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Abstract Cutting tool wear is a critical phenomenon which
influences the quality of the machined part. In this paper, an
attempt has been made to create artificial flank wear using
the electrical discharge machining (EDM) process to
emulate the actual or real flank wear. The tests were
conducted using coated carbide inserts, with and without
wear on EN-8 steel, and the acquired data were used to
develop artificial neural networks model. Empirical models
have been developed using analysis of variance (ANOVA).
In order to analyze the response of the system, experiments
were carried out for various cutting speeds, depths of cut
and feed rates. To increase the confidence limit and
reliability of the experimental data, full factorial experi-
mental design (135 experiments) has been carried out.
Vibration and strain data during the cutting process are
recorded using two accelerometers and one strain gauge
bridge. Power spectral analysis was carried out to test the
level of significance through regression analysis. Experi-
mental results were analyzed with respect to various depths
of cut, feed rates and cutting speeds.
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1 Introduction

In the last three decades or so, there have been tremendous
improvements and technical revolutions in manufacturing

industries, namely computer integrated manufacturing
process, robot controlled machining processes, and others.
Today customer demands high quality products for lowest
possible price. To meet customers’ such demands and to
face global competition, modern industries are facing
various challenges towards achieving high dimensional
accuracy with mirror surface finish on the products. To
achieve such goals the manufacturers are focusing on the
technical problems namely, how to achieve uninterrupted
automated machining process for longer duration with least
human supervision. Cutting tool wear condition monitoring
is an important technique that can be useful especially in
automated cutting processes and unmanned factories to
prevent any damage to the machine tool and workpiece. In
any metal cutting operation, one of the major hurdles in
realizing its complete automation is that of the cutting tool-
state prediction, where tool-wear is a critical factor in
productivity. Cutting tool condition monitoring can help in
on-line realization of the tool wear, tool breakage, and
workpiece surface roughness.

Researchers and engineers have been trying to evolve a
cutting tool condition monitoring system with high reli-
ability [1]. There is a need for reliable, universal cutting
tool condition monitoring (TCM) system, which is suitable
for industrial applications. Various sensing techniques [2]
have been reported in the literature by various investigators
which deal with the issues of detecting edge chipping,
fracture, tool wear and surface finish. Many sensors were
adopted in the area of metal cutting tool condition
monitoring system namely, touch sensors, power sensors,
acoustic emission sensors [3–6], vibration sensors, torque
sensors, force sensors, vision sensors and so on. In any
automation process, sensors and their signal interpretation
play an important role. The processing and analysis of
signals is important because it will improve production
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capacity, reliability, reduced downtime and improved
machining quality [7]. Sensors and their utilization were
implemented in many areas like machine tool, automotive,
and tool manufacturing. Byrne et al. [8] reported that 46 %
of the sensors monitoring systems were fully functional,
16% had limited functionality, 25% of the systems were
non-functional due to technical limitations and 13% were
replaced by or switch over to alternate systems. It should be
noted that, in sensors based systems the most critical
decision is prediction of cutting tool condition using signal
response. In many cases wrong interpretation of the sensor
signals by an operator leads to the wrong decision to switch
off the machine tool which affects the quality of the product
as well as production rate. The training of the personnel
also plays a vital role in successful implementation of tool
condition monitoring systems.

Generally, machining processes are non-linear and
stochastic in nature, and it is difficult to build a mathemat-
ical model, which requires suitable assumptions and may
not be matching with real world metal cutting process. An
intensive research has been carried out related to TCM
system covering various metal cutting processes such as
turning, milling, drilling and grinding, over the past two
decades or so [9]. A good cutting tool condition monitoring
system [10] should be characterized by (a) fast detection of
impact or collisions, (i.e., unwanted movement between
tool and workpiece, or tool and any other component of the
machine tool), (b) tool chipping (cutting edge breakage),
and (c) gradual tool wear (crater and flank) caused by
abrasion due to friction between cutting tool and workpiece
(flank wear) and cutting tool and chip (crater wear).

Tool wear sensing techniques are broadly classified into
two categories: direct and indirect as shown in Table 1. The
direct tool wear monitoring methods can be applied when
cutting tools are not in contact with the work piece [11] like
radioactive, microscope, camera vision and so on. Howev-
er, direct methods of measuring tool wear have not been
easily adaptable for shop floor application. They are not
suitable for on-line condition monitoring system however
they can be easily applied to off-line measurements and it
consumes more time. Indirect tool sensing methods use
relationship between cutting conditions and response of
machining process which is a measurable quantity through
sensor signals output (such as force, acoustic emission,

vibration, or current) and may be used to predict the
condition of the cutting tool. These indirect methods are
used extensively by various researchers and the detailed
analyses have been carried out in the past two decades.
These indirect methods can be implemented to an industrial
problem, but they have a lower sensitivity compared to
direct methods. Nowadays, availability of computational
power and reliability of electronics help in the development
of a reliable condition monitoring system by using indirect
methods. However, a problem in TCM system is selection
of proper sensor and its location. The sensors have to be
placed as close as possible to the target location (close to
the tool tip) being monitored.

