,  combined  mapping popula- 
tions (BURR et al. 1988).  In  the  uncommon case  of a 
presence-absence ( i e . ,  not  codominant) polymorphism 
at  the  end of a linkage group,  the resolution of order 
is poorer in an F2 as compared  to  a  recombinant 
inbred  population. 

Distorted  segregation  ratios: A  number of genomic 
segments with segregation  ratios that  are  distorted in 
favor of the  Tx303  parent (chromosome I ) ,  the 
C0159 parent  (chromosomes 2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 )  and  the  het- 
erozygote  (chromosomes 3 and 5 )  were  observed 
(Table 3). Distorted  segregation  ratios are  not unex- 
pected in any genetic cross where  large  numbers of 
markers are  mapped,  but  are of particular  interest 
when sizeable genomic  regions encompassing several 
genetic  markers are  distorted. Utilizing an  interspe- 
cific backcross in tomato, PATERSON et al. (1988) 
reported  distorted  ratios  for  48 of 70  markers  (68%) 
that fell into 21 distinct regions. In rice, MCCOUCH et 
al. (1  988)  observed two large  regions skewed toward 
one  parent. Using an interspecific cross in potato 
monitored by genomic and cDNA tomato  probes, 
BONIERBALE, PLAISTED and TANKSLEY (1988)  de- 
tected  large genomic regions on several chromosomes 
that displayed aberrant segregation ratios. In barley, 
using doubled-haploid  mapping  populations  (GRANER 
et al. 1991;  HEUN et al. 1991)  distorted  ratios have 
been reported, presumably at least  in part  due  to  the 
fact that  the  parent exhibiting the favored alleles 
responds better  to in vitro culture  (GRANER et al. 
199  1).  It is noteworthy that Beavis and GRANT (1 99  1) 
did  not observe aberrant segregation  ratios of linked 
markers in any of four maize F2 populations  studied. 
This may be  attributable to  the closely related pedi- 
grees of the  central  and  northern U.S. Corn Belt lines 
used in their F2 mapping  populations. The parental 
inbred lines used in the  present study were  ones that 
had previously been chosen on  the basis of maximal 
isozyme differences (STUBER and GOODMAN 1983)  and 
represent  an early Canadian line derived  from  Pioneer 
Brand  hybrid  61  24 and a Texas line derived  from 
’Yellow Surecropper.’ Given the diversity of these two 
groups,  despite full fertility of the hybrid and  progeny, 

it does  not seem unreasonable  that gametic and/or 
pairing  factors may have played a  role in the distortion 
of genetic  ratios in particular regions. In a similar 
situation,  WENDEL,  EDWARDS and STUBER  (1987)  ob- 
served  segregation  distortion  on 7 of 10  chromosomes 
for  11 of 17 isozyme  loci  in an F2 cross involving two 
maize inbreds with divergent  pedigrees. The region 
of chromosome zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 (PZ0200644 to UMC83) that  had  an 
aberrant  ratio  favored  the  Tx303  parent.  This ge- 
nomic region also displayed aberrant segregation in 
the previous UMC mapping  population with the same 
parents (HOISINGTON and COE 1990).  It is interesting 
to  note,  however,  that this genomic segment  on  chro- 
mosome I displayed normal  segregation in recombi- 
nant  inbreds of the same genetic cross (B. BURR, 
personal communication).  A  region  on  chromosome 
5 flanked proximally by UMC126 and distally by 
UMC108 was distorted in favor of the  CO159  parent. 
This region was also shown by DOEBLEY et al. (1990) 
and DOEBLEY and STEC (1 99 1)  to  be  distorted  toward 
the teosinte zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Z. mays L.  ssp. mexicana) parent in a 
maize-teosinte F2 population.  In this genomic region 
of the  integrated  genetic  map (COE 1992) is the widely 
distributed  gametophytic  factor, ga2 (BURNHAM 
1936),  for which Ga2 pollen grains are competitively 
superior  to ga2. A  disturbed  genetic  ratio  favoring 
CO159 homozygotes could occur if Tx303 carried 
the ga2 allele and C0159 carried  the Ga2 allele. It is 
unclear what genetic mechanism could  account  for a 

significant biasing toward heterozygosity on  chromo- 
somes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 and 5,  unless the present study unknowingly 
applied selection toward  heterozygotes within this ge- 
nomic segment. Previous mapping  data  from  an iden- 
tical population  (HOISINGTON and COE 1990)  did  not 
indicate  a bias towards  heterozygotes in these  regions 
though it is worth  noting  that  the genomic segment 
flanked by UMC26 and UMC102 on  chromosome 3 
was distorted  towards  the Tx303 homozygote. 