It is interesting to note that an indirect TCM system [12]
consists of four steps: (i) collection of data in terms of
signals from sensors such as cutting force, vibration,
temperature, acoustic emission and/or motor current, (ii)
extraction of features from the signals, (iii) classification or
estimation of tool wear using pattern recognition, fuzzy
logic, neural networks, or regression analysis, and (iv)
development of an adaptive system to control the machin-
ing process based on information from the sensors.

There have been many investigations on tool wear based
on periodic measurements of wear levels using optical
microscope. In the present study, artificial wear has been
created (externally) using electric discharge machining
(EDM) process in a controlled manner. This is similar to
a real flank wear experienced by the tool during machining
process. Using this (artificially worn) cutting tool, cutting
experiments are performed and signals are captured. This
paper aims to develop a systematic feature extraction
procedure from the output responses (accelerometers and
strain gauges) of a machining process. These features are
then fed as inputs to the back propagation feed forward
neural networks, for classification or estimation of tool
wear. Same experimental data were fed as inputs to the
analysis of variance (ANOVA) to test the level of
significance. The regression empirical models have been
developed and validated with experimental results.

2 Creation of artificial wear

The cutting tool failure [8] can be classified into two
categories: (a) gradual wear due to loss of material on an
asperity or micro contact between cutting tool and
workpiece which causes friction and leads to tool failure
after a certain time interval, and (b) premature cutting edge
failure due to chipping which occurs suddenly due to
improper selection of machining parameters or tool material
defect, or both. If a cutting tool approaches towards the end
of its useful life, surface quality of the machined work piece
is likely to deteriorate [1]. Characteristics of the surface

Table 1 Tool wear sensing methods

Direct methods Indirect methods

-Electrical resistance -Torque and power
-Optical measurements -Temperature
-Radio active -Vibration & acoustic emission
-Contact sensing -Cutting forces & strain measurements
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topography of a machined work piece depend on the
condition of the cutting tool including tool geometry,
cutting tool material, work piece material, cutting condi-
tions (with or without cooling) and machining parameters
(cutting speed, feed rate and depth of cut). In general, the
single point turning tool is subjected to different types of
wear such as flank wear, crater wear, nose wear and
chipping. Out of these wears, flank wear is considered in
the present work although others are equally important
under different machining conditions. While creating
artificial flank wear, the following important cutting tool
geometrical parameters are taken into consideration like
rake angle, clearance angle, length of the flank wear and
radial wear length [13].

The relation between flank wear and radial wear is given
(Fig. 1) by

rf ¼ hf tan a0

1� tan g0 tan a0
ð1Þ

where, rf is radial wear, hf is flank wear, a0 is clearance
angle and g0 is rake angle.

According to Eq. (1), the value of depth of cut (hf) and
radial distance (rf) are calculated to create flank wear in the
range of 0.2 mm to 0.5 mm. EDM experimental setup is
used to create artificial flank wear. The replica of the flank
wear is first produced in the copper rod by turning
operation and then the copper rod is used in the EDM
process as a tool (cathode) to replicate the flank wear on the
cutting tool. During EDM, the tungsten carbide cutting tool
(used as a work piece in EDM operation) is made as an
anode. Machining parameters values are chosen in terms of
feed rate as well as depth of cut to create exact shape of
flank wear as shown in Fig. 2. The measurement of wear
can be carried out using one of the three categories of

Fig. 1 Flank wear forms

Fig. 2 Artificial flank wear cre-
ated by EDM process

Fig. 3 Flank wear measurements
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sensors, namely proximity sensors, radioactive sensors and
vision sensors. Most of the researchers use an optical
microscope to determine worn out areas, like flank wear
length and crater wear length.

In this study, optical USB port microscope (Scalar) is
used to capture the image of worn out area with
magnification factor of 50x. Before measurements, insert
is mounted on a stand, made of Perspex having included
angle of 55° as shown in Fig. 3. It covers the entire portion
of nose and flank face. Through out the measurements,
position of the stand and focal distance are kept constant so
that uniform measurements are achieved without any
variation. In this microscope, built-in software (namely
USB digital scale) is used to measure the flank wear.

3 Experimentation

Experiments were carried out on a CNC Gildemeister CTX
400 Serie 2 turning centre. The experimental setup is shown
in Fig. 4. Experiments were conducted on EN-8 steel using

DNMG 150608 insert with Seco tool holder PDJNR 2020
K15 without cutting fluid. The tool is instrumented with
strain gauges (TML-120Ω) and two accelerometers (NP-
3331-ONO-SOKKI). The strain gauge signals are taken to a
PXI system and accelerometer signals are taken to an
ONOSOKKI FFT analyzer. The PXI system is equipped
with a Wheatstone bridge configuration and an amplifier.
The magnitude of strain and amplitude of vibration depend
upon various machining parameters and it is observed that
they increase with depth of cut and feed rate, and decrease
with cutting speed. While machining, the cutting tool is
subjected to a state of stress. The resultant strain induces a
voltage signal and it is measured with a half bridge
configuration using LabVIEW.

Two accelerometers were placed in the turning centre.
One was placed in the cutting direction on the tool holder,
and the other one was placed in the feed direction on the

Table 2 Independent variables

Variables Unit Levels

1 2 3 4 5

Cutting speed m/min 200 350 500
Feed rate mm/min 100 300 500
Depth of cut mm 3 4 5
Flank wear mm 0 0.2 0.3 0.4 0.5

Fig. 4 Experimental setup
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Fig. 5 Rap test for cutting tool
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backside of the turret for measuring vibration amplitude in
terms of accelerations (g-levels).

3k full factorial design [14] with three levels for each
value of factors k is used. The three levels of factors are low
(−1), intermediate (0), high (1). It forms 33 factorial designs
and it contains 27 experiments with degrees of freedom
equal to 26. A full factorial design was selected to allow all
the three level interactions between the independent
variables to be effectively investigated. The independent
variables in this study are cutting speed, feed rate and depth
of cut. The artificial flank wear is the fourth independent
variable kept at five different levels ranging from 0 to
0.5 mm as shown in Table 2.

The three responses or dependent variables (strain due to
bending action of a cutting tool, acceleration in cutting
direction and acceleration in feed directions) are measured
for various machining conditions. Tungsten carbide cutting
tools equipped with throw-away inserts (DNMG 150608)
were used in turning operation. Based on the previous study
[15], flank wear level is minimum at the tool corner radius
of 0.8 mm. So, in this study, the insert nose radius has been
chosen as 0.8 mm with an angle of 55° diamond shape. The
work piece material is EN8 steel and is supported by a
tailstock to avoid excessive overhang. A total number of
135 experiments were performed to include all combina-
tions of the four independent parameters.

Dynamometers can measure the static and dynamic
forces accurately and they can be used [16] as a part of
cutting tool condition monitoring systems. But, their
frequency range is usually limited by the natural frequency
f0 of piezoelectric components of about 3 kHz. In order to
avoid amplitude distortion, the usable frequency of a
piezoelectric transducer is restricted to about 0.6 times of
f0. In view of this, an attempt has been made to measure
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Fig. 7 Cutting speed=200 m/min, feed=500 mm/min and depth of
cut=3 mm for flank wear 0.3 mm. Response of the strain gauge
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Fig. 6 Cutting speed=200 m/min, feed=500 mm/min and depth of
cut=3 mm for flank wear 0.3 mm. Response of the accelerometer in
cutting direction
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Fig. 8 a Regression model responses (channel 1) cutting speed=
500 m/min and feed rate=500 mm/min. b Regression model responses
(channel 1) cutting speed=500 m/min and depth of cut=5 mm.
c Regression model responses (channel 1) feed rate=500 mm/min and
depth of cut=5 mm
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both static and dynamic components of cutting force using
resistance type strain gauges (TML-120Ω -3 mm gauge
length). Such gauges can follow the static and dynamic
response of a system up to 350 kHz. These strain gauges
are economical and get easily pasted on the surface of the
tool. Also, they do not affect the stiffness of the tool holder.

Several references are available [17] on vibrations in the
low frequency range, close to the natural frequency of
vibration of spindle work piece (up to 300 Hz). Various

authors have found that the frequencies relevant for TCM
can be as high as 8 kHz, and usually above 1 kHz. This
means that the signal essentially, consists of low frequency
components that are indicators of static cutting forces. In
the higher frequency range, natural frequencies of the tool
holder are observed. The forces in this range (higher
frequency) are called as dynamic cutting forces. In the
present work, the fundamental natural frequency of the
cutting tool was found to be 3.91 kHz, by conducting a rap
test as shown in Fig. 5. Experiments have been carried out

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2.5 3.0 3.5 4.0 4.5 5.0 5.5

Depth of cut , mm

A
cc

el
er

at
io

n
 , 

g

Flank wear = 0.5 mm 

Flank wear = 0.4 mm 

Flank wear = 0.3 mm 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 100 200 300 400 500

Feed rate , mm/min

A
cc

el
er

at
io

n
 , 

g

Flank wear = 0.5 mm 

Flank wear = 0.4 mm 

Flank wear = 0.3 mm 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

150 200 250 300 350 400 450 500

Cutting speed , m/min

A
cc

el
er

at
io

n
 , 

g

Flank wear = 0.5 mm 

Flank wear = 0.4 mm 

Flank wear = 0.3 mm 

a

b

c

Fig. 9 a Regression model responses (channel 2) cutting speed=
500 m/min and feed rate=500 mm/min. b Regression model responses
(channel 2) cutting speed=500 m/min and depth of cut=5 mm. c
Regression model responses (channel 2) feed rate=500 mm/min and
depth of cut=5 mm
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Fig. 10 a Regression model responses (channel 3) cutting speed=
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for various machining conditions. Strain gauge and vibration
signals are measured from 0 to 10 kHz with a sampling rate
of 25.6 kHz. Sample size is 4096 data points. Programming
is done in LabVIEW to acquire the strain gauge signals and
store them continuously frame by frame to monitor the
condition of the cutting tool at every stage in on-line.