Differences in gene  order(s): Not surprisingly, the 
map  contained some genomic segments  that  differed 
in gene  order  compared  to  other  RFLP maps con- 
structed in maize (BEAVIS and  GRANT  199 1 ; BURR et 
al. 1988; HELENTJARIS et al. 1986). That  the present 
map  differed in assessment of the most probable  gene 
order  for  the terminal  markers of chromosome  arms 
4L,  5L and 8s is most likely due  to  the unflankable 
nature of terminal  markers. This  phenomenon is fur- 
ther  compounded  for chromosome  arms 5L and 8 s  
by the fact that  the two terminal  markers were tightly 
linked but  the  next proximal marker was 30 cM away. 
The uncertainty of order of terminal  markers has  also 
been  noted in A. thaliana (CHANG et al. 1988;  NAM et 
al. 1989)  and rice (MCCOUCH et al. 1988). Develop- 
ment of telomeric  RFLP  probes  that are simultane- 
ously defined by functional,  recombinational and 
physical criteria would aid in the resolution of termi- 
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nal marker  orders  (BURR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1992). The inversion 
of a  region on  chromosome  arm 4 L  involving UMC66, 
UMC19 and UMC%IOB(SSU) (equivalent to BNL17.05)  
relative to  the most recent version of the BNL map 
(B. BURR,  personal  communication) was of  concern 
since it involved several RFLP  probes  that  had  been 
designated as core  markers.  In  an  attempt to resolve 
the inconsistency between the UMC and BNL maps, 
two approaches were taken using the multipoint map- 
ping capabilities of MAPMAKER (LANDER et al. 
1987).  First, the flanking  proximal  markers UMC42 
and UMC47 and distal marker U M C l l l  common to 
both maps were fixed and all possible orders  (6) of 
UMC66,  UMC19, and UMC2lOB(SSU)  (=BNLI 7.05) 
placed between these  flanking  markers were tested. 
The log likelihood score for  the UMC order was 
-126.7 with a  total  map  distance of 121 cM as com- 
pared  to  a log likelihood score of -1 31.2 and total 
map distance of 240 cM for  the  order specified by the 
BNL map. Based on  these data,  the UMC map  order 

tipoint  approach  taken was to again fix a  set of prox- 
imal (UMC42 and UMC47) and distal (UMC52 and 
PZ0200608) markers while comparing all orders 
of UMC66,  UMC19,  UMC133,  UMCI5 and 
UMC2lOB(SSU) between the flanking sets of markers. 
The UMC order was preferred with a log likelihood 
score of  -1 86.1, while a log likelihood score of 
-195.4 was required to bring UMC21OB(SSU) into a 
proximal position relative to UMC19 and UMC66, an 
order  that reflects the BNL map. The map order 
shown for this region is based on this approach to  the 
analysis of the  data. Mapping of additional  RFLP 
markers  should  help to resolve this descrepancy. Any 
changes in map order  for this or any other region will 
be  reflected yearly in the Maize Genetics  Cooperation 
Newsletter. As with  all recombinational maps, our map 
is subject to  the same “pending”  status. 

Alignment to the  genetic map: Using a  combina- 
tion of isozymes and cloned  genes whose location on 
the classical genetic  map  had  been previously defined 
by functional  criteria, it was possible to establish 29 
direct  contact  points  between the  RFLP  map and  the 
classical genetic  map (COE, NEUFFER and HOISINGTON 
1988; COE 1992). These contact  points are critical not 
only for  correlating linkage groups with particular 
chromosomes,  but also as landmarks  for  choosing 
RFLP  probes to flank any genetic  trait of interest.  In 
maize it is fortunate  that  there  are several other  RFLP 
maps (BURR et al. 1988; HELENTJARIS et al. 1986; 
BEAVIS and  GRANT  199 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; SHOEMAKER et al. 1992)  that 
have  incorporated identical isozymes and cloned  genes 
and allow for  the assignment of linkage groups  to 
chromosomes and  alignment of the  RFLP maps. Ad- 
ditionally, B-A translocations  (BURR et al. 1988; WE- 
BER and HELENTJARIS 1989)  and monosornics (HE- 

is lo(191.2- 126.7 = 4.5) times more likely. The second mul- 

LENTJARIS, WEBER and WRIGHT  1986) have been used 
to assign linkage groups  to  chromosomes when cloned 
genes or isozymes have not been available. In A. 