4 Results and discussions

The cutting phenomenon has been analyzed by using power
spectrum of vibration and strain gauge signals. Typical
power spectral plots are shown in Figs. 6 and 7. It is seen
that 3.91 kHz is the predominant frequency in the response
signals. Input parameters (amplitude of acceleration, g and
strain) to the ANOVA are obtained from the three sensors
output using MatLab code as shown in the Appendix 1
(Tables 6, 7 and 8) and the models are described in the later
part of this section.

In order to develop an empirical model, statistical
analysis is performed on the experimental data to determine
the most significant input parameters (cutting speed, feed
and depth of cut) with respect to the responses (output

parameters). In this analysis, three empirical models have
been proposed using three sensors responses: (I) acceler-
ometer response in cutting direction (channel 1), (ii)
accelerometer response in feed direction (channel 2) and
(iii) strain gauge bridge response (channel 3). The criterion
for the selection of a model had been the highest value of
coefficient of correlation among the models that were fitted.
It is observed that, vibration and strain gauge signals peaks
exhibit response in a particular dynamic frequency range
(3.8 kHz to 4.1 kHz) with respect to various machining
conditions. The damping characteristics of the turning tool
have been studied under dynamic conditions in the above
said frequency range. The effects of three cutting parame-
ters on the three response parameters are discussed below.

4.1 Effect of depth of cut on acceleration, g and strain

The relation between acceleration, g and depth of cut for
various flank wear levels are as shown in Figs. 8a and 9a.
The tool vibration increases with increase in depth of cut as
well as increase in flank wear. This is due to an increase in
cutting force which reduces stiffness of the cutting tool. It is
observed that, in all cases the amplitude of vibration in
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Fig. 11 a Variation of vibration levels, g vs. cutting speed (channel 1
feed rate=300 mm/min, depth of cut=4 mm and flank wear=0.3 mm). b
Variation of vibration levels, g vs. feed rate (channel 1 cutting speed=
350 mm/min, depth of cut=4 mm and flank wear=0.3 mm). c Variation

of vibration levels, g vs. depth of cut (channel 1 cutting speed=350
m/min, feed rate=300 mm/min and flank wear=0.3 mm). d Variation of
vibration levels, g vs. flank wear (channel 1 cutting speed=350 m/min,
feed rate=300 mm/min and depth of cut=4 mm)
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terms of acceleration, g is small up to 0.3 mm flank wear
level due to small variation in cutting force. In case of strain
as a response, the variation in strain level is also low up to
0.3 mm flank wear level due to small variation (Fig. 10a) in
cutting force, but there is sudden rise in strain beyond
0.3 mm flank wear due to increase in cutting force.

4.2 Effect of feed rate, cutting speed on acceleration,
g and strain gauge bridge

The relationships between machining parameter feed rate
and acceleration, g for various flank wear levels are shown
in Figs. 8b (channel 1) and 9b (channel 2). The amplitude
of vibration g, increases with increase in feed rate which
results in increased dynamic cutting force. The increase in
dynamic cutting force is associated with reduction in the
stiffness of the cutting tool. The variation in strain level is
low (Fig. 10b) up to 0.2 mm flank wear level due to small
variation in cutting force. Similarly the effects of cutting
speed for various flank wear levels are shown in Figs. 8c
and 9c. Increase in cutting speed reduces the cutting force,
and hence it will reduce the vibration and strain levels. The

variation in strain level is low up to 0.2 mm flank wear
level due to very small variation (Fig. 10c) in cutting force.

In statistical software Datafit (ANOVA) the 99%
confidence intervals (α value) are chosen at various levels
and best model values are shown in Appendix 2 (Tables 9,
10 and 11). From the ANOVA, all the values of P≤0.01
indicate that the effect of the parameter is significant. The
detailed ANOVA has been made for each level of flank
wear with respect to machining input parameters as shown
in Appendix 2 (Table 9 Regression model I for channel 1).
From the results of ANOVA (Appendix 2, Tables 9, 10 and
11), it is observed that F Ratios were large enough and
indicate that the developed models are appropriate [14].

Out of five levels of flank wear, three levels (0.2, 0. 3
and 0.4 mm) were selected for the analysis of variance
(ANOVA) to develop the regression models (Eqs. 2–4) to
show the relationship between output response and ma-
chining input parameters. A model has four independent
parameters for three dependent responses. Three models
were tested for each channel output and the one which gave
the highest coefficient of correlation was selected. The
selected models for channel 1, channel 2 and channel 3 are
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Fig. 12 a Variation of vibration levels, g vs. cutting speed (channel 2
feed rate=300 mm/min, depth of cut=4 mm and flank wear=0.3 mm).
b Variation of vibration levels, g vs. feed rate (channel 2 cutting speed=
350 mm/min , depth of cut=4 mm and flank wear=0.3 mm). c Variation

of vibration levels, g vs. depth of cut (channel 2 cutting speed=350
m/min, feed rate=300 mm/min and flank wear=0.3 mm). d Variation of
vibration levels, g vs. flank wear (channel 2 cutting speed=350 m/min,
feed rate=300 mm/min and depth of cut=4 mm)
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given by the Eqs. (2–4), respectively. These models gave
higher value of F-ratio as compared to the tabulated F-ratio
value which demonstrates that the selected models are
appropriate. According to ANOVA response (F ratio, P and
R2 values) the best regression model has been chosen. To
perform the parametric study using these regression
models, the relationships have been drawn between the
machining conditions and responses (acceleration, g vs.
Cutting speed (Figs. 11a, 12a, 13a), acceleration, g vs. Feed
rate (Figs. 11b, 12b and 13b) and so on).

β1 ¼ exp a1x1 þ b1x2 þ c1x3 þ d1x4 þ e1ð Þ ð2Þ

β2 ¼ exp a2x1 þ b2x2 þ c2x3 þ d2x4 þ e2ð Þ ð3Þ

δ ¼ exp a3x1 þ b3x2 þ c3x3 þ d3x4 þ e3ð Þ ð4Þ
where, x1= cutting speed, x2= feed rate, x3= depth of cut,
x4= flank wear, β1= acceleration, g in cutting direction, β2=
acceleration, g in feed direction,δ = micro strain.

Following values of the various coefficients of Eqs. (2–
4) have been obtained.

a1 ¼ �2:565 e� 3; a2 ¼ �1:939 e� 3;

a3 ¼ �7:054 e� 3; b1 ¼ 6:739 e� 3;

b2 ¼ 6:137 e� 3; b3 ¼ 9:878 e� 3; c1 ¼ 1:706;

c2 ¼ 1:296; c3 ¼ 2:006; d1 ¼ 7:066; d2 ¼ 22:169;

d3 ¼ 6:538; e1 ¼ �15:233; e2 ¼ �20:734;

e3 ¼ �13:444

The error between the regression model values and
experimental values are calculated as

" ¼ Am � Ai

Am

�
�
�
�

�
�
�
�
� 100 ð5Þ

where,

ɛ error rate between experimental data and regression
model data,

Ai the experimentally measured acceleration, g or micro
strain,

Am the predicted acceleration, g or micro strain from
regression equations.
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Fig. 13 a Variation of micro strain vs. cutting speed (channel 3 feed
rate=300 mm/min , depth of cut=4 mm and flank wear=0.3 mm).
b Variation of micro strain vs. feed rate(channel 3 cutting speed=
300 mm/min , depth of cut=4 mm and flank wear=0.3 mm). c Variation

of micro strain vs. depth of cut (channel 3 cutting speed=350 m/min,
feed rate=300 mm/min and flank wear=0.3 mm). d Variation of micro
strain vs. flank wear(channel 3 cutting speed=350 m/min, feed rate=
300 mm/min and depth of cut=4 mm)
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The error rate of channel 1 (β1) of this model is calculated
by using Eq. (5). The calculated values are 4.82% for the
cutting speed 200 m/min, 11.41% for the cutting speed
350 m/min and 22.6% for the cutting speed 500 m/min. The
deviations (or percentage of errors) increased with increase
in cutting speed as shown in Figs. 11a, 12a, and 13a. This
increasing error may be due to measurements errors in the
sensors at high cutting frequencies. The error rate or
deviations rate increase with increase in feed rate as shown
in Figs. 11b, 12b and 13b, which is due to variation in
dynamic cutting conditions and increase in cutting force. If
cutting force increases the distortion of amplitude also
increases in both accelerometer and strain gauge bridge.
Similarly error values increase with increase in depth of cut
(shown in Figs. 11c, 12c and 13c) as well as increase in
flank wear (Figs. 11d, 12d and 13d). This is due to increase
in cutting force as discussed above.

5 Neural networks

Cutting tool wear and breakage have a direct influence on
dynamic characteristics of any manufacturing process. Metal
cutting processes are generally non-linear, time dependent, and
vary withmaterial properties andmachining conditions. Neural
networks are known to be a mathematical tool to handle such a
dynamic and non linear phenomenon. Most of the researchers
[2, 3, 5, 8] have used feed forward back propagation, self
organizing maps (SOM), probabilistic neural networks (PNN)
using either time domain or frequency domain signals. In past
two decades [18, 19] wavelet transform technique has also
been used in the area of cutting tool condition monitoring
system. A real condition monitoring system is expected to
replace the knowledge and experience of a skilled machine
operator. This can be achieved through proper learning and
training of artificial neural network (ANN) [20]. Neural

Input layer Hidden layers  
Output layer

Output
layer 

Fig. 14 Feed forward neural network with four hidden layer

Table 4 Typical training output vectors (target vectors)

Flank wear levels

0.5 mm 0.4 mm 0.3 mm 0.2 mm 0.0 mm

Output vectors 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Table 3 Neural network architecture parameters