thaliana, alignment to  the genetic  map was achieved 
by using multiple-marked stocks to construct  the F2 
mapping  population in addition to using cloned genes 
(CHANG et al. 1988;  NAM et al. 1989).  In  tomato 
(TANKSLEY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1987)  and rice (MCCOUCH et al. 1988) 
primary trisomics played an  important  role in assign- 
ing linkage groups  to  chromosomes while  isozyme 
markers  provided  direct  contact  points for  the  RFLP 
and genetic maps in tomato  (BERNATZKY  and TANK- 
SLEY 1986).  In  barley,  multiple-marker stocks were 
used to  construct F2 mapping  populations (SHIN et al. 
1990)  that allow contact  points with the barley genetic 
map. Linkage groups have been assigned to specific 
barley chromosomes  (GRANER et al. 199 1 ; HEUN et al. 
1991) using wheat-barley addition lines or chromo- 
some arms using wheat nullisomic-tetrasomic and di- 
telosomic aneuploid stocks (HEUN et al. 1991). Estab- 
lishing contact  points between the  genetic and  RFLP 
maps allows  access to a wealth of cytological and 
cytogenetic  information. 

Development zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof core  markers  and  bins: The sev- 
eral  RFLP linkage maps in maize jointly encompass 
over  1200 molecular markers. Many  of these maps 
have numerous  markers in common, which  allows for 
an  approximate  correlation of the various public and 
private  sector maps. Still, there is not  a  complete 
correlation between maps and choosing the  proper 
RFLP  probes to flank a  trait of interest is often  a trial 
and  error process dependent upon  finding  a suitable 
probe-enzyme  combination. Clearly, a  standardized 
set of chosen RFLP  markers would be  a useful starting 
point  for any maize researcher  wanting  to  map  a 
particular  trait. The designation of 97  core  markers 
that have been selected on  the basis of their usability, 
spacing and availability has allowed the maize genome 
to be  divided  into  a series of “bins”  that  define  a  core 
map. Each bin is defined by a  pair of RFLP  markers. 
For  example, bin 1.01 is defined by BNL5.62 and 
UMC157. Bins are  numbered according  to the chro- 
mosome on which they reside, with further subdivi- 
sions following the decimal point being created by 
numbering sequentially from  the most distal short 
arm  core  marker to  the most distal long arm  core 
marker.  This bin system  has the advantage  that any 
genetic  trait can be localized to a small region of the 
genome by using a limited number of agreed-upon 
markers.  At the present  time, we are engaged in an 
integrated  mapping  project  that is directed  toward 
the genomic localization of large  numbers of previ- 
ously unmapped morphological markers. One poten- 
tial aid to achieving this goal is a  mapping  strategy 
that encompasses the speed of random amplified pol- 
ymorphic DNA (RAPD)  marker systems (WILLIAMS et 
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al. 1990)  and  the resolving power of previously 
mapped  core  markers with a  bulking  strategy that 
allows monitoring of genomic  segments using DNA 
pools (MICHELMORE, PARAN  and KESSELI 199 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; GIOV- 
ANNONI et al. 1991).  Core  markers are critical in 
assigning RAPD linkage groups  to  chromosomes in 
addition to defining  a series of bins into which mor- 
phological markers are placed after mapping. Once 
localized to  a  particular  bin, the bin number  and its 
left and  right  markers  serve as a  computer-sortable 
tag which will allow  all markers in the same bin to be 
identified,  should  more precise map order within a 
bin be  desired. Another  advantage of a bin system for 
collection, organization and retrieval of genetic  infor- 
mation is that it is expandable and allows bins to be 
infinitely subdivided  should  mapping technologies be- 
come available that allow an even finer dissection of 
the genome  than is presently possible. We are hopeful 
that this approach, utilizing core  markers and bins, 
will allow the maize researcher  to  contribute  to, as 
well as benefit from,  the wealth of  maize genetic 
information available. 
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