Trial No Neural network architecture No of epochs Transfer function Comments

1 100-100-100-100-5 20000 logsig, logsig, logsig, logsig, tansig, logsig Not converged, it attained maximum epochs
2 110-110-110-110-5 20000 logsig, logsig, logsig, logsig, tansig, logsig Not converged, it attained maximum epochs
3 120-120-120-120-5 7390 logsig, logsig, logsig, logsig, tansig, logsig Converged
4 125-125-125-120-5 5386 logsig, logsig, logsig, logsig, tansig, logsig Converged
5 125-125-125-125-5 20000 logsig, logsig, logsig, logsig, tansig, logsig Not converged, it attained maximum epochs
6 130-130-130-120-5 4049 logsig, logsig, logsig, logsig, tansig, logsig Converged
7 130-130-130-125-5 5029 logsig, logsig, logsig, logsig, tansig, logsig Converged
8 130-130-130-130-5 9251 logsig, logsig, logsig, logsig, tansig, logsig Training stopped due to non convergence
9 140-140-130-120-5 6351 logsig, logsig, logsig, logsig, tansig, logsig Training stopped due to non convergence
10 140-140-130-125-5 3351 logsig, logsig, logsig, logsig, tansig, logsig Training stopped due to non convergence
11 140-140-140-120-5 4051 logsig, logsig, logsig, logsig, tansig, logsig Training stopped due to non convergence
12 150-140-130-120-5 6851 logsig, logsig, logsig, logsig, tansig, logsig Training stopped due to non convergence
13 150-150-150-120-5 4901 logsig, logsig, logsig, logsig, tansig, logsig Training stopped due to non convergence
14 150-150-150-150-5 20000 logsig, logsig, logsig, logsig, tansig, logsig Not converged, it attained maximum epochs
15* 130-120-120-120-5 1863 logsig, logsig, logsig, logsig, tansig, logsig Converged
16 120-120-120-120-5 4113 logsig, logsig, logsig, logsig, tansig, logsig Converged
17 140-130-130-120-5 1851 logsig, logsig, logsig, logsig, tansig, logsig Training stopped due to non convergence
18 130-120-120-100-5 2052 logsig, logsig, logsig, logsig, tansig, logsig Converged
19 130-130-120-120-5 3311 logsig, logsig, logsig, logsig, tansig, logsig Converged

*Trial No 15, the architecture of 130-120-120-120-5 gives best convergence, lower computation time and response of training and is good enough
to classify the flank wear at various levels.
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network-based condition monitoring systems [21] employ
feed forward multi-layer perceptrons (MLP).

In this study, an attempt has been made to estimate the
flank wear using MLP architecture. In multi layer perceptron
[2], the neural network architecture, number of layers, nodes,
transfer function and training pattern are conveniently
chosen as shown in Table 3. The feed forward back
propagation algorithm is chosen for training and testing the
experimental data. We have conducted 27 experiments with
different combinations of machining conditions. On taking
flank wear levels of 0, 0.2, 0.3, 0.4 & 0.5 mm as a
parameter, the total number of experiments becomes 135
(=27×5). Out of these, 110 experiments with different
machining conditions have been selected for training and
remaining 25 experiments are reserved for testing. Addition-
ally, training algorithms, number of nodes, transfer functions
and number of layers are varied to study the behaviour of
networks and to arrive at an optimum configuration.

The output signals of three sensors were used as input
vectors to the neural networks. For single flank wear, the
number of input terms in an input vector is 3 i.e., output
responses of two accelerometers in terms of vibration
amplitude, g in cutting, and feed directions, and third one
is strain gauge bridge output.

The target vectors of neural networks are fixed as shown
in Table 4. In Table 4, first column (1 0 0 0 0) indicates the
level of flank wear as 0.5 mm. Similarly second, third,
fourth, and fifth columns indicate the levels of flank wear
as 0.4, 0.3, 0.2 and 0 mm, respectively.

In this work, six layers feed forward back propagation
(Fig. 14) neural networks with one input, four hidden layers
and one-output layer were used. The training is carried out
for five levels of flank wear (0, 0.2, 0.3, 0.4 & 0.5 mm).
Different combinations of architecture were tried out for five
different levels of flank wear. Many transfer functions are
available in Matlab toolbox. Three of them (purelin, logsig,
tansig) are commonly used as transfer functions. The transfer
function purelin is called linear transfer function and is
shown in Fig. 15a. Neurons of purelin transfer function are
used as linear approximators. A Sigmoid function is a
mathematical function (Eq. 6) that produces a sigmoid curve
(“S” shape). Often, sigmoid function refers to the special
case of the logistic function and is defined by

f xð Þ ¼ 1

1þ e�x
ð6Þ

The sigmoid (logsig and tansig) transfer function (shown
in Fig. 15b,c) takes the input, which may have any value
between plus and minus infinity, and squashes the output
into the range 0 to 1 (logsig) or −1 to 1 (tansig).
Investigations were carried out with a variety of transfer
functions like tansig, logsig, purelin etc for the activation
function used to represent the neurons [22]. Similarly, back-
propagation training algorithms like traingd, traingda,
traingdx, trainlm,trainrp were tried. Best results were
obtained with logsig and tansig activation function.

Table 5 Typical output for test data for Ex No 25 and 26

Ex No 25 Ex No 26

Flank wear levels Flank wear levels

Output vectors 0.5 mm 0.4mm 0.3 mm 0.2 mm 0.0 mm 0.5 mm 0.4 mm 0.3 mm 0.2 mm 0.0 mm
1.000 0.000 0.000 0.002 −0.011 1.000 0.001 0.003 0.015 −0.037
−0.003 0.999 0.000 −0.005 0.003 0.000 0.988 −0.002 0.076 0.058
−0.001 −0.001 0.991 −0.004 0.011 0.001 −0.002 0.992 −0.004 0.000
−0.001 0.000 −0.003 0.991 0.013 0.002 −0.002 0.000 0.929 0.024
−0.001 −0.001 0.002 −0.005 0.954 0.005 −0.011 −0.003 0.002 0.951

Fig. 15 Transfer functions.
a Purelin transfer
function. b Logsig transfer
function. c Tansig transfer func-
tion
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The trainrp is found to be most robust training algorithm
in terms of accuracy and time taken. The performance of
various neural network architectures have been analysed
and some of them are described in Table 3. The behaviour
of neural networks architecture depends upon various
parameters like input patterns to networks, target vectors,
number of layers, number of neurons, activation function,
training function, number of epochs and so on. In this paper
an attempt has been made to classify the flank wear levels
by using ANN. In the Table 3, different combination of
architecture were tried to find an optimal architecture. Out
of these trials, Trial number 15 gives better convergence
(Fig. 16a), less computation time and response of network
is good enough to classify the flank wear levels. In trial No
17, the network is not allowed to run for 20000 epochs
because the rate of divergence increases with increases in
number of epochs (after 1,500 cycles) as shown in Fig. 16b.
It never converged to achieve the target level of accuracy
1×10-3 within 20,000 epochs. On trial and error basis, the
training of networks is allowed to run up to the maximum
number of epochs like Trial No 5. But this trial did not
converge to the target level as shown in Fig. 16c. Similarly,
an attempt has been made to reduce the computational
timings by selecting proper architecture of neural works
(Trial No 15 of architecture 130-120-120-120-5). The same
architecture was used for both training and testing the
experimental data. The testing results are shown in Table 5
for the experiment numbers 25 and 26.

A neural network model has been developed and used to
predict the condition of the cutting tool. On the basis of the
condition of the cutting tool, this neural network model
may be further employed to develop an adaptive feedback
system to control the machining process.

6 Conclusions

The development of practical and reliable condition
monitoring system for detecting flank wear in turning
operation is essential for realization of intelligent and
flexible manufacturing systems. In this study, the problem
of detection of flank wear in turning operation has been
studied using vibration and strain measurement methods.
Based on the current study, the following conclusions can
be drawn:

Artificial wear can be created in a controlled manner by
using EDM process, which emulates the real flank wear.

Vibration and strain monitoring during turning operation
can be useful for predicting flank wear. For this purpose,
frequency domain analyses have been carried out and
features were fed in to ANN as input data. The response of
ANN is good enough to classify the flank wear at different
levels.

Fig. 16 a Convergence pattern of back propagation networks for Trial
No 15. b Convergence pattern of back propagation networks for Trial
No 17. c Convergence pattern of back propagation networks for Trial No 5
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The neural networks code was tested employing various
training algorithms available in the Matlab toolbox and
finally optimum architecture (Trial No 15) was selected.
Among these algorithms, the trainrp was found to be most
robust and easily applicable to classify the flank wear levels
while using logsig and tansig as activation functions.

A multiple regression model has been developed and
validated with experimental results.
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Appendix 1

Table 6 Input parameters - dynamic response of accelerometer
(channel 1) in cutting direction

Experimental
conditions

Amplitude of acceleration, g for different level
of flank wears

Ex
No

CS FR DOC 0.5 mm
FW

0.4 mm
FW

0.3 mm
FW

0.2 mm
FW

0.0 mm
FW

1 500 500 5 0.2330 0.1580 0.0298 0.0091 0.0107
2 500 500 4 0.0528 0.0079 0.0131 0.0043 0.0026
3 500 500 3 0.0456 0.0196 0.0026 0.0009 0.0020
4 500 300 5 0.0759 0.0298 0.0132 0.0113 0.0070
5 500 300 4 0.0389 0.0079 0.0050 0.0058 0.0012
6 500 300 3 0.0348 0.0035 0.0047 0.0023 0.0014
7 500 100 5 0.0492 0.0033 0.0019 0.0028 0.0061
8 500 100 4 0.0310 0.0029 0.0019 0.0020 0.0031
9 500 100 3 0.0238 0.0013 0.0003 0.0006 0.0005
10 350 500 5 0.2750 0.2330 0.1050 0.0199 0.0111
11 350 500 4 0.2000 0.0200 0.0219 0.0053 0.0036
12 350 500 3 0.0316 0.0111 0.0038 0.0030 0.0034
13 350 300 5 0.2530 0.0456 0.0247 0.0128 0.0083
14 350 300 4 0.1540 0.0187 0.0090 0.0085 0.0061
15 350 300 3 0.0275 0.0052 0.0074 0.0043 0.0016
16 350 100 5 0.1890 0.0348 0.0105 0.0066 0.0064
17 350 100 4 0.0691 0.0115 0.0097 0.0009 0.0039
18 350 100 3 0.0107 0.0008 0.0026 0.0011 0.0009
19 200 500 5 0.2650 0.2650 0.2320 0.0345 0.0153
20 200 500 4 0.2320 0.0585 0.0241 0.0090 0.0095
21 200 500 3 0.1760 0.0065 0.0092 0.0087 0.0052
22 200 300 5 0.2410 0.0621 0.0261 0.0442 0.0132
23 200 300 4 0.1630 0.0389 0.0110 0.0098 0.0091
24 200 300 3 0.1580 0.0076 0.0058 0.0045 0.0019
25 200 100 5 0.1060 0.0613 0.0145 0.0129 0.0112
26 200 100 4 0.0613 0.0186 0.0098 0.0092 0.0053
27 200 100 3 0.0186 0.0042 0.0077 0.0051 0.0037

CS = cutting speed in m/min, FR= feed rate in mm/min, DOC = depth
of cut in mm and FW = flank wear in mm

Table 8 Input parameters - dynamic response of strain gauge (channel 3)

Experimental
conditions

Micro strain for different level of flank wears

Ex
No

CS FR DOC 0.5 mm
FW

0.4 mm
FW

0.3 mm
FW

0.2 mm
FW

0.0 mm
FW

1 500 500 5 7.4488 4.2373 0.0141 0.02108 0.001350
2 500 500 4 0.0274 0.1118 0.0013 0.00566 0.000378
3 500 500 3 0.0100 0.0017 0.0006 0.00229 0.000234
4 500 300 5 0.8566 0.0210 0.0025 0.00736 0.001245
5 500 300 4 0.0224 0.0031 0.0011 0.00174 0.000166
6 500 300 3 0.0017 0.0011 0.0002 0.00053 0.000020
7 500 100 5 0.0500 0.3906 0.0007 0.00004 0.000749
8 500 100 4 0.0141 0.0079 0.0003 0.00056 0.000148
9 500 100 3 0.0015 0.0010 0.0003 0.00009 0.000138
10 350 500 5 13.972 5.7864 0.3940 0.02123 0.269500
11 350 500 4 0.5940 0.0141 0.0727 0.01852 0.001401
12 350 500 3 0.1176 0.0045 0.0061 0.01562 0.000265
13 350 300 5 1.0856 1.8221 0.1274 0.01791 0.013886

Table 7 Input parameters - dynamic response of accelerometer
(channel 2) in feed direction

Experimental
conditions

Amplitude of acceleration, g for different level
of flank wears

Ex
No

CS FR DOC 0.5 mm
FW

0.4 mm
FW

0.3 mm
FW

0.2 mm
FW

0.0 mm
FW

1 500 500 5 0.2670 0.2450 0.0103 0.0089 0.0068
2 500 500 4 0.2370 0.0883 0.0065 0.0058 0.0037
3 500 500 3 0.1570 0.0277 0.0035 0.0025 0.0017
4 500 300 5 0.0939 0.0638 0.0071 0.0061 0.0040
5 500 300 4 0.0448 0.0191 0.0049 0.0051 0.0031
6 500 300 3 0.0239 0.0087 0.0024 0.0017 0.0025
7 500 100 5 0.0457 0.0229 0.0040 0.0033 0.0033
8 500 100 4 0.0408 0.0059 0.0028 0.0028 0.0024
9 500 100 3 0.0191 0.0065 0.0015 0.0007 0.0019
10 350 500 5 0.2480 0.2370 0.0210 0.0136 0.0077
11 350 500 4 0.2450 0.0389 0.0086 0.0061 0.0054
12 350 500 3 0.1640 0.0110 0.0054 0.0033 0.0044
13 350 300 5 0.2490 0.0627 0.0100 0.0070 0.0054
14 350 300 4 0.1900 0.0122 0.0066 0.0058 0.0034
15 350 300 3 0.1430 0.0057 0.0033 0.0021 0.0027
16 350 100 5 0.0929 0.0264 0.0050 0.0053 0.0037
17 350 100 4 0.0264 0.0055 0.0036 0.0029 0.0028
18 350 100 3 0.0249 0.0045 0.0031 0.0007 0.0025
19 200 500 5 0.2710 0.1210 0.0226 0.0194 0.0083
20 200 500 4 0.2640 0.0239 0.0123 0.0094 0.0067
21 200 500 3 0.1690 0.0017 0.0085 0.0037 0.0051
22 200 300 5 0.2330 0.0408 0.0159 0.0125 0.0061
23 200 300 4 0.1470 0.0063 0.0120 0.0084 0.0041
24 200 300 3 0.1310 0.0039 0.0062 0.0045 0.0034
25 200 100 5 0.1920 0.0167 0.0127 0.0064 0.0049
26 200 100 4 0.1330 0.0249 0.0089 0.0033 0.0032
27 200 100 3 0.0601 0.0044 0.0081 0.0010 0.0028
